WO2020082646A1 - 无机卤化铅艳钙钛矿量子点制备方法及显示装置 - Google Patents

无机卤化铅艳钙钛矿量子点制备方法及显示装置 Download PDF

Info

Publication number
WO2020082646A1
WO2020082646A1 PCT/CN2019/075555 CN2019075555W WO2020082646A1 WO 2020082646 A1 WO2020082646 A1 WO 2020082646A1 CN 2019075555 W CN2019075555 W CN 2019075555W WO 2020082646 A1 WO2020082646 A1 WO 2020082646A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dots
solution
lead halide
lead
solid
Prior art date
Application number
PCT/CN2019/075555
Other languages
English (en)
French (fr)
Inventor
陈旭
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/462,935 priority Critical patent/US11236268B2/en
Publication of WO2020082646A1 publication Critical patent/WO2020082646A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7719Halogenides
    • C09K11/772Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the invention designs the field of inorganic luminescent materials, specifically an inorganic lead halide cesium perovskite quantum dot preparation method and display device.
  • Perovskite quantum dots are hot materials in recent years. Due to their fast electron migration rate, large exciton binding energy, long diffusion distance and other excellent electrical properties, and very high fluorescence quantum efficiency and other optical properties, they have been widely used in recent years. Research on solar cells, lasers, LEDs and flat panel displays, and has made a very big technological breakthrough.
  • Quantum dots are considered to be another major display technology material after LCD and OLED due to their excellent thermal stability, high quantum efficiency, narrow half-width, and high color gamut characteristics.
  • major companies have quantum dots Products appear on the market. Because the traditional method of preparing quantum dots is not easy to operate, it cannot be obtained quickly, and different quantum dots cannot be obtained in a loop.
  • the invention provides a preparation method and a display device of inorganic lead halide cesium perovskite quantum dots. In order to solve the reaction conditions, the difficulty of operation, and the inability to synthesize inorganic lead halide cesium perovskite quantum dots.
  • the present invention provides a method for preparing inorganic halide lead brilliant perovskite quantum dots, which includes the following steps: preparing a first coordination solution step, placing the first lead halide solid and the first solvent Mix and heat in a reaction vessel until all solids are dissolved to obtain a first coordination solution; in the step of preparing a cesium oleate solution, place the cesium carbonate solid and the second solvent in a container and mix and heat until the solids are completely dissolved; The first coordination solution is added to the cesium oleate solution, cooled to room temperature to obtain a first mixed solution, centrifugal separation of the first mixed solution to obtain the first quantum dots; preparation of the second coordination solution step, the first The lead dihalide solid and the first solvent are placed in a reaction vessel and mixed and heated until the solid is completely dissolved to obtain the second coordination solution; the first ion exchange step redisperses the first quantum dots in a non-polar organic solvent , The second lead halide solution is added drop
  • the halogen element of the first lead halide solid and the second lead halide solid is any one of Br, I or Cl, and the halogen element in the first lead halide solid and the second lead halide solid are not the same .
  • the first solvent includes oleic acid, oleylamine and a non-polar organic solvent.
  • non-polar organic solvent is dodecane or octadecene.
  • the volume ratio of the oleic acid, the oleylamine and the non-polar organic solution is 1-2: 1-2: 4-8.
  • the second solvent includes oleic acid and octadecene solvent, and the heating temperature is 120-150 degrees; in the centrifugal separation step, the heating temperature is 180 -200 degrees.
  • the structure and diameter of the second quantum dot are consistent with the structure and diameter of the second quantum dot.
  • the method further includes the steps of preparing a third coordination solution, mixing the third lead halide solid and the first solvent in a reaction vessel, and heating the mixture until all solids are dissolved to obtain the third coordination solution Solution; second ion exchange step, redisperse the second quantum dots in a non-polar organic solvent, and then add a third lead halide solution drop by drop, perform an ion exchange reaction to obtain a third mixed solution, and centrifuge to separate The third mixed liquid obtains a third quantum dot, which is also the inorganic lead halide brilliant perovskite quantum dot.
  • the halogen element of the second lead halide solid and the third lead halide solid is any one of Br, I or Cl, and the halogen element in the second lead halide solid and the third lead halide solid are different .
  • the present invention provides a display device including a quantum dot layer, and the light-emitting quantum dots of the quantum dot layer are the inorganic lead halide brilliant perovskite quantum dots.
  • an appropriate amount of the second lead halide or third lead halide solution prepared in advance is added dropwise to the synthesized first quantum dot solution, Prepare a second quantum dot solution or a third quantum dot solution.
  • adding the first lead halide solution to the synthesized second quantum dot solution or third quantum dot solution can finally prepare the first quantum dot solution.
  • the ion reaction process cycle is reversible, the reaction conditions are mild, and the structure and diameter of the quantum dots after ion exchange are the same as those before the exchange.
  • FIG. 1 is a flow chart of a method for preparing inorganic halide lead brilliant perovskite quantum dots provided by the present invention.
  • FIG. 2 is a cross-sectional view of the structure of a display device of an application example.
  • the present invention provides a method for preparing inorganic halide lead brilliant perovskite quantum dots, including the following steps:
  • the first lead halide (0.2 mol) solid and the first solvent are placed in a reaction vessel and mixed and heated until all the solids are dissolved to obtain a first coordination solution;
  • the halogen element of the first lead halide solid Is Br element;
  • the first solvent includes oleic acid (0.5ml), oleylamine (0.5ml) and non-polar organic solvent (3ml);
  • the non-polar organic solvent is dodecane, in other embodiments It may be an octadecene solvent; in the first solvent, the volume ratio of the oleic acid, the oleylamine and the non-polar organic solution is 1: 1: 6, in other embodiments it may be 1: 1: 8 or 2: 2: 8.
  • the solid cesium carbonate (Cs2CO3) and the second solvent are placed in a container and mixed and heated until the solid is completely dissolved;
  • the second solvent includes oleic acid and octadecene solvent; In other embodiments, it may be 140 or 150 degrees.
  • the first coordination solution is heated and the cesium oleate solution is added thereto, cooled to room temperature to obtain a first mixed solution, and the first mixed solution is centrifuged to obtain a first quantum dot; the heating
  • the temperature is 180 degrees, in other embodiments 190 or 200 degrees.
  • the second lead halide solid and the first solvent are placed in a reaction vessel and mixed and heated until all the solid is dissolved to obtain the second coordination solution; the halogen element of the second lead halide solid is I element.
  • the first quantum dots are re-dispersed in a non-polar organic solvent, and then the second lead halide solution is added dropwise, an ion exchange reaction is performed to obtain a second mixed solution, and the first The second mixed liquid obtains second quantum dots; the structure and diameter of the second quantum dots are consistent with the structure and diameter of the second quantum dots; during the reaction, Br element and I element are replaced in ionic form, and the reaction process is irreversible, No catalytic conditions are required and can be prepared quickly.
  • the method further includes the steps of preparing a third coordination solution, mixing the third lead halide solid and the first solvent in a reaction vessel, and heating the mixture until all solids are dissolved, to obtain the third coordination Solution;
  • the halogen element of the third lead halide solid is either Br or Cl, in this embodiment, Br element.
  • the second quantum dots are re-dispersed in a non-polar organic solvent, and then a third lead halide solution is added dropwise to perform an ion exchange reaction to obtain a third mixed solution, and the third mixture is centrifuged to separate Liquid to obtain the third quantum dot; the structure and diameter of the third quantum dot are consistent with the structure and diameter of the second quantum dot; during the reaction, the element I and the element Br are replaced by ions, the reaction process is irreversible and no catalysis is required Conditions can be quickly prepared.
  • the method for preparing inorganic lead halide cesium perovskite quantum dots has mild reaction conditions, simple operation and reversible circulation.
  • the present invention provides another embodiment 2 of a method for preparing inorganic halide lead brilliant perovskite quantum dots, which includes the following steps:
  • the first lead halide (0.2 mol) solid and the first solvent are placed in a reaction vessel and mixed and heated until all the solids are dissolved to obtain a first coordination solution;
  • the halogen element of the first lead halide solid It is a CI element;
  • the first solvent includes oleic acid (0.5ml), oleylamine (0.5ml) and a non-polar organic solvent (3ml);
  • the non-polar organic solvent is dodecane, in other embodiments It may be an octadecene solvent; in the first solvent, the volume ratio of the oleic acid, the oleylamine and the non-polar organic solution is 1: 1: 6, in other embodiments it may be 1: 1: 8 or 2: 2: 8.
  • the solid cesium carbonate and the second solvent are placed in a container and mixed and heated until the solid is completely dissolved;
  • the second solvent includes oleic acid and octadecene solvent;
  • the heating temperature is 120 degrees, in other implementations For example, it can be 140 or 150 degrees.
  • the first coordination solution is heated and the cesium oleate solution is added thereto, cooled to room temperature to obtain a first mixed solution, and the first mixed solution is centrifuged to obtain first quantum dots.
  • the second lead halide solid and the first solvent are placed in a reaction vessel and mixed and heated until all the solid is dissolved to obtain the second coordination solution;
  • the halogen element of the second lead halide solid is Br element;
  • the heating temperature is 180-200 degrees.
  • the first quantum dots are re-dispersed in a non-polar organic solvent, and then the second lead halide solution is added dropwise, an ion exchange reaction is performed to obtain a second mixed solution, and the first The second mixed liquid obtains second quantum dots; the structure and diameter of the second quantum dots are consistent with the structure and diameter of the second quantum dots; during the reaction, Cl element and Br element are replaced in ionic form, and the reaction process is irreversible, No catalytic conditions are required and can be prepared quickly.
  • the method further includes the steps of preparing a third coordination solution, mixing the third lead halide solid and the first solvent in a reaction vessel, and heating the mixture until all solids are dissolved, to obtain the third coordination Solution;
  • the halogen element of the third lead halide solid is either I or Cl, in this embodiment it is element I.
  • the second quantum dots are re-dispersed in a non-polar organic solvent, and then a third lead halide solution is added dropwise to perform an ion exchange reaction to obtain a third mixed solution, and the third mixture is centrifuged to separate Liquid to obtain a third quantum dot; the structure and diameter of the third quantum dot are consistent with the structure and diameter of the second quantum dot; during the reaction, the Br element and the I element are replaced in the form of ions, the reaction process is irreversible and no catalysis Conditions can be quickly prepared.
  • the method for preparing inorganic lead halide cesium perovskite quantum dots has mild reaction conditions, simple operation and reversible circulation.
  • the present invention provides another embodiment 3 for preparing inorganic lead halide brilliant perovskite quantum dots, including the following steps:
  • the first lead halide solid (0.2 mol) and the first solvent are placed in a reaction vessel and mixed and heated until all the solid is dissolved to obtain a first coordination solution;
  • the first solvent includes oleic acid (0.5ml), oleylamine (0.5ml) and a non-polar organic solvent (3ml);
  • the non-polar organic solvent is dodecane, in other embodiments It may be an octadecene solvent; in the first solvent, the volume ratio of the oleic acid, the oleylamine and the non-polar organic solution is 1: 1: 6, in other embodiments it may be 1: 1: 8 or 2: 2: 8.
  • the solid cesium carbonate and the second solvent are placed in a container and mixed and heated until the solid is completely dissolved;
  • the second solvent includes oleic acid and octadecene solvent;
  • the heating temperature is 120 degrees, in other implementations For example, it can be 140 or 150 degrees.
  • the first coordination solution is heated and the cesium oleate solution is added thereto, cooled to room temperature to obtain a first mixed solution, and the first mixed solution is centrifuged to obtain first quantum dots.
  • the second lead halide solid and the first solvent are placed in a reaction vessel and mixed and heated until all the solid is dissolved to obtain the second coordination solution;
  • the halogen element of the second lead halide solid is Br element;
  • the heating temperature is 180-200 degrees.
  • the first quantum dots are re-dispersed in a non-polar organic solvent, and then the second lead halide solution is added dropwise, an ion exchange reaction is performed to obtain a second mixed solution, and the first The second mixed liquid obtains second quantum dots; the structure and diameter of the second quantum dots are consistent with the structure and diameter of the second quantum dots; during the reaction, Br element and I element are replaced in ionic form, and the reaction process is irreversible, No catalytic conditions are required and can be prepared quickly.
  • the method further includes the steps of preparing a third coordination solution, mixing the third lead halide solid and the first solvent in a reaction vessel, and heating the mixture until all solids are dissolved, to obtain the third coordination Solution;
  • the halogen element of the third lead halide solid is either Cl or I, in this embodiment it is Cl element.
  • the second quantum dots are re-dispersed in a non-polar organic solvent, and then a third lead halide solution is added dropwise to perform an ion exchange reaction to obtain a third mixed solution, and the third mixture is centrifuged to separate Liquid to obtain a third quantum dot; the structure and diameter of the third quantum dot are consistent with the structure and diameter of the second quantum dot; during the reaction, the Br element and the Cl element are replaced in the form of ions, the reaction process is irreversible and no catalysis is required Conditions can be quickly prepared.
  • the method for preparing inorganic lead halide cesium perovskite quantum dots has mild reaction conditions, simple operation and reversible circulation.
  • the quantum dots studied in the present invention are further applied to display devices due to their excellent thermal stability, high quantum efficiency, narrow half-width, and high color gamut characteristics.
  • the invention provides a display device, which mainly includes a quantum dot layer 13, and the light-emitting quantum dots of the quantum dot layer 13 are the inorganic lead halide brilliant perovskite quantum in the embodiment of the invention.
  • the display device 10 includes a substrate layer 11, a first functional layer 12, a quantum dot layer 13, a second functional layer 14, and a cathode layer 15;
  • the substrate layer 11 is conductive glass;
  • the first functional layer 12 is The hole transport layer is attached to the side of the substrate 11;
  • the quantum dot layer 13 is attached to the side of the first functional layer 12 away from the substrate 11;
  • the second functional layer 14 is an electron transport layer and is attached to The quantum dot layer 13 is away from the side of the first functional layer 12;
  • the cathode layer 15 is attached to the side of the second functional layer 14 away from the quantum dot layer 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种无机卤化铅艳钙钛矿量子点制备方法及显示装置,包括制备第一配位溶液步骤、制备油酸铯溶液步骤、离心分离步骤、制备第二配位溶液步骤、第一离子交换步骤和第二次离子交换步骤;本发明还提供一种显示装置,包括一量子点层,所述量子点层的发光量子点为本发明的无机卤化铅艳钙钛矿量子点。

Description

无机卤化铅艳钙钛矿量子点制备方法及显示装置 技术领域
本发明设计无机发光材料领域,具体为一种无机卤化铅铯钙钛矿量子点制备方法及显示装置。
背景技术
钙钛矿量子点是近几年的热点材料,由于其电子迁移速率快,激子结合能大扩散距离长等优异的电学性能以及非常高的荧光量子效率等光学性质,近年来被广泛应用于太阳能电池、激光器、LED和平板显示等方面的研究,并且取得了非常大的技术突破。
技术问题
量子点由于其优秀的热稳定性,较高的量子效率,半峰宽窄,高色域特性,被人们认为是继LCD,OLED之后的又一大显示技术材料,目前各大公司均有量子点产品亮相市场。因制备量子点传统方法操作不易,不能迅速获得,且不能循环得到不同的量子点。
技术解决方案
本发明提出无机卤化铅铯钙钛矿量子点制备方法及显示装置。以解决反应条件,操作困难,不能循环的合成无机卤化铅铯钙钛矿量子点等问题。
为解决上述技术问题,本发明提供一种无机卤化铅艳钙钛矿量子点制备方法,其特征在于,包括如下步骤:制备第一配位溶液步骤,将第一卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解得到第一配位溶液;制备油酸铯溶液步骤,将碳酸铯固体以及第二溶剂置于容器中混合加热至固体全部溶解;离心分离步骤,加热所述第一配位溶液并向其中加入所述油酸铯溶液,冷却至室温,得到第一混合液,离心分离所述第一混合液获得第一量子点;制备第二配位溶液步骤,将第二卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第二配位溶液;第一离子交换步骤,将所述第一量子点重新分散于非极性有机溶剂中,再逐滴加入所述第二卤化铅溶液,进行离子交换反应得到第二混合液,离心分离所述第二混合液获得第二量子点。所述第一量子点、第二量子点均为所述无机卤化铅艳钙钛矿量子点。
进一步地,所述第一卤化铅固体与第二卤化铅固体的卤元素为Br、I或Cl的任意一种,并且所述第一卤化铅固体与第二卤化铅固体中的卤元素不相同。
进一步地,所述第一溶剂包括油酸、油胺和非极性有机溶剂。
进一步地,所述非极性有机溶剂为十二烷或十八烯。
进一步地,在所述第一溶剂中,所述油酸、所述油胺与所述非极性有机溶液体积比为1-2:1-2:4-8。
进一步地,在所述制备油酸铯步骤中,所述第二溶剂包括油酸和十八烯溶剂,所述加热温度120-150度;在所述离心分离步骤中,所述加热温度为180-200度。
进一步地,所述第二量子点的结构、直径与所述第二量子点的结构、直径一致。
进一步地,在所述离子交换步骤中,还包括:制备第三配位溶液步骤,将第三卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第三配位溶液;第二离子交换步骤,将所述第二量子点重新分散于非极性有机溶剂中,再逐滴加入第三卤化铅溶液,进行离子交换反应得到第三混合液,离心分离所述第三混合液获得第三量子点,所述第三量子点也为所述无机卤化铅艳钙钛矿量子点。
进一步地,所述第二卤化铅固体与第三卤化铅固体的卤元素为Br、I或Cl的任意一种,并且所述第二卤化铅固体与第三卤化铅固体中的卤元素不相同。
进一步地,本发明提供一种显示装置,包括一量子点层,所述量子点层的发光量子点为所述的无机卤化铅艳钙钛矿量子点。
有益效果
本发明的无机卤化铅铯钙钛矿量子点制备方法及显示装置,将合成好的第一量子点溶液中逐滴加入适量的提前准备好的第二卤化铅或第三卤化铅溶液,即可制备第二量子点溶液或第三量子点溶液。同样的,向合成好的第二量子点溶液或第三量子点溶液中加入第一卤化铅溶液,最终均可制备第一量子点溶液。离子反应过程循环可逆,反应条件温和,且离子交换后的量子点与交换前的量子点相比,结构和直径均不变。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的制备无机卤化铅艳钙钛矿量子点方法流程图。
图2为应用例的显示装置的结构剖面图。
本发明的实施方式
方法实施例1
如图1所示,本发明提供一种无机卤化铅艳钙钛矿量子点制备方法,包括如下步骤:
制备第一配位溶液步骤,将第一卤化铅(0.2mol)固体以及第一溶剂置于反应容器中混合加热至固体全部溶解得到第一配位溶液;所述第一卤化铅固体的卤元素为Br元素;所述第一溶剂包括油酸(0.5ml)、油胺(0.5ml)和非极性有机溶剂(3ml);所述非极性有机溶剂为十二烷,在其它实施例当中可为十八烯溶剂;在所述第一溶剂中,所述油酸、所述油胺与所述非极性有机溶液体积比为1:1:6,在其它实施例当中可以为1:1:8或2:2:8。
制备油酸铯溶液步骤,将碳酸铯(Cs2CO3)固体以及第二溶剂置于容器中混合加热至固体全部溶解;所述第二溶剂包括油酸和十八烯溶剂;所述加热温度120度,在其它实施例中还可为140或150度。
离心分离步骤,加热所述第一配位溶液并向其中加入所述油酸铯溶液,冷却至室温,得到第一混合液,离心分离所述第一混合液获得第一量子点;所述加热温度为180度,在其它实施例中为190或200度。
制备第二配位溶液步骤,将第二卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第二配位溶液;所述第二卤化铅固体的卤元素为I元素。
第一离子交换步骤,将所述第一量子点重新分散于非极性有机溶剂中,再逐滴加入所述第二卤化铅溶液,进行离子交换反应得到第二混合液,离心分离所述第二混合液获得第二量子点;所述第二量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,Br元素与I元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在所述第一离子交换步骤中,还包括:制备第三配位溶液步骤,将第三卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第三配位溶液;所述第三卤化铅固体的卤元素为Br或Cl的任意一种,本实施例中为Br元素。
第二离子交换步骤,将所述第二量子点重新分散于非极性有机溶剂中,再逐滴加入第三卤化铅溶液,进行离子交换反应得到第三混合液,离心分离所述第三混合液获得第三量子点;所述第三量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,I元素与Br元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在方法实施例1中,制备无机卤化铅铯钙钛矿量子点的方法反应条件温和、操作简单并且循环可逆。
方法实施例2
本发明提供另一制备无机卤化铅艳钙钛矿量子点方法实施例2,包括如下步骤:
制备第一配位溶液步骤,将第一卤化铅(0.2mol)固体以及第一溶剂置于反应容器中混合加热至固体全部溶解得到第一配位溶液;所述第一卤化铅固体的卤元素为CI元素;所述第一溶剂包括油酸(0.5ml)、油胺(0.5ml)和非极性有机溶剂(3ml);所述非极性有机溶剂为十二烷,在其它实施例当中可为十八烯溶剂;在所述第一溶剂中,所述油酸、所述油胺与所述非极性有机溶液体积比为1:1:6,在其它实施例当中可以为1:1:8或2:2:8。
制备油酸铯溶液步骤,将碳酸铯固体以及第二溶剂置于容器中混合加热至固体全部溶解;所述第二溶剂包括油酸和十八烯溶剂;所述加热温度120度,在其它实施例中还可为140或150度。
离心分离步骤,加热所述第一配位溶液并向其中加入所述油酸铯溶液,冷却至室温,得到第一混合液,离心分离所述第一混合液获得第一量子点。
制备第二配位溶液步骤,将第二卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第二配位溶液;所述第二卤化铅固体的卤元素为Br元素;所述加热温度为180-200度。
第一离子交换步骤,将所述第一量子点重新分散于非极性有机溶剂中,再逐滴加入所述第二卤化铅溶液,进行离子交换反应得到第二混合液,离心分离所述第二混合液获得第二量子点;所述第二量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,Cl元素与Br元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在所述第一离子交换步骤中,还包括:制备第三配位溶液步骤,将第三卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第三配位溶液;所述第三卤化铅固体的卤元素为I或Cl的任意一种,本实施例中为I元素。
第二离子交换步骤,将所述第二量子点重新分散于非极性有机溶剂中,再逐滴加入第三卤化铅溶液,进行离子交换反应得到第三混合液,离心分离所述第三混合液获得第三量子点;所述第三量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,Br元素与I元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在方法实施例2中,制备无机卤化铅铯钙钛矿量子点的方法反应条件温和、操作简单并且循环可逆。
方法实施例3
本发明提供另一制备无机卤化铅艳钙钛矿量子点实施例3,包括如下步骤:
制备第一配位溶液步骤,将第一卤化铅固体(0.2mol)以及第一溶剂置于反应容器中混合加热至固体全部溶解得到第一配位溶液;所述第一卤化铅固体的卤元素为I元素;所述第一溶剂包括油酸(0.5ml)、油胺(0.5ml)和非极性有机溶剂(3ml);所述非极性有机溶剂为十二烷,在其它实施例当中可为十八烯溶剂;在所述第一溶剂中,所述油酸、所述油胺与所述非极性有机溶液体积比为1:1:6,在其它实施例当中可以为1:1:8或2:2:8。
制备油酸铯溶液步骤,将碳酸铯固体以及第二溶剂置于容器中混合加热至固体全部溶解;所述第二溶剂包括油酸和十八烯溶剂;所述加热温度120度,在其它实施例中还可为140或150度。
离心分离步骤,加热所述第一配位溶液并向其中加入所述油酸铯溶液,冷却至室温,得到第一混合液,离心分离所述第一混合液获得第一量子点。
制备第二配位溶液步骤,将第二卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第二配位溶液;所述第二卤化铅固体的卤元素为Br元素;所述加热温度为180-200度。
第一离子交换步骤,将所述第一量子点重新分散于非极性有机溶剂中,再逐滴加入所述第二卤化铅溶液,进行离子交换反应得到第二混合液,离心分离所述第二混合液获得第二量子点;所述第二量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,Br元素与I元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在所述第一离子交换步骤中,还包括:制备第三配位溶液步骤,将第三卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第三配位溶液;所述第三卤化铅固体的卤元素为Cl或I的任意一种,本实施例中为Cl元素。
第二离子交换步骤,将所述第二量子点重新分散于非极性有机溶剂中,再逐滴加入第三卤化铅溶液,进行离子交换反应得到第三混合液,离心分离所述第三混合液获得第三量子点;所述第三量子点的结构、直径与所述第二量子点的结构、直径一致;反应时,Br元素与Cl元素以离子形态进行置换,反应过程不可逆,无需催化条件,可快速制备。
在方法实施例3中,制备无机卤化铅铯钙钛矿量子点的方法反应条件温和、操作简单并且循环可逆。
应用例
本发明所研究的量子点由于其优秀的热稳定性,较高的量子效率,半峰宽窄,高色域特性,进一步将其应用在显示装置中。
本发明提供一种显示装置,主要包括一量子点层13,所述量子点层13的发光量子点为本发明所述实施例当中的无机卤化铅艳钙钛矿量子。
如图2所示,显示装置10包括衬底层11、第一功能层12、量子点层13、第二功能层14和阴极层15;所述衬底层11为导电玻璃;第一功能层12为空穴传输层,并且贴附于衬底11的一侧;量子点层13贴附于第一功能层12远离衬底11的一侧;第二功能层14为电子传输层,并且贴附于量子点层13远离第一功能层12的一侧;阴极层15贴附于第二功能层14远离量子点层13的一侧。
本申请已由上述相关实施例加以描述,然而上述实施例仅为实施本申请的范例。必需指出的是,已公开的实施例并未限制本申请的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本申请的范围内。

Claims (10)

  1.    一种无机卤化铅艳钙钛矿量子点制备方法,包括如下步骤:
    制备第一配位溶液步骤,将第一卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解得到第一配位溶液;
    制备油酸铯溶液步骤,将碳酸铯固体以及第二溶剂置于容器中混合加热至固体全部溶解;
    离心分离步骤,加热所述第一配位溶液并向其中加入所述油酸铯溶液,冷却至室温,得到第一混合液,离心分离所述第一混合液获得第一量子点;
    制备第二配位溶液步骤,将第二卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第二配位溶液;
    第一离子交换步骤,将所述第一量子点重新分散于非极性有机溶剂中,再逐滴加入所述第二卤化铅溶液,进行离子交换反应得到第二混合液,离心分离所述第二混合液获得第二量子点;
    所述第一量子点、第二量子点均为所述无机卤化铅艳钙钛矿量子点。
  2. 根据权利要求1所述的无机卤化铅艳钙钛矿量子点制备方法,其中,所述第一卤化铅固体与第二卤化铅固体的卤元素为Br、I或Cl的任意一种,并且所述第一卤化铅固体与第二卤化铅固体中的卤元素不相同。
  3. 根据权利要求1所述的无机卤化铅艳钙钛矿量子点制备方法,其中,所述第一溶剂包括油酸、油胺和非极性有机溶剂。
  4. 根据权利要求3所述的无机卤化铅艳钙钛矿量子点制备方法,其中,所述非极性有机溶剂为十二烷或十八烯。
  5. 根据权利要求3所述的无机卤化铅艳钙钛矿量子点制备方法,其中,在所述第一溶剂中,所述油酸、所述油胺与所述非极性有机溶液体积比为1-2:1-2:4-8。
  6. 根据权利要求1所述的无机卤化铅艳钙钛矿量子点制备方法,其中,
    在所述制备油酸铯步骤中,所述第二溶剂包括油酸和十八烯溶剂,所述加热温度120-150度;
    在所述离心分离步骤中,所述加热温度为180-200度。
  7. 根据权利要求1所述的无机卤化铅艳钙钛矿量子点制备方法,其中,所述第二量子点的结构、直径与所述第二量子点的结构、直径一致。
  8. 根据权利要求1所述的无机卤化铅艳钙钛矿量子点制备方法,其中,在所述离子交换步骤中,还包括:
    制备第三配位溶液步骤,将第三卤化铅固体以及第一溶剂置于反应容器中混合加热至固体全部溶解,得到所述第三配位溶液;
    第二离子交换步骤,将所述第二量子点重新分散于非极性有机溶剂中,再逐滴加入第三卤化铅溶液,进行离子交换反应得到第三混合液,离心分离所述第三混合液获得第三量子点,所述第三量子点也为所述无机卤化铅艳钙钛矿量子点。
  9. 根据权利要求8所述的无机卤化铅艳钙钛矿量子点制备方法,其中,所述第二卤化铅固体与第三卤化铅固体的卤元素为Br、I或Cl的任意一种,并且所述第二卤化铅固体与第三卤化铅固体中的卤元素不相同。
  10. 一种显示装置,包括一量子点层,其中,所述量子点层的发光量子点为权利要求1-9中任意一项所述的无机卤化铅艳钙钛矿量子点。
PCT/CN2019/075555 2018-10-25 2019-02-20 无机卤化铅艳钙钛矿量子点制备方法及显示装置 WO2020082646A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/462,935 US11236268B2 (en) 2018-10-25 2019-02-20 Method for preparing inorganic halogenated lead cesium perovskite quantum dots and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811251131.1 2018-10-25
CN201811251131.1A CN109504379A (zh) 2018-10-25 2018-10-25 无机卤化铅艳钙钛矿量子点制备方法及显示装置

Publications (1)

Publication Number Publication Date
WO2020082646A1 true WO2020082646A1 (zh) 2020-04-30

Family

ID=65745924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075555 WO2020082646A1 (zh) 2018-10-25 2019-02-20 无机卤化铅艳钙钛矿量子点制备方法及显示装置

Country Status (3)

Country Link
US (1) US11236268B2 (zh)
CN (1) CN109504379A (zh)
WO (1) WO2020082646A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856713A (zh) * 2021-09-26 2021-12-31 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用
CN115448357A (zh) * 2022-10-31 2022-12-09 中国地质大学(武汉) 一种回收利用水溶液中的铅离子合成铅卤钙钛矿的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473972B (zh) * 2019-06-27 2021-10-26 南京工业大学 一种基于阴离子交换半透明钙钛矿薄膜的制备方法及其光电应用
CN110615466B (zh) 2019-10-09 2020-10-02 华北电力大学 一种一步结晶制备CsPbX3钙钛矿量子点薄膜的方法
CN111040513A (zh) * 2019-12-03 2020-04-21 深圳市华星光电半导体显示技术有限公司 墨水及其制作方法、显示装置
CN113353972B (zh) * 2021-07-12 2024-03-26 河南科技大学 一种铅卤钙钛矿及其制备方法和离子液体卤盐在制备铅卤钙钛矿中的应用
CN113604220B (zh) * 2021-08-17 2023-06-13 东北电力大学 一种钙钛矿量子点材料及其制备方法和应用
CN114751446B (zh) * 2022-05-16 2023-03-21 浙江大学 一种阶梯式113型钙钛矿结构及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108504355A (zh) * 2018-05-14 2018-09-07 武汉华星光电半导体显示技术有限公司 一种钙钛矿量子点制备方法及钙钛矿量子点溶液
CN108502918A (zh) * 2018-04-25 2018-09-07 河北工业大学 一种无机钙钛矿纳米线的合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816520A (zh) * 2015-11-30 2017-06-09 隆达电子股份有限公司 波长转换材料及其应用
CN106753355A (zh) * 2016-11-16 2017-05-31 合肥工业大学 一种应用于led的单色荧光钙钛矿材料及其制备方法
CN108192606A (zh) * 2018-03-08 2018-06-22 河北工业大学 全无机钙钛矿量子点制备方法
US10899964B2 (en) 2018-05-14 2021-01-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Perovskite quantum dot preparation method and perovskite quantum dot solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108502918A (zh) * 2018-04-25 2018-09-07 河北工业大学 一种无机钙钛矿纳米线的合成方法
CN108504355A (zh) * 2018-05-14 2018-09-07 武汉华星光电半导体显示技术有限公司 一种钙钛矿量子点制备方法及钙钛矿量子点溶液

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PERCOVA, A ET AL.: "Synthesis and Postsynthetic Anion Exchange of CsPbX3 (X = Cl, Br, I) Quantum Dots", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 917, 6 April 2017 (2017-04-06), XP055708378 *
SETH, S. ET AL.: "A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition", SCIENTIFIC REPORTS, vol. 6, 25 November 2016 (2016-11-25), XP055708371 *
WEI, SONG ET AL.: "Room-Temperature and Gram-Scale Synthesis of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals with 50–85% Photoluminescence Quantum Yields", CHEM. COMMUN., vol. 52, no. 45, 4 May 2016 (2016-05-04), XP055708376 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856713A (zh) * 2021-09-26 2021-12-31 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用
CN113856713B (zh) * 2021-09-26 2024-04-12 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用
CN115448357A (zh) * 2022-10-31 2022-12-09 中国地质大学(武汉) 一种回收利用水溶液中的铅离子合成铅卤钙钛矿的方法
CN115448357B (zh) * 2022-10-31 2023-10-27 中国地质大学(武汉) 一种回收利用水溶液中的铅离子合成铅卤钙钛矿的方法

Also Published As

Publication number Publication date
US11236268B2 (en) 2022-02-01
US20200407632A1 (en) 2020-12-31
CN109504379A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2020082646A1 (zh) 无机卤化铅艳钙钛矿量子点制备方法及显示装置
Xuan et al. Highly stable CsPbBr 3 quantum dots coated with alkyl phosphate for white light-emitting diodes
Chang et al. In situ fabricated perovskite nanocrystals: a revolution in optical materials
Tang et al. Lead‐free halide double perovskite nanocrystals for light‐emitting applications: strategies for boosting efficiency and stability
Wang et al. Perovskite quantum dots and their application in light‐emitting diodes
Xuan et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays
Shi et al. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco‐friendly aqueous inks
Yoon et al. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance
Li et al. CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes
Yang et al. Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications
Jang et al. Extremely stable luminescent crosslinked perovskite nanoparticles under harsh environments over 1.5 years
Zhang et al. High‐Efficiency Pure‐Color Inorganic Halide Perovskite Emitters for Ultrahigh‐Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices
Lee et al. Perovskite emitters as a platform material for down‐conversion applications
Xie et al. Encapsulated room-temperature synthesized CsPbX 3 perovskite quantum dots with high stability and wide color gamut for display
CN108461607B (zh) 发光装置及图像显示装置
Zhang et al. Band gap engineering toward wavelength tunable CsPbBr3 nanocrystals for achieving Rec. 2020 displays
WO2021046956A1 (zh) 改性钙钛矿量子点材料及其制备方法、显示装置
CN107201227B (zh) 一种微波辅助加热合成CsSnX3钙钛矿量子点的方法
Nam et al. Double encapsulation of CsPbBr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut
Kong et al. Ultrastable, highly luminescent quantum dot composites based on advanced surface manipulation strategy for flexible lighting-emitting
Akhil et al. Amine‐Free Synthesis of Colloidal Cesium Lead Halide Perovskite Nanocrystals
Lu et al. Lead‐free metal halide perovskites for light‐emitting diodes
Wang et al. Ruddlesden–Popper Perovskite Nanocrystals Stabilized in Mesoporous Silica with Efficient Carrier Dynamics for Flexible X‐Ray Scintillator
Wen et al. Color revolution: toward ultra-wide color gamut displays
Li et al. Mass Transfer Printing of Metal‐Halide Perovskite Films and Nanostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875186

Country of ref document: EP

Kind code of ref document: A1