WO2020080491A1 - 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法 - Google Patents

血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法 Download PDF

Info

Publication number
WO2020080491A1
WO2020080491A1 PCT/JP2019/040977 JP2019040977W WO2020080491A1 WO 2020080491 A1 WO2020080491 A1 WO 2020080491A1 JP 2019040977 W JP2019040977 W JP 2019040977W WO 2020080491 A1 WO2020080491 A1 WO 2020080491A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
blood
creatinine
renal function
serine
Prior art date
Application number
PCT/JP2019/040977
Other languages
English (en)
French (fr)
Inventor
真史 三田
池田 達彦
友則 木村
Original Assignee
株式会社 資生堂
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 資生堂, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 株式会社 資生堂
Priority to JP2020553314A priority Critical patent/JPWO2020080491A1/ja
Publication of WO2020080491A1 publication Critical patent/WO2020080491A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/70Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving creatine or creatinine

Definitions

  • the present invention relates to a method for validating a renal function test result based on the amount of creatinine in blood, a sample analysis system for carrying out the method, and a program.
  • the glomerular filtration rate (GFR) is used as an indicator of renal function.
  • the glomerular filtration rate represents the volume of fluid that is filtered from blood in the glomerulus in one minute, and its international standard measurement method is inulin clearance.
  • inulin clearance requires continuous infusion of inulin for 2 hours, multiple urine collections and blood collections, and accurate measurement, which imposes a heavy burden on subjects and practitioners. For this reason, although an international standard measurement method has been established, due to various medical circumstances in each country, on-site medical treatment may not be introduced and the glomerular filtration rate may be determined using a substitute marker. .
  • eGFR determined in this way is widely used in medical examinations and medical settings.
  • eGFR is an index created for the purpose of screening for deterioration of renal function and for simple and objective evaluation in epidemiological studies comparing a large number of subjects, and the kidneys of individual patients. It is still recommended by the Japanese Nephrological Society to use inulin clearance with inulin for functional evaluation.
  • creatinine is a substance that is produced from creatine in the body in the first place, and that it is affected by other factors such as the muscle mass of the subject, diurnal fluctuations, and diet type, rather than renal function.
  • a subject with a large amount of muscle such as an athlete tends to have a low eGFR
  • a subject with a small amount of muscle such as bedridden and malnutrition tends to have a high eGFR, and thus a person different from the Japanese.
  • the deviation from the original GFR becomes large.
  • screening for renal function by eGFR may result in false positive and false negative determinations.
  • D-amino acids which have been considered to be absent in the living body of mammals, are present in various tissues and have physiological functions.
  • D-amino acids in blood the concentrations of D-serine, D-alanine, D-proline, D-glutamic acid, and D-aspartic acid varied in renal failure patients and were correlated with creatinine. It has been shown that it can be used as a diagnostic marker for insufficiency (Non-patent document 1, Non-patent document 2, Non-patent document 3, Non-patent document 4).
  • an amino acid selected from the group consisting of D-serine, D-threonine, D-alanine, D-asparagine, D-alrosreonine, D-glutamine, D-proline and D-phenylalanine is used as an index for the pathological condition of kidney disease.
  • Patent Document 1 discloses that the D-amino acid in the blood of a patient suffering from renal disease fluctuates as compared with a healthy person, and thus it is possible to diagnose renal disease using these fluctuations as an index. Has been done.
  • the glomerular filtration ability based on inulin clearance can be determined by the amount of D-amino acid in blood.
  • urinary L-FABP, blood NGAL, urinary KIM-1 and the like have been developed as markers for kidney disease, but even if they are markers for kidney disease, they do not always show glomerular filtration ability. It cannot be determined or estimated.
  • the amount of creatinine in blood and the estimated glomerular filtration rate based on the amount of creatinine in blood are calculated for the purpose of renal function test.However, in the renal function test based on the amount of creatinine in blood, muscle mass and False positives and false negatives may be included in determining outcomes as they are affected by diet. The purpose of the present invention is to test such false positives and false negatives.
  • the present inventors have focused on D-serine in blood and investigated the correlation with GFR (inulin clearance). Surprisingly, it was found that the amount of creatinine in blood is higher than that in blood currently widely used. It was found that the amount of D-serine in E. coli has a high correlation with GFR (inulin clearance), and the present invention has been completed.
  • the present invention relates to the following: [1] A method for testing the validity of a renal function test result based on the amount of creatinine in blood, Measuring the amount of D-serine in the blood of a subject who has undergone a renal function test based on the amount of creatinine in the blood, Comparing the amount of D-serine with a predetermined threshold value, Determining the adequacy of the results of a renal function test based on the amount of creatinine in blood. [2] The method according to Item 1, wherein the method of testing the validity of the renal function test result determines false positive and / or false negative renal function test result based on the amount of creatinine in blood.
  • determining step when a renal function test based on the amount of creatinine in blood determines that the renal function is decreased, and when the amount of D-serine exceeds the threshold value, it is determined as a false positive.
  • Item 2 wherein the determining step determines a false negative when the D-serine amount is lower than the threshold value while the renal function test based on the blood creatinine amount determines that the D-serine amount is normal. the method of.
  • [5] The method according to any one of Items 1 to 4, wherein the D-serine amount and the blood creatinine amount are measured in the same sample.
  • a diuretic As the therapeutic intervention, a diuretic, a calcium antagonist, an angiotensin converting enzyme inhibitor, an angiotensin receptor antagonist, a sympathetic blocker, an SGLT2 inhibitor, a sulfonylurea drug, a thiazolidine drug, a biguanide drug, an ⁇ -glucosidase inhibitor Drug, glinide drug, insulin drug, NRF2 activator, immunosuppressant, statin drug, fibrate drug, anemia treatment drug, erythropoietin drug, HIF-1 inhibitor, iron drug, electrolyte regulator, calcium receptor agonist, Administering to the subject at least one drug selected from the group consisting of a phosphorus adsorbent, a uremic toxin adsorbent, a DPP4 inhibitor, an EPA preparation, a nicotinic acid derivative, a cholesterol transporter inhibitor, and a PCSK9 inhibitor, The method according to item 7 or 8.
  • a sample analysis system including a storage unit, an input unit, an analysis measurement unit, a data processing unit, and an output unit, for testing the validity of a renal function test result based on the amount of creatinine
  • the storage unit stores the threshold value of the amount of D-serine input from the input unit
  • the storage unit stores a result of a renal function test based on the amount of creatinine in blood input from the input unit
  • the analysis and measurement unit separates and quantifies D-serine in the blood sample
  • the data processing unit compares the amount of D-serine with the threshold value of the amount of D-serine stored in the storage unit to determine the validity of the result of the renal function test based on the amount of creatinine in the blood stored in the storage unit.
  • a sample analysis system which includes a storage unit, an input unit, an analysis measurement unit, a data processing unit, and an output unit, and which tests the validity of a renal function test result based on the amount of creatinine.
  • the storage unit stores the threshold value of the amount of D-serine input from the input unit,
  • the storage unit stores a result of a renal function test based on the amount of creatinine in blood input from the input unit,
  • the analysis and measurement unit separates and quantifies D-serine in the blood sample,
  • the data processing unit compares the amount of D-serine with the threshold value of the amount of D-serine stored in the storage unit to determine the validity of the result of the renal function test based on the amount of creatinine in the blood stored in the storage unit. Then
  • the sample analysis system wherein the output unit outputs the validity of the result of the renal function test based on the amount of creatinine in blood.
  • a program that causes an information processing apparatus including an input unit, an output unit, a data processing unit, and a storage unit to determine the appropriateness of a result of a renal function test based on the amount of creatinine in blood which is as follows: The threshold value of the amount of D-serine input from the input unit is stored in the storage unit, The result of the renal function test based on the amount of creatinine in the blood input from the input unit is stored in the storage unit, The amount of D-serine in the blood sample input from the input unit is stored, The amount of D-serine stored in the storage unit and the threshold value of the amount of D-serine are read out, compared in the data processing unit, and the result of the comparison is stored in the storage unit as to whether the amount exceeds or falls below the threshold value.
  • the result of the renal function test based on the amount of creatinine in the blood stored in the memory unit and the result of the comparison are read, the validity of the result of the renal function test is determined, and the result is stored in the memory unit.
  • the program which includes a command for causing the information processing apparatus to cause the output unit to output the stored validity.
  • a program that causes an information processing apparatus including an input unit, an output unit, a data processing unit, and a storage unit to determine the appropriateness of the result of a renal function test based on the amount of creatinine in blood which is as follows:
  • the threshold of the amount of creatinine in blood input from the input unit is stored in the storage unit, Store the amount of creatinine in the blood sample input from the input unit,
  • the threshold value of the amount of D-serine input from the input unit is stored in the storage unit,
  • the amount of D-serine in the blood sample input from the input unit is stored,
  • the amount of creatinine in blood stored in the memory and the threshold value for the amount of creatinine in blood are read out, compared by the data processing unit, and the renal function test result based on the amount of creatinine is stored in the memory and stored in the memory.
  • the read D-serine amount and the threshold value of the D-serine amount are read out, compared in the data processing unit, and the result of the comparison is stored in the storage unit,
  • the result of the renal function test based on the amount of creatinine in the blood stored in the memory unit and the result of the comparison are read, the validity of the result of the renal function test is determined, and the result is stored in the memory unit.
  • the program which includes a command for causing the information processing apparatus to cause the output unit to output the stored validity.
  • the present invention validates renal function determination based on the amount of creatinine in blood by using the amount of D-serine that has a higher correlation with GFR (inulin clearance) in conjunction with determination of renal function based on the amount of creatinine in blood. It becomes possible to judge.
  • FIG. 1 is a graph showing a scatter diagram of D-serine amount (A) and creatinine amount (B) in blood and GFR (inulin clearance) (body surface area corrected).
  • FIG. 2 is a graph showing a scatter diagram of D-serine amount (A) and creatinine amount (B) in blood and GFR (inulin clearance) (without body surface area correction).
  • FIG. 3 is a graph showing a scatter diagram of the amount of D-serine (A) and the amount of creatinine (B) in blood, and the body surface area (BSA).
  • FIG. 4 shows a block diagram of the sample analysis system of the present invention.
  • FIG. 5 is a flowchart showing an example of an operation for testing the validity of the renal function test result according to the program of the present invention.
  • the present invention relates to a method for testing the validity of a renal function test result based on the amount of creatinine in blood. More specifically, the assay method of the present invention comprises the following: Measuring the amount of D-serine in the blood of a subject who has undergone a renal function test based on the amount of creatinine in the blood, Comparing the amount of D-serine with a predetermined threshold value, The step of determining the validity of the result of the renal function test based on the amount of creatinine in blood is included.
  • the method of testing the validity of the renal function test result based on the blood creatinine amount relates to the method of determining the false negative or false positive result of the renal function test result based on the blood creatinine amount.
  • the step of determining false negative or false positive is determined to be false positive when the renal function test based on the amount of creatinine in the blood determines that the renal function is decreased, while the amount of D-serine is lower than the threshold value.
  • a renal function test based on the amount of creatinine in the blood determines that the amount is normal, but the amount of D-serine is higher than the threshold value, it can be determined as a false negative.
  • the method of assaying the validity of a renal function test result based on the amount of creatinine in blood is a method of determining true negative or true positive result of the renal function test based on the amount of creatinine in blood. May be The step of determining true negative or true positive is determined to be true positive when the renal function test based on the amount of creatinine in the blood determines that the renal function is decreased, and the amount of D-serine is higher than the threshold value. , Or a renal function test based on the amount of creatinine in the blood, it was determined to be normal, but when the amount of D-serine was lower than the threshold value, it was possible to determine a true negative.
  • D-serine used as an index is an optical isomer of L-serine, which is an amino acid that constitutes proteins.
  • the amount of D-serine is strictly controlled in each tissue and blood mainly by metabolic enzymes such as serine racemase and D-amino acid oxidase, while in the case of renal damage, D-serine in blood is The amount varies.
  • the “amount of D-serine in blood” may refer to the amount of D-serine in a specific blood amount, or may be expressed as a concentration.
  • the amount of D-serine in blood is measured as the amount in a sample obtained by subjecting collected blood to centrifugation, sedimentation, or pretreatment for analysis. Therefore, the amount of D-serine in blood can be measured as the amount in a blood sample derived from blood such as collected whole blood, serum, plasma and the like.
  • the amount of D-serine contained in a predetermined amount of blood is represented by a chromatogram, and the height, area, and shape of peaks are compared with standard products and analyzed by calibration.
  • the amount of D-serine in blood can be measured by comparison with a sample having a known D-serine concentration, and the concentration of D-serine in blood can be used as the amount of D-serine in blood. .
  • the amino acid concentration can be calculated by quantitative analysis using a standard curve.
  • the formula for the correction can be determined from, for example, the correlation with GFR (inulin clearance). It can be determined by substituting the D-serine amount of the subject into a formula or a graph calculated from the correlation between the inulin clearance and the D-serine amount in blood.
  • the inulin clearance may be a body surface area-corrected inulin clearance or may be a body surface area-uncorrected inulin clearance. It can be selected according to which of the glomerular filtration ability before and after the body surface area correction is necessary.
  • the amount of D-serine can be measured by any method, for example, measurement using chiral column chromatography, measurement using an enzymatic method, and immunological analysis using a monoclonal antibody that identifies an optical isomer of an amino acid. It can be quantified by the method.
  • the amount of D-serine in the sample in the present invention may be measured by any method known to those skilled in the art. For example, chromatographic methods and enzymatic methods (Y. Naga et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Anielloetetal., ComparativeBiochemistry and Physiology Part B, 66 (1980), 319.
  • the separation / analysis system for optical isomers in the present invention may combine a plurality of separation / analysis. More specifically, a sample containing a component having an optical isomer, together with a first liquid as a mobile phase, is passed through a first column packing material as a stationary phase to separate the components of the sample. Holding each of the components of the sample individually in a multiloop unit, each of the components of the sample held individually in the multiloop unit as a stationary phase with a second liquid as a mobile phase. A second column packing material having an optically active center through a channel to separate the optical isomers contained in each of the components of the sample, and the optical isomers contained in each of the components of the sample.
  • the D- / L-amino acid amount in the sample can be measured by using the method for analyzing optical isomers, which comprises the step of detecting the body (specific characteristics). No. 4,291,628).
  • D- and L-amino acids were previously derivatized with fluorescent reagents such as o-phthalaldehyde (OPA) and 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). Or N-tert-butyloxycarbonyl-L-cysteine (Boc-L-Cys) may be used to diastereomerize (Kenji Hamase and Kiyoshi Zaitsu, Analytical Chemistry, 53, 677-690 ( 2004)).
  • the D-amino acid can be measured by an immunological method using a monoclonal antibody that recognizes an optical isomer of an amino acid, for example, a monoclonal antibody that specifically binds to D-serine, L-serine and the like.
  • a monoclonal antibody that specifically binds to D-serine, L-serine and the like for example, a monoclonal antibody that specifically binds to D-serine, L-serine and the like.
  • amino acids can be analyzed without distinguishing between D-form and L-form. In that case as well, it can be separated and quantified by an enzyme method, an antibody method, GC, CE, and HPLC.
  • the creatinine to be assayed in the present invention is decomposed from creatine phosphate and released into the blood mainly by the activity of muscles. Since creatinine in blood is a small molecule, it is filtered by the glomerulus and becomes raw urine, which is not re-absorbed as it is but is excreted in urine. Therefore, since the filtration capacity of the glomeruli is reduced, the creatinine concentration in the blood is increased.As an index of renal function, the amount of creatinine in blood, or the amount of glomerular filtration estimated from the amount of creatinine in blood is estimated. Is used.
  • the Cockcroft-Gault formula is known as a classical formula that corrects for body weight, age, and sex, and MDRD formula, CKD-EPI formula, etc. in which the body surface area is further corrected. Is being developed. In Japan, the following formula has been developed with inulin clearance as standard: However, it is known that the amount of creatinine in blood increases due to the influence of muscle mass and the intake of large amounts of meat.
  • the amount of creatinine in blood and / or blood as a renal function test in a health examination is used in large numbers.
  • the threshold is 1.00 mg / dL for men and 0.7 mg / dL for women, and if it exceeds that, it is determined that renal function is reduced. If it is below, it is determined to be normal.
  • the estimated glomerular filtration rate is calculated based on an estimation formula using inulin clearance as a standard, and 60.0 mL / min / 1.73 m 2 is used as a threshold value. If it is below this threshold, it is determined that the renal function is lowered, and if it is above this threshold, it is determined to be normal. With respect to the amount of creatinine in blood and the estimated amount of glomerular filtration, the threshold value indicating a decrease in renal function may be changed by a survey led by the academic society and is not intended to be captured by the above numerical values.
  • kidney disease is comprehensively judged from the values of other symptoms and markers, but individual renal function Measurement of inulin clearance is recommended for confirmation, and not only the target but also the medical personnel are burdened.
  • creatinine has a low correlation with inulin clearance in mild renal impairment, and thus is highly likely to be determined as negative in subjects exhibiting mild renal impairment.
  • the amount of D-serine in blood has a high correlation with inulin clearance even for mild renal function deterioration, and a false negative creatinine test can be determined in a subject showing mild renal function deterioration.
  • the amount of creatinine that is greatly influenced by muscle mass also causes false negatives and false positives, while D-serine in blood does not show a correlation with muscle mass, and it can be used for any body type. Is also unlikely to cause false negatives and false positives. Therefore, to carry out the method of determining false positive / false negative of the present invention for a subject having a large amount of muscle, particularly for a subject who regularly performs exercise or strength training, or subjects who routinely take a high protein diet. Is particularly preferable.
  • a target with a large amount of muscle can be determined by a bioimpedance method or the like. By quantifying the muscle mass in advance by the impedance method or by surveying the daily exercise amount by a questionnaire, it is possible to select a target having a large muscle mass.
  • the renal function test based on the amount of creatinine in blood may be a test using the amount of creatinine in blood, or a test using a numerical value derived from the amount of creatinine in blood. Good.
  • the numerical value derived from the amount of creatinine in blood is, for example, the estimated glomerular filtration amount, but it is not intended to be limited to this.
  • the subject who has undergone a renal function test based on the amount of creatinine in blood may have previously undergone a renal function test based on the amount of creatinine in blood, or may also take it at the same time. Simultaneously undergoing a renal function test may be tested using the same blood sample collected on the same day or different blood samples, or may be tested using blood samples collected on different days.
  • the amount of D-serine in blood is not intended to be limited to theory, but unlike the amount of creatinine in blood, the effect of muscle mass is small, and in addition to the amount of creatinine in blood,
  • the advantage is that it has a high correlation with inulin clearance. Therefore, the amount of D-serine in blood can be reduced to the amount of creatinine in blood measured by conventional medical examinations, and the false positive or false negative problem associated with the estimated glomerular filtration rate based on the amount of creatinine in blood. Can be resolved.
  • false positive refers to a type I error. Specifically, a test based on the amount of creatinine in blood and / or an estimated glomerular filtration rate based on the amount of creatinine in blood was determined to be positive (that is, renal function decline), but actually, renal function decline is not suffered. Say that. False negative refers to type II error. Specifically, a test based on the amount of creatinine in blood and / or the estimated glomerular filtration rate based on the amount of creatinine in blood was determined to be negative (that is, renal function is normal), but in reality, renal dysfunction is present. That means.
  • the false positive determination is made by determining a false positive when the renal function test based on the amount of creatinine in the blood determines that the renal function is decreased, while the amount of D-serine is lower than the threshold value.
  • the false negative determination is performed by determining a false negative when the D-serine amount is higher than the threshold value, while it is determined to be normal by the renal function test based on the creatinine amount in blood.
  • These threshold values may use a value of 1 regardless of the target element, for example, sex, age, weight, etc., or may be determined according to each classification.
  • the method for testing false positive or false negative can also be restated as the method for testing true positive or true negative.
  • a renal function test based on the amount of creatinine in the blood determines that renal function is impaired, and when the amount of D-serine exceeds the threshold value, it is determined as true positive.
  • the true negative is determined by determining a true negative when the renal function test based on the amount of creatinine in the blood determines that it is normal, while the amount of D-serine is higher than the threshold value.
  • the assay method of the present invention is performed on a blood sample of a subject who has undergone a renal function test based on the amount of creatinine in blood, and the blood sample is the same as the blood sample used for measuring the amount of creatinine in blood.
  • the sample may be a sample or a sample collected at a different time point from the blood sample used for measuring the amount of creatinine in blood.
  • the method of testing the validity of the present invention does not include a judgment by a doctor because it is performed by comparison with a threshold value. Based on the result of the assay method of the present invention, a doctor can diagnose kidney disease more accurately. Therefore, the assay method of the present invention is a preliminary method of diagnosis or an auxiliary method of diagnosis.
  • the method of the present invention can be carried out by a person other than a doctor, such as a blood analyzer, a health checker, a data processing company, an analysis system, and an analysis program.
  • the method of examining the validity of the present invention may be used to relate to a method of diagnosing renal function or renal disease.
  • the health guidance mainly includes lifestyle improvement, dietary guidance, blood pressure management, blood sugar level management, lipid management, etc., independently or in combination. Dietary guidance includes salt reduction and protein restriction.
  • Dietary guidance includes salt reduction and protein restriction.
  • the blood pressure management the management can be performed so as to be 130/80 mmHg or less.
  • the blood sugar level is controlled to be less than Hba1c 6.9%.
  • LDL-C is controlled to be less than 120 mg / dL.
  • smoking cessation and reduction of BMI to less than 25 are recommended.
  • blood pressure control blood sugar level control, anemia control, electrolyte control, uremic toxin control, immune control, lipid control, etc. are performed independently or in combination.
  • blood pressure control blood sugar level control, anemia control, electrolyte control, uremic toxin control, immune control and / or lipid control
  • treatment by medication can be performed.
  • the blood pressure is controlled so as to be 130/80 mmHg or less, and in some cases, a therapeutic agent for hypertension can be administered.
  • antihypertensive drug examples include diuretics (thiazide diuretics such as trichlormethiazide, benzyl hydrochlorothiazide, hydrochlorothiazide, thiazide-like diuretics such as methicrane, indabamide, tribamide, mefluside, loop diuretics such as furosemide, potassium-retaining drug.
  • diuretics thiazide diuretics such as trichlormethiazide, benzyl hydrochlorothiazide, hydrochlorothiazide, thiazide-like diuretics such as methicrane, indabamide, tribamide, mefluside, loop diuretics such as furosemide, potassium-retaining drug.
  • Diuretics / aldosterone antagonists such as triamterene, spironolactone, eplerenone, calcium antagonists (dihydropyridines such as nifedipine, amlodipine, efonidipine, cilnidipine, nicardipine, nisoldipine, nitrendipin, nilvadipine, varnidipine, felodipine, benidipine, manidipine, nidipine, manidipine, , Benzothiazepines, diltiazem), angiotensin-converting enzyme inhibitors (captopril) Enalapril, aselapril, delapril, cilazapril, lisinopril, benazepril, imidapril, temocapril, quinapril, trandolapril, belindopril erbumin), angiotensin
  • Erythropoietin preparations, iron preparations, HIF-1 inhibitors and the like are used as therapeutic agents for anemia.
  • Calcium receptor agonists cinacalcet, etelcalcetide, etc.
  • phosphorus adsorbents are used as electrolyte modifiers.
  • Activated carbon or the like is used as the uremic toxin adsorbent.
  • Blood glucose levels are controlled to be less than Hbalc 6.9% and hypoglycemic agents are optionally administered.
  • SGLT2 inhibitors ipragliflozin, dapagliflozin, luseogliflozin, tofogliflozin, canagliflozin, empagliflozin, etc.
  • DPP4 inhibitors sitagliptin phosphate, vildagliptin, saxagliptin, alogliptin, linagliptin, tenelipliptin, trenlipliptin, threnaliptin , Anagliptin, omalipliptin
  • sulfonylurea drugs tolbutamide, acetohexamide, chlorpropamide, glyclopyramide, glibenclamide, gliclazide, glimepiride, etc.
  • thiazolidine drugs pioglitazone, etc.
  • biguanide drugs metalformin, buformin, etc.
  • Immunosuppressants are used for immune management.
  • LDL-C is controlled to be less than 120 mg / dL, and in some cases, dyslipidemia treatment agents such as statins (rosuvastatin, pitavastatin, atorvastatin, cervastatin, fluvastatin, simvastatin, pravastatin, lovastatin, mevastatin, etc.), Fibrates (clofibrate, bezafibrate, fenofibrate, clinofibrate), nicotinic acid derivatives (tocorelol nicotinate, nicomol, niceritrol), cholesterol transporter inhibitors (ezetimibe), PCSK9 inhibitors (evolocumab, etc.), EPA preparations, etc.
  • statins rosuvastatin, pitavastatin, atorvastatin, cervastatin, fluvastatin, simvastatin, pravastatin, lovastatin, mevastat
  • each drug may be a single drug or a combination drug. If renal function declines significantly and the life prognosis is dangerous, renal replacement therapy such as peritoneal dialysis, hemodialysis, continuous hemodiafiltration, blood apheresis (plasma exchange, plasma adsorption, etc.) or renal transplantation is given. .
  • FIG. 4 is a block diagram of the sample analysis system of the present invention.
  • the sample analysis system 10 shown in FIG. 4 is configured to be able to carry out the method of the present invention for assaying false negative and false positive results of a renal function test based on the amount of creatinine in blood.
  • Such a sample analysis system 10 includes a storage unit 11, an input unit 12, an analysis measurement unit 13, a data processing unit 14, and an output unit 15, analyzes a blood sample, and determines the amount of creatinine in blood.
  • Validity that is, true negative, true positive, false negative, or false positive can be output for the renal function test result based on.
  • the storage unit 11 stores the threshold value of the D-serine amount input from the input unit 12,
  • the storage unit 11 stores the result of the renal function test based on the amount of creatinine in blood input from the input unit 12,
  • the analysis and measurement unit 13 separates and quantifies D-serine in the blood sample
  • the data processing unit 14 compares the amount of D-serine with the threshold value of the amount of D-serine stored in the storage unit, and validates the result of the renal function test based on the amount of creatinine in the blood stored in the storage unit.
  • the output unit 15 can output the validity of the result of the renal function test based on the amount of creatinine in blood.
  • the storage unit 11 uses the analysis measurement unit 13.
  • the step of determining the amount of creatinine in the blood sample may be included.
  • the data processing unit 14 may further include a step of determining the result of the renal function test based on the amount of creatinine in the blood sample, and storing the determined result in the storage unit.
  • the storage unit 11 stores in advance a threshold value for the amount of creatinine in blood input from the input unit 12, and the data processing unit 14 stores the amount of creatinine in blood and the stored threshold value for the amount of creatinine in blood.
  • the result of the renal function test is determined by comparing with.
  • the storage unit 11 stores the threshold value of the amount of creatinine in blood input from the input unit 12,
  • the storage unit 11 stores the threshold value of the D-serine amount input from the input unit 12,
  • the analysis and measurement unit 13 measures the amount of creatinine in the blood sample,
  • the data processing unit 14 compares the threshold value of the amount of creatinine in blood stored in the storage unit with the amount of creatinine in the blood sample, and determines the result of the renal function test based on the amount of creatinine in blood.
  • the data processing unit 14 compares the amount of D-serine in blood with a threshold value of the amount of D-serine stored in the storage unit to determine the validity of the result of the renal function test based on the amount of creatinine in blood,
  • the output unit 15 can output the validity of the result of the renal function test based on the blood creatinine amount.
  • a numerical value derived from the amount of creatinine in blood (for example, estimated glomerular filtration amount) can also be used.
  • the storage unit 11 stores other elements such as the age and sex of the target input from the input unit 12, and further derives from the amount of creatinine in blood.
  • the equation or graph for calculating the calculated numerical value is stored, and the data processing unit 14 measures the amount of creatinine in blood, other factors such as the age and sex of the subject stored in the storage unit 11,
  • the step of calculating a numerical value from an expression or a graph for calculating a numerical value derived from the creatinine amount of may be included.
  • the threshold value of the estimated glomerular filtration rate 60 mL / min / 1.73 m 2 can be used.
  • the storage unit 11 stores a calculation formula of an estimated glomerular filtration amount based on the amount of creatinine in blood input from the input unit 12,
  • the storage unit 11 stores the age and sex of the subject input from the input unit 12,
  • the storage unit 11 stores a threshold value of a glomerular filtration amount based on the amount of creatinine in blood input from the input unit 12,
  • the storage unit 11 stores the threshold value of the D-serine amount input from the input unit 12,
  • the analysis and measurement unit 13 measures the amount of creatinine in the blood sample
  • the data processing unit 14 calculates the estimated glomerular filtration amount from the amount of creatinine in blood, the age and sex of the subject stored in the storage unit, and the calculation formula of the estimated glomerular filtration amount,
  • the data processing unit 14 compares the threshold value of the estimated glomerular filtration amount stored in the storage unit with the calculated estimated glomerular filtration amount, determines the result of the renal function test based
  • the part 13 separates and quantifies D-serine in the blood sample
  • the data processing unit 14 compares the amount of D-serine in blood with a threshold value of the amount of D-serine stored in the storage unit to determine the validity of the result of the renal function test based on the amount of creatinine in blood
  • the output unit 15 can output the validity of the result of the renal function test based on the amount of creatinine in blood.
  • the validity of the result of the renal function test based on the amount of creatinine in blood is determined by comparing the amount of D-serine with the threshold value. Specifically, a renal function test based on the amount of creatinine in the blood determines that renal function is impaired, but when the amount of D-serine is lower than the threshold value, it is determined as a false positive, and the amount of D-serine is decreased. If it is higher than the threshold value, it can be determined as a true positive.
  • the renal function test based on the amount of creatinine in the blood determined that it was normal, when the amount of D-serine was higher than the threshold value, it was determined as a false negative, and the amount of D-serine was lower than the threshold value. In some cases, a true negative can be determined.
  • the storage unit 11 has a memory device such as a RAM, a ROM, a flash memory, a fixed disk device such as a hard disk drive, or a portable storage device such as a flexible disk or an optical disk.
  • the storage unit stores data measured by the analysis measurement unit, data and instructions input from the input unit, results of arithmetic processing performed by the data processing unit, computer programs used for various processes of the information processing device, a database, and the like.
  • the computer program may be installed via a computer-readable recording medium such as a CD-ROM or a DVD-ROM, or the Internet.
  • the computer program is installed in the storage unit using a known setup program or the like.
  • the storage unit can store the result of the renal function test based on the threshold value of the amount of D-serine and the amount of creatinine in the blood which are input in advance from the input unit 12. Furthermore, the threshold value of the amount of creatinine in the blood for the renal function test can be stored. Further, when using the estimated glomerular filtration rate instead of the blood creatinine volume, a threshold of the estimated glomerular filtration rate may be stored, and further, the estimated glomerular filtration rate based on the blood creatinine volume may be stored. The calculation formula can be stored, and the age and sex of the subject can be stored. In addition, the result measured by the analysis measurement unit 13 and the result of the processing performed by the data processing unit 14 are also stored.
  • the input unit 12 is an interface and the like, and also includes operation units such as a keyboard and a mouse. Thereby, the input unit can input the data measured by the analysis measurement unit 13, the instruction of the arithmetic processing performed by the data processing unit 14, and the like. Further, the input unit 12 may include an interface unit capable of inputting measured data or the like via a network or a storage medium, in addition to the operation unit, for example, when the analysis measurement unit 13 is external.
  • the analysis / measurement unit 13 performs the measurement process of D-serine in the blood sample. Therefore, the analysis and measurement unit 13 has a configuration that enables separation and measurement of D-form and L-form of amino acids.
  • the amino acids may be analyzed one by one, but some or all types of amino acids may be analyzed together.
  • the analysis and measurement unit 13 is not intended to be limited to the following, but is, for example, a chiral chromatography system including a sample introduction unit, an optical resolution column, and a detection unit, and preferably a high performance liquid chromatography system. May be. From the viewpoint of detecting only a specific amino acid amount, it may be carried out by an enzymatic method or an immunological method.
  • the analysis measurement unit 13 may be configured separately from the sample analysis system, and the measured data and the like may be input via the input unit 12 using a network or a storage medium. Furthermore, in another aspect, the analysis measurement unit 13 can also measure the amount of creatinine in blood.
  • the data processing unit 14 executes various arithmetic processes on the data measured by the analysis and measurement unit 13 and stored in the storage unit 11 according to the program stored in the storage unit.
  • the arithmetic processing is performed by the processor or CPU included in the data processing unit.
  • This processor or CPU includes a functional module that controls the analysis measurement unit 13, the input unit 12, the storage unit 11, and the output unit 15, and can perform various controls. Each of these units may be composed of an independent integrated circuit, microprocessor, firmware, or the like.
  • the data processing unit 14 compares the amount of D-serine with the threshold value of the amount of D-serine stored in the storage unit, and validates the result of the renal function test based on the amount of creatinine in the blood stored in the storage unit. judge.
  • the data processing unit 14 calculates the estimated glomerular filtration amount from the amount of creatinine in blood, the age and sex of the subject stored in the storage unit, and the calculation formula of the estimated glomerular filtration amount. You can In this case, the data processing unit 14 further compares the threshold value of the estimated glomerular filtration amount stored in the storage unit with the calculated estimated glomerular filtration amount, and the result of the renal function test based on the amount of creatinine in blood. Can also be determined.
  • the output unit 15 is configured to output the validity of the result of the renal function test based on the amount of creatinine in the blood determined by the data processing unit, that is, true negative, true positive, false negative, or false positive. Further, the output unit 15 outputs the amount of D-serine measured by the analysis measurement unit 13, the amount of creatinine in blood, or the estimated glomerular filtration amount calculated by the data processing unit 14 together with the above-mentioned validity. May be.
  • the output unit 15 may be a display device such as a liquid crystal display that directly displays the result of the arithmetic processing, an output unit such as a printer, or an interface unit for outputting to an external storage device or via a network. It may be.
  • FIG. 5 is a flowchart showing an example of an operation for determining the glomerular filtration rate by the program of the present invention.
  • the program of the present invention is a program for causing an information processing apparatus including an input unit, an output unit, a data processing unit, and a storage unit to determine the validity of a result of a renal function test based on the amount of creatinine in blood. .
  • the program of the present invention is as follows: The threshold value of the amount of D-serine input from the input unit is stored in the storage unit, The result of the renal function test based on the amount of creatinine in the blood input from the input unit is stored in the storage unit, The amount of D-serine in the blood sample input from the input unit is stored, The amount of D-serine stored in the storage unit and the threshold value of the amount of D-serine are read out, compared in the data processing unit, and the result of the comparison is stored in the storage unit as to whether the amount exceeds or falls below the threshold value.
  • the result of the renal function test based on the amount of creatinine in the blood stored in the memory unit and the result of the comparison are read, the validity of the result of the renal function test is determined, and the result is stored in the memory unit.
  • the information processing apparatus includes a command for causing the information processing apparatus to output the stored validity to the output unit.
  • the program of the present invention may be stored in a storage medium, or may be provided via an electric communication line such as the Internet or LAN.
  • the validity of the results of the renal function test is determined based on the results of the renal function test and the results of comparison. Specifically, a renal function test based on the amount of creatinine in the blood determines that renal function is impaired, but when the amount of D-serine is lower than the threshold value, it is determined as a false positive, and the amount of D-serine is decreased. If it is higher than the threshold value, it can be determined as a true positive. On the other hand, if the renal function test based on the amount of creatinine in the blood determined that it was normal, when the amount of D-serine was higher than the threshold value, it was determined as a false negative, and the amount of D-serine was lower than the threshold value. In some cases, a true negative can be determined.
  • the amount of creatinine in blood is input from the input unit 12 so that the data processing unit 14 stores the data. It may include a command for determining the result of the renal function test by comparing with the threshold value of the amount of creatinine in blood stored in the unit 11.
  • the program of the present invention replaces the command for storing the result of the renal function test based on the amount of creatinine in the blood input from the input unit 12 in the storage unit 11 as follows:
  • the threshold of the amount of creatinine in blood input from the input unit 12 is stored in the storage unit 11
  • the amount of creatinine in blood input from the input unit 12 is stored in the storage unit 11
  • the amount of creatinine in blood and the threshold value of the amount of creatinine in blood stored in the storage unit 11 are read out and compared in the data processing unit 14 to determine the result of the renal function test depending on whether the amount exceeds or falls below the threshold value.
  • the program may include a command to store the result of the renal function test in the storage unit 11.
  • the data processing unit 14 may include a command for determining the result of the renal function test by performing separation and quantification and comparing with the threshold value of the amount of creatinine in blood stored in the storage unit 11.
  • the program of the present invention replaces the command for storing the result of the renal function test based on the amount of creatinine in the blood input from the input unit 12 in the storage unit 11 as follows:
  • the threshold of the amount of creatinine in blood input from the input unit 12 is stored in the storage unit 11
  • the analysis and measurement unit 13 is operated to measure the amount of creatinine in blood, and stored in the storage unit 11,
  • the amount of creatinine in the blood and the threshold value of the amount of creatinine in the blood stored in the storage unit 11 are read out and compared in the data processing unit 14 to determine the result of the renal function test and the result of the renal function test is determined.
  • the program may include a command to be stored in the storage unit 11.
  • a program using the estimated glomerular filtration rate calculated from the amount of creatinine in blood may be used.
  • the age and sex of the subject input from the input unit 12 are stored in the storage unit 11,
  • the storage unit 11 stores a calculation formula of an estimated glomerular filtration amount based on the amount of creatinine in blood, which is input from the input unit 12,
  • the analysis and measurement unit 13 is caused to measure the amount of creatinine in the blood sample and stored in the storage unit 11,
  • the data processing unit may include a command for substituting the age, sex, and the amount of creatinine in blood stored in the storage unit into the calculation formula to calculate the estimated glomerular filtration amount and store it in the storage unit 11. .
  • CKD chronic kidney disease
  • the inulin clearance (Cin) of a subject was calculated from the inulin concentration in plasma and urine and the urine volume according to the standard method described in Clin Exp Nephrol 13,50-54 (2009). Briefly, under fasting, postponement of medication, and water-loaded environment, 1% inulin (Inulead Note: Fuji Yakuhin Co., Ltd.) was administered to a blood and urine sample at three different time points during a continuous intravenous infusion of 2 hours. It was collected in. The test subject drank 500 mL of water orally 30 minutes before the infusion. To maintain the water load, 60 mL of water was drunk 40, 60, 90 minutes after the start of the inulin drip.
  • the initial rate of infusion was 300 mL / h for the first 30 minutes, followed by 100 mL / h for 90 minutes.
  • Blood samples were taken at 45, 75, and 105 minutes after the start of inulin infusion. The subject urinated so as to completely empty the bladder 30 minutes after the start of infusion. Urine samples were then taken between 30 and 60 minutes, between 60 and 90 minutes, and between 90 and 120 minutes. Inulin was measured using the enzymatic method. The average of three Cin values was used as Cin (Cin-ST) by the standard method.
  • Sample preparation from human plasma was performed as follows: 20 volumes of methanol were added to plasma and mixed thoroughly. After centrifugation, 10 ⁇ L of the supernatant obtained from methanol homogenate was transferred to a brown tube and dried under reduced pressure. For the residue, 20 ⁇ L of 200 mM sodium borate buffer (pH 8.0) and 5 ⁇ L of fluorescent labeling reagent (40 mM 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD in anhydrous MeCN). -F)) was added and then heated at 60 0 C for 2 minutes. The reaction was stopped by adding 75 ⁇ l of 0.1% TFA aqueous solution (v / v), and 2 ⁇ L of the reaction mixture was subjected to two-dimensional HPLC.
  • Amino acid optical isomers were quantified using the following two-dimensional HPLC system.
  • a mobile phase (5-35% MeCN, 0-20% THF, and 0.05% TFA) of an NBD derivative of an amino acid was used as a mobile phase using a reverse phase column (KSAA RP, 1.0 mm id x 400 mm; Shiseido Co., Ltd.). was separated and eluted.
  • the column temperature was set to 45 ° C. and the mobile phase flow rate was set to 25 ⁇ L / min.
  • the separated amino acid fraction was collected using a multi-loop valve and continuously optically resolved by a chiral column (KSAACSP-001S, 1.5 mm id x 250 mm; Shiseido).
  • KSAACSP-001S a MeOH-MeCN mixed solution containing citric acid (0 to 10 mM) or formic acid (0 to 4%) was used according to the retention of amino acids.
  • NBD-amino acid was detected by fluorescence at 530 nm using excitation light of 470 nm.
  • the retention time of NBD-amino acid was identified by a standard of optical amino acid isomers and quantified by a calibration curve.
  • body surface area uncorrected For 26 subjects, body surface area uncorrected GFR (inulin clearance), blood D-serine amount (A), and creatinine amount (B) were plotted in a scatter diagram. The correlation coefficient r and p value were calculated. The results are shown in Figure 2. It was shown that the amount of D-serine in blood has a higher correlation with the amount of body surface area uncorrected GFR (inulin clearance) than the amount of creatinine in blood.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法であって、血液中のクレアチニン量に基づく腎機能検査を受けた対象の血液中のD-セリン量を測定する工程、D-セリン量と、所定の閾値とを比較する工程、及び血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定する工程、を含む前記方法、並びに当該方法を実施する試料分析システム及びプログラムを提供する。

Description

血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法
 本発明は、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法、当該方法を実施する試料分析システム、及びプログラムに関する。
 腎機能を表す指標として糸球体濾過量(GFR)が用いられている。糸球体濾過量は、糸球体で血液から1分間に濾過される液量を表し、その国際標準測定法はイヌリンクリアランスである。しかしながら、イヌリンクリアランスは、2時間にわたるイヌリンの持続点滴、及び複数回にわたる採尿及び採血と、正確な測定が必要であり、被験者及び実施者の負担が大きい。このようなことから、国際標準測定法としては確立されているものの、各国における医療の諸事情から、実地診療が導入されず、代替マーカーによる糸球体濾過量の決定が行われていることもある。日本では、イヌリンクリアランスによるGFRの測定は2006年に検査として保険適用されたものの、限定された状況でのみ行われるにとどまっており、日常の臨床現場では、他の腎機能マーカーを用いた推算式が用いられている。このように、糸球体濾過量のゴールドスタンダードであるイヌリンクリアランスが使用されない弊害として、腎機能の正確な判定や、それにともなう腎臓病の早期発見が難しくなっているという問題がある。
 イヌリンクリアランスに代わる糸球体濾過量の決定方法として、イヌリン以外の物質のクリアランスに基づく方法、さらには血液中の腎機能マーカー値に基づく方法が開発されている。これらは、国際標準測定法であるイヌリンクリアランスに対する相関を調べることで、GFRの決定に用いられている。現在最も汎用されている腎機能マーカーであるクレアチニンは、体外からの物質の投与を必要としない点で優れており、年齢と性別情報を組み合わせた下記の式により、推算糸球体濾過量(eGFR)が決定されている:
Figure JPOXMLDOC01-appb-M000001
 このように決定されたeGFRは、健康診断や医療現場で広く使用されている。しかしながら、eGFRは、腎機能の悪化についてのスクリーニングに用いることや、多数の対象者を比較するような疫学研究における簡便かつ客観的な評価を主眼として作成された指標であり、個別の患者の腎機能評価には、依然としてイヌリンを用いたイヌリンクリアランスを用いることが日本腎臓学会により推奨されている。
 その理由として、そもそもクレアチニンは、生体のクレアチンより産生される物質であり、腎機能よりも、被験者の筋肉量、日内変動、食事の種類等、他の要因により影響される点が挙げられる。例えば、アスリート等の筋肉量が多い対象において、eGFRが低くなる傾向がある一方で、寝たきりや低栄養等で筋肉量が少ない対象においては、eGFRが高くなる傾向があり、日本人とは異なる人種では本来のGFRからの乖離が大きくなる。このように、eGFRにより、腎機能についてスクリーニングを行うと、偽陽性と偽陰性の判定がされる恐れがある。
 従来、哺乳類の生体には存在しないと考えられていたD-アミノ酸が、様々な組織に存在し、生理機能を担うことが明らかにされてきている。また、血液中のD-アミノ酸のうち、D-セリン、D-アラニン、D-プロリン、D-グルタミン酸、D-アスパラギン酸の濃度が、腎不全患者で変動し、クレアチニンと相関することから、腎不全の診断マーカーになり得ることが示されている(非特許文献1、非特許文献2、非特許文献3、非特許文献4)。さらに、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、D-アロスレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択されるアミノ酸が、腎臓病の病態指標値とすることについて開示されている(特許文献1)。これらの文献では、健常者と比較して、腎臓病を患う患者の血液中のD-アミノ酸が変動していることから、これらの変動を指標にして腎臓病の診断が可能になる旨が開示されている。
 その一方で、血液中のD-アミノ酸量によって、イヌリンクリアランスを基準とした糸球体濾過能力が決定できることについては何ら記載も示唆もされていない。なお、近年、腎臓病のマーカーとして、尿中L-FABP、血液中NGAL、尿中KIM-1等が開発されてきているが、腎臓病のマーカーであったとしても、必ずしも糸球体濾過能力の決定・推定できるものではない。
国際公開第2013/140785号
Fukushima,T.ら、Biol. Pharm. Bull. 18: 1130(1995) Nagata.Y Viva Origino Vol.18(No.2) (1990)第15回学術講演会講演要旨集 Ishidaら、北里医学 23:51~62 (1993) Yong Huangら、Biol. Pharm. Bull. 21:(2)156-162(1998)
 健康診断において、腎機能検査を目的として血液中のクレアチニン量や、血液中のクレアチニン量に基づく推算糸球体濾過量が算出されるが、血液中のクレアチニン量に基づく腎機能検査では、筋肉量や食事による影響を受けるため、結果の判定において偽陽性及び偽陰性が含まれうる。本発明ではこうした偽陽性及び偽陰性を検定することを目的とする。
 本発明者らは、血液中のD-セリンに着目し、GFR(イヌリンクリアランス)との相関を調べていたところ、驚くべきことに、現在汎用されている血液中のクレアチニン量よりも、血液中のD-セリン量が、GFR(イヌリンクリアランス)に相関が高いことを見出し、本発明に至った。
 そこで、本発明は下記に関する:
[1] 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法であって、
 血液中クレアチニン量に基づく腎機能検査を受けた対象の血液中のD-セリン量を測定する工程、
 D-セリン量と、所定の閾値とを比較する工程、
 血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定する工程
 を含む、前記方法。
[2] 腎機能検査結果の妥当性を検定する方法が、血液中のクレアチニン量に基づく腎機能検査結果の偽陽性及び/又は偽陰性を判定する、項目1に記載の方法。
[3] 前記決定工程が、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値を超えた場合に、偽陽性と決定する、項目2に記載の方法。
[4] 前記決定工程が、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陰性と決定する、項目2に記載の方法。
[5] 同一サンプルにおいて、D-セリン量及び血液中クレアチニン量が測定される、項目1~4のいずれか一項に記載の方法。
[6] 前記対象が、筋肉量の多い対象である、項目1~5のいずれか一項に記載の方法。
[7] 偽陰性又は真陰性と判定された対象に対し、治療介入が行われる、項目1~6のいずれか一項に記載の方法。
[8] 前記治療介入が、生活習慣改善、食事指導、血圧管理、貧血管理、電解質管理、尿毒素管理、血糖値管理、免疫管理及び脂質管理からなる群から選ばれる、項目7に記載の方法。
[9] 前記治療介入として、利尿薬、カルシウム拮抗薬、アンジオテンシン変換酵素阻害薬、アンジオテンシン受容体拮抗薬、交感神経遮断薬、SGLT2阻害薬、スルホニル尿素薬、チアゾリジン薬、ビグアナイド薬、α―グルコシダーゼ阻害薬、グリニド薬、インスリン製剤、NRF2活性化剤、免疫抑制剤、スタチン系薬剤、フィブラート系薬剤、貧血治療薬、エリスロポエチン製剤、HIF-1阻害剤、鉄剤、電解質調整薬、カルシウム受容体作動薬、リン吸着剤、尿毒素吸着剤、DPP4阻害薬、EPA製剤、ニコチン酸誘導体、コレステロールトランスポーター阻害剤、およびPCSK9阻害剤からなる群から選ばれる少なくとも1の薬剤を前記対象に投与することを含む、項目7又は8に記載の方法。
[10] 記憶部と、入力部、分析測定部と、データ処理部と、出力部とを含み、クレアチニン量に基づく腎機能検査結果の妥当性を検定する試料分析システムであって、
 記憶部は、入力部から入力されたD-セリン量の閾値を記憶し、
 記憶部は、入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶し、
 分析測定部は、血液試料中のD-セリンを分離定量し、
 データ処理部は、D-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
 出力部が血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を出力する
 を含む、前記試料分析システム。
[11] 記憶部と、入力部、分析測定部と、データ処理部と、出力部とを含み、クレアチニン量に基づく腎機能検査結果の妥当性を検定する試料分析システムであって、
 記憶部は、入力部から入力されたD-セリン量の閾値を記憶し、
 記憶部は、入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶し、
 分析測定部は、血液試料中のD-セリンを分離定量し、
 データ処理部は、D-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
 出力部が血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を出力する
 を含む、前記試料分析システム。
[12] 腎機能検査結果の妥当性の判定が、血液中のクレアチニン量に基づく腎機能検査結果の偽陽性及び/又は偽陰性を判定する、項目11に記載の試料分析システム。
[13] 前記判定が、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と判定する、項目12に記載の試料分析システム。
[14] 前記判定が、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定する、項目12に記載の試料分析システム。
[15] 同一サンプルにおいて、D-セリン量及び血液中のクレアチニン量が測定される、項目10~14のいずれか一項に記載の試料分析システム。
[16] 入力部、出力部、データ処理部、記憶部とを含む情報処理装置に血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定させるプログラムであって、以下の:
 入力部から入力されたD-セリン量の閾値を記憶部に記憶させ、
 入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶部に記憶させ、
 入力部から入力された血液試料中のD-セリン量を記憶させ、
 記憶部に記憶されたD-セリン量と、D-セリン量の閾値とを読み出し、データ処理部で比較して、閾値を上回るか下回るかについて比較の結果を記憶部に記憶させ、
 記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果と、比較の結果を読み出し、腎機能検査の結果の妥当性を判定して、記憶部に記憶させ、
 記憶された妥当性を出力部に出力させる
ことを前記情報処理装置に実行させるための指令を含む、前記プログラム。
[17] 入力部、出力部、データ処理部、記憶部とを含む情報処理装置に血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定させるプログラムであって、以下の:
 入力部から入力された血液中のクレアチニン量の閾値を記憶部に記憶させ、
 入力部から入力された血液試料中のクレアチニン量を記憶させ、
 入力部から入力されたD-セリン量の閾値を記憶部に記憶させ、
 入力部から入力された血液試料中のD-セリン量を記憶させ、
 記憶部に記憶された血液中のクレアチニン量と、血液中のクレアチニン量の閾値とを読み出し、データ処理部で比較して、クレアチニン量に基づく腎機能検査結果を記憶部に記憶させ
 記憶部に記憶されたD-セリン量と、D-セリン量の閾値とを読み出し、データ処理部で比較して、比較の結果を記憶部に記憶させ、
 記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果と、比較の結果を読み出し、腎機能検査の結果の妥当性を判定して、記憶部に記憶させ、
 記憶された妥当性を出力部に出力させる
ことを前記情報処理装置に実行させるための指令を含む、前記プログラム。
 本発明は、血液中のクレアチニン量による腎機能判定にあわせて、よりGFR(イヌリンクリアランス)に対し相関の高いD-セリン量を用いることにより、血液中のクレアチニン量による腎機能判定の妥当性を判定することが可能になる。
図1は、血液中のD-セリン量(A)及びクレアチニン量(B)と、GFR(イヌリンクリアランス)(体表面積補正済み)との散布図を示したグラフである。 図2は、血液中のD-セリン量(A)及びクレアチニン量(B)と、GFR(イヌリンクリアランス)(体表面積補正無し)との散布図を示したグラフである。 図3は、血液中のD-セリン量(A)及びクレアチニン量(B)と、体表面積(BSA)との散布図を示したグラフである。 図4は、本発明の試料分析システムの構成図を示す。 図5は本発明のプログラムによる腎機能検査結果の妥当性を検定するための動作の例を示すフローチャートである。
 本発明は、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法に関する。より具体的に、本発明の検定方法は、以下の:
 血液中のクレアチニン量に基づく腎機能検査を受けた対象の血液中のD-セリン量を測定する工程、
 D-セリン量と、所定の閾値とを比較する工程、
 血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定する工程
 を含む。
 一の態様では、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法とは、血液中のクレアチニン量に基づく腎機能検査結果の偽陰性又は偽陽性を決定する方法に関する。偽陰性又は偽陽性を決定する工程は、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と決定し、又は血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定することができる。
 本発明の別の態様では、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法とは、血液中のクレアチニン量に基づく腎機能検査結果の真陰性又は真陽性を決定する方法であってもよい。真陰性又は真陽性を決定する工程は、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より高い場合に、真陽性と決定し、又は血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より低い場合に、真陰性と決定することができる。
 本発明において、指標として用いられるD-セリンは、タンパク質を構成するアミノ酸であるL-セリンの光学異性体である。D-セリン量は、主にセリンラセマーゼやD-アミノ酸オキシダーゼ等の代謝酵素によって、各組織や血液中で厳密に制御されている一方で、腎障害が生じた場合には血液中のD-セリン量が変動する。
 本発明において「血液中のD-セリン量」とは、特定の血液量中のD-セリン量のことを指してもよく、濃度で表されてもよい。血液中のD-セリン量は、採取された血液において、遠心分離、沈降分離、あるいは分析のための前処理が行われた試料における量として測定される。したがって、血液中のD-セリン量は、採取された全血、血清、血漿等の血液に由来する血液試料における量として測定されうる。一例として、HPLCを用いた分析の場合、所定量の血液に含まれるD-セリン量は、クロマトグラムで表され、ピークの高さ・面積・形状について標準品との比較やキャリブレーションによる解析によって定量されうる。D-セリン濃度が既知のサンプルとの比較により、血液中のD-セリン量を測定することが可能であり、血液中のD-セリン量として、血液中のD-セリン濃度を用いることができる。また、酵素法では、標準品の検量線を用いた定量解析により、アミノ酸濃度を算出可能である。
 補正のための式は、一例として、GFR(イヌリンクリアランス)への相関から決定しうる。イヌリンクリアランスと、血液中のD-セリン量との相関から算出された式又はグラフに、被験者のD-セリン量を代入することで決定することができる。イヌリンクリアランスは、体表面積補正済みのイヌリンクリアランスであってもよいし、体表面積補正前のイヌリンクリアランスであってもよい。体表面積補正前と補正後の糸球体濾過能力のどちらが必要かに応じて、選択することができる。
 D-セリン量は、任意の方法によって測定することができ、例えばキラルカラムクロマトグラフィーを用いた測定や、酵素法を用いた測定、さらにはアミノ酸の光学異性体を識別するモノクローナル抗体を用いる免疫学的手法によって定量することができる。本発明における試料中のD-セリン量の測定は、当業者に周知ないかなる方法を用いて実施しても構わない。例えば、クロマトグラフィー法や酵素法(Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analytical Biochemistry, 287 (2000), 196., G. Molla et al., Methods in Molecular Biology, 794 (2012), 273., T. Ito et al., Analytical Biochemistry, 371 (2007), 167. 等)、抗体法(T. Ohgusu et al., Analytical Biochemistry, 357 (2006), 15.,等 )、ガスクロマトグラフィー(GC)(H. Hasegawa et al., Journal of Mass Spectrometry, 46 (2011), 502., M. C. Waldhier et al., Analytical and Bioanalytical Chemistry, 394 (2009), 695., A. Hashimoto, T. Nishikawa et al., FEBS Letters, 296 (1992), 33., H. Bruckner and A. Schieber, Biomedical Chromatography, 15 (2001), 166. , M. Junge et al., Chirality, 19 (2007), 228., M. C. Waldhier et al., Journal of Chromatography A, 1218 (2011), 4537. 等)、キャピラリー電気泳動法(CE)(H. Miao et al., Analytical Chemistry, 77 (2005), 7190., D. L. Kirschner et al., Analytical Chemistry, 79 (2007), 736., F. Kitagawa, K. Otsuka, Journal of Chromatography B, 879 (2011), 3078., G. Thorsen and J. Bergquist, Journal of Chromatography B, 745 (2000), 389. 等)、高速液体クロマトグラフィー(HPLC)(N. Nimura and T. Kinoshita, Journal of Chromatography, 352 (1986), 169., A. Hashimoto et al., Journal of Chromatography, 582 (1992), 41., H. Bruckner et al., Journal of Chromatography A, 666 (1994), 259., N. Nimura et al., Analytical Biochemistry, 315 (2003), 262., C. Muller et al., Journal of Chromatography A, 1324 (2014), 109., S. Einarsson et al., Analytical Chemistry, 59 (1987), 1191., E. Okuma and H. Abe, Journal of Chromatography B, 660 (1994), 243., Y. Gogami et al., Journal of Chromatography B, 879 (2011), 3259., Y. Nagata et al., Journal of Chromatography, 575 (1992), 147., S. A. Fuchs et al., Clinical Chemistry, 54 (2008), 1443., D. Gordes et al., Amino Acids, 40 (2011), 553., D. Jin et al., Analytical Biochemistry, 269 (1999), 124., J. Z. Min et al., Journal of Chromatography B, 879 (2011), 3220., T. Sakamoto et al., Analytical and Bioanalytical Chemistry, 408 (2016), 517., W. F. Visser et al., Journal of Chromatography A, 1218 (2011), 7130., Y. Xing et al., Analytical and Bioanalytical Chemistry, 408 (2016), 141., K. Imai et al., Biomedical Chromatography, 9 (1995), 106., T. Fukushima et al., Biomedical Chromatography, 9 (1995), 10., R. J. Reischl et al., Journal of Chromatography A, 1218 (2011), 8379., R. J. Reischl and W. Lindner, Journal of Chromatography A, 1269 (2012), 262., S. Karakawa et al., Journal of Pharmaceutical and Biomedical Analysis, 115 (2015), 123., 等)がある。
 本発明における光学異性体の分離分析系は、複数の分離分析を組み合わせてもよい。より具体的に、光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、前記試料の前記成分の各々をマルチループユニットにおいて個別に保持するステップ、前記マルチループユニットにおいて個別に保持された前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に流路を通じて供給し、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び前記試料の成分の各々に含まれる前記光学異性体を検出するステップを含むことを特徴とする光学異性体の分析方法を用いることにより、試料中のD-/L-アミノ酸量を測定することができる(特許第4291628号)。HPLC分析では、予めo-フタルアルデヒド(OPA)や4-フルオロ-7-ニトロ-2,1,3-ベンゾキサジアゾール(NBD-F)のような蛍光試薬でD-及びL-アミノ酸を誘導体化したり、N-tert-ブチルオキシカルボニル-L-システイン(Boc-L-Cys)等を用いてジアステレオマー化する場合がある(浜瀬健司及び財津潔、分析化学、53巻、677-690(2004))。代替的には、アミノ酸の光学異性体を識別するモノクローナル抗体、例えばD-セリン、L-セリン等に特異的に結合するモノクローナル抗体を用いる免疫学的手法によってD-アミノ酸を測定することができる。また、D体及びL体の合計量を指標とする場合、D体及びL体を分離して分析する必要はなく、D体及びL体を区別せずにアミノ酸を分析することもできる。その場合も酵素法、抗体法、GC、CE、HPLCで分離及び定量することができる。
 本発明において検定対象であるクレアチニンは、主に筋肉による活動により、クレアチンリン酸から分解されて血液中に放出される。血液中のクレアチニンは小分子であることから、糸球体による濾過を受けて、原尿となり、そのまま再吸収されずに尿中に排出される。したがって、糸球体の濾過能力が低下することで、血液中におけるクレアチニン濃度が増加することから、腎機能の指標として、血液中のクレアチニン量、又は血液中のクレアチニン量から推算される糸球体濾過量が用いられる。推算糸球体濾過量の算出式として、体重、年齢、性別による補正を行う古典的な式として、Cockcroft-Gaultの式が知られ、さらに体表面積の補正を行ったMDRD式、CKD-EPI式等が開発されている。日本では、イヌリンクリアランスを標準とした下記の推算式が開発されている:
Figure JPOXMLDOC01-appb-M000002
 しかしながら、筋肉量の影響や、肉の大量摂取により血液中クレアチニン量が増加することが知られている。また、血液中クレアチニン量は、腎機能の悪化がかなり進行して初めて異常値を示すようになることから、標準的な対象であっても、60mL/分/1.73m2以上の値では、正しい評価ができないことも知られている。
 上述のように、血液中のクレアチニン量に基づく腎機能検査について問題が報告されているものの、これまで汎用されてきた実績から、健康診断において腎機能検査として血液中のクレアチニン量及び/又は血液中のクレアチニン量に基づく推算糸球体濾過量が多く採用されている。例えば血液中のクレアチニン量の場合、男性であれば1.00mg/dLを閾値とし、女性であれば0.7mg/dLを閾値とされ、それを上回ると、腎機能が低下していると判定され、下回っていれば正常であると判定される。また、推算糸球体濾過量を用いる場合、日本では、イヌリンクリアランスを標準とした推算式に基づいて推算糸球体濾過量が計算され、閾値として60.0mL/分/1.73m2が用いられ、この閾値を下回ると腎機能が低下していると判定され、上回っていれば正常であると判定される。血液中のクレアチニン量及び推算糸球体濾過量において、腎機能の低下を示す閾値は、学会主導の調査等で変更されることがあり、上述の数値に捕らわれることを意図するものではない。筋肉量の影響を直接受ける血液中のクレアチニン量はもちろんのこと、年齢と性別で補正された推算糸球体濾過量の場合であっても、アスリートや痩せた高齢者等の筋肉量について特殊な被験者では、偽陽性の問題及び偽陰性の問題が生じることになる。健康診断等の一次スクリーニングの結果に、偽陰性の結果が含まれることにより、初期の腎臓病を見逃しているという実態がある。腎機能は基本的に一度失われると回復が見込めないことから、初期の腎臓病について、偽陰性を見逃さずに腎機能を判定することが好ましい。また、偽陽性が含まれていた場合、対象は通常2次検査を受診することになり、そこでほかの症候やマーカー等の値から総合的に腎臓病が判断されるが、個別の腎機能の確定にはイヌリンクリアランスの測定が推奨されており、対象のみならず、医療関係者への負担が大きい。上述の通りクレアチニンは、軽度の腎機能低下におけるイヌリンクリアランスへの相関が低いことから、軽度の腎機能低下を示す対象において、陰性と判定してしまう可能性が高い。その一方で、血液中のD-セリン量は、軽度の腎機能低下についても、イヌリンクリアランスに対しての相関が高く、軽度の腎機能低下を示す対象にいてクレアチニン検査の偽陰性を判定できる。また、クレアチニン量は、筋肉量による影響が大きいことも偽陰性・偽陽性を招く原因である一方で、血液中のD-セリンは、筋肉量への相関を示さず、どのような体格の対象においても偽陰性・偽陽性を招く可能性が低い。よって、筋肉量の多い対象、特に定期的な運動や筋力トレーニングを行ったり、日常的に高蛋白食を摂取している対象について、本発明の偽陽性・偽陰性を判定する方法を実施することが特に好ましい。筋肉量の多い対象は、生体インピーダンス法等により決定することができる。予めインピーダンス法等で筋肉量を定量するか、又はアンケートにより、日常的な運動量を調査しておくことで、筋肉量の多い対象を選択することができる。
 本発明において、血液中のクレアチニン量に基づく腎機能検査とは、血液中のクレアチニン量を用いた検査であってもよいし、血液中のクレアチニン量から導かれた数値を利用する検査であってもよい。血液中のクレアチニン量から導かれた数値としては、一例として推算糸球体濾過量であるが、これに限定されることを意図するものではない。血液中のクレアチニン量に基づく腎機能検査を受けた対象とは、血液中のクレアチニン量に基づく腎機能検査を予め受けていてもよいし、同時に受けてもよい。腎機能検査を同時に受けるとは、同日に採取された同一血液試料又は異なる血液試料を用いて検査されてもよいし、異日に採取された血液試料を用いて検査されてもよい。
 血液中のD-セリン量は、理論に限定されることを意図するものではないが、血液中クレアチニン量とは異なり筋肉量による影響は少ないことに加えて、血液中のクレアチニン量に比較して、イヌリンクリアランスへの相関が高いことが利点である。したがって、血液中のD-セリン量を、従来の健康診断等で測定された血液中のクレアチニン量や、血液の中クレアチニン量に基づく推算糸球体濾過量に付随する偽陽性又は偽陰性の問題を解決することができる。
 本発明において、偽陽性とは、第一種過誤のことを指す。具体的に、血液中のクレアチニン量及び/又は血液中のクレアチニン量に基づく推算糸球体濾過量による検査では陽性(すなわち、腎機能低下)と判定された一方で、実際は腎機能低下を患っていないことをいう。偽陰性とは、第二種過誤のことを指す。具体的に血液中のクレアチニン量及び/又は血液中のクレアチニン量に基づく推算糸球体濾過量による検査では陰性(すなわち、腎機能正常)と判定された一方で、実際は腎機能低下を患っているこということをいう。理論に限定されることを意図するものではないが、アスリート等の筋肉量の多い対象では、血液中のクレアチニン量及び/又は血液中クレアチニン量に基づく推算糸球体濾過量による検査において、偽陽性の可能性が増加し、一方寝たきりや低栄養等で筋肉量が少ない対象では、偽陰性の可能性が増加する。偽陽性及び偽陰性、さらには真陽性及び真陰性については下記の表を参照することで容易に理解することができる。
Figure JPOXMLDOC01-appb-T000003
 偽陽性の決定は、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と決定することにより行われる。偽陰性の決定は、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定することにより行われる。これらの閾値は、対象の要素、例えば性別、年齢、体重等の区分によらず1の値を用いてもよいし、区分にしたがってそれぞれ決定されてもよい。
 本発明において、偽陽性又は偽陰性を検定する方法は、真陽性又は真陰性を検定する方法と換言することもできる。具体的に、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値を超えた場合に、真陽性と決定することにより行われる。真陰性の決定は、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高いい場合に、真陰性と決定することにより行われる。
 本発明の検定方法は、血液中のクレアチニン量に基づく腎機能検査を受けた対象の血液試料について行われるが、かかる血液試料は、血液中のクレアチニン量を測定するために用いた血液試料と同一試料であってもよいし、血液中のクレアチニン量を測定するために用いた血液試料とは、異なる時点で採取された試料であってもよい。
 本発明の妥当性の検定方法は、閾値との比較により行われることから医師による判断を含まない。本発明の検定方法の結果に基づくことで、医師は腎臓病をより正確に診断することができる。したがって、本発明の検定方法は、診断の予備的方法又は診断の補助方法である。本発明の方法は、医師以外の者、例えば血液の分析業者、健康診断業者、データ処理会社、分析システム、及び分析プログラム等により実施されうる。本発明のさらに別の態様では、本発明の妥当性の検討方法を利用し、腎機能又は腎臓病を診断する方法に関してもよい。
 本発明の、偽陽性及び偽陰性の検定により、腎機能の低下と判定された場合、腎機能のさらなる悪化を防ぐために早期治療又は保健指導が特に有効である。保健指導は、主に、生活習慣改善、食事指導、血圧管理、血糖値管理、及び脂質管理等が、独立に又は組み合わせて指導される。食事指導としては、減塩及びタンパク質制限が行われる。血圧管理としては、130/80mmHg以下となるように、管理が行われうる。血糖値は、Hba1c6.9%未満に管理が行われる。脂質管理では、LDL-C120mg/dL未満となるよう管理される。生活習慣改善としては、禁煙及びBMI値の25未満への減量等が推奨される。
 腎機能の低下が判定された場合、治療介入がされてもよい。治療介入としては、血圧管理、血糖値管理、貧血管理、電解質管理、尿毒素管理、免疫管理及び脂質管理等が、独立に又は組み合わせて行われる。この中でも特に、血圧管理、血糖値管理、貧血管理、電解質管理、尿毒素管理、免疫管理及び/又は脂質管理については、投薬による治療が行われうる。血圧管理としては、130/80mmHg以下となるように、管理され、場合により高血圧治療薬が投与されうる。高血圧治療薬としては、利尿薬(サイアザイド系利尿薬、例えばトリクロルメチアジド、ベンチルヒドロクロロチアジド、ヒドロクロロチアジド、サイアザイド系類似利尿薬、例えばメチクラン、インダバミド、トリバミド、メフルシド、ループ利尿薬、例えばフロセミド、カリウム保持性利尿薬・アルドステロン拮抗薬、例えばトリアムテレン、スピロノラクトン、エプレレノン)、カルシウム拮抗薬(ジヒドロピリジン系、例えばニフェジピン、アムロジピン、エホニジピン、シルニジピン、ニカルジピン、ニソルジピン、ニトレンジピン、ニルバジピン、バルニジピン、フェロジピン、ベニジピン、マニジピン、アゼルニジピン、アラニジピン、ベンゾチアゼピン系、ジルチアゼム)、アンジオテンシン変換酵素阻害薬(カプトプリル、エナラプリル、アセラプリル、デラプリル、シラザプリル、リシノプリル、ベナゼプリル、イミダプリル、テモカプリル、キナプリル、トランドラプリル、ベリンドプリルエルブミン)、アンジオテンシン受容体拮抗薬(アンジオテンシンII受容体拮抗薬、例えばロサルタン、カンデサルタン、バルサルタン、テルミサルタン、オルメサルタン、イルベサルタン、アジルサルタン)、交感神経遮断薬(β遮断薬、例えばアテノロール、ビソプロロール、ベタキソロール、メトプロロール、アセプトロール、セリプロロール、プロプラノロール、ナドロール、カルテオロール、ピンドロール、ニプラジロール、アモスラロール、アロチノロール、カルベジロール、ラベタロール、ベバントロール、ウラピジル、テラゾシン、ブラゾシン、ドキサゾシン、ブナゾシン)等が用いられうる。貧血治療薬としてはエリスロポエチン製剤、鉄剤、HIF-1阻害剤等が用いられる。電解質調整薬としてカルシウム受容体作動薬(シナカルセト、エテルカルセチド等)、リン吸着剤が用いられる。尿毒素吸着剤として活性炭等が用いられる。血糖値は、Hba1c6.9%未満になるように管理され、場合により血糖降下薬が投与される。血糖降下薬として、SGLT2阻害薬(イプラグリフロジン、ダパグリフロジン、ルセオグリフロジン、トホグリフロジン、カナグリフロジン、エンパグリフロジン等)、DPP4阻害薬(シタグリプチンリン酸、ビルダグリプチン、サキサグリプチン、アログリプチン、リナグリプチン、テネリグリプチン、トレラグリプチン、アナグリプチン、オマリグリプチン)、スルホニル尿素薬(トルブタミド、アセトヘキサミド、クロルプロパミド、グリクロピラミド、グリベンクラミド、グリクラジド、グリメピリド等)、チアゾリジン薬(ピオグリタゾン等)、ビグアナイド薬(メトホルミン、ブホルミン等)、α―グルコシダーゼ阻害薬(アカルボース、ボグリボース、ミグリトール等)、グリニド薬(ナテグリニド、ミチグリニド、レパグリニド)インスリン製剤、NRF2活性化剤(バルドキソロンメチル等)等が用いられる。免疫管理としては、免疫抑制剤(ステロイド類、タクロリムス、抗CD20抗体、シクロヘキサミド、ミコフェノール酸モフェチル(MMF)等)が用いられる。脂質管理では、LDL-C120mg/dL未満となるよう管理され、場合により脂質異常症治療薬、例えばスタチン系薬剤(ロスバスタチン、ピタバスタチン、アトルバスタチン、セリバスタチン、フルバスタチン、シンバスタチン、プラバスタチン、ロバスタチン、メバスタチン等)、フィブラート系薬剤(クロフィブラート、ベザフィブラート、フェノフィブラート、クリノフィブラート)、ニコチン酸誘導体(ニコチン酸トコレロール、ニコモール、ニセリトロール)、コレステロールトランスポーター阻害剤(エゼチミブ)、PCSK9阻害剤(エボロクマブ等)、EPA製剤等が用いられる。いずれの薬剤も剤形は単剤でも合剤でもよい。腎機能の低下が著しく生命予後に危険が及ぶ場合は、腹膜透析、血液透析、持続的血液濾過透析、血液アフェレーシス(血漿交換、血漿吸着等)や腎移植のような腎代替療法が施される。
 本発明の別の態様では、血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法を実行する試料分析システム又はプログラムに関していてもよい。図4は、本発明の試料分析システムの構成図である。図4に示す試料分析システム10は、本発明の血液中のクレアチニン量に基づく腎機能検査結果の偽陰性及び偽陽性を検定する方法を実施することができるように構成される。このような試料分析システム10は、記憶部11と、入力部12、分析測定部13と、データ処理部14と、出力部15とを含んでおり、血液試料を分析し、血液中のクレアチニン量に基づく腎機能検査結果について、妥当性、すなわち真陰性、真陽性、偽陰性、又は偽陽性を出力することができる。
 より具体的に、本発明の試料分析システム10において、
 記憶部11は、入力部12から入力されたD-セリン量の閾値を記憶し、
 記憶部11は、入力部12から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶し、
 分析測定部13は、血液試料中のD-セリンを分離定量し、
 データ処理部14は、D-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
 出力部15が血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を出力することができる。
 さらに好ましい態様では、本発明の試料分析システムは、記憶部11が、入力部12から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶する工程に代えて、分析測定部13が、血液試料中のクレアチニン量を決定する工程を含んでもよい。この場合、さらにデータ処理部14が、血液試料中のクレアチニン量に基づいて、腎機能検査の結果を判定し、判定された結果を記憶部が記憶する工程を含んでもよい。この場合、記憶部11が入力部12から入力された血液中のクレアチニン量についての閾値を予め記憶し、データ処理部14が血液中のクレアチニン量と、記憶された血液中のクレアチニン量についての閾値とを比較することで腎機能検査の結果が判定される。
 より具体的に、ある態様の本発明の試料分析システム10において、
 記憶部11は、入力部12から入力された血液中のクレアチニン量の閾値を記憶し、
 記憶部11は、入力部12から入力されたD-セリン量の閾値を記憶し、
 分析測定部13は、血液試料中のクレアチニン量を測定し、
 データ処理部14は、記憶部に記憶された血液中のクレアチニン量の閾値と血液試料中のクレアチニン量とを比較し、血液中のクレアチニン量に基づく腎機能検査の結果を判定し
 分析測定部13は、血液試料中のD-セリンを分離定量し、
 データ処理部14は、血液中のD-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
 出力部15が血液中クレアチニン量に基づく腎機能検査の結果の妥当性を出力することができる。
 血液中のクレアチニン量として、血液中のクレアチニン量から導かれた数値(例えば推算糸球体濾過量)を使用することもできる。一例として、血液中のクレアチニン量から導かれた数値を用いる場合、記憶部11は入力部12から入力された対象の年齢及び性別等のその他の要素を記憶し、さらに血液中のクレアチニン量から導かれた数値を算出する式又はグラフを記憶し、データ処理部14が、測定された血液中のクレアチニン量と、記憶部11に記憶された対象の年齢及び性別等のその他の要素と、血液中のクレアチニン量から導かれた数値を算出する式又はグラフとから数値を算出する工程を含んでもよい。推算糸球体濾過量の閾値としては、一例として60mL/分/1.73m2を用いることができる。
 より具体的に、推算糸球体濾過量を用いる場合、本発明の試料分析システム10において、
 記憶部11は、入力部12から入力された血液中のクレアチニン量に基づく推算糸球体濾過量の算出式を記憶し、
 記憶部11は、入力部12から入力された被験者の年齢及び性別を記憶し、
 記憶部11は、入力部12から入力された血液中のクレアチニン量に基づく推糸球体濾過量の閾値を記憶し、
 記憶部11は、入力部12から入力されたD-セリン量の閾値を記憶し、
 分析測定部13は、血液試料中のクレアチニン量を測定し、
 データ処理部14は、血液中のクレアチニン量と、記憶部に記憶された被験者の年齢、性別と、推算糸球体濾過量の算出式から、推算糸球体濾過量を算出し、
 データ処理部14は、記憶部に記憶された推算糸球体濾過量の閾値と算出された推算糸球体濾過量とを比較し、血液中のクレアチニン量に基づく腎機能検査の結果を判定し
 分析測定部13は、血液試料中のD-セリンを分離定量し、
 データ処理部14は、血液中のD-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
 出力部15が血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を出力することができる。
 データ処理部14において腎機能検査の結果の妥当性は、D-セリン量とその閾値との比較により、血液中のクレアチニン量に基づく腎機能検査の結果の妥当性が決定される。具体的には、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と決定し、D-セリン量が前記閾値より高い場合に、真陽性と決定することができる。一方で、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定し、D-セリン量が前記閾値より低い場合に、真陰性と決定することができる。
 記憶部11は、RAM、ROM、フラッシュメモリ等のメモリ装置、ハードディスクドライブ等の固定ディスク装置、又はフレキシブルディスク、光ディスク等の可搬用の記憶装置等を有する。記憶部は、分析測定部で測定したデータ、入力部から入力されたデータ及び指示、データ処理部で行った演算処理結果等の他、情報処理装置の各種処理に用いられるコンピュータプログラム、データベース等を記憶する。コンピュータプログラムは、例えばCD-ROM、DVD-ROM等のコンピュータ読み取り可能な記録媒体や、インターネットを介してインストールされてもよい。コンピュータプログラムは、公知のセットアッププログラム等を用いて記憶部にインストールされる。記憶部は、予め入力部12から入力されたD-セリン量の閾値、血液中のクレアチニン量に基づく腎機能検査の結果を記憶することができる。さらには、腎機能検査のための血液中のクレアチニン量の閾値を記憶することができる。また、血液中のクレアチニン量の代わりに推算糸球体濾過量を用いる場合には、推算糸球体濾過量の閾値を記憶してもよく、さらには血液中のクレアチニン量に基づく推算糸球体濾過量の算出式を記憶し、また被験者の年齢、性別を記憶することができる。また、分析測定部13が測定した結果や、データ処理部14が行った処理の結果も記憶する。
 入力部12は、インターフェイス等であり、キーボード、マウス等の操作部も含む。これにより、入力部は、分析測定部13で測定したデータ、データ処理部14で行う演算処理の指示等を入力することができる。また、入力部12は、例えば分析測定部13が外部にある場合は、操作部とは別に、測定したデータ等をネットワークや記憶媒体を介して入力することができるインターフェイス部を含んでもよい。
 分析測定部13は、血液試料におけるD-セリンの測定工程を行う。したがって、分析測定部13は、アミノ酸のD体及びL体の分離及び測定を可能にする構成を有する。アミノ酸は、1つずつ分析されてもよいが、一部又は全ての種類のアミノ酸についてまとめて分析することができる。分析測定部13は、以下のものに限定されることを意図するものではないが、例えば試料導入部、光学分割カラム、検出部を備えたキラルクロマトグラフィーシステム、好ましくは高速液体クロマトグラフィーシステムであってもよい。特定のアミノ酸量のみを検出する観点では、酵素法や免疫学的手法による実施してもよい。分析測定部13は、試料分析システムとは別に構成されていてもよく、測定したデータ等をネットワークや記憶媒体を用いて入力部12を介して入力してもよい。さらに、別の態様では、分析測定部13は、血液中のクレアチニン量を測定することもできる。
 データ処理部14は、記憶部に記憶しているプログラムに従って、分析測定部13で測定され記憶部11に記憶されたデータに対して、各種の演算処理を実行する。演算処理は、データ処理部に含まれるプロセッサ又はCPUによりおこなわれる。このプロセッサ又はCPUは、分析測定部13、入力部12、記憶部11、及び出力部15を制御する機能モジュールを含み、各種の制御を行うことができる。これらの各部は、それぞれ独立した集積回路、マイクロプロセッサ、ファームウェア等で構成されてもよい。データ処理部14は、D-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定する。別の態様では、データ処理部14は、血液中のクレアチニン量と、記憶部に記憶された被験者の年齢、性別と、推算糸球体濾過量の算出式から、推算糸球体濾過量を算出することができる。この場合、データ処理部14は、さらに、記憶部に記憶された推算糸球体濾過量の閾値と算出された推算糸球体濾過量とを比較し、血液中のクレアチニン量に基づく腎機能検査の結果の判定も行うことができる。
 出力部15は、データ処理部で判定された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性、すなわち真陰性、真陽性、偽陰性、又は偽陽性を出力するように構成される。さらに出力部15は、分析測定部13で測定されたD-セリン量、血液中のクレアチニン量、又はデータ処理部14で算出された推算糸球体濾過量を、上述の妥当性と併せて出力してもよい。出力部15は、演算処理の結果を直接表示する液晶ディスプレイ等の表示装置、プリンタ等の出力手段であってもよいし、外部記憶装置への出力又はネットワークを介して出力するためのインターフェイス部であってもよい。
 図5は、本発明のプログラムによる糸球体濾過量を決定するための動作の例を示すフローチャートである。具体的に、本発明のプログラムは、入力部、出力部、データ処理部、記憶部とを含む情報処理装置に血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定させるプログラムである。本発明のプログラムは、以下の:
 入力部から入力されたD-セリン量の閾値を記憶部に記憶させ、
 入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶部に記憶させ、
 入力部から入力された血液試料中のD-セリン量を記憶させ、
 記憶部に記憶されたD-セリン量と、D-セリン量の閾値とを読み出し、データ処理部で比較して、閾値を上回るか下回るかについて比較の結果を記憶部に記憶させ、
 記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果と、比較の結果を読み出し、腎機能検査の結果の妥当性を判定して、記憶部に記憶させ、
 記憶された妥当性を出力部に出力させる
ことを前記情報処理装置に実行させるための指令を含む。本発明のプログラムは、記憶媒体に格納されてもよいし、インターネット又はLAN等の電気通信回線を介して提供されてもよい。
 腎機能検査の結果の妥当性は、腎機能検査の結果と、比較の結果に基づいて決定される。具体的には、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と決定し、D-セリン量が前記閾値より高い場合に、真陽性と決定することができる。一方で、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定し、D-セリン量が前記閾値より低い場合に、真陰性と決定することができる。
 本発明のプログラムは、入力部12から血液中のクレアチニン量に基づく腎機能検査の結果を入力する代わりに、入力部12から血液中のクレアチニン量を入力することで、データ処理部14が、記憶部11に記憶された血液中のクレアチニン量の閾値と比較して、腎機能検査の結果を判定させる指令を含んでもよい。
 より具体的に、本発明のプログラムは、入力部12から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶部11に記憶させる指令に代えて、以下の:
 入力部12から入力された血液中のクレアチニン量の閾値を記憶部11に記憶させ、
 入力部12から入力された血液中のクレアチニン量を記憶部11に記憶させ、
 記憶部11に記憶された血液中のクレアチニン量と、血液中クレアチニン量の閾値とを読み出し、データ処理部14で比較して、閾値を上回るか下回るかにより、腎機能検査の結果を判定して、腎機能検査の結果を記憶部11に記憶させる
 指令を含むプログラムであってもよい。
 情報処理装置が、分析測定部13を備える場合に、入力部12から血液中のクレアチニン量に基づく腎機能検査の結果を入力する代わりに、分析測定部13に血液試料中のD-セリン量を分離定量させ、データ処理部14が、記憶部11に記憶された血液中のクレアチニン量の閾値と比較することで、腎機能検査の結果を判定する指令を含んでもよい。
 より具体的に、本発明のプログラムは、入力部12から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶部11に記憶させる指令に代えて、以下の:
 入力部12から入力された血液中のクレアチニン量の閾値を記憶部11に記憶させ、
 分析測定部13を作動させて血液中クレアチニン量を測定し、記憶部11に記憶させ、
 記憶部11に記憶された血液中のクレアチニン量と、血液中のクレアチニン量の閾値とを読み出し、データ処理部14で比較して、腎機能検査の結果を判定して、腎機能検査の結果を記憶部11に記憶させる
 指令を含むプログラムであってもよい。
 血液中のクレアチニン量に代えて、血液中のクレアチニン量から算出した推算糸球体濾過量を用いるプログラムを用いてもよい。この場合、さらに入力部から入力された推算糸球体濾過量を記憶部に記憶させる指令に代えて、
 入力部12から入力された被験者の年齢、性別を記憶部11に記憶させ、
 入力部12から入力された、血液中のクレアチニン量に基づく推算糸球体濾過量の算出式を記憶部11に記憶させ、
分析測定部13に血液試料中のクレアチニン量を測定させて、記憶部11に記憶させ、
 データ処理部に、記憶部に記憶された年齢、性別、及び血液中のクレアチニン量を算出式に代入させて、推算糸球体濾過量を算出して、記憶部11に記憶させる
 指令を含んでもよい。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。
被験者集合
 診断及び/又は治療目的のために大阪大学医学部付属病院腎臓内科((Department of Nephrology,Osaka University Hospital))に、2016年~2017年の間に入院した慢性腎臓病(CKD)患者からなるコホートから、11人の患者について、後ろ向き研究に用いた。それとは別に、国立医薬基盤・健康・栄養研究所で15名の20歳以上の健常ボランティアを採用した。試験プロトコルは、各施設における倫理委員会により承認され、かつすべての被験者から書類によるインフォームドコンセントを取得した。
健常者及び慢性腎臓病患者の情報は下記の通りである:
Figure JPOXMLDOC01-appb-T000004
イヌリン腎臓クリアランスの計測方法
 被験者のイヌリンクリアランス(Cin)を、Clin Exp Nephrol 13,50-54(2009)に記載された標準方法に従い、血漿及び尿のイヌリン濃度、並びに尿体積から計算した。簡潔に記載すると、絶食、服薬延期、及び水負荷環境下で、1%のイヌリン(イヌリード注:株式会社富士薬品)を2時間の持続静脈内点滴の間に、血液及び尿サンプルを異なる3時点で採取した。被験者は、点滴の30分前に、経口で500mLの水を飲水した。水負荷を維持するために、イヌリン点滴の開始後、60mLの水を40、60、90分で飲水した。点滴の初期速度は、最初の30分間について、300mL/hであり、続いて90分について100mL/hとした。イヌリン点滴の開始後、45、75、及び105分において血液試料を採取した。被験者は、点滴開始後、30分で完全に膀胱を空にするように排尿した。次に、尿サンプルを、30分~60分の間、60分~90分の間、及び90~120分の間で採取した。イヌリンは、酵素法を用いて計測した。3つのCin値の平均を、標準方法によるCin(Cin-ST)として用いた。
血液中D-アミノ酸の測定
サンプル調整
 ヒト血漿からのサンプル調整を、下記のとおり行った:
 20倍体積のメタノールを血漿に添加し、完全に混合した。遠心後、メタノールホモジェネートから得られた上清の10μLを褐色チューブに移し、減圧乾燥させた。残渣に対し、20μLの200mMホウ酸ナトリウム緩衝液(pH8.0)及び5μLの蛍光標識試薬(無水MeCN中に40mMの4-フルオロ―7-ニトロ-2,1,3-ベンゾオキサジアゾール(NBD-F))を添加し、次いで60℃で2分加熱した。75μlの0.1%TFA水溶液(v/v)を加えて反応を止め、そして2μLの反応混合液を2次元HPLCに供した。
2次元HPLCによるアミノ酸光学異性体の定量
 アミノ酸光学異性体を、以下の2次元HPLCシステムを用いて定量した。アミノ酸のNBD誘導体を、逆相カラム(KSAA RP、1.0mmi.d. ×400mm;株式会社資生堂)を用い移動相(5~35%MeCN、0~20%THF、及び0.05%TFA)で分離、溶出した。カラム温度は45℃、移動相の流速は25μL/分に設定した。分離したアミノ酸の画分を、マルチループバルブを用いて分取し、連続的にキラルカラム(KSAACSP-001S,1.5mmi.d.×250mm;資生堂)で光学分割した。移動相として、アミノ酸の保持に応じて、クエン酸(0~10mM)又はギ酸(0~4%)含むMeOH- MeCNの混合用液を用いた。NBD-アミノ酸は、470nmの励起光を用い、530nmで蛍光検出した。NBD-アミノ酸の保持時間は、アミノ酸光学異性体の標準品により同定し、検量線により定量した。
GFR(イヌリンクリアランス)との相関解析
(1)体表面積補正有
 26名の被験者について、体表面積補正を行ったGFR(イヌリンクリアランス)と、血液中のD-セリン量(A)、クレアチニン量(B)とを散布図にプロットし、相関係数rとp値を算出した。結果を図1に示す。血液中のD-セリン量がGFR(イヌリンクリアランス)に対して、血液中のクレアチニン量よりも相関が高いことが示された。
(2)体表面積補正無
 26名の被験者について、体表面積補正を行っていないGFR(イヌリンクリアランス)と、血液中のD-セリン量(A)、クレアチニン量(B)とを散布図にプロットし相関係数rとp値を算出した。結果を図2に示す。血液中のD-セリン量が体表面積補正無しGFR(イヌリンクリアランス)に対して、血液中のクレアチニン量よりも相関が高いことが示された。
体表面積(BSA)との相関
 健常者(GFR>70)のデータについて、体表面積(BSA)と、測定した血液中のD-セリン量及びクレアチニン量とを散布図に表し、相関係数r値及びp値を算出した。結果を図3に示す。クレアチニン量が、体表面積に相関するのに対し、血液中のD-セリン量は体表面積とは相関しなかった。

Claims (13)

  1.  血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法であって、
     血液中のクレアチニン量に基づく腎機能検査を受けた対象の血液中のD-セリン量を測定する工程、
     D-セリン量と、所定の閾値とを比較する工程、及び
     血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定する工程
     を含む、前記方法。
  2.  腎機能検査結果の妥当性を検定する方法が、血液中のクレアチニン量に基づく腎機能検査結果の偽陽性及び/又は偽陰性を判定する、請求項1に記載の方法。
  3.  前記決定工程が、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と決定する、請求項2に記載の方法。
  4.  前記決定工程が、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定する、請求項2に記載の方法。
  5.  同一サンプルにおいて、D-セリン量及び血液中のクレアチニン量が測定される、請求項1~4のいずれか一項に記載の方法。
  6.  前記対象が、筋肉量の多い対象である、請求項1~5のいずれか一項に記載の方法。
  7.  記憶部と、入力部、分析測定部と、データ処理部と、出力部とを含み、クレアチニン量に基づく腎機能検査結果の妥当性を検定する試料分析システムであって、
     記憶部は、入力部から入力されたD-セリン量の閾値を記憶し、
     記憶部は、入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶し、
     分析測定部は、血液試料中のD-セリンを分離定量し、
     データ処理部は、D-セリン量を、記憶部に記憶されたD-セリン量の閾値と比較し、記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を判定し、
     出力部が血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を出力する
     を含む、前記試料分析システム。
  8.  腎機能検査結果の妥当性の判定が、血液中のクレアチニン量に基づく腎機能検査結果の偽陽性及び/又は偽陰性を判定する、請求項7に記載の試料分析システム。
  9.  前記判定が、血液中のクレアチニン量に基づく腎機能検査により、腎機能低下と判定された一方で、D-セリン量が前記閾値より低い場合に、偽陽性と判定する、請求項8に記載の試料分析システム。
  10.  前記判定が、血液中のクレアチニン量に基づく腎機能検査により、正常と判定された一方で、D-セリン量が前記閾値より高い場合に、偽陰性と決定する、請求項8に記載の試料分析システム。
  11.  同一サンプルにおいて、D-セリン量及び血液中のクレアチニン量が測定される、請求項7~10のいずれか一項に記載の試料分析システム。
  12.  入力部、出力部、データ処理部、記憶部とを含む情報処理装置に血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定させるプログラムであって、以下の:
     入力部から入力されたD-セリン量の閾値を記憶部に記憶させ、
     入力部から入力された血液中のクレアチニン量に基づく腎機能検査の結果を記憶部に記憶させ、
     入力部から入力された血液試料中のD-セリン量を記憶させ、
     記憶部に記憶されたD-セリン量と、D-セリン量の閾値とを読み出し、データ処理部で比較して、閾値を上回るか下回るかについて比較の結果を記憶部に記憶させ、
     記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果と、比較の結果を読み出し、腎機能検査の結果の妥当性を判定して、記憶部に記憶させ、
     記憶された妥当性を出力部に出力させる
    ことを前記情報処理装置に実行させるための指令を含む、前記プログラム。
  13.  入力部、出力部、データ処理部、記憶部とを含む情報処理装置に血液中のクレアチニン量に基づく腎機能検査の結果の妥当性を決定させるプログラムであって、以下の:
     入力部から入力された血液中のクレアチニン量の閾値を記憶部に記憶させ、
     入力部から入力された血液試料中のクレアチニン量を記憶させ、
     入力部から入力されたD-セリン量の閾値を記憶部に記憶させ、
     入力部から入力された血液試料中のD-セリン量を記憶させ、
     記憶部に記憶された血液中のクレアチニン量と、血液中のクレアチニン量の閾値とを読み出し、データ処理部で比較して、クレアチニン量に基づく腎機能検査結果を記憶部に記憶させ
     記憶部に記憶されたD-セリン量と、D-セリン量の閾値とを読み出し、データ処理部で比較して、比較の結果を記憶部に記憶させ、
     記憶部に記憶された血液中のクレアチニン量に基づく腎機能検査の結果と、比較の結果を読み出し、腎機能検査の結果の妥当性を判定して、記憶部に記憶させ、
     記憶された妥当性を出力部に出力させる
    ことを前記情報処理装置に実行させるための指令を含む、前記プログラム。
PCT/JP2019/040977 2018-10-17 2019-10-17 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法 WO2020080491A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553314A JPWO2020080491A1 (ja) 2018-10-17 2019-10-17 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-196254 2018-10-17
JP2018196254 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020080491A1 true WO2020080491A1 (ja) 2020-04-23

Family

ID=70283995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040977 WO2020080491A1 (ja) 2018-10-17 2019-10-17 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法

Country Status (3)

Country Link
JP (1) JPWO2020080491A1 (ja)
TW (1) TW202022379A (ja)
WO (1) WO2020080491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033178A1 (ja) * 2021-09-03 2023-03-09 Kagami株式会社 癌についての情報を提供する方法、癌についての情報を提供するシステム及び癌を治療する方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534363A (ja) * 2003-12-18 2007-11-29 インバーネス メディカル スウィッツァーランド ゲーエムベーハー モニタリング方法およびモニタリング装置
JP2008501979A (ja) * 2004-06-07 2008-01-24 チルドレンズ ホスピタル メディカル センター 腎疾患および腎損傷の早期発見のための方法
US20120329071A1 (en) * 2010-03-05 2012-12-27 Mark Chance Protein biomarkers and therapeutic targets for renal disorders
JP2013077335A (ja) * 2007-02-02 2013-04-25 Beckman Coulter Inc 検査室試験結果を自動検証するシステムおよび方法
JP2013525819A (ja) * 2010-05-06 2013-06-20 アバクシス, インコーポレイテッド 予想される検体関係を評価することによるポイント・オブ・ケア検査結果の検証法
JP2014224827A (ja) * 2014-07-30 2014-12-04 シスメックス株式会社 尿検査方法および尿検査装置
JP2015096835A (ja) * 2013-11-15 2015-05-21 公立大学法人大阪市立大学 糖尿病患者の腎機能の検査方法
JP2017207489A (ja) * 2016-05-17 2017-11-24 国立大学法人大阪大学 腎臓病の予後予測方法及びシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534363A (ja) * 2003-12-18 2007-11-29 インバーネス メディカル スウィッツァーランド ゲーエムベーハー モニタリング方法およびモニタリング装置
JP2008501979A (ja) * 2004-06-07 2008-01-24 チルドレンズ ホスピタル メディカル センター 腎疾患および腎損傷の早期発見のための方法
JP2013077335A (ja) * 2007-02-02 2013-04-25 Beckman Coulter Inc 検査室試験結果を自動検証するシステムおよび方法
US20120329071A1 (en) * 2010-03-05 2012-12-27 Mark Chance Protein biomarkers and therapeutic targets for renal disorders
JP2013525819A (ja) * 2010-05-06 2013-06-20 アバクシス, インコーポレイテッド 予想される検体関係を評価することによるポイント・オブ・ケア検査結果の検証法
JP2015096835A (ja) * 2013-11-15 2015-05-21 公立大学法人大阪市立大学 糖尿病患者の腎機能の検査方法
JP2014224827A (ja) * 2014-07-30 2014-12-04 シスメックス株式会社 尿検査方法および尿検査装置
JP2017207489A (ja) * 2016-05-17 2017-11-24 国立大学法人大阪大学 腎臓病の予後予測方法及びシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOTOH, YOSHIMITSU: "Validation of estimated glomerular filtration rate equations for Japanese children", CLINICAL AND EXPERIMANTAL NEPHROLOGY, vol. 22, no. 4, 25 January 2018 (2018-01-25), pages 931 - 937, XP036574521, DOI: 10.1007/s10157-018-1529-7 *
KIMURA, T. ET AL.: "Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease", SCIENTIFIC REPORTS, vol. 6, May 2016 (2016-05-01), pages 1 - 7, XP055371897 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033178A1 (ja) * 2021-09-03 2023-03-09 Kagami株式会社 癌についての情報を提供する方法、癌についての情報を提供するシステム及び癌を治療する方法

Also Published As

Publication number Publication date
JPWO2020080491A1 (ja) 2021-09-09
TW202022379A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
US20220003774A1 (en) Kidney disease prognosis prediction method and system
JP6993654B2 (ja) 腎機能を推定する方法及びシステム
AU2016275747A1 (en) Disease-state biomarker for renal disease
US20220252610A1 (en) Method for assisting evaluation of condition of kidneys, system for evaluating condition of kidneys, and program for evaluating condition of kidneys
WO2020080491A1 (ja) 血液中のクレアチニン量に基づく腎機能検査結果の妥当性を検定する方法
WO2020080482A1 (ja) 血液中のシスタチンc量に基づく腎機能検査結果の妥当性を検定する方法
JP7471581B2 (ja) 腎臓病の病態バイオマーカー
US20220170945A1 (en) Method for assisting evaluation of renal pathological conditions, system for evaluating renal pathological conditions and program for evaluating renal pathological conditions
WO2020080494A1 (ja) クリティカル期の腎障害を判定するためのマーカー
WO2020080484A1 (ja) 糸球体濾過能力の決定方法
WO2020080488A1 (ja) クリティカル期の腎障害を判定するためのマーカー
US20200347458A1 (en) Method for determining sensitivity to sglt2 inhibitor and sensitivity marker for sglt2 inhibitor
JP4299243B2 (ja) 統合失調症の検査、診断方法
WO2023145898A1 (ja) 慢性腎臓病の尿検査方法
Dinmohammadi et al. The relationship between nutritional indices and hemodialysis adequacy in hemodialysis patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874035

Country of ref document: EP

Kind code of ref document: A1