WO2020080146A1 - 充電池パック - Google Patents

充電池パック Download PDF

Info

Publication number
WO2020080146A1
WO2020080146A1 PCT/JP2019/039310 JP2019039310W WO2020080146A1 WO 2020080146 A1 WO2020080146 A1 WO 2020080146A1 JP 2019039310 W JP2019039310 W JP 2019039310W WO 2020080146 A1 WO2020080146 A1 WO 2020080146A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated film
metal layer
exposed
negative electrode
Prior art date
Application number
PCT/JP2019/039310
Other languages
English (en)
French (fr)
Inventor
功 河邊
夏樹 河田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018195115A external-priority patent/JP2020064742A/ja
Priority claimed from JP2018206854A external-priority patent/JP2020072048A/ja
Priority claimed from JP2018227425A external-priority patent/JP2020091972A/ja
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020080146A1 publication Critical patent/WO2020080146A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a rechargeable battery pack.
  • a battery unit that includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte that has lithium ion conductivity and that is interposed between the positive electrode and the negative electrode and that can be charged and discharged, and a battery unit.
  • a lithium ion secondary battery rechargeable battery pack
  • an exterior part that is housed inside to seal the battery part from the outside air.
  • the exterior part is required to have a high barrier property against gas, liquid and solid.
  • two laminated exterior materials formed by laminating a metal foil layer and a heat-fusible resin layer are used, and the heat-fusible resin layers are heat-sealed to form an exterior part. Is described.
  • the metal foil layer exposed inside by removing a part of the heat-fusible resin layer provided on each laminate exterior material is respectively used as a positive electrode and a negative electrode of a battery part. The use as an electrode is described.
  • Patent Document 2 describes that a solid electrolyte made of an inorganic material is used as an electrolyte and that the negative electrode, the solid electrolyte, and the positive electrode are all thin films.
  • An object of the present invention is to suppress the occurrence of short circuit in a rechargeable battery pack including a lithium ion secondary battery including an inorganic solid electrolyte as a battery part.
  • the rechargeable battery pack of the present invention includes a battery part having a positive electrode layer containing a positive electrode active material, a solid electrolyte layer containing an inorganic solid electrolyte, and a negative electrode layer containing a negative electrode active material in this order, and a first metal containing metal. And a first resin layer that includes a resin and that forms a first exposed portion that includes a resin and that exposes a portion of the first metal layer on one surface of the first metal layer in this order.
  • the first metal layer exposed to the exposed part has a first laminated film facing the positive electrode layer side of the battery part, a second metal layer containing a metal, and a surface of the second metal layer containing a resin.
  • a second resin layer forming a second exposed portion where a part of the second metal layer is exposed in this order, and the second metal layer exposed to the second exposed portion has a second resin layer
  • Such a rechargeable battery pack may be characterized by further having an insulating property and an insulating part formed so as to cover the cut part. Further, the fusion bonding part may be arranged outside the entire outer peripheral edge of the battery part.
  • first metal layer containing a metal and a first resin layer containing a resin and forming a first exposed part where a part of the first metal layer is exposed on one surface of the first metal layer
  • first metal layer exposed to the first exposed portion includes a first laminated film facing the positive electrode layer side of the battery section, a second metal layer containing metal, and a resin.
  • a second resin layer forming a second exposed portion where a part of the second metal layer is exposed on one surface of the second metal layer, in this order, and the second resin layer exposed on the second exposed portion.
  • the second metal film includes a second laminated film facing the negative electrode layer side of the battery part, the first resin layer, and the second resin film.
  • a rechargeable battery pack including a lithium ion secondary battery including an inorganic solid electrolyte as a battery unit.
  • (A)-(d) is a figure for demonstrating the 1st fusion-bonding process-the 4th fusion-bonding process.
  • (A), (b) is a figure for demonstrating the 1st example of the coating method of a conductive adhesive in a 1st coating process.
  • (A), (b) is a figure for demonstrating the 2nd example of the application method of a conductive adhesive in a 1st application process. It is a perspective view which shows the outline of a fusion bonding apparatus. It is a flow chart for explaining the 2nd fusion process.
  • (A)-(f) is a figure for demonstrating each process in a 2nd fusion bonding process.
  • (A), (b) is a top view for explaining a cutting process.
  • (A), (b) is sectional drawing for demonstrating a cutting process.
  • (A)-(c) is sectional drawing for demonstrating a 2nd application process and a 2nd heating process.
  • (A), (b) is a cross-sectional photograph of the fusion bonding area
  • FIG. 1 is a diagram for explaining the overall configuration of a rechargeable battery pack 1 to which this embodiment is applied.
  • FIG. 1A shows a front view of the rechargeable battery pack 1 viewed from the front side
  • FIG. 1B shows a rear view of the rechargeable battery pack 1 viewed from the back side.
  • FIG. 2A shows a perspective view of the rechargeable battery pack 1 as seen from the front side
  • FIG. 2B shows the components of the rechargeable battery pack 1 that are housed inside the rechargeable battery pack 1.
  • the perspective view which looked at the battery part 10 which becomes from the front side is shown.
  • FIG. 3 (a) is a sectional view taken along the line IIIA-IIIA of the rechargeable battery pack 1 shown in FIG. 2 (a)
  • FIG. 3 (b) is a sectional view taken along the line IIIB-IIIB of the rechargeable battery pack 1 shown in FIG. 2 (a). It is a figure.
  • the rechargeable battery pack 1 includes a battery unit 10 that performs charging and discharging, an exterior unit 30 that houses the battery unit 10 inside to seal the battery unit 10 from outside air, and the like.
  • An adhesive portion 50 that adheres 10 and the exterior portion 30 is provided.
  • the rechargeable battery pack 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
  • a lithium ion secondary battery using lithium ions is adopted as the rechargeable battery, that is, the battery unit 10.
  • one end of the rechargeable battery pack 1 in the lateral direction is the first short side SS1
  • the other end in the lateral direction is the second short side SS2, and one end in the longitudinal direction.
  • the part may be referred to as the first long side LS1, and the other end in the longitudinal direction may be referred to as the second long side LS2 (see FIG. 1). Then, for example, in FIG. 1A, the first short side SS1, the first long side LS1, the second short side SS2, and the second long side LS2 are arranged in the clockwise order in the figure.
  • the battery unit 10 includes a substrate 11, a positive electrode layer 12 laminated on the substrate 11, a solid electrolyte layer 13 laminated on the positive electrode layer 12, a negative electrode layer 14 laminated on the solid electrolyte layer 13, and a negative electrode. And a negative electrode current collector layer 15 laminated on the layer 14.
  • the substrate 11 located at one end portion (lower side in FIG. 2B) of the battery unit 10 is connected to the first bonding portion 51 (details will be described later) of the bonding portion 50 via the first bonding portion 51.
  • the negative electrode current collector layer 15 located at the other end portion (upper side in FIG. 2B) of the battery unit 10 has the second adhesive portion 52 (details will be described later) forming the adhesive portion 50. It is in contact with the second metal layer 323 (details will be described later) provided on the second laminated film 32 (see FIG. 3).
  • the substrate 11 is not particularly limited, and substrates made of various materials such as metal, glass and ceramics can be used.
  • the substrate 11 is made of a metal plate material having electronic conductivity.
  • the substrate 11 of the present embodiment has a function as the positive electrode current collector layer of the battery unit 10. More specifically, in the present embodiment, as the substrate 11, a stainless steel foil (plate) having higher mechanical strength than copper or aluminum is used. Further, as the substrate 11, a metal foil plated with a conductive metal such as tin, copper or chromium may be used.
  • the length of the substrate 11 in the direction along the first long side LS1 (second long side LS2) is set to the substrate length L11, and along the first short side SS1 (second short side SS2).
  • the length in the direction is set to the substrate width W11 (see FIG. 2B).
  • the thickness of the substrate 11 can be, for example, 20 ⁇ m or more and 2000 ⁇ m or less. When the thickness of the substrate 11 is less than 20 ⁇ m, the strength of the battery unit 10 may be insufficient. On the other hand, when the thickness of the substrate 11 exceeds 2000 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery unit 10.
  • the positive electrode layer 12 contains a positive electrode active material that releases lithium ions during charging and occludes lithium ions during discharging.
  • the positive electrode active material forming the positive electrode layer 12 for example, one selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). It is possible to use those composed of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals.
  • the positive electrode layer 12 may be a composite positive electrode further containing a solid electrolyte.
  • the thickness of the positive electrode layer 12 can be, for example, 10 nm or more and 40 ⁇ m or less.
  • the thickness of the positive electrode layer 12 is less than 10 nm, the capacity of the obtained battery unit 10 (rechargeable battery pack 1) becomes too small, which is not practical.
  • the thickness of the positive electrode layer 12 exceeds 40 ⁇ m, it takes too long to form the layer, and the productivity decreases.
  • the thickness of the positive electrode layer 12 may exceed 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, the sputtering method is preferable.
  • the solid electrolyte layer 13 is a solid thin film made of an inorganic material, and contains an inorganic solid electrolyte capable of moving lithium ions by an electric field applied from the outside.
  • the inorganic solid electrolyte that constitutes the solid electrolyte layer 13 is not particularly limited, and those composed of various materials such as oxides, nitrides, and sulfides can be used.
  • the thickness of the solid electrolyte layer 13 can be, for example, 10 nm or more and 10 ⁇ m or less.
  • the thickness of the solid electrolyte layer 13 is less than 10 nm, in the obtained battery unit 10 (rechargeable battery pack 1), a leak is likely to occur between the positive electrode layer 12 and the negative electrode layer 14.
  • the thickness of the solid electrolyte layer 13 exceeds 10 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charging / discharging.
  • any known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, the sputtering method is preferable.
  • the negative electrode layer 14 contains a negative electrode active material that occludes lithium ions during charging and releases lithium ions during discharging.
  • the negative electrode active material forming the negative electrode layer 14 for example, carbon (C) or silicon (Si) can be used.
  • lithium (Li) itself can be used as the negative electrode active material.
  • the anode itself does not serve as the negative electrode active material, and a noble metal material such as platinum (Pt) or aluminum (Al) capable of holding therein the negative electrode active material, that is, lithium (Li) that functions as the negative electrode layer 14. You may provide the holding layer comprised with metal materials, such as.
  • the thickness of the negative electrode layer 14 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the negative electrode layer 14 is less than 10 nm, the capacity of the obtained battery unit 10 (rechargeable battery pack 1) becomes too small, which is not practical. On the other hand, when the thickness of the negative electrode layer 14 exceeds 40 ⁇ m, it takes too long to form the layer, and the productivity is reduced. However, when the battery capacity required for the battery unit 10 (rechargeable battery pack 1) is large, the thickness of the negative electrode layer 14 may exceed 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, the sputtering method is preferable.
  • the negative electrode current collector layer 15 is a solid thin film having electronic conductivity, and has a function of collecting current to the negative electrode layer 14.
  • the material forming the negative electrode current collector layer 15 is not particularly limited as long as it has electronic conductivity, and a conductive material including various metals or alloys of various metals can be used. it can.
  • the length of the negative electrode current collector layer 15 in the direction along the first long side LS1 (second long side LS2) is set to the negative electrode current collector layer length L15
  • the first short side SS1 ( The length in the direction along the second short side SS2) is set to the negative electrode current collector layer width W15.
  • the length of the positive electrode layer 12, the solid electrolyte layer 13, and the negative electrode layer 14 in the direction along the first long side LS1 (second long side LS2) is also the same as that of the negative electrode current collector layer 15.
  • the length of the electric body layer is set to L15.
  • the lengths of the positive electrode layer 12, the solid electrolyte layer 13, and the negative electrode layer 14 in the direction along the first short side SS1 (second short side SS2) are also the same as the negative electrode current collector layer width W15. It is set.
  • the thickness of the negative electrode current collector layer 15 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the negative electrode current collector layer 15 is less than 5 nm, the current collecting function is deteriorated, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 15 exceeds 50 ⁇ m, it takes too long to form the layer, and the productivity is reduced.
  • the negative electrode current collector layer 15 As a method for producing the negative electrode current collector layer 15, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, the sputtering method is preferable.
  • the exterior part 30 has a first laminated film 31 and a second laminated film 32.
  • the first laminated film 31 and the second laminated film 32 are arranged so as to face each other with the battery unit 10 interposed therebetween.
  • the exterior portion 30 further includes a fusion bonding portion 33 formed by thermally fusion bonding the first laminated film 31 and the second laminated film 32 over the entire circumference of the battery portion 10. As a result, the battery unit 10 is sealed by the first laminated film 31, the second laminated film 32, and the fusion bonding portion 33.
  • FIG. 4 is a diagram for explaining the configuration of the first laminated film 31,
  • FIG. 4A is a perspective view seen from the front side (upper side in FIG. 2A), and FIG. The perspective views seen from the side (the lower side in FIG. 2A) are respectively shown.
  • the configuration of the first laminated film 31 will be described with reference to FIG. 4 in addition to FIGS. 1 to 3.
  • the first laminated film 31 includes a first heat resistant resin layer 311, a first outer adhesive layer 312, a first metal layer 313, a first inner adhesive layer 314, and a first heat fusible resin layer 315.
  • the film is laminated in this order. That is, the first laminated film 31 includes the first heat-resistant resin layer 311, the first metal layer 313, and the first heat-fusible resin layer 315 via the first outer adhesive layer 312 and the first inner adhesive layer 314. It is configured by pasting together.
  • first heat fusible resin layer 315 and the first inner adhesive layer 314 do not exist on the formation surface side (the inner side in the exterior portion 30) of the first heat fusible resin layer 315 in the first laminated film 31.
  • first inner connection exposed portion 316 and the first outer connection exposed portion 317 which partially expose one surface (inner surface) of the first metal layer 313, are provided.
  • the first exposed portion 316 for internal connection which is an example of the first exposed portion, is provided on the central portion side in the surface direction of the first laminated film 31, and has a rectangular shape. Then, a sidewall formed by the first inner adhesive layer 314 and the first heat-fusible resin layer 315 is formed around the entire first exposed portion 316 for internal connection.
  • the length of the first exposed portion 316 for internal connection in the direction along the first long side LS1 is set to the exposed portion length L316 for the first internal connection, and the first short side.
  • the length in the direction along the side SS1 is set to the first internal connection exposed portion width W316 (see FIG. 4A).
  • the exposed portion length L316 for the first internal connection > the exposed portion width W316 for the first internal connection.
  • the first external connection exposed portion 317 is provided on the first short side SS1 side of the first laminated film 31, and its shape is rectangular. Then, a sidewall made of the first inner adhesive layer 314 and the first heat-fusible resin layer 315 is formed at one end of the first exposed portion 317 for external connection.
  • the first heat-resistant resin layer 311 is the outermost layer in the exterior portion 30, has high resistance to external piercing, abrasion, and the like, and is fusion-bonded when the first heat-fusible resin layer 315 is heat-fused. A heat resistant resin that does not melt at a temperature is used.
  • the first heat-resistant resin layer 311 it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the heat-fusible resin forming the first heat-fusible resin layer 315.
  • the first heat resistant resin layer 311 has a high electric resistance value. Insulating resin is used.
  • the first heat resistant resin layer 311 is not particularly limited, but examples thereof include a polyamide film and a polyester film, and a stretched film of these is preferably used. Among them, in terms of moldability and strength, a biaxially stretched polyamide film or a biaxially stretched polyester film, or a multilayer film containing these is particularly preferable, and further a biaxially stretched polyamide film and a biaxially stretched polyester film were laminated. It is preferable to use a multilayer film.
  • the polyamide film is not particularly limited, and examples thereof include 6-polyamide film, 6,6-polyamide film, MXD polyamide film, and the like.
  • examples of the biaxially stretched polyester film include a biaxially stretched polybutylene terephthalate (PBT) film and a biaxially stretched polyethylene terephthalate (PET) film.
  • PBT polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • a nylon film (melting point: 220 ° C.) is used as the first heat resistant resin layer 311.
  • the thickness of the first heat resistant resin layer 311 can be 9 ⁇ m or more and 50 ⁇ m or less. If the thickness of the first heat-resistant resin layer 311 is less than 9 ⁇ m, it becomes difficult to secure sufficient strength as the exterior part 30 of the battery part 10. On the other hand, if the thickness of the first heat-resistant resin layer 311 exceeds 50 ⁇ m, the battery becomes thick, which is not preferable and the manufacturing cost becomes high.
  • the first outer adhesive layer 312 is a layer for bonding the first heat resistant resin layer 311 and the first metal layer 313.
  • the first outer adhesive layer 312 for example, a two-component curing type polyester-urethane resin containing a polyester resin as a main component and a polyfunctional isocyanate compound as a curing agent, or an adhesive containing a polyether-urethane resin is used. It is preferable to use. In the present embodiment, a two-component curable polyester-urethane adhesive is used as the first outer adhesive layer 312.
  • the first metal layer 313 is not particularly limited, but for example, aluminum foil, copper foil, nickel foil, stainless steel foil, clad foil thereof, annealed foil or unannealed foil thereof, etc. are preferably used. . In this embodiment, an aluminum foil is used as the first metal layer 313.
  • the thickness of the first metal layer 313 can be 20 ⁇ m or more and 200 ⁇ m or less. When the thickness of the first metal layer 313 is less than 20 ⁇ m, pinholes and breakage are likely to occur during rolling or heat sealing when manufacturing the metal foil, and the electric resistance value when used as an electrode is high. Will end up. On the other hand, if the thickness of the first metal layer 313 exceeds 200 ⁇ m, the battery becomes thick, which is not preferable and the manufacturing cost becomes high.
  • the first inner adhesive layer 314 is a layer for bonding the first metal layer 313 and the first heat-fusible resin layer 315.
  • an adhesive formed of a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, or the like is used. Is preferred. Above all, it is preferable to use an acrylic adhesive or a polyolefin adhesive, and in this case, the barrier property of the first laminated film 31 against water vapor can be improved. Further, it is preferable to use an adhesive such as acid-modified polypropylene or polyethylene.
  • the first heat-fusible resin layer 315 which is an example of the first resin layer, is the innermost layer in the exterior part 30, has a high resistance to the material forming each layer of the battery part 10, and melts at the above-mentioned fusion temperature.
  • a thermoplastic resin that is fused with the second heat-fusible resin layer 325 (details of which will be described later) of the second laminated film 32 is used.
  • the electrical resistance value as the first heat-fusible resin layer 315 is set. Highly insulating resin is used.
  • the first heat-fusible resin layer 315 is not particularly limited, but for example, polyethylene, polypropylene, olefin-based copolymers, acid-modified products thereof, ionomers and the like are preferably used.
  • the olefin-based copolymer include EVA (ethylene / vinyl acetate copolymer), EAA (ethylene / acrylic acid copolymer), and EMAA (ethylene / methacrylic acid copolymer).
  • a polyamide film for example, 12 nylon
  • a polyimide film can be used as long as the relationship of the melting point with the first heat resistant resin layer 311 can be satisfied.
  • a non-axially stretched polypropylene film (melting point: 165 ° C.) is used as the first heat-fusible resin layer 315.
  • the thickness of the first heat-fusible resin layer 315 can be 20 ⁇ m or more and 80 ⁇ m or less. If the thickness of the first heat-fusible resin layer 315 is less than 20 ⁇ m, pinholes are likely to occur. On the other hand, if the thickness of the first heat-fusible resin layer 315 exceeds 80 ⁇ m, the battery becomes thick, which is not preferable and the manufacturing cost becomes high.
  • FIG. 5A and 5B are views for explaining the configuration of the second laminated film 32.
  • FIG. 5A is a perspective view seen from the front side (upper side in FIG. 2A), and FIG. The perspective views seen from the side (the lower side in FIG. 2A) are respectively shown.
  • the configuration of the second laminated film 32 will be described with reference to FIG. 5 in addition to FIGS. 1 to 3.
  • the second laminated film 32 includes a second heat resistant resin layer 321, a second outer adhesive layer 322, a second metal layer 323, a second inner adhesive layer 324, and a second heat fusible resin layer 325.
  • the film is laminated in this order. That is, the second laminated film 32 includes the second heat resistant resin layer 321, the second metal layer 323, the second heat fusible resin layer 325, the second outer adhesive layer 322 and the second inner adhesive layer 324. It is configured by pasting together.
  • the second heat-fusible resin layer 325 and the second inner adhesive layer 324 do not exist on the side of the second laminated film 32 on which the second heat-fusible resin layer 325 is formed (inside the exterior portion 30).
  • a second internal connection exposed portion 326 and a second external connection exposed portion 327 are provided, where one surface (inner surface) of the second metal layer 323 is partially exposed.
  • the length of the second exposed portion 326 for internal connection in the direction along the first long side LS1 is set to the exposed portion length L326 for second internal connection, and the first short side.
  • the length in the direction along the side SS1 is set to the second exposed portion width W326 for internal connection (see FIG. 5B).
  • the exposed portion length L316 for the first internal connection the exposed portion length L326 for the second internal connection
  • the exposed portion width W316 for the first internal connection the exposed portion width W326 for the second internal connection.
  • the second heat-resistant resin layer 321 is the outermost layer in the exterior portion 30, has high resistance to external piercing, abrasion, and the like, and is fusion-bonded when the second heat-fusible resin layer 325 is heat-fused. A heat resistant resin that does not melt at a temperature is used. Further, in the present embodiment, as will be described later, since the second metal layer 323 also serves as the negative electrode of the battery unit 10, from the viewpoint of safety, the second heat resistant resin layer 321 has a high electric resistance value. Insulating resin is used.
  • the material described in the first heat resistant resin layer 311 can be used as the second heat resistant resin layer 321.
  • the second heat resistant resin layer 321 and the first heat resistant resin layer 311 may be made of the same material or different materials. Further, the thickness of the second heat resistant resin layer 321 may be the same as that of the first heat resistant resin layer 311 or may be different.
  • the second outer adhesive layer 322 is a layer for bonding the second heat resistant resin layer 321 and the second metal layer 323. Then, as the second outer adhesive layer 322, the material described for the first outer adhesive layer 312 can be used. At this time, the second outer adhesive layer 322 and the first outer adhesive layer 312 may be made of the same material or different materials.
  • the second metal layer 323 prevents the invasion of oxygen, moisture, etc. from the exterior of the exterior part 30 to the battery part 10 disposed therein when the exterior part 30 is formed using the second laminated film 32. It is a layer that plays a role of (barrier). Further, the second metal layer 323 serves as a negative internal electrode (negative electrode) electrically connected to the negative electrode current collector layer 15 of the battery unit 10, and is provided outside, as described later. It further serves as a negative external electrode (negative electrode) electrically connected to a load (not shown). Therefore, a conductive metal foil is used for the second metal layer 323.
  • the material described for the first metal layer 313 can be used for the second metal layer 323.
  • the second metal layer 323 and the first metal layer 313 may be made of the same material or different materials. Further, the thickness of the second metal layer 323 may be the same as that of the first metal layer 313, or may be different.
  • the second inner adhesive layer 324 is a layer for bonding the second metal layer 323 and the second heat-fusible resin layer 325. Then, as the second inner adhesive layer 324, the material described for the first inner adhesive layer 314 can be used. At this time, the second inner adhesive layer 324 and the first inner adhesive layer 314 may be made of the same material or different materials.
  • the second heat-fusible resin layer 325 which is an example of the second resin layer, is the innermost layer in the exterior portion 30, has high resistance to the materials that form the layers of the battery unit 10, and melts at the fusion temperature. Then, a thermoplastic resin that is fused with the first heat-fusible resin layer 315 of the first laminated film 31 is used. In addition, in the present embodiment, as described above, since the second metal layer 323 also serves as the negative electrode of the battery unit 10, from the viewpoint of safety, the electrical resistance value of the second heat-fusible resin layer 325 is set. Highly insulating resin is used.
  • the material described for the first heat-fusible resin layer 315 can be used as the second heat-fusible resin layer 325.
  • the second heat-fusible resin layer 325 and the first heat-fusible resin layer 315 may be made of the same material, or if the two materials have similar melting points and are meltable. It may be composed of different materials. Further, the thickness of the second heat-fusible resin layer 325 may be the same as that of the first heat-fusible resin layer 315, or may be different.
  • the first laminated film 31 and the second laminated film 32 are made of the same material. Therefore, the structure of the second laminated film 32 shown in FIG. 5 is the same as that of the first laminated film 31 shown in FIG. 4 except for the difference in the formation position of the first exposed portion 316 for internal connection and the exposed portion 326 for second internal connection. The structure is almost the same.
  • the fusing part 33 has a first fusing part 331, a second fusing part 332, a third fusing part 333, and a fourth fusing part 334, and connects these in a frame shape. Is configured. More specifically, the fusing part 33 includes a first fusing part 331 formed along the first short side SS1 on the first short side SS1 side and a first long side on the first long side LS1 side.
  • the fusion bonding portion 33 includes a partial region of the first heat-fusible resin layer 315 provided on the first laminated film 31 and a second heat-fusible resin layer 325 provided on the second laminated film 32. A part of the region is fused endlessly.
  • the exterior portion 30 in which the first laminated film 31 and the second laminated film 32 are integrated is configured.
  • the fusion-bonding part 33 seals the battery part 10 by accommodating the battery part 10 inside the first laminated film 31 and the second laminated film 32.
  • the rechargeable battery pack 1 has a side surface of the second fusion bonding portion 332 formed on the first long side LS1 side and a second long side. It further includes a covering portion 70 that covers the side surface of the fourth fusion-bonding portion 334 formed on the LS2 side (see FIG. 15 described later).
  • the coating portion 70 is formed by curing an insulating adhesive, that is, an insulating adhesive. Then, the covering portion 70 has a first metal layer 313 provided on the first laminated film 31 and a second metal layer provided on the second laminated film 32 on the first long side LS1 side and the second long side LS2 side, respectively.
  • the two-metal layer 323 is further covered.
  • the adhesive section 50 has a first adhesive section 51 for adhering the battery section 10 and the first laminated film 31 and a second adhesive section 52 for adhering the battery section 10 and the second laminated film 32 (See FIG. 3). Then, the first adhesive portion 51 and the second adhesive portion 52 are opposed to each other with the battery portion 10 interposed therebetween.
  • the first adhesive portion 51 is formed on the back surface of the substrate 11 forming the battery portion 10 and one surface (inner surface) of the first metal layer 313 exposed by the first internal connection exposure portion 316 of the first laminated film 31. ) And are adhered while ensuring the electrical conductivity of both.
  • the outer peripheral surface of the first adhesive portion 51 and the inner peripheral surface of the first exposed portion 316 for internal connection that is, the wall surface formed by the first inner adhesive layer 314 and the first heat-fusible resin layer 315. It is desirable that a gap be present in each of them (see FIG. 3).
  • the second adhesive portion 52 is provided on the front surface of the negative electrode current collector layer 15 forming the battery portion 10, and on one surface of the second metal layer 323 exposed by the second exposed portion 326 for internal connection of the second laminated film 32. (Inner surface) are bonded while ensuring the conductivity of both.
  • the outer peripheral surface of the second adhesive portion 52 and the inner peripheral surface of the second exposed portion 326 for internal connection that is, the wall surface formed by the second inner adhesive layer 324 and the second heat-fusible resin layer 325. It is desirable that a gap be present in each of them (see FIG. 3).
  • the adhesive section 50 of the present embodiment is configured by curing an adhesive having conductivity, that is, a conductive adhesive.
  • the conductive adhesive is an organic / inorganic mixed material in which a filler made of conductive particles having conductivity is uniformly dispersed in a binder made of an organic material or the like. Then, the conductive adhesive obtains energy (heating or the like) from the outside and becomes a cured product by an irreversible chemical reaction, and firmly connects a plurality of adherends while ensuring conductivity between them.
  • the first adhesive portion 51 and the second adhesive portion 52 may be made of the same conductive adhesive or different conductive adhesives. However, from the viewpoint of making workability more efficient, it is desirable that the first adhesive portion 51 and the second adhesive portion 52 be configured by curing the same conductive adhesive.
  • the conductive adhesive a two-liquid mixed type (two-liquid type) in which an adhesive main material made of rubber or resin and an adhesive auxiliary material made of a curing agent or a cross-linking agent are mixed immediately before use,
  • a one-component heat-curing type one-component type obtained by previously mixing a conductive curing agent and a catalyst with a conductive adhesive.
  • Either the two-component type or the one-component type may be adopted as the conductive adhesive that is the base of the adhesive portion 50 of the present embodiment, but from the viewpoint of making workability during manufacturing more efficient. Therefore, it is desirable to use the one-pack type.
  • the curing temperature of the conductive adhesive forming the adhesion part 50 is The temperature is preferably 100 ° C. or lower.
  • the adhesive portion 50 obtained by curing the conductive adhesive is in a state of being heated to 150 ° C.
  • various gases especially water vapor and oxygen
  • the conductive adhesive that forms the basis of the adhesive portion 50 may contain various solvents such as toluene in addition to the filler and binder described above. However, in the case of the present embodiment, it is desirable to adopt a conductive adhesive that does not contain such a solvent.
  • the substrate 11 of the battery unit 10 is the first surface (inner surface) of the first metal layer 313 provided on the first laminated film 31 via the first adhesive portion 51 having conductivity. 1 Electrically connected to a portion exposed in the exposed portion 316 for internal connection. Further, a part of one surface (inner surface) of the first metal layer 313 provided on the first laminated film 31 is exposed to the outside at the first external connection exposing portion 317, and is provided to the outside. It is possible to electrically connect to a load (not shown).
  • FIG. 6 is a flowchart for explaining a method of manufacturing the rechargeable battery pack 1 shown in FIG. 7A to 7D are views for explaining the first to fourth fusion bonding steps (details of each step will be described later) in the method for manufacturing the rechargeable battery pack 1. .
  • the first laminated film 31 and the second laminated film 32 are prepared prior to performing the following manufacturing method. At this time, the first laminated film 31 is cut into a rectangular shape, and the first internal connection exposed portion 316 and the first external connection exposed portion 317 are formed on the first heat-fusible resin layer 315 side. ing. On the other hand, the second laminated film 32 is also cut into a rectangular shape, and the second exposed portion 326 for internal connection and the exposed portion 327 for external connection are formed on the side of the second heat-fusible resin layer 325. There is. In addition, the battery unit 10 is also prepared before performing the following manufacturing method. The battery unit 10 is obtained by stacking the positive electrode layer 12, the solid electrolyte layer 13, the negative electrode layer 14, and the negative electrode current collector layer 15 on the substrate 11 in this order by using a sputtering method or the like.
  • first heat-fusible resin layer 315 of the first laminated film 31 and the second heat-fusible resin layer 325 of the second laminated film 32 are opposed to each other.
  • the exposed portion 317 for external connection provided on the first laminated film 31 is on the first short side SS1 side
  • the exposed portion 327 for external connection provided on the second laminated film 32 is second short. They are arranged on the side SS2 side, respectively.
  • the first exposed portion 316 for internal connection provided on the first laminated film 31 and the exposed exposed portion 326 for internal connection provided on the second laminated film 32 face each other, and The entire peripheral edge of the second internal connection exposed portion 326 is opposed to the entire peripheral edge of the internal connection exposed portion 316.
  • step 20 the first application process of applying a conductive adhesive to the first laminated film 31 and the second laminated film 32 in the atmosphere is executed (step 20).
  • the conductive adhesive is applied to the exposed portion 316 for internal connection provided on the first laminated film 31, and the exposed portion 326 for internal connection provided on the second laminated film 32 is electrically conductive. Apply a transparent adhesive.
  • FIG. 8 is a figure for demonstrating the 1st example of the coating method of a conductive adhesive in a 1st coating process.
  • the conductive adhesive is applied to the joined body of the first laminated film 31 and the second laminated film 32 which are integrated by forming the first fusion bonding portion 331. I do.
  • the first laminated film 31 side is illustrated in FIG. 8A
  • the second laminated film 32 side is illustrated in FIG. 8B.
  • FIG. 9 described later.
  • ⁇ Application of conductive adhesive to the first laminated film In the first example, as shown in FIG. 8A, first, as shown in FIG. 8A, the first metal layer 313 exposed in the formation portion of the first exposed portion 316 for internal connection provided in the first laminated film 31 is 1. A conductive adhesive is applied to three positions along the longitudinal direction of the laminated film 31 by coating or potting. In addition, in the following description, the conductive adhesive thus attached to the first laminated film 31 is referred to as a first conductive adhesive CA1.
  • the second metal layer 323 exposed to the formation portion of the second exposed portion 326 for internal connection provided in the second laminated film 32 is The conductive adhesive is applied to the two laminated films 32 at three locations along the longitudinal direction by coating, potting, or the like.
  • the conductive adhesive thus attached to the second laminated film 32 is referred to as a second conductive adhesive CA2.
  • the second conductive adhesive CA2 is not attached to the entire surface of the second metal layer 323 exposed at the formation site of the second exposed portion 326 for internal connection. That is, even when the second conductive adhesive CA2 is adhered, a part of the second metal layer 323 may be continuously exposed at the formation site of the second exposed portion 326 for internal connection. Is desirable.
  • the second conductive material is formed in the outer periphery of the second exposed portion 326 for internal connection. It is desirable to prevent the adhesive CA2 from adhering.
  • FIG. 9 is a figure for demonstrating the 2nd example of the coating method of a conductive adhesive in a 1st coating process. However, here, similar to FIG. 8 described above, the first laminated film 31 side is illustrated in FIG. 9A and the second laminated film 32 side is illustrated in FIG. 9B.
  • the first metal layer 313 exposed at the formation site of the first exposed portion 316 for internal connection provided in the first laminated film 31 is first
  • the first conductive adhesive CA1 is attached by coating, potting, or the like along the longitudinal direction of the first laminated film 31.
  • the first conductive adhesive CA1 should be prevented from adhering to the entire surface of the first metal layer 313 exposed at the site where the first exposed portion 316 for internal connection is formed, and the first metal layer 313. It is desirable to prevent the first conductive adhesive CA1 from adhering to a region serving as a boundary between the first inner adhesive layer 314 and the first heat-fusible resin layer 315. Same as the example.
  • the second metal layer 323 exposed to the formation portion of the second exposed portion 326 for internal connection provided in the second laminated film 32 is The second conductive adhesive CA2 is applied along the longitudinal direction of the two-layer film 32 by coating, potting, or the like. At this time, the second conductive adhesive CA2 should be prevented from adhering to the entire surface of the second metal layer 323 exposed at the site where the second exposed portion 326 for internal connection is formed, and the second metal layer 323.
  • the second conductive adhesive CA2 is preferably prevented from adhering to a region serving as a boundary between the second inner adhesive layer 324 and the second heat-fusible resin layer 325. Same as the example.
  • step 30 a mounting process of mounting the battery unit 10 on the bonded body of the first laminated film 31 and the second laminated film 32 to which the conductive adhesive has been applied is performed in the atmosphere, that is, under a normal pressure atmosphere (step). 30).
  • step 30 first, the substrate 11 of the battery unit 10 is brought into contact with the exposed portion 316 for the first internal connection, which is provided on the first laminated film 31 and to which the first conductive adhesive CA1 is applied.
  • the second conductive adhesive CA2 provided on the second laminated film 32 is applied by closing the second laminated film 32 with respect to the first laminated film 31 with the first fusion bonding portion 331 as a fulcrum.
  • the negative electrode collector layer 15 of the battery unit 10 is brought into contact with the exposed portion 326 for second internal connection.
  • the entire peripheral edge of the substrate 11 provided in the battery section 10 is positioned outside the entire peripheral edge (inner peripheral edge) of the first exposed portion 316 for internal connection provided in the first laminated film 31 (FIG. 8). (See (a)).
  • the entire peripheral edge of the negative electrode current collector layer 15 provided in the battery section 10 is located outside the entire peripheral edge (inner peripheral edge) of the second exposed portion 326 for internal connection provided in the second laminated film 32. (See FIG. 8B).
  • step 40 First heating step
  • the adhesive body is loaded on a hot plate, and weights are placed on it.
  • the weight is set to such a weight that the applied conductive adhesive and the battery part 10 are brought into close contact with each other.
  • the conductive adhesive applied to the two places of the above-mentioned adhesive body is cured.
  • the conductive adhesive (first conductive adhesive CA1) existing between the exposed portion 316 for first internal connection of the first laminated film 31 and the substrate 11 of the battery unit 10 is heated by heating.
  • the first adhesive portion 51 is formed with the curing.
  • the conductive adhesive (second conductive adhesive CA2) existing between the second internal connection exposed portion 326 of the second laminated film 32 and the negative electrode current collector layer 15 of the battery portion 10 is , And becomes the second adhesive portion 52 as it is cured by heating.
  • the liquid first conductive adhesive CA1 sandwiched between the substrate 11 of the battery section 10 and the first metal layer 313 exposed in the first exposed portion 316 for internal connection of the first laminated film 31 is , Due to the pressure applied by the weight, it tries to spread in the plane direction.
  • a gap is provided between the outer peripheral surface of the first conductive adhesive CA1 and the inner peripheral surface of the first exposed portion 316 for internal connection, and pressure by a weight is applied. Even in the state, the outer peripheral surface of the first conductive adhesive CA1 is less likely to reach the inner peripheral surface of the first exposed portion 316 for internal connection.
  • the first conductive adhesive CA1 reaches the inner peripheral surface of the first exposed portion 316 for internal connection, the first conductive adhesive CA1 is transferred to the substrate 11 and the first laminated film 31. Even if it enters into the heat-fusible resin layer 315, it is difficult to reach the outer peripheral surface of the substrate 11. This is because the substrate length L11 is larger than the first internal connection exposed portion length L316, and the substrate width W11 is larger than the first internal connection exposed portion width W316.
  • the first conductive adhesive CA1 is cured and becomes the first adhesive portion 51.
  • the first adhesive portion 51 formed by the curing of the first conductive adhesive CA1 is the positive electrode layer 12. It is possible to suppress a short circuit of the battery unit 10 caused by covering the outer peripheral surface of the negative electrode layer 14.
  • the conductive adhesive CA2 also tries to spread in the surface direction due to the pressure applied by the weight.
  • a gap is provided between the outer peripheral surface of the second conductive adhesive CA2 and the inner peripheral surface of the second exposed portion 326 for internal connection, and pressure by weights is applied. Even in the state, the outer peripheral surface of the second conductive adhesive CA2 is less likely to reach the inner peripheral surface of the second exposed portion 326 for internal connection.
  • the outer peripheral surface of the second conductive adhesive CA2 reaches the inner peripheral surface of the second exposed portion 326 for internal connection, and the second conductive adhesive CA2 and the negative electrode current collector layer 15 and the second laminated layer. Even if it enters between the film 32 and the second heat-fusible resin layer 325, it does not easily reach the outer peripheral surface of the negative electrode current collector layer 15. This is because the negative electrode current collector layer length L15 is larger than the second internal connection exposed portion length L326, and the negative electrode current collector layer width W15 is larger than the second internal connection exposed portion width W326. To do.
  • the second conductive adhesive CA2 is cured and becomes the second adhesive portion 52.
  • the second conductive adhesive CA2 does not ride over the outer peripheral surface of the negative electrode current collector layer 15, the second adhesive portion 52 formed by curing the second conductive adhesive CA2 is Therefore, it becomes possible to suppress a short circuit of the battery unit 10 caused by covering the outer peripheral surfaces of the positive electrode layer 12 to the negative electrode layer 14.
  • the heating step may be performed using an oven.
  • step 50 the second fusing step of forming the second fusing part 332 is performed in the air, that is, under a normal pressure atmosphere (step 50).
  • the first heat-fusible resin layer 315 in the first laminated film 31 and the second heat-fusible resin in the second laminated film 32 are arranged along the first long side LS1 on the first long side LS1 side.
  • the layers 325 and are pressurized and heated, and then heating is stopped while still under pressure.
  • the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are melted and solidified to form the second heat-bonded portion 332 (see FIG. 7B).
  • one end of the first fusion bonding part 331 and the other end of the second fusion bonding part 332 are connected.
  • Step 60 the 3rd fusion process of forming the 3rd fusion zone 333 is performed in the atmosphere, ie, a normal pressure atmosphere.
  • the first thermofusible resin layer 315 in the first laminated film 31 and the second thermofusible resin in the second laminated film 32 are arranged along the second short side SS2 on the second short side SS2 side.
  • the layers 325 and are pressurized and heated, and then heating is stopped while still under pressure.
  • the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are melted and solidified to form the third heat-bonded portion 333 (see FIG. 7C).
  • one end of the second fusion bonding part 332 and the other end of the third fusion bonding part 333 are connected.
  • a fourth fusing step of forming the fourth fusing part 334 is performed under a reduced pressure atmosphere (step 70).
  • step 70 first, the inside of the glove box is evacuated to create a reduced pressure atmosphere and is present between the battery section 10, the exterior section 30 (the first laminated film 31 and the second laminated film 32), and the adhesive section 50. Degas the space. Then, in step 70, on the second long side LS2 side, along the second long side LS2, the first heat fusible resin layer 315 in the first laminated film 31 and the second heat fusible resin in the second laminated film 32. The adhesive resin layer 325 is pressed and heated, and then the heating is stopped while being pressed.
  • the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are melted and solidified to form the fourth heat-sealed portion 334 (see FIG. 7D).
  • one end of the third fusion bonding portion 333 and the other end of the fourth fusion bonding portion 334 are connected.
  • one end of the fourth fusion bonding portion 334 and the other end of the first fusion bonding portion 331 are connected.
  • the first fusion bonding portion 331 to the fourth fusion bonding portion 334 are integrated to form the frame-shaped fusion bonding portion 33.
  • the inside of the glove box is returned to atmospheric pressure, and the rechargeable battery pack 1 (actually a semi-finished product of the rechargeable battery pack 1) is taken out from the inside of the glove box.
  • step 80 a cutting process of cutting the laminate of the first laminated film 31 and the second laminated film 32 at two locations is performed on the semi-finished product of the rechargeable battery pack 1 on which the fusion bonding portion 33 is formed (step 80). ).
  • step 80 first, the stacked body is cut along the second fusion bonding portion 332 on the first long side LS1 side. At this time, the second fused portion 332 is divided into two along the longitudinal direction, that is, along the first long side LS1. Then, the laminated body is cut along the fourth fusion bonding portion 334 on the second long side LS2 side. At this time, the fourth fused portion 334 is divided into two along the longitudinal direction, that is, along the second long side LS2.
  • step 90 the second application process of applying the insulating adhesive to the semi-finished product of the rechargeable battery pack 1 cut at two locations is executed (step 90).
  • step 90 first, an insulating adhesive is applied to the end surfaces of the first laminated film 31 and the second laminated film 32 including the second fusion-bonded portion 332 exposed along the first long side LS1. Subsequently, an insulating adhesive is applied to the end faces of the first laminated film 31 and the second laminated film 32 including the fourth fusion-bonded portion 334 exposed along the second long side LS2.
  • the second heating step of heating the applied insulating adhesive in the atmosphere, that is, under the atmospheric pressure atmosphere is executed (step 100).
  • the insulating adhesive cures and becomes the covering portion 70.
  • the second heating step can be performed using a hot plate or an oven, as in the above-described first heating step.
  • the rechargeable battery pack 1 shown in FIG. 1 and the like is obtained.
  • FIG. 10 is a perspective view showing an outline of a fusing device 100 used for forming the fusing part 33, that is, fusing the first laminated film 31 and the second laminated film 32.
  • the fusion bonding apparatus 100 employs a so-called bar seal method in which the target object is heated and pressed while the target object is sandwiched by two seal bars.
  • the fusing device 100 includes a first seal bar 110 extending from the front side to the back side in the drawing, and a first seal bar 110 extending from the front side to the back side in the drawing and arranged to face the first seal bar 110.
  • 2 seal bars 120 are provided.
  • each of the first seal bar 110 and the second seal bar 120 has a prismatic shape
  • the second seal bar 120 is located above the first seal bar 110 in the drawing, and Both are arranged so as to be substantially parallel.
  • the first seal bar 110 is provided so as to be able to move back and forth in the vertical direction indicated by the arrow in the figure. Then, on the upper side of the first seal bar 110, a first abutting surface that faces the second seal bar 120 and abuts a second abutting surface 121 provided on the second seal bar 120 when advancing upward in the drawing. 111 is provided.
  • FIG. 11 is a flowchart for explaining the second fusing step of step 50.
  • 12A to 12F are views for explaining each step in the second fusing step of step 50.
  • the fusing apparatus 100 is prepared prior to executing the second fusing step of step 50.
  • the first seal bar 110 and the second seal bar 120 constituting the fusion bonding apparatus 100 are separated as shown in FIG. 10, and the first abutting surface 111 of the first seal bar 110 and the second seal bar 110 are separated from each other.
  • the state shown in FIG. 10 is called an "open state.”
  • the heating sources (not shown) provided in each of the first seal bar 110 and the second seal bar 120 are set to the off state.
  • the first laminated film 31 and the second laminated film 32 are integrated by the first fusion bonded portion 331 formed in the first fusion bonding process of step 10. Further, the battery unit 10 and the first laminated film 31 and the second laminated film 32 are integrated by the first adhesive portion 51 and the second adhesive portion 52 formed in the coating process of step 20 to the heating process of step 40. There is. In the following, the first laminated film 31 and the second laminated film 32 are integrated by the first fusion bonding portion 331, and the first laminated film 31 and the second laminated film 32 and the battery unit 10 are first bonded.
  • the one integrated with the portion 51 and the second adhesive portion 52 is referred to as a “fusion object”.
  • FIG. 12A is a diagram for explaining the outline of the installation process of step 51.
  • the first seal bar 110 and the second seal bar 120 that compose the fusion bonding apparatus 100 are moved from the “open state” to the “closed state”. More specifically, the first seal bar 110 is closer to the second seal bar 120 (upward in the figure), and the second seal bar 120 is closer to the first seal bar 110 (lower in the figure). , Move each. Then, the first seal bar 110 and the second seal bar 120 sandwich the laminated body of the first laminated film 31 and the second laminated film 32. At this time, the first abutting surface 111 of the first seal bar 110 is on the first heat resistant resin layer 311 of the first laminated film 31, and the second abutting surface 121 of the second seal bar 120 is on the second laminated film 32.
  • the heat-resistant resin layer 321 is abutted, respectively. Then, a predetermined pressure is applied to the laminated body of the first laminated film 31 and the second laminated film 32 by the first seal bar 110 and the second seal bar 120, and in this state, the first seal bar The movement of 110 and the second seal bar 120 is stopped. In this state, a laminated body of the first laminated film 31 and the second laminated film 32 existing between the first abutting surface 111 and the second abutting surface 121 on the first long side LS1 side of the object to be fused. Is located.
  • the first laminated film 31 and the first laminated film 31 and The thickness of the laminate with the two-layer film 32 is reduced.
  • the thicknesses of the first metal layer 313 and the second metal layer 323 hardly change, but the first heat resistant resin layer 311, the first heat-fusible resin layer 315, the second heat resistant resin layer 321 and The thickness of the second heat-fusible resin layer 325 becomes small and collapses.
  • the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are more easily crushed than the first heat-resistant resin layer 311 and the second heat-resistant resin layer 321.
  • FIG. 12C is a diagram for explaining the outline of the heating process of step 53.
  • the heat supplied to the laminated body of the first laminated film 31 and the second laminated film 32 existing in the nip region N is transferred to the inside thereof as follows.
  • the heat supplied from the first seal bar 110 is transferred from the first heat-resistant resin layer 311 to the first heat-fusible resin layer 315 via the first outer adhesive layer 312 to the first inner adhesive layer 314. Transmitted.
  • the heat supplied from the second seal bar 120 passes through the second heat-resistant resin layer 321 and the second outer adhesive layer 322 to the second inner adhesive layer 324 to the second heat-fusible resin layer 325. Is transmitted to.
  • the magnitude of heat supplied to the laminated body of the first laminated film 31 and the second laminated film 32 via the first seal bar 110 and the second seal bar 120 is set as follows. That is, the amount of heat supplied is such that the first heat resistant resin layer 311 and the second heat resistant resin layer 321 do not melt, and the first heat fusible resin layer 315 and the second heat fusible resin layer 325. Is set so that it melts. Then, in the laminated body of the first laminated film 31 and the second laminated film 32 existing in the nip region N, the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 are melted by heating. To do.
  • the melt of the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 is mixed.
  • the melt of the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 is, for example, as shown in the drawing, in a plane direction (horizontal direction in the drawing) rather than in the nip region N. It spreads out and reaches the end E1 on the first long side LS1 side of the first laminated film 31 and the second laminated film 32.
  • the heating sources (not shown) provided in each of the first seal bar 110 and the second seal bar 120 set to the “closed state” are switched from on to off. Then, heat is transferred to the first seal bar 110 from the first heat resistant resin layer 311 of the first laminated film 31 located in the nip region N via the first abutting surface 111. Further, heat is transferred to the second seal bar 120 from the second heat resistant resin layer 321 of the second laminated film 32 located in the nip region N via the second abutting surface 121.
  • the heat existing in the periphery of the nip region N is dispersed in the surface direction by the first metal layer 313 provided on the first laminated film 31 and the second metal layer 323 provided on the second laminated film 32. .
  • the melting of the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 existing around the nip region N is melted.
  • An object solidifies by being cooled.
  • the melt existing in the nip region N is solidified, and the second heat-sealing resin layer 315 and the second heat-sealing resin layer 325 are integrated with the second heat-sealing portion 332.
  • the second fusion-bonding part 332 spreads in the surface direction beyond the nip region N, as in the case of the above-mentioned melt, as shown in the figure, and the first laminated film 31 and the second laminated film 32 are The end E1 on the first long side LS1 side is reached.
  • FIG. 12E is a diagram for explaining the outline of the pressure releasing step of step 55.
  • the first seal bar 110 and the second seal bar 120 that compose the fusion bonding apparatus 100 are moved from the “closed state” to the “open state”. More specifically, the first seal bar 110 is on the side away from the second seal bar 120 (downward in the figure), and the second seal bar 120 is on the side away from the first seal bar 110 (upward in the figure). , Move each. As a result, the sandwiching of the laminated body of the first laminated film 31 and the second laminated film 32 in the object to be fused using the first seal bar 110 and the second seal bar 120 is released.
  • FIG. 12F is a diagram for explaining the outline of the recovery process of step 56.
  • the fourth fusion bonding portion 334 which is substantially parallel to the second fusion bonding portion 332, can also be manufactured using a method similar to that of the second fusion bonding portion 332. Therefore, the fourth fusion bonding portion 334 reaches the end portion E1 on the second long side LS2 side of the first laminated film 31 and the second laminated film 32. Further, the first fusion bonding portion 331 and the third fusion bonding portion 333 which are substantially perpendicular to the second fusion bonding portion 332 can also be manufactured by using the same method as the second fusion bonding portion 332.
  • first fusion-bonded portion 331 does not reach the ends of the first laminated film 31 and the second laminated film 32 on the first short side SS1 side. Further, the third fusion bonding portion 333 also does not reach the end portions of the first laminated film 31 and the second laminated film 32 on the second short side SS2 side.
  • FIG. 13 is a top view for explaining the cutting step
  • FIG. 14 is a cross-sectional view for explaining the cutting step.
  • FIGS. 13 (a) and 14 (a) show the state after the fourth fusion bonding step and before the cutting step
  • FIGS. 13 (b) and 14 (b) show the state after the cutting step, respectively.
  • FIG. 15 is a diagram for explaining the second coating step and the second heating step.
  • FIG. 15A shows the state after the cutting step and before the second coating step
  • FIG. 15B shows the state after the second coating step and before the second heating step
  • FIG. The states after the two heating steps are respectively shown.
  • two dividing lines D are provided along each of the first long side LS1 and the second long side LS2. Is set.
  • One of the dividing lines D is set inside the end portion E1 on the first long side LS1 side so as to overlap the second fusion bonding portion 332 along the first long side LS1.
  • the other parting line D is set so as to overlap the fourth fused portion 334 along the second long side LS2 inside the end E1 on the second long side LS2 side.
  • a cut end E2 is formed along the LS2. Then, at the one cut end portion E2, the second fusion-bonded portion 332 is exposed to the outside. On the other hand, at the other cut end portion E2, the fourth fused portion 334 is exposed to the outside. The two scraps 34 generated by the cutting are discarded thereafter.
  • each of the two cut ends E2 corresponds to a cut portion.
  • the main body portion of the rechargeable battery pack 1 in which the cut end portion E2 is formed through the above cutting step shown in FIG. 15A is prepared.
  • the insulating adhesive IA is applied to the one cut end E2 provided on the main body of the rechargeable battery pack 1. At this time, the insulating adhesive IA is applied over the entire area of the one cut end E2. Therefore, at one cut end E2, the first heat-resistant resin layer 311, the first outer adhesive layer 312 and the first metal layer 313 forming the first laminated film 31, and the second heat-resistant forming the second laminated film 32 are formed. The end faces of the conductive resin layer 321, the second outer adhesive layer 322, the second metal layer 323, and the second fusion bonding portion 332 are covered with the insulating adhesive IA.
  • the insulating adhesive IA is applied to the other cut end E2 provided on the main body of the rechargeable battery pack 1. At this time, the insulating adhesive IA is applied over the entire area of the other cut end E2. Therefore, at the other cut end E2, the first heat-resistant resin layer 311, the first outer adhesive layer 312 and the first metal layer 313 that configure the first laminated film 31, and the second heat-resistant resin that configures the second laminated film 32.
  • the end faces of the conductive resin layer 321, the second outer adhesive layer 322, the second metal layer 323, and the fourth fusion bonding portion 334 are covered with the insulating adhesive IA.
  • the insulating adhesive IA hardens and firmly adheres to each of the two cut end faces, and the covering portion 70 .
  • FIG. 16 is a cross-sectional photograph of a fusion-bonded region formed by fusion-bonding the first laminated film 31 and the second laminated film 32 using the fusion-bonding device 100 and the periphery thereof.
  • the fusion-bonding region corresponds to the above-mentioned fusion-bonding portion 33 (first fusion-bonding portion 331 to fourth fusion-bonding portion 334).
  • FIG. 16A shows a case where the fusion bonding region is formed such that the nip region N includes the end portion of the first laminated film 31.
  • FIG. 16B shows a case where the fusion bonding region is formed so that the nip region N does not include the end portion of the first laminated film 31.
  • the gap between the first metal layer 313 and the second metal layer 323 in the nip region N is located inside the gap (see FIG. 16). It can be seen that it is narrower than the gap between the two in the region (right side in (a)). In the example shown in FIG. 16A, this is the overlap between the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 in the nip region N (particularly the end portion of the first laminated film 31). It means that the thickness is smaller than the overlapping thickness of the both in the inside portion than here.
  • the first heat-fusible resin layer 315 and the The probability that the 2 heat-fusible resin layer 325 does not exist increases.
  • the first metal layer 313 and the second metal layer 323 are separated from each other compared to the region where the gap is wide. The probability of direct contact will also increase.
  • the first metal layer 313 is used as the positive external electrode of the battery unit 10 (see FIG. 3), and the second metal layer 323 is used as the negative external electrode of the battery unit 10. . Therefore, if the first metal layer 313 and the second metal layer 323 come into direct contact with each other as a result of fusing the first heat fusible resin layer 315 and the second heat fusible resin layer 325, A short circuit will occur in the battery unit 10.
  • the gap between the first metal layer 313 and the second metal layer 323 in the nip region N is located inside (here, right side in FIG. 16B) the gap. It can be seen that the gap between the two is almost unchanged. In the example shown in FIG. 16B, this is in a region where the overlapping thickness of the first heat-fusible resin layer 315 and the second heat-fusible resin layer 325 in the nip region N is inside the area. It means that there is almost no change in the overlapping thickness of the two.
  • the nip region N includes the end portions E1 of the first laminated film 31 and the second laminated film 32, It forms a fused region.
  • the ends of the first metal layer 313 and the second metal layer 323 may approach each other by cutting the second fusion bonding portion 332 and the fourth fusion bonding portion 334 thereafter. Excludes areas. For this reason, a short circuit is less likely to occur at these portions.
  • the first metal layer 313 provided on the first laminated film 31 is used as the positive electrode of the battery unit 10
  • the second metal layer 323 provided on the second laminated film 32 is used as the battery unit.
  • the negative electrode of 10 was used.
  • the number of parts constituting the rechargeable battery pack 1 is reduced as compared with the case where tab electrodes or the like are separately provided as the positive electrode and the negative electrode of the battery unit 10 instead of the first metal layer 313 and the second metal layer 323.
  • the configuration of the rechargeable battery pack 1 can be simplified.
  • the second fusing part 332 and the fourth fusing part 334 of the fusing part 33 formed by fusing the first laminated film 31 and the second laminated film 32 are The laminated body of the first laminated film 31 and the second laminated film 32 was cut so that it was exposed at the cut end E2 of the laminated body. Thereby, at the end of the first laminated film 31 and / or the second laminated film 32, the first metal layer 313 forming the first laminated film 31 and the second metal layer 323 forming the second laminated film 32 are formed.
  • the insulating covering portion 70 formed by curing the insulating adhesive IA is formed on each of the two cut ends E2 formed along with the cutting. Accordingly, it is possible to further suppress a short circuit caused by the first metal layer 313 and the second metal layer 323 being in direct contact with each other.
  • the first fusion part 331 and the third fusion part 333 of the fusion part 33 formed by fusing the first laminated film 31 and the second laminated film 32 are It was formed inside each end of the laminated film 31 and the second laminated film 32. Thereby, at the end of the first laminated film 31 and / or the second laminated film 32, the first metal layer 313 forming the first laminated film 31 and the second metal layer 323 forming the second laminated film 32 are formed. However, it is less likely that direct contact will occur with fusion. Therefore, it is possible to suppress a short circuit of the rechargeable battery pack 1 (battery unit 10) due to the first metal layer 313 and the second metal layer 323 being in direct contact with each other.
  • the outer peripheral edge of the substrate 11 in the battery unit 10 is positioned outside the inner peripheral edge of the first internal connection exposed portion 316 provided in the first laminated film 31. Then, the first conductive adhesive CA1 is applied to the inside of the first exposed portion 316 for internal connection. Thereby, even when the first conductive adhesive CA1 is squeezed between the battery unit 10 and the first laminated film 31 and squeezes out from the exposed portion 316 for the first internal connection, the squeezed out first conductive adhesive CA1.
  • the adhesive agent CA1 is less likely to reach the side surface of the battery unit 10 through the surface of the substrate 11. Therefore, it is possible to suppress the occurrence of a short circuit of the battery unit 10, that is, a short circuit in the rechargeable battery pack 1 due to the first adhesive portion 51 obtained by curing the first conductive adhesive CA1.
  • a gap is made to exist at least at a part between the inner peripheral edge of the first exposed portion 316 for internal connection and the outer peripheral edge of the first adhesive portion 51.
  • the substrate length L11> the substrate width W11 is set in the substrate 11 forming the battery unit 10, but the present invention is not limited to this, and the substrate length L11 ⁇ the substrate width W11 may be set.
  • the negative electrode current collector layer 15 constituting the battery unit 10 in the negative electrode current collector layer 15 constituting the battery unit 10, the negative electrode current collector layer length L15> the negative electrode current collector layer width W15, but the present invention is not limited to this.
  • the negative electrode current collector layer length L15 ⁇ the negative electrode current collector layer width W15 may be used.
  • the overall shape of the battery unit 10 is rectangular, but it may be a shape other than rectangular.
  • the first exposed portion for internal connection L316> the exposed portion width for first internal connection W316 is not limited to this.
  • the exposed portion length for first internal connection L316 ⁇ the exposed portion width for first internal connection W316 may be set.
  • the second laminated film 32 forming the exterior portion 30 the second exposed internal connection portion length L326> the second internal connected exposed portion width W326, but the present invention is not limited to this.
  • the exposed portion length for second internal connection L326 ⁇ the exposed portion width for second internal connection W326 may be set.
  • the first internal connection exposed portion 316 and the second internal connection exposed portion 326 each have a rectangular shape, but may have a shape other than a rectangular shape.
  • the fusion portion 33 is formed with respect to the laminated body of the first laminated film 31 and the second laminated film 32. I did, but it's not limited to this.
  • the method for forming the fused portion 33 include a roll seal method using a pair of rolls that rotate with each other, a belt seal method using a pair of endless belts that rotate with each other, and the like.
  • SYMBOLS 1 Rechargeable battery pack, 10 ... Battery part, 11 ... Substrate, 12 ... Positive electrode layer, 13 ... Solid electrolyte layer, 14 ... Negative electrode layer, 15 ... Negative electrode collector layer, 30 ... Exterior part, 31 ... 1st laminated film , 32 ... Second laminated film, 33 ... Fused portion, 34 ... Cut edge, 50 ... Adhesive portion, 51 ... First adhesive portion, 52 ... Second adhesive portion, 70 ... Cover portion, CA1 ... First conductive adhesive , CA2 ... Second conductive adhesive, IA ... Insulating adhesive, 100 ... Fusing device, 110 ... First seal bar, 111 ... First abutting surface, 120 ... Second seal bar, 121 ... Second abutting surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

充電池パック1は、リチウムイオン電池からなる電池部10と、電池部10を内部に収容し且つ封止する外装部30とを備える。外装部30は、第1金属層313と第1熱融着性樹脂層315とを含む第1積層フィルム31と、第2金属層323と第2熱融着性樹脂層325とを含む第2積層フィルム32とを、融着部33にて熱融着して構成される。融着部33を構成する第2融着部332および第4融着部334は、切断に伴って端部に露出しており、これら第2融着部332および第4融着部334を含む端部を覆うように、絶縁性を有する被覆部が設けられる。

Description

充電池パック
 本発明は、充電池パックに関する。
 正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有し且つ正極と負極との間に介在する電解質とを含み、充放電が可能な電池部と、電池部を内部に収容することで電池部を外気等から封止する外装部とを備えたリチウムイオン二次電池(充電池パック)が知られている。
 ここで、外装部には、気体、液体および固体に対する高いバリア性が要求される。特許文献1には、金属箔層と熱融着性樹脂層とを積層してなる2枚のラミネート外装材を用い、熱融着性樹脂層同士を熱融着することで外装部を構成することが記載されている。ここで、特許文献1には、各ラミネート外装材に設けられた熱融着性樹脂層の一部を除去することで内部に露出させた金属箔層を、それぞれ、電池部の正電極および負電極として利用することが記載されている。
 また、電池部を構成する電解質としては、従来から有機電解液等が用いられてきた。これに対し、特許文献2には、電解質として無機材料からなる固体電解質を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成することが記載されている。
特開2016-129091号公報 特開2013-73846号公報
 例えば2枚のラミネート外装材のそれぞれに設けられた金属箔層を、電池部の正電極および負電極として利用する場合、2枚のラミネート外装材を融着させた際に、熱融着性樹脂層が溶融時に潰れてしまい、2枚の金属箔層同士が直接に接触してしまうおそれがある。そして、2枚の金属箔層同士が接触してしまうと、電池部が短絡することになってしまう。
 本発明は、無機固体電解質を備えたリチウムイオン二次電池を電池部として含む充電池パックにおいて、短絡の発生を抑制することを目的とする。
 本発明の充電池パックは、正極活物質を含む正極層と、無機固体電解質を含む固体電解質層と、負極活物質を含む負極層と、をこの順に有する電池部と、金属を含む第1金属層と、樹脂を含み且つ当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部を形成する第1樹脂層と、をこの順に有し、当該第1露出部に露出する当該第1金属層には前記電池部の前記正極層側が対峙する第1積層フィルムと、金属を含む第2金属層と、樹脂を含み且つ当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部を形成する第2樹脂層と、をこの順に有し、当該第2露出部に露出する当該第2金属層には前記電池部の前記負極層側が対峙する第2積層フィルムと、前記第1樹脂層と前記第2樹脂層とを、前記電池部の外周縁よりも外側で融着する融着部と、前記融着部に沿って当該融着部が露出するように前記第1積層フィルムおよび前記第2積層フィルムを切断してなる切断部とを有している。
 このような充電池パックにおいて、絶縁性を有するとともに前記切断部を覆うように形成される絶縁部とをさらに有することを特徴とすることができる。
 また、前記融着部は、前記電池部の全外周縁よりも外側に配置されることを特徴とすることができる。
 また、前記電池部は、導電性を有し且つ前記正極層側に設けられる正極集電体層と、導電性を有し且つ前記負極層側に設けられる負極集電体層とをさらに有し、前記正極集電体層と前記第1露出部に露出する前記第1金属層とを、導電性を確保しながら接着する第1接着部と、前記負極集電体層と前記第2露出部に露出する前記第2金属層とを、導電性を確保しながら接着する第2接着部とをさらに含むことを特徴とすることができる。
 また、前記正極集電体層の外周縁は、前記第1露出部の内周縁よりも外側に位置し、前記負極集電体層の外周縁は、前記第2露出部の内周縁よりも外側に位置することを特徴とすることができる。
 また、前記第1露出部の内周縁と前記第1接着部の外周縁との間には、少なくとも一部に隙間が存在し、前記第2露出部の内周縁と前記第2接着部の外周縁との間には、少なくとも一部に隙間が存在することを特徴とすることができる。
 また、他の観点から捉えると、本発明の充電池パックは、正極活物質を含む正極層と、無機固体電解質を含む固体電解質層と、負極活物質を含む負極層と、をこの順に有する電池部と、金属を含む第1金属層と、樹脂を含み且つ当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部を形成する第1樹脂層と、をこの順に有し、当該第1露出部に露出する当該第1金属層には前記電池部の前記正極層側が対峙する第1積層フィルムと、金属を含む第2金属層と、樹脂を含み且つ当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部を形成する第2樹脂層と、をこの順に有し、当該第2露出部に露出する当該第2金属層には前記電池部の前記負極層側が対峙する第2積層フィルムと、前記第1樹脂層と前記第2樹脂層とを、前記電池部の外周縁よりも外側であって、前記第1金属層および前記第2金属層の外周縁よりも内側で融着する融着部とを含んでいる。
 また、前記電池部は、導電性を有し且つ前記正極層側に設けられる正極集電体層と、導電性を有し且つ前記負極層側に設けられる負極集電体層とをさらに有し、前記正極集電体層の外周縁は、前記第1露出部の内周縁よりも外側に位置し、前記負極集電体層の外周縁は、前記第2露出部の内周縁よりも外側に位置することを特徴とすることができる。
 また、前記正極集電体層と前記第1露出部に露出する前記第1金属層とを、導電性を確保しながら接着する第1接着部と、前記負極集電体層と前記第2露出部に露出する前記第2金属層とを、導電性を確保しながら接着する第2接着部とをさらに含み、前記第1露出部の内周縁と前記第1接着部の外周縁との間には、少なくとも一部に隙間が存在し、前記第2露出部の内周縁と前記第2接着部の外周縁との間には、少なくとも一部に隙間が存在することを特徴とすることができる。
 本発明によれば、無機固体電解質を備えたリチウムイオン二次電池を電池部として含む充電池パックにおいて、短絡の発生を抑制することができる。
(a)は充電池パックの正面図であり、(b)はその背面図である。 (a)は充電池パックの斜視図であり、(b)は電池部の斜視図である。 (a)は図2(a)のIIIA-IIIA断面図であり、(b)は図2(a)のIIIB-IIIB断面図である。 (a)は第1積層フィルムを正面側からみた斜視図であり、(b)は第1積層フィルムを背面側からみた斜視図である。 (a)は第2積層フィルムを正面側からみた斜視図であり、(b)は第2積層フィルムを背面側からみた斜視図である。 充電池パックの製造方法を説明するためのフローチャートである。 (a)~(d)は、第1融着工程~第4融着工程を説明するための図である。 (a)、(b)は、第1塗布工程における導電性接着剤の塗布手法の第1の例を説明するための図である。 (a)、(b)は、第1塗布工程における導電性接着剤の塗布手法の第2の例を説明するための図である。 融着装置の概要を示す斜視図である。 第2融着工程を説明するためのフローチャートである。 (a)~(f)は、第2融着工程における各工程を説明するための図である。 (a)、(b)は、切断工程を説明するための上面図である。 (a)、(b)は、切断工程を説明するための断面図である。 (a)~(c)は、第2塗布工程および第2加熱工程を説明するための断面図である。 (a)、(b)は、第1積層フィルムと第2積層フィルムとを融着してなる融着領域およびその周辺の断面写真である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。
[充電池パックの構成]
 図1は、本実施の形態が適用される充電池パック1の全体構成を説明するための図である。ここで、図1(a)は充電池パック1を正面側からみた正面図を、図1(b)は充電池パック1を背面側からみた背面図を、それぞれ示している。
 また、図2(a)は、充電池パック1を正面側からみた斜視図を示しており、図2(b)は、充電池パック1の内部に収容され、充電池パック1の構成要素となる電池部10を正面側からみた斜視図を示している。
 さらに、図3(a)は図2(a)に示す充電池パック1のIIIA-IIIA断面図であり、図3(b)は図2(a)に示す充電池パック1のIIIB-IIIB断面図である。
 この充電池パック1は、充電および放電を行う電池部10と、電池部10を内部に収容することで電池部10を外気等から封止する外装部30と、外装部30の内部で電池部10と外装部30とを接着する接着部50とを備えている。ここで、本実施の形態の充電池パック1は、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。また、本実施の形態の充電池パック1では、充電池すなわち電池部10として、リチウムイオンを用いたリチウムイオン二次電池を採用している。なお、以下の説明では、充電池パック1のうち、短手方向の一方の端部を第1短辺SS1、短手方向の他方の端部を第2短辺SS2、長手方向の一方の端部を第1長辺LS1、長手方向の他方の端部を第2長辺LS2、とそれぞれ称することがある(図1参照)。そして、これらは、例えば図1(a)では図中時計回りに、第1短辺SS1、第1長辺LS1、第2短辺SS2、第2長辺LS2の順となっている。
 では、充電池パック1の各構成要素について、順番に説明を行う。
(電池部)
 まず、電池部10の構成について説明を行う。
 電池部10は、基板11と、基板11上に積層される正極層12と、正極層12上に積層される固体電解質層13と、固体電解質層13上に積層される負極層14と、負極層14上に積層される負極集電体層15とを有している。ここで、電池部10の一方の端部(図2(b)では下側)に位置する基板11は、接着部50を構成する第1接着部51(詳細は後述する)を介して、第1積層フィルム31に設けられた第1金属層313(詳細は後述する)と接触している(図3参照)。これに対し、電池部10の他方の端部(図2(b)では上側)に位置する負極集電体層15は、接着部50を構成する第2接着部52(詳細は後述する)を介して、第2積層フィルム32に設けられた第2金属層323(詳細は後述する)と接触している(図3参照)。
 次に、電池部10の各構成要素について、より詳細な説明を行う。
〔基板〕
 基板11としては、特に限定されず、金属、ガラス、セラミックスなど、各種材料で構成されたものを用いることができる。
 ここで、本実施の形態では、基板11を、電子伝導性を有する金属製の板材で構成している。これにより、本実施の形態の基板11は、電池部10の正極集電体層としての機能を有している。より具体的に説明すると、本実施の形態では、基板11として、銅やアルミニウム等と比較して機械的強度が高いステンレス箔(板)を用いている。また、基板11として、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。
 また、基板11は、第1長辺LS1(第2長辺LS2)に沿う方向の長さが、基板長さL11に設定されており、第1短辺SS1(第2短辺SS2)に沿う方向の長さが、基板幅W11に設定されている(図2(b)参照)。ここで、基板長さL11>基板幅W11である。
 基板11の厚さは、例えば20μm以上2000μm以下とすることができる。基板11の厚さが20μm未満であると、電池部10の強度が不足するおそれがある。一方、基板11の厚さが2000μmを超えると、電池部10の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。
〔正極層〕
 正極層12は、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する、正極活物質を含むものである。ここで、正極層12を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層12は、さらに固体電解質を含んだ合材正極であってもよい。
 正極層12の厚さは、例えば10nm以上40μm以下とすることができる。正極層12の厚さが10nm未満であると、得られる電池部10(充電池パック1)の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層12の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、電池部10(充電池パック1)に要求される電池容量が大きい場合には、正極層12の厚さを40μm超としてもかまわない。
 また、正極層12の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
〔固体電解質層〕
 固体電解質層13は、無機材料からなる固体薄膜であって、外部から加えられた電場によってリチウムイオンを移動させることのできる無機固体電解質を含むものである。ここで、固体電解質層13を構成する無機固体電解質としては、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。
 固体電解質層13の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層13の厚さが10nm未満であると、得られた電池部10(充電池パック1)において、正極層12と負極層14との間でのリークが生じやすくなる。一方、固体電解質層13の厚さが10μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利となる。
 また、固体電解質層13の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
〔負極層〕
 負極層14は、充電時にはリチウムイオンを吸蔵するとともに放電時にはリチウムイオンを放出する、負極活物質を含むものである。ここで、負極層14を構成する負極活物質としては、例えば、炭素(C)やシリコン(Si)を用いることができる。また、リチウム(Li)自身を負極活物質とすることもできる。この場合、自身は負極活物質とはならず、負極活物質すなわち負極層14として機能するリチウム(Li)を内部に保持することが可能な、白金(Pt)等の貴金属材料やアルミニウム(Al)等の金属材料で構成された保持層を設けてもよい。
 負極層14の厚さは、例えば10nm以上40μm以下とすることができる。負極層14の厚さが10nm未満であると、得られる電池部10(充電池パック1)の容量が小さくなりすぎ、実用的ではなくなる。一方、負極層14の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、電池部10(充電池パック1)に要求される電池容量が大きい場合には、負極層14の厚さを40μm超としてもかまわない。
 また、負極層14の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
〔負極集電体層〕
 負極集電体層15は、電子伝導性を有する固体薄膜であって、負極層14への集電を行う機能を備えるものである。ここで、負極集電体層15を構成する材料は、電子伝導性を有するものであれば、特に限定されるものではなく、各種金属や、各種金属の合金を含む導電性材料を用いることができる。
 また、負極集電体層15は、第1長辺LS1(第2長辺LS2)に沿う方向の長さが、負極集電体層長さL15に設定されており、第1短辺SS1(第2短辺SS2)に沿う方向の長さが、負極集電体層幅W15に設定されている。そして、本実施の形態では、正極層12、固体電解質層13および負極層14の第1長辺LS1(第2長辺LS2)に沿う方向の長さも、負極集電体層15と同じ負極集電体層長さL15に設定されている。また、正極層12、固体電解質層13および負極層14の第1短辺SS1(第2短辺SS2)に沿う方向の長さも、負極集電体層15と同じ負極集電体層幅W15に設定されている。ここで、負極集電体層長さL15>負極集電体層幅W15である。また、基板長さL11>負極集電体層長さL15であり、基板幅W11>負極集電体層幅W15である。
 負極集電体層15の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層15の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、負極集電体層15の厚さが50μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。
 また、負極集電体層15の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(外装部)
 続いて、外装部30の構成について説明を行う。
 外装部30は、第1積層フィルム31と、第2積層フィルム32とを有している。これら第1積層フィルム31および第2積層フィルム32は、電池部10を挟んで対向して配置されている。また、外装部30は、第1積層フィルム31と第2積層フィルム32とを、電池部10の周囲の全周にわたって熱融着してなる融着部33をさらに備えている。その結果、第1積層フィルム31と第2積層フィルム32と融着部33とによって、電池部10が封止されている。
 次に、外装部30の各構成要素について、より詳細な説明を行う。
〔第1積層フィルム〕
 図4は、第1積層フィルム31の構成を説明するための図であり、図4(a)は正面側(図2(a)では上側)からみた斜視図を、図4(b)は背面側(図2(a)では下側)からみた斜視図を、それぞれ示している。以下では、図1乃至図3に加えて図4も参照しながら、第1積層フィルム31の構成について説明を行う。
 第1積層フィルム31は、第1耐熱性樹脂層311と、第1外側接着層312と、第1金属層313と、第1内側接着層314と、第1熱融着性樹脂層315とを、この順でフィルム状に積層して構成されている。すなわち、第1積層フィルム31は、第1耐熱性樹脂層311と第1金属層313と第1熱融着性樹脂層315とを、第1外側接着層312および第1内側接着層314を介して貼り合わせることで構成されている。
 また、第1積層フィルム31における第1熱融着性樹脂層315の形成面側(外装部30において内側)には、第1熱融着性樹脂層315および第1内側接着層314が存在しないことで第1金属層313の一方の面(内側の面)が一部露出する、第1内部接続用露出部316および第1外部接続用露出部317が設けられている。
 これらのうち、第1露出部の一例としての第1内部接続用露出部316は、第1積層フィルム31の面方向における中央部側に設けられており、その形状は長方形状である。そして、第1内部接続用露出部316の全周囲には、第1内側接着層314および第1熱融着性樹脂層315による側壁が形成されている。
 また、第1内部接続用露出部316は、第1長辺LS1(第2長辺LS2)に沿う方向の長さが、第1内部接続用露出部長さL316に設定されており、第1短辺SS1(第2短辺SS2)に沿う方向の長さが、第1内部接続用露出部幅W316に設定されている(図4(a)参照)。ここで、第1内部接続用露出部長さL316>第1内部接続用露出部幅W316である。
 これに対し、第1外部接続用露出部317は、第1積層フィルム31における第1短辺SS1側に設けられており、その形状は長方形状である。そして、第1外部接続用露出部317の一端部には、第1内側接着層314および第1熱融着性樹脂層315による側壁が形成されている。
 では、第1積層フィルム31の各構成要素について、より詳細な説明を行う。
{第1耐熱性樹脂層}
 第1耐熱性樹脂層311は、外装部30における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、第1熱融着性樹脂層315を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。ここで、第1耐熱性樹脂層311としては、第1熱融着性樹脂層315を構成する熱融着性樹脂の融点より10℃以上融点が高い耐熱性樹脂を用いるのが好ましく、この熱融着性樹脂の融点より20℃以上融点が高い耐熱性樹脂を用いるのが特に好ましい。また、本実施の形態では、後述するように、第1金属層313が電池部10の正の電極を兼ねることから、安全性の観点より、第1耐熱性樹脂層311として電気抵抗値の高い絶縁性樹脂が用いられる。
 第1耐熱性樹脂層311としては、特に限定されるものではないが、例えば、ポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、成形性および強度の点で、二軸延伸ポリアミドフィルムまたは二軸延伸ポリエステルフィルム、あるいはこれらを含む複層フィルムが特に好ましく、さらに二軸延伸ポリアミドフィルムと二軸延伸ポリエステルフィルムとが貼り合わされた複層フィルムを用いることが好ましい。ポリアミドフィルムとしては、特に限定されるものではないが、例えば、6-ポリアミドフィルム、6,6-ポリアミドフィルム、MXDポリアミドフィルム等が挙げられる。また、二軸延伸ポリエステルフィルムとしては、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム等が挙げられる。本実施の形態では、第1耐熱性樹脂層311としてナイロンフィルム(融点:220℃)を用いた。
 第1耐熱性樹脂層311の厚さは、9μm以上50μm以下とすることができる。第1耐熱性樹脂層311の厚さが9μm未満であると、電池部10の外装部30として十分な強度を確保することが困難となる。一方、第1耐熱性樹脂層311の厚さが50μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。
{第1外側接着層}
 第1外側接着層312は、第1耐熱性樹脂層311と第1金属層313とを接着するための層である。第1外側接着層312としては、例えば、主剤としてのポリエステル樹脂と硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエステル-ウレタン系樹脂、あるいは、ポリエーテル-ウレタン系樹脂を含む接着剤を用いることが好ましい。本実施の形態では、第1外側接着層312として二液硬化型ポリエステル-ウレタン系接着剤を用いた。
{第1金属層}
 第1金属層313は、第1積層フィルム31を用いて外装部30を構成した場合に、外装部30の外部から、その内部に配置された電池部10に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、第1金属層313は、後述するように、電池部10の基板11と電気的に接続される正の内部電極(正の電極)としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される正の外部電極(正の電極)としての役割とをさらに担う。このため、第1金属層313には、導電性を有する金属箔を用いる。
 第1金属層313としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔、あるいはこれのクラッド箔、これらの焼鈍箔または未焼鈍箔等が好ましく用いられる。本実施の形態では、第1金属層313としてアルミニウム箔を用いた。
 第1金属層313の厚さは、20μm以上200μm以下とすることができる。第1金属層313の厚さが20μm未満であると、金属箔を製造する際の圧延時や熱封止時にピンホールや破れが生じやすく、また、電極として用いる場合の電気抵抗値が高くなってしまう。一方、第1金属層313の厚さが200μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。
{第1内側接着層}
 第1内側接着層314は、第1金属層313と第1熱融着性樹脂層315とを接着するための層である。第1内側接着層314としては、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤を用いることが好ましい。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、水蒸気に対する第1積層フィルム31のバリア性を向上させることができる。また、酸変成したポリプロピレンやポリエチレン等の接着剤を使用することが好ましい。
{第1熱融着性樹脂層}
 第1樹脂層の一例としての第1熱融着性樹脂層315は、外装部30における最内層であり、電池部10の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、第2積層フィルム32の第2熱融着性樹脂層325(詳細は後述する)と融着する熱可塑性樹脂が用いられる。また、本実施の形態では、上述したように、第1金属層313が電池部10の正の電極を兼ねることから、安全性の観点より、第1熱融着性樹脂層315として電気抵抗値の高い絶縁性樹脂が用いられる。
 第1熱融着性樹脂層315としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマー等が好ましく用いられる。ここで、オレフィン系共重合体としては、EVA(エチレン・酢酸ビニル共重合体)、EAA(エチレン・アクリル酸共重合体)、EMAA(エチレン・メタアクリル酸共重合体)を例示できる。また、第1耐熱性樹脂層311との融点の関係を満足できるのであれば、ポリアミドフィルム(例えば12ナイロン)やポリイミドフィルムを使用することもできる。本実施の形態では、第1熱融着性樹脂層315として無軸延伸ポリプロピレンフィルム(融点:165℃)を用いた。
 第1熱融着性樹脂層315の厚さは、20μm以上80μm以下とすることができる。第1熱融着性樹脂層315の厚さが20μm未満であると、ピンホールが生じやすくなる。一方、第1熱融着性樹脂層315の厚さが80μmを超えると、電池が厚くなるため好ましくなく、また、製造コストが高くなる。
〔第2積層フィルム〕
 図5は、第2積層フィルム32の構成を説明するための図であり、図5(a)は正面側(図2(a)では上側)からみた斜視図を、図5(b)は背面側(図2(a)では下側)からみた斜視図を、それぞれ示している。以下では、図1乃至図3に加えて図5も参照しながら、第2積層フィルム32の構成について説明を行う。
 第2積層フィルム32は、第2耐熱性樹脂層321と、第2外側接着層322と、第2金属層323と、第2内側接着層324と、第2熱融着性樹脂層325とを、この順でフィルム状に積層して構成されている。すなわち、第2積層フィルム32は、第2耐熱性樹脂層321と第2金属層323と第2熱融着性樹脂層325とを、第2外側接着層322および第2内側接着層324を介して貼り合わせることで構成されている。
 また、第2積層フィルム32における第2熱融着性樹脂層325の形成面側(外装部30において内側)には、第2熱融着性樹脂層325および第2内側接着層324が存在しないことで第2金属層323の一方の面(内側の面)が一部露出する、第2内部接続用露出部326および第2外部接続用露出部327が設けられている。
 これらのうち、第2露出部の一例としての第2内部接続用露出部326は、第2積層フィルム32の面方向における中央部側に設けられており、その形状は長方形状である。そして、第2内部接続用露出部326の全周囲には、第2内側接着層324および第2熱融着性樹脂層325による側壁が形成されている。
 また、第2内部接続用露出部326は、第1長辺LS1(第2長辺LS2)に沿う方向の長さが、第2内部接続用露出部長さL326に設定されており、第1短辺SS1(第2短辺SS2)に沿う方向の長さが、第2内部接続用露出部幅W326に設定されている(図5(b)参照)。ここで、第2内部接続用露出部長さL326>第2内部接続用露出部幅W326である。また、第1内部接続用露出部長さL316=第2内部接続用露出部長さL326であり、第1内部接続用露出部幅W316=第2内部接続用露出部幅W326である。
 では、第2積層フィルム32の各構成要素について、より詳細な説明を行う。
{第2耐熱性樹脂層}
 第2耐熱性樹脂層321は、外装部30における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、第2熱融着性樹脂層325を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。また、本実施の形態では、後述するように、第2金属層323が電池部10の負の電極を兼ねることから、安全性の観点より、第2耐熱性樹脂層321として電気抵抗値の高い絶縁性樹脂が用いられる。
 そして、第2耐熱性樹脂層321としては、上記第1耐熱性樹脂層311のところで説明した材料を用いることができる。このとき、第2耐熱性樹脂層321と第1耐熱性樹脂層311とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2耐熱性樹脂層321の厚さも、第1耐熱性樹脂層311と同じ厚さとしてもよいし、異なる厚さとしてもよい。
{第2外側接着層}
 第2外側接着層322は、第2耐熱性樹脂層321と第2金属層323とを接着するための層である。
 そして、第2外側接着層322としては、上記第1外側接着層312のところで説明した材料を用いることができる。このとき、第2外側接着層322と第1外側接着層312とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。
{第2金属層}
 第2金属層323は、第2積層フィルム32を用いて外装部30を形成した場合に、外装部30の外部から、その内部に配置された電池部10に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、第2金属層323は、後述するように、電池部10の負極集電体層15と電気的に接続される負の内部電極(負の電極)としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される負の外部電極(負の電極)としての役割とをさらに担う。このため、第2金属層323には、導電性を有する金属箔を用いる。
 そして、第2金属層323としては、上記第1金属層313のところで説明した材料を用いることができる。このとき、第2金属層323と第1金属層313とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2金属層323の厚さも、第1金属層313と同じ厚さとしてもよいし、異なる厚さとしてもよい。
{第2内側接着層}
 第2内側接着層324は、第2金属層323と第2熱融着性樹脂層325とを接着するための層である。
 そして、第2内側接着層324としては、上記第1内側接着層314のところで説明した材料を用いることができる。このとき、第2内側接着層324と第1内側接着層314とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。
{第2熱融着性樹脂層}
 第2樹脂層の一例としての第2熱融着性樹脂層325は、外装部30における最内層であり、電池部10の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、第1積層フィルム31の第1熱融着性樹脂層315と融着する熱可塑性樹脂が用いられる。また、本実施の形態では、上述したように、第2金属層323が電池部10の負の電極を兼ねることから、安全性の観点より、第2熱融着性樹脂層325として電気抵抗値の高い絶縁性樹脂が用いられる。
 そして、第2熱融着性樹脂層325としては、上記第1熱融着性樹脂層315のところで説明した材料を用いることができる。このとき、第2熱融着性樹脂層325と第1熱融着性樹脂層315とは、同じ材料で構成してもよいし、2つの材料の融点が近く、溶解するものであれば、異なる材料で構成してもよい。また、第2熱融着性樹脂層325の厚さも、第1熱融着性樹脂層315と同じ厚さとしてもよいし、異なる厚さとしてもよい。
 なお、本実施の形態では、第1積層フィルム31および第2積層フィルム32として、同じ材質のものを用いた。したがって、図5に示す第2積層フィルム32の構造は、第1内部接続用露出部316および第2内部接続用露出部326の形成位置の違いを除けば、図4に示す第1積層フィルム31の構造とほぼ同じである。
〔融着部〕
 こんどは、融着部33の構成について説明を行う。
 融着部33は、第1融着部331と、第2融着部332と、第3融着部333と、第4融着部334とを有しており、これらを額縁状に連結して構成されている。より具体的に説明すると、融着部33は、第1短辺SS1側において第1短辺SS1に沿って形成される第1融着部331と、第1長辺LS1側において第1長辺LS1に沿って形成される第2融着部332と、第2短辺SS2側において第2短辺SS2に沿って形成される第3融着部333と、第2長辺LS2側において第2長辺LS2に沿って形成される第4融着部334とを有している。そして、融着部33では、第1融着部331の一端と第2融着部332の他端とが連結され、第2融着部332の一端と第3融着部333の他端とが連結され、第3融着部333の一端と第4融着部334の他端とが連結され、第4融着部334の一端と第1融着部331の他端とが連結されている。
 融着部33は、第1積層フィルム31に設けられた第1熱融着性樹脂層315の一部の領域と、第2積層フィルム32に設けられた第2熱融着性樹脂層325の一部の領域とを、無端状に融着して構成されている。このような融着部33を設けることにより、第1積層フィルム31と第2積層フィルム32とを一体化してなる外装部30を構成している。また、融着部33は、第1積層フィルム31および第2積層フィルム32とともにその内側に電池部10を収容することにより、電池部10を封止している。
 なお、図1乃至図3には記載しなかったが、本実施の形態の充電池パック1は、第1長辺LS1側に形成される第2融着部332の側面と、第2長辺LS2側に形成される第4融着部334の側面とをそれぞれ被覆する、被覆部70をさらに備えている(後述する図15参照)。この被覆部70は、絶縁性を有する接着剤すなわち絶縁性接着剤を硬化させることによって構成されている。そして、被覆部70は、第1長辺LS1側および第2長辺LS2側のそれぞれにおいて、第1積層フィルム31に設けられた第1金属層313と、第2積層フィルム32に設けられた第2金属層323とを、さらに覆っている。
(接着部)
 さらに、接着部50の各構成について、より詳細な説明を行う。
 接着部50は、電池部10と第1積層フィルム31とを接着する第1接着部51と、電池部10と第2積層フィルム32とを接着する第2接着部52とを有している(図3参照)。そして、これら第1接着部51および第2接着部52は、電池部10を挟んで対向している。
〔第1接着部〕
 第1接着部51は、電池部10を構成する基板11の背面と、第1積層フィルム31のうち第1内部接続用露出部316によって露出する第1金属層313の一方の面(内側の面)とを、両者の導電性を確保しながら接着している。ここで、第1接着部51の外周面と、第1内部接続用露出部316の内周面すなわち第1内側接着層314および第1熱融着性樹脂層315によって形成される壁面との間には、隙間が存在していることが望ましい(図3参照)。
〔第2接着部〕
 第2接着部52は、電池部10を構成する負極集電体層15の正面と、第2積層フィルム32のうち第2内部接続用露出部326によって露出する第2金属層323の一方の面(内側の面)とを、両者の導電性を確保しながら接着している。ここで、第2接着部52の外周面と、第2内部接続用露出部326の内周面すなわち第2内側接着層324および第2熱融着性樹脂層325によって形成される壁面との間には、隙間が存在していることが望ましい(図3参照)。
〔導電性接着剤〕
 本実施の形態の接着部50は、導電性を有する接着剤すなわち導電性接着剤を硬化させたもので構成されている。ここで、導電性接着剤は、導電性を有する導電性粒子からなるフィラーを、有機材料等からなるバインダに均一に分散させた、有機・無機混合系の材料である。そして、導電性接着剤は、外部からエネルギー(加熱等)を得て、不可逆化学反応により硬化物となり、複数の被接着体を、これらの間の導電性を確保しつつ強固に接続する。なお、第1接着部51および第2接着部52は、同じ導電性接着剤で構成してもよいし、異なる導電性接着剤で構成してもよい。ただし、作業性をより効率化させるという観点からすれば、第1接着部51および第2接着部52を、同じ導電性接着剤を硬化させたもので構成することが望ましい。
 ここで、フィラーとしては、Au(金)、Ag(銀)、Ni(ニッケル)、Al(アルミニウム)、C(カーボンあるいはグラファイト)等の各種金属粒子や、これら各種金属を樹脂粒子にめっきしてなる金属めっき樹脂粒子等が挙げられる。また、バインダとしては、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂等の各種熱硬化性樹脂や熱可塑性樹脂、あるいは、各種ゴム材料等が挙げられる。
 また、導電性接着剤には、ゴムや樹脂等からなる接着主材と硬化剤や架橋剤等からなる接着副材とを、使用直前に混合する2液混合型(2液型)と、潜在性硬化剤・触媒を予め導電性接着剤に混合してなる1液加熱硬化型(1液型)とが存在する。本実施の形態の接着部50の元となる導電性接着剤には、これら2液型あるいは1液型のどちらを採用しても差し支えないが、製造時の作業性をより効率化させるという観点からすれば、1液型を採用することが望ましい。
 さらに、本実施の形態の充電池パック1の製造において、電池部10を構成する各部の熱的な劣化を抑制するという観点からすれば、接着部50を構成する導電性接着剤の硬化温度は、100℃以下であることが望ましい。
 さらにまた、本実施の形態の充電池パック1が、高温環境下にて使用され得ることを考慮すれば、導電性接着剤を硬化させて得た接着部50は、150℃に加熱された状態において、各種ガス(特に水蒸気や酸素)を発生しにくいものであることが望ましい。
 なお、接着部50の元となる導電性接着剤には、上述したフィラーおよびバインダの他に、トルエン等の各種溶剤が含まれていることがある。ただし、本実施の形態の場合、このような溶剤を含まない導電性接着剤を採用することが望ましい。
[充電池パックにおける電気的な接続構造]
 次に、上述した充電池パック1における電気的な接続構造を説明する。
 まず、電池部10では、基板11と正極層12と固体電解質層13と負極層14と負極集電体層15とが、この順番で電気的に接続される。
 また、電池部10の基板11は、導電性を有する第1接着部51を介して、第1積層フィルム31に設けられた第1金属層313の一方の面(内側の面)のうち、第1内部接続用露出部316に露出する部位と電気的に接続される。また、第1積層フィルム31に設けられた第1金属層313の一方の面(内側の面)の一部は、第1外部接続用露出部317において外部に露出しており、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 これに対し、電池部10の負極集電体層15は、導電性を有する第2接着部52を介して、第2積層フィルム32に設けられた第2金属層323の一方の面(内側の面)のうち、第2内部接続用露出部326に露出する部位と電気的に接続される。また、第2積層フィルム32に設けられた第2金属層323の一方の面(内側の面)の一部は、第2外部接続用露出部327において外部に露出しており、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 そして、第1積層フィルム31に設けられた第1金属層313と、第2積層フィルム32に設けられた第2金属層323とは、第1積層フィルム31に設けられた第1熱融着性樹脂層315と第2積層フィルム32に設けられた第2熱融着性樹脂層325とによって、電気的に絶縁されている。また、これら第1熱融着性樹脂層315と第2熱融着性樹脂層325とによって形成される融着部33も、当然のことながら絶縁性を有しており、第1積層フィルム31に設けられた第1金属層313と、第2積層フィルム32に設けられた第2金属層323とが接触することに起因する、電池部10の短絡を生じ難くしている。
[充電池パックの製造方法]
 図6は、図1等に示す充電池パック1の製造方法を説明するためのフローチャートである。また、図7(a)~(d)は、充電池パック1の製造方法における第1融着工程~第4融着工程(各工程の詳細については後述する)を説明するための図である。
 なお、下記製造方法を実行するのに先だって、第1積層フィルム31および第2積層フィルム32が用意される。このとき、第1積層フィルム31は、長方形状に裁断されているとともに、第1熱融着性樹脂層315側に第1内部接続用露出部316および第1外部接続用露出部317が形成されている。一方、第2積層フィルム32も、長方形状に裁断されているとともに、第2熱融着性樹脂層325側に第2内部接続用露出部326および第2外部接続用露出部327が形成されている。
 また、下記製造方法を実行するのに先だって、電池部10も用意される。なお、電池部10は、基板11上に、スパッタ法等を用いて、正極層12、固体電解質層13、負極層14および負極集電体層15を、この順で積層することで得られる。
(第1融着工程)
 まず、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを対峙させる。このとき、第1積層フィルム31に設けられた第1外部接続用露出部317を第1短辺SS1側に、第2積層フィルム32に設けられた第2外部接続用露出部327を第2短辺SS2側に、それぞれ配置する。また、このとき、第1積層フィルム31に設けられた第1内部接続用露出部316と、第2積層フィルム32に設けられた第2内部接続用露出部326とを対峙させ、且つ、第1内部接続用露出部316の全周縁に、第2内部接続用露出部326の全周縁を対向させる。
 そして、大気中すなわち常圧雰囲気下で、第1融着部331を形成する、第1融着工程を実行する(ステップ10)。ステップ10では、第1短辺SS1側において第1短辺SS1に沿って、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを加圧および加熱し、その後加圧したまま加熱を停止する。これに伴い、第1熱融着性樹脂層315および第2熱融着性樹脂層325が溶融および固化し、第1融着部331が形成される(図7(a)参照)。
(第1塗布工程)
 次に、第1融着部331が形成されることによって一体化した第1積層フィルム31および第2積層フィルム32の接合体を、第1融着部331を支点として開く。これにより、第1積層フィルム31に設けられた第1内部接続用露出部316と、第2積層フィルム32に設けられた第2内部接続用露出部326とが、上方に向けて露出した状態となる。
 そして、大気中で、第1積層フィルム31および第2積層フィルム32に導電性接着剤を塗布する、第1塗布工程を実行する(ステップ20)。ステップ20では、第1積層フィルム31に設けられた第1内部接続用露出部316に導電性接着剤を塗布するとともに、第2積層フィルム32に設けられた第2内部接続用露出部326に導電性接着剤を塗布する。
 ここで、本実施の形態の第1塗布工程に関し、2つの具体例を挙げつつ説明を行う。
〔第1の例〕
 図8は、第1塗布工程における導電性接着剤の塗布手法の第1の例を説明するための図である。第1塗布工程では、上述したように、第1融着部331が形成されることによって一体化した第1積層フィルム31および第2積層フィルム32の接合体に対して、導電性接着剤の塗布を行う。ただし、ここでは、図8(a)に第1積層フィルム31側を記載し、図8(b)に第2積層フィルム32側を記載するようにした。なお、これらのことは、後述する図9においても同様である。
{第1積層フィルムに対する導電性接着剤の塗布}
 第1の例では、まず、図8(a)に示すように、第1積層フィルム31に設けられた第1内部接続用露出部316の形成部位に露出する第1金属層313に対し、第1積層フィルム31の長手方向に沿った3箇所に、導電性接着剤を塗布やポッティング等によって付着させる。なお、以下の説明においては、このようにして第1積層フィルム31に付着させた導電性接着剤を、第1導電性接着剤CA1と称する。
 このとき、第1導電性接着剤CA1は、第1内部接続用露出部316の形成部位に露出する第1金属層313の全面に付着させないようにすることが望ましい。すなわち、第1導電性接着剤CA1を付着させた状態においても、第1内部接続用露出部316の形成部位において第1金属層313の一部が、引き続き露出した状態を維持させるようにすることが望ましい。特に、第1内部接続用露出部316の外周、すなわち、第1金属層313と第1内側接着層314および第1熱融着性樹脂層315との境界となる領域には、第1導電性接着剤CA1を付着させないようにしておくことが望ましい。
{第2積層フィルムに対する導電性接着剤の塗布}
 また、第1の例では、図8(b)に示すように、第2積層フィルム32に設けられた第2内部接続用露出部326の形成部位に露出する第2金属層323に対し、第2積層フィルム32の長手方向に沿った3箇所に、導電性接着剤を塗布やポッティング等によって付着させる。なお、以下の説明においては、このようにして第2積層フィルム32に付着させた導電性接着剤を、第2導電性接着剤CA2と称する。
 このとき、第2導電性接着剤CA2は、第2内部接続用露出部326の形成部位に露出する第2金属層323の全面に付着させないようにすることが望ましい。すなわち、第2導電性接着剤CA2を付着させた状態においても、第2内部接続用露出部326の形成部位において第2金属層323の一部が、引き続き露出した状態を維持させるようにすることが望ましい。特に、第2内部接続用露出部326の外周、すなわち、第2金属層323と第2内側接着層324および第2熱融着性樹脂層325との境界となる領域には、第2導電性接着剤CA2を付着させないようにしておくことが望ましい。
〔第2の例〕
 図9は、第1塗布工程における導電性接着剤の塗布手法の第2の例を説明するための図である。ただし、ここでは、上述した図8と同様に、図9(a)に第1積層フィルム31側を記載し、図9(b)に第2積層フィルム32側を記載するようにした。
{第1積層フィルムに対する導電性接着剤の塗布}
 第2の例では、まず、図9(a)に示すように、第1積層フィルム31に設けられた第1内部接続用露出部316の形成部位に露出する第1金属層313に対し、第1積層フィルム31の長手方向に沿って、第1導電性接着剤CA1を塗布やポッティング等によって付着させる。なお、このとき、第1導電性接着剤CA1を、第1内部接続用露出部316の形成部位に露出する第1金属層313の全面に付着させないようにすること、および、第1金属層313と第1内側接着層314および第1熱融着性樹脂層315との境界となる領域には、第1導電性接着剤CA1を付着させないようにしておくことが望ましい点については、第1の例と同じである。
{第2積層フィルムに対する導電性接着剤の塗布}
 また、第2の例では、図9(b)に示すように、第2積層フィルム32に設けられた第2内部接続用露出部326の形成部位に露出する第2金属層323に対し、第2積層フィルム32の長手方向に沿って、第2導電性接着剤CA2を塗布やポッティング等によって付着させる。なお、このとき、第2導電性接着剤CA2を、第2内部接続用露出部326の形成部位に露出する第2金属層323の全面に付着させないようにすること、および、第2金属層323と第2内側接着層324および第2熱融着性樹脂層325との境界となる領域には、第2導電性接着剤CA2を付着させないようにしておくことが望ましい点については、第1の例と同じである。
(装着工程)
 続いて、大気中すなわち常圧雰囲気下で、導電性接着剤が塗布された第1積層フィルム31および第2積層フィルム32の接合体に、電池部10を装着する、装着工程を実行する(ステップ30)。ステップ30では、まず、第1積層フィルム31に設けられた、第1導電性接着剤CA1が塗布された第1内部接続用露出部316に対し、電池部10の基板11を接触させる。それから、第1融着部331を支点として、第1積層フィルム31に対して第2積層フィルム32を閉じることによって、第2積層フィルム32に設けられた、第2導電性接着剤CA2が塗布された第2内部接続用露出部326に対し、電池部10の負極集電体層15を接触させる。このとき、電池部10に設けられた基板11の全周縁を、第1積層フィルム31に設けられた第1内部接続用露出部316の全周縁(内周縁)よりも外側に位置させる(図8(a)参照)。また、電池部10に設けられた負極集電体層15の全周縁を、第2積層フィルム32に設けられた第2内部接続用露出部326の全周縁(内周縁)よりも外側に位置させる(図8(b)参照)。
(第1加熱工程)
 それから、大気中すなわち常圧雰囲気下で、第1融着部331を介して一体化し且つ二箇所に導電性接着剤が塗布されてなる、第1積層フィルム31および第2積層フィルム32と電池部10との接着体を加熱する、第1加熱工程を実行する(ステップ40)。ステップ40では、まず、上記接着体をホットプレートの上に積載するとともに、その上に重石を乗せる。ここで、重石は、塗布された導電性接着剤と電池部10とが密着する程度の重量に設定される。それから、ホットプレートを加熱することで、上記接着体の二箇所に塗布された導電性接着剤を硬化させる。その結果、第1積層フィルム31の第1内部接続用露出部316と、電池部10の基板11との間に存在していた導電性接着剤(第1導電性接着剤CA1)は、加熱による硬化に伴って第1接着部51となる。また、第2積層フィルム32の第2内部接続用露出部326と、電池部10の負極集電体層15との間に存在していた導電性接着剤(第2導電性接着剤CA2)は、加熱による硬化に伴って第2接着部52となる。
 このとき、電池部10の基板11と、第1積層フィルム31の第1内部接続用露出部316に露出する第1金属層313との間に挟まれた液状の第1導電性接着剤CA1は、重石によって加えられた圧力により、面方向に広がろうとする。ここで、本実施の形態では、第1導電性接着剤CA1の外周面と第1内部接続用露出部316の内周面との間に隙間が設けられており、重石による圧力が加えられた状態においても、第1導電性接着剤CA1の外周面が第1内部接続用露出部316の内周面に到達しにくくなっている。また、仮に、第1導電性接着剤CA1の外周面が第1内部接続用露出部316の内周面に到達し、第1導電性接着剤CA1が、基板11と第1積層フィルム31の第1熱融着性樹脂層315との間に侵入してきたとしても、基板11の外周面には到達しにくくなっている。これは、基板長さL11が第1内部接続用露出部長さL316よりも大きく、且つ、基板幅W11が第1内部接続用露出部幅W316よりも大きいことに起因する。
 そして、液状の第1導電性接着剤CA1を加熱することにより、第1導電性接着剤CA1は硬化し、第1接着部51となる。上述したように、第1導電性接着剤CA1は、基板11の外周面を乗り越えていないため、第1導電性接着剤CA1が硬化することで形成された第1接着部51が、正極層12~負極層14の外周面を覆うことに起因する、電池部10の短絡を抑制することが可能になる。
 また、このとき、電池部10の負極集電体層15と、第2積層フィルム32の第2内部接続用露出部326に露出する第2金属層323との間に挟まれた液状の第2導電性接着剤CA2も、重石によって加えられた圧力により、面方向に広がろうとする。ここで、本実施の形態では、第2導電性接着剤CA2の外周面と第2内部接続用露出部326の内周面との間に隙間が設けられており、重石による圧力が加えられた状態においても、第2導電性接着剤CA2の外周面が第2内部接続用露出部326の内周面に到達しにくくなっている。また、仮に、第2導電性接着剤CA2の外周面が第2内部接続用露出部326の内周面に到達し、第2導電性接着剤CA2が、負極集電体層15と第2積層フィルム32の第2熱融着性樹脂層325との間に侵入してきたとしても、負極集電体層15の外周面には到達しにくくなっている。これは、負極集電体層長さL15が第2内部接続用露出部長さL326よりも大きく、且つ、負極集電体層幅W15が第2内部接続用露出部幅W326よりも大きいことに起因する。
 そして、液状の第2導電性接着剤CA2を加熱することにより、第2導電性接着剤CA2は硬化し、第2接着部52となる。上述したように、第2導電性接着剤CA2は、負極集電体層15の外周面を乗り越えていないため、第2導電性接着剤CA2が硬化することで形成された第2接着部52が、正極層12~負極層14の外周面を覆うことに起因する、電池部10の短絡を抑制することが可能になる。なお、加熱工程はオーブンを用いて行ってもよい。
(第2融着工程)
 次に、大気中すなわち常圧雰囲気下で、第2融着部332を形成する、第2融着工程を実行する(ステップ50)。ステップ50では、第1長辺LS1側において第1長辺LS1に沿って、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを加圧および加熱し、その後加圧したまま加熱を停止する。これに伴い、第1熱融着性樹脂層315および第2熱融着性樹脂層325が溶融および固化し、第2融着部332が形成される(図7(b)参照)。また、このとき、第1融着部331の一端と第2融着部332の他端とが連結される。
(第3融着工程)
 続いて、大気中すなわち常圧雰囲気下で、第3融着部333を形成する、第3融着工程を実行する(ステップ60)。ステップ60では、第2短辺SS2側において第2短辺SS2に沿って、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを加圧および加熱し、その後加圧したまま加熱を停止する。これに伴い、第1熱融着性樹脂層315および第2熱融着性樹脂層325が溶融および固化し、第3融着部333が形成される(図7(c)参照)。また、このとき、第2融着部332の一端と第3融着部333の他端とが連結される。
(第4融着工程)
 それから、減圧雰囲気下で、第4融着部334を形成する、第4融着工程を実行する(ステップ70)。ステップ70では、まず、グローブボックス内にて真空引きを行って減圧雰囲気とし、電池部10と外装部30(第1積層フィルム31および第2積層フィルム32)と接着部50との間に存在する空間の脱気を行う。続いて、ステップ70では、第2長辺LS2側において第2長辺LS2に沿って、第1積層フィルム31における第1熱融着性樹脂層315と、第2積層フィルム32における第2熱融着性樹脂層325とを加圧および加熱し、その後加圧したまま加熱を停止する。これに伴い、第1熱融着性樹脂層315および第2熱融着性樹脂層325が溶融および固化し、第4融着部334が形成される(図7(d)参照)。また、このとき、第3融着部333の一端と第4融着部334の他端とが連結される。さらに、このとき、第4融着部334の一端と第1融着部331の他端とが連結される。その結果、第1融着部331~第4融着部334が一体化することで、額縁状の融着部33が形成される。その後、グローブボックス内を大気圧に戻し、グローブボックス内から充電池パック1(実際には充電池パック1の半製品)を取り出す。
(切断工程)
 次に、融着部33が形成された充電池パック1の半製品に対し、2箇所において第1積層フィルム31および第2積層フィルム32の積層体を切断する、切断工程を実行する(ステップ80)。ステップ80では、まず、第1長辺LS1側において第2融着部332に沿って積層体を切断する。このとき、第2融着部332は、長手方向すなわち第1長辺LS1に沿って2つに分断される。続いて、第2長辺LS2側において第4融着部334に沿って積層体を切断する。このとき、第4融着部334は、長手方向すなわち第2長辺LS2に沿って2つに分断される。
(第2塗布工程)
 次に、2箇所において切断がなされた充電池パック1の半製品に絶縁性接着剤を塗布する、第2塗布工程を実行する(ステップ90)。ステップ90では、まず、第1長辺LS1に沿って露出した第2融着部332を含む第1積層フィルム31および第2積層フィルム32の端面に、絶縁性接着剤を塗布する。続いて、第2長辺LS2に沿って露出した第4融着部334を含む第1積層フィルム31および第2積層フィルム32の端面に、絶縁性接着剤を塗布する。
(第2加熱工程)
 それから、大気中すなわち常圧雰囲気下で、塗布された絶縁性接着剤を加熱する、第2加熱工程を実行する(ステップ100)。これにより、絶縁性接着剤が硬化し、被覆部70となる。なお、第2加熱工程は、上述した第1加熱工程と同様に、ホットプレートやオーブンを用いて行うことができる。以上により、図1等に示す充電池パック1が得られる。
[融着方法]
 ではここで、融着部33を形成するための、第1積層フィルム31と第2積層フィルム32との融着方法について、ステップ50の第2融着工程を例として説明する。
(融着装置)
 図10は、融着部33の形成すなわち第1積層フィルム31と第2積層フィルム32との融着に用いる融着装置100の概要を示す斜視図である。本実施の形態の融着装置100は、2つのシールバーで対象物を挟み込んだ状態で、対象物を加熱・加圧する、所謂バーシール方式を採用している。
 この融着装置100は、図中手前側から奥側に向かって延びる第1シールバー110と、図中手前側から奥側に向かって延び且つ第1シールバー110に対向して配置される第2シールバー120とを備えている。ここで、第1シールバー110および第2シールバー120は、それぞれが角柱状の形状を有しており、図中において第2シールバー120が第1シールバー110の上方に位置し、且つ、両者がほぼ平行となるように配置されている。
 第1シールバー110は、図中に矢印で示す上下方向に進退可能に設けられている。そして、第1シールバー110における上方側には、第2シールバー120と対峙するとともに、図中上方への進出時に第2シールバー120に設けられた第2突当面121に突き当たる第1突当面111が設けられている。
 第2シールバー120も、図中に矢印で示す上下方向に進退可能に設けられている。そして、第2シールバー120における下方側には、第1シールバー110と対峙するとともに、図中下方への進出時に第1シールバー110に設けられた第1突当面111に突き当たる第2突当面121が設けられている。
 第1シールバー110における第1突当面111および第2シールバー120における第2突当面121の長手方向の長さは、同じ大きさとなるバー長さLBに設定されている。また、第1突当面111および第2突当面121の短手方向の長さは、同じ大きさとなるバー幅WBに設定されている。
 第1シールバー110および第2シールバー120には、それぞれを加熱する加熱源(図示せず)が設けられている。この加熱源は、オン・オフが可能となっている。
(第2融着工程における融着手順)
 次に、ステップ50の第2融着工程における、融着装置100を用いた具体的な融着手順について説明を行う。
 図11は、ステップ50の第2融着工程を説明するためのフローチャートである。また、図12(a)~(f)は、ステップ50の第2融着工程における各工程を説明するための図である。
 なお、ステップ50の第2融着工程を実行するのに先だって、融着装置100が用意される。このとき、融着装置100を構成する第1シールバー110および第2シールバー120は、図10に示すように離間しており、第1シールバー110の第1突当面111と第2シールバー120の第2突当面121との間には、空間が存在している。なお、以下では、図10に示す状態を、「開状態」と称する。また、このとき、第1シールバー110および第2シールバー120のそれぞれに設けられた加熱源(図示せず)は、オフの状態に設定されている。
 一方、このとき、第1積層フィルム31および第2積層フィルム32は、ステップ10の第1融着工程で形成された第1融着部331によって一体化している。また、電池部10と第1積層フィルム31および第2積層フィルム32とは、ステップ20の塗布工程~ステップ40の加熱工程で形成された第1接着部51および第2接着部52によって一体化している。なお、以下では、第1積層フィルム31および第2積層フィルム32を第1融着部331にて一体化し、且つ、第1積層フィルム31および第2積層フィルム32と電池部10とを第1接着部51および第2接着部52にて一体化したものを、「融着対象物」と称する。
〔設置工程〕
 まず、融着装置100に対して融着対象物を設置する、設置工程を実行する(ステップ51)。ここで、図12(a)は、ステップ51の設置工程の概要を説明するための図である。
 設置工程では、開状態にある、第1シールバー110の第1突当面111と第2シールバー120の第2突当面121との間に、図中矢印方向に沿って融着対象物を挿入していく。このとき、第1長辺LS1側を先頭とし、第1突当面111側には第1積層フィルム31の第1耐熱性樹脂層311を、第2突当面121側には第2積層フィルム32の第2耐熱性樹脂層321を、それぞれ対峙させるようにする。なお、融着対象物における第1長辺LS1側の端部E1では、第1積層フィルム31および第2積層フィルム32の両者の端面の位置が、ほぼ重なるように、第1融着部331(図7(a)参照)の形成が行われているものとする。そして、第1積層フィルム31および第2積層フィルム32の第1長辺LS1側の端部E1が、第1突当面111と第2突当面121との対向部に位置し、且つ、第1積層フィルム31および第2積層フィルム32に挟まれた電池部10(図示せず)が、この対向部に到達しない状態で、融着対象物の挿入を停止させ且つ固定する。
〔圧力付与工程〕
 次に、融着装置100によって融着対象物に圧力を付与する、圧力付与工程を実行する(ステップ52)。ここで、図12(b)は、ステップ52の圧力付与工程の概要を説明するための図である。
 圧力付与工程では、融着装置100を構成する第1シールバー110および第2シールバー120を、「開状態」から「閉状態」へと移行させる。より具体的に説明すると、第1シールバー110を第2シールバー120に近づける側(図中上方向)に、第2シールバー120を第1シールバー110に近づける側(図中下方向)に、それぞれ移動させる。そして、第1シールバー110と第2シールバー120とによって、第1積層フィルム31と第2積層フィルム32との積層体を挟み込む。このとき、第1シールバー110の第1突当面111が第1積層フィルム31の第1耐熱性樹脂層311に、第2シールバー120の第2突当面121が第2積層フィルム32の第2耐熱性樹脂層321に、それぞれ突き当たる。その後、第1シールバー110と第2シールバー120とによって、第1積層フィルム31と第2積層フィルム32との積層体に、予め定められた圧力を付与し、この状態で、第1シールバー110および第2シールバー120の移動を停止させる。この状態では、第1突当面111と第2突当面121との間に、融着対象物の第1長辺LS1側に存在する、第1積層フィルム31と第2積層フィルム32との積層体が位置する。このとき、融着対象物を構成する第1積層フィルム31と第2積層フィルム32との積層体における第1長辺LS1側の端部E1は、第1突当面111と第2突当面121との対向部の内部に位置し、融着対象物を構成する電池部10(図示せず)は、この対向部よりも内側(図中右側)に位置する。以下では、第1積層フィルム31と第2積層フィルム32との積層体のうち、第1突当面111と第2突当面121とによって挟み込まれた領域を、ニップ領域Nと称する。
 なお、記載を簡略化するために図中には示していないが、ニップ領域Nでは、付与される圧力により、ニップ領域Nの図中右に隣接する領域よりも、第1積層フィルム31と第2積層フィルム32との積層体の厚さが小さくなる。このとき、第1金属層313および第2金属層323の厚さは、ほとんど変わらないが、第1耐熱性樹脂層311、第1熱融着性樹脂層315、第2耐熱性樹脂層321および第2熱融着性樹脂層325の厚さは小さくなり、つぶれる。特に、第1熱融着性樹脂層315および第2熱融着性樹脂層325は、第1耐熱性樹脂層311および第2耐熱性樹脂層321よりもつぶれやすくなっている。
 〔加熱工程〕
 続いて、融着装置100によって圧力が付与された融着対象物を加熱する、加熱工程を実行する(ステップ53)。ここで、図12(c)は、ステップ53の加熱工程の概要を説明するための図である。
 加熱工程では、「閉状態」に設定された第1シールバー110および第2シールバー120の、それぞれに設けられた加熱源(図示せず)を、オフからオンに切り換える。すると、第1シールバー110および第2シールバー120から、融着対象物を構成する第1積層フィルム31および第2積層フィルム32の積層体に、熱が供給される。より具体的に説明すると、第1シールバー110の第1突当面111から、ニップ領域Nに位置する第1積層フィルム31の第1耐熱性樹脂層311に、熱が供給される。また、第2シールバー120の第2突当面121から、ニップ領域Nに位置する第2積層フィルム32の第2耐熱性樹脂層321に、熱が供給される。
 このようにして、ニップ領域Nに存在する第1積層フィルム31および第2積層フィルム32の積層体に供給された熱は、次のようにしてその内部に伝達される。まず、第1シールバー110から供給された熱は、第1耐熱性樹脂層311から第1外側接着層312乃至第1内側接着層314を介して、第1熱融着性樹脂層315へと伝達される。これに対し、第2シールバー120から供給された熱は、第2耐熱性樹脂層321から第2外側接着層322乃至第2内側接着層324を介して、第2熱融着性樹脂層325へと伝達される。
 このとき、第1シールバー110および第2シールバー120を介して、第1積層フィルム31および第2積層フィルム32の積層体に供給される熱の大きさは、次のように設定される。すなわち、供給される熱の大きさは、第1耐熱性樹脂層311および第2耐熱性樹脂層321は溶融せず、第1熱融着性樹脂層315および第2熱融着性樹脂層325は溶融する程度に設定される。すると、ニップ領域Nに存在する第1積層フィルム31および第2積層フィルム32の積層体において、第1熱融着性樹脂層315および第2熱融着性樹脂層325は、加熱に伴って溶融する。その結果、ニップ領域Nでは、図中に網点で示したように、第1熱融着性樹脂層315および第2熱融着性樹脂層325の溶融物が混在した状態となる。このとき、第1熱融着性樹脂層315および第2熱融着性樹脂層325の溶融物は、例えば図中に示したように、ニップ領域Nよりも面方向(図中横方向)に広がり、第1積層フィルム31および第2積層フィルム32の第1長辺LS1側の端部E1にまで到達するようになっている。
〔冷却工程〕
 次いで、融着装置100によって加熱された融着対象物を冷却する、冷却工程を実行する(ステップ54)。ここで、図12(d)は、ステップ54の冷却工程の概要を説明するための図である。
 冷却工程では、「閉状態」に設定された第1シールバー110および第2シールバー120の、それぞれに設けられた加熱源(図示せず)を、オンからオフに切り換える。すると、第1シールバー110には、第1突当面111を介して、ニップ領域Nに位置する第1積層フィルム31の第1耐熱性樹脂層311から、熱が移動していく。また、第2シールバー120には、第2突当面121を介して、ニップ領域Nに位置する第2積層フィルム32の第2耐熱性樹脂層321から、熱が移動していく。さらに、第1積層フィルム31に設けられた第1金属層313および第2積層フィルム32に設けられた第2金属層323により、ニップ領域Nの周辺に存在する熱が面方向に分散していく。その結果、第1積層フィルム31および第2積層フィルム32の積層体において、ニップ領域Nの周辺に存在していた第1熱融着性樹脂層315および第2熱融着性樹脂層325の溶融物は、冷却されることによって固化する。その結果、ニップ領域Nに存在していた溶融物は、固化に伴い、第1熱融着性樹脂層315と第2熱融着性樹脂層325とを一体化した第2融着部332となる。このとき、第2融着部332は、例えば図中に示したように、上記溶融物と同様に、ニップ領域Nよりも面方向に広がり、第1積層フィルム31および第2積層フィルム32の第1長辺LS1側の端部E1にまで到達するようになっている。
〔圧力解除工程〕
 それから、融着装置100によって融着対象物に付与していた圧力を解除する、圧力解除工程を実行する(ステップ55)。ここで、図12(e)は、ステップ55の圧力解除工程の概要を説明するための図である。
 圧力解除工程では、融着装置100を構成する第1シールバー110および第2シールバー120を、「閉状態」から「開状態」へと移行させる。より具体的に説明すると、第1シールバー110を第2シールバー120から遠ざける側(図中下方向)に、第2シールバー120を第1シールバー110から遠ざける側(図中上方向)に、それぞれ移動させる。これにより、第1シールバー110および第2シールバー120を用いた、融着対象物における第1積層フィルム31と第2積層フィルム32との積層体の挟み込みが解除される。
〔回収工程〕
 その後、融着装置100から融着対象物を回収する、回収工程を実行する(ステップ56)。ここで、図12(f)は、ステップ56の回収工程の概要を説明するための図である。
 回収工程では、「開状態」にある、第1シールバー110の第1突当面111と第2シールバー120の第2突当面121との間から、図中矢印方向に沿って融着対象物を取り出して回収する。そして、このようにして得た、第1融着部331に加えて第2融着部332が形成された融着対象物を、次の工程(第3融着工程)へと送る。
 なお、ここでは詳細な説明を行わないが、第2融着部332とほぼ平行となる第4融着部334も、第2融着部332と同様の手法を用いて製造することができる。したがって、第4融着部334は、第1積層フィルム31および第2積層フィルム32の第2長辺LS2側の端部E1に到達するようになっている。また、第2融着部332とほぼ垂直となる第1融着部331および第3融着部333も、第2融着部332と同様の手法を用いて製造することができる。ただし、第1融着部331は、第1積層フィルム31および第2積層フィルム32の第1短辺SS1側の端部には到達しないようになっている。また、第3融着部333も、第1積層フィルム31および第2積層フィルム32の第2短辺SS2側の端部には到達しないようになっている。
[被覆部の形成方法]
 では、充電池パック1における被覆部70の形成方法に関し、例を挙げて説明を行う。
 図13は切断工程を説明するための上面図であり、図14は切断工程を説明するための断面図である。ここで、図13(a)および図14(a)は第4融着工程後且つ切断工程前の状態を、図13(b)および図14(b)は切断工程後の状態を、それぞれ示している。
 また、図15は、第2塗布工程および第2加熱工程を説明するための図である。ここで、図15(a)は切断工程後且つ第2塗布工程前の状態を、図15(b)は第2塗布工程後且つ第2加熱工程前の状態を、図15(c)は第2加熱工程後の状態を、それぞれ示している。
 最初に、図13および図14を参照しつつ、ステップ80の切断工程について、より具体的な説明を行う。
 まず、図13(a)および図14(a)に示すように、充電池パック1の半製品に対し、第1長辺LS1および第2長辺LS2のそれぞれに沿って、2つの分割線Dが設定される。一方の分割線Dは、第1長辺LS1側の端部E1よりも内側において、第1長辺LS1に沿って、第2融着部332と重なるように設定される。これに対し、他方の分割線Dは、第2長辺LS2側の端部E1よりも内側において、第2長辺LS2に沿って、第4融着部334と重なるように設定される。
 次に、図13(b)および図14(b)に示すように、充電池パック1の半製品に対し、一方の分割線Dに沿った切断を行うとともに、他方の分割線Dに沿った切断を行う。ここで、ステップ80の切断工程では、例えば平裁断機等を使用してもよいし、鋏等を使用してもよい。このようにして切断を行うことにより、充電池パック1の半製品は、充電池パック1の本体部と、2つの切れ端34とに分断される。このとき、切断後の充電池パック1の本体部には、第1長辺LS1側に第1長辺LS1に沿って切断端部E2が形成され、第2長辺LS2側に第2長辺LS2に沿って切断端部E2が形成される。そして、一方の切断端部E2においては、第2融着部332が外側に露出する。これに対し、他方の切断端部E2においては、第4融着部334が外側に露出する。なお、切断に伴って発生した2つの切れ端34は、その後廃棄される。ここで、本実施の形態では、2つの切断端部E2のそれぞれが、切断部に対応している。
 続いて、図15を参照しつつ、ステップ90の第2塗布工程とステップ100の第2加熱工程とについて、より具体的な説明を行う。
 まず、図15(a)に示した、上記切断工程を経ることで切断端部E2が形成された、充電池パック1の本体部を用意する。
 次に、充電池パック1の本体部に設けられた一方の切断端部E2に対し、図15(b)に示すように、絶縁性接着剤IAを塗布する。このとき、絶縁性接着剤IAは、一方の切断端部E2の全域にわたって塗布される。したがって、一方の切断端部E2では、第1積層フィルム31を構成する第1耐熱性樹脂層311、第1外側接着層312および第1金属層313、第2積層フィルム32を構成する第2耐熱性樹脂層321、第2外側接着層322および第2金属層323、そして、第2融着部332の各端面が、絶縁性接着剤IAによって覆われる。
 また、充電池パック1の本体部に設けられた他方の切断端部E2に対し、絶縁性接着剤IAを塗布する。このとき、絶縁性接着剤IAは、他方の切断端部E2の全域にわたって塗布される。したがって、他方の切断端部E2では、第1積層フィルム31を構成する第1耐熱性樹脂層311、第1外側接着層312および第1金属層313、第2積層フィルム32を構成する第2耐熱性樹脂層321、第2外側接着層322および第2金属層323、そして、第4融着部334の各端面が、絶縁性接着剤IAによって覆われる。
 それから、絶縁性接着剤IAが塗布された、充電池パック1の本体部を加熱することで、絶縁性接着剤IAは、硬化するとともに2つの切断端面のそれぞれに強固に密着し、被覆部70となる。
(融着位置の違いと得られる融着物との関係)
 では、融着位置の違いと得られる融着物との関係について、説明を行う。
 図16は、第1積層フィルム31と第2積層フィルム32とを、融着装置100を用いて融着してなる融着領域およびその周辺断面写真である。なお、融着領域は、上述した融着部33(第1融着部331~第4融着部334)に対応するものである。ここで、図16(a)は、ニップ領域Nに第1積層フィルム31の端部が含まれるように、融着領域を形成した場合を示している。これに対し、図16(b)は、ニップ領域Nに第1積層フィルム31の端部が含まれないように、融着領域を形成した場合を示している。
 まず、図16(a)に示す例では、ニップ領域N(特に第1積層フィルム31の端部)における第1金属層313と第2金属層323とのギャップが、ここよりも内側(図16(a)では右側)の部位における両者のギャップと比べて、狭まっていることがわかる。これは、図16(a)に示す例では、ニップ領域N(特に第1積層フィルム31の端部)における第1熱融着性樹脂層315と第2熱融着性樹脂層325との重なり厚さが、ここよりも内側の部位における両者の重なり厚さと比べて、小さくなっていることを意味する。
 第1金属層313と第2金属層323とのギャップが狭くなっている領域では、このギャップが広くなっている領域に比べて、両者の間に、第1熱融着性樹脂層315および第2熱融着性樹脂層325が存在しなくなる確率が増加する。その結果、第1金属層313と第2金属層323とのギャップが狭くなっている領域では、このギャップが広くなっている領域に比べて、第1金属層313と第2金属層323とが直接に接触する確率も増加することになる。
 本実施の形態では、第1金属層313を電池部10(図3参照)の正の外部電極として、また、第2金属層323を電池部10の負の外部電極として、それぞれ利用している。このため、第1熱融着性樹脂層315および第2熱融着性樹脂層325を融着した結果として、第1金属層313と第2金属層323とが直接に接触してしまうと、電池部10に短絡が生じることになってしまう。
 これに対し、図16(b)に示す例では、ニップ領域Nにおける第1金属層313と第2金属層323とのギャップが、ここよりも内側(図16(b)では右側)の部位における両者のギャップと、ほとんど変わっていないことがわかる。これは、図16(b)に示す例では、ニップ領域Nにおける第1熱融着性樹脂層315と第2熱融着性樹脂層325との重なり厚さが、ここよりも内側の部位における両者の重なり厚さと、ほとんど変わっていないことを意味する。
 このため、図16(b)に示す例では、図16(a)に示す例とは異なり、局所的に、第1金属層313と第2金属層323とのギャップが狭くなっている領域が生じ難い。それゆえ、第1金属層313と第2金属層323とが直接に接触する確率も増加し難くなり、上述した電池部10の短絡も生じ難くなる。
 ここで、本実施の形態では、第2融着部332および第4融着部334に関しては、ニップ領域Nに第1積層フィルム31および第2積層フィルム32の端部E1が含まれるように、融着領域を形成している。ただし、本実施の形態では、その後、第2融着部332および第4融着部334に対して切断を施すことにより、第1金属層313および第2金属層323の端部同士が近づき得る領域を除外している。このため、これらの部位における短絡は生じ難くなる。
 また、本実施の形態では、第1融着部331および第3融着部333に関しては、ニップ領域Nに第1積層フィルム31および第2積層フィルム32の端部E1が含まれないように、融着領域を形成している。このため、これらの部位における短絡も生じ難くなる。
[まとめ]
 以上説明したように、本実施の形態の充電池パック1では、固体電解質層13を含むリチウムイオン二次電池で構成された電池部10を、第1積層フィルム31と第2積層フィルム32と融着部33とを含む外装部30を用いて封止するようにした。これにより、外装部30を設けずに電池部10をむき出しで使用する場合と比較して、充電池パック1の安全性を高めることができる。
 また、本実施の形態では、第1積層フィルム31に設けられた第1金属層313を電池部10の正電極として利用し、第2積層フィルム32に設けられた第2金属層323を電池部10の負電極として利用するようにした。これにより、第1金属層313および第2金属層323ではなく、電池部10の正電極および負電極として別途タブ電極等を設ける場合と比較して、充電池パック1を構成する部品点数を削減することができ、充電池パック1の構成を簡易にすることができる。
 ここで、本実施の形態では、第1積層フィルム31と第2積層フィルム32とを融着してなる融着部33のうちの第2融着部332および第4融着部334を、第1積層フィルム31および第2積層フィルム32の積層体を切断することにより、積層体の切断端部E2に露出させるようにした。これにより、第1積層フィルム31および/または第2積層フィルム32の端部にて、第1積層フィルム31を構成する第1金属層313と第2積層フィルム32を構成する第2金属層323とが、融着に伴って直接に接触することが生じ難くなる。このため、これら第1金属層313と第2金属層323とが直接に接触することに起因する、充電池パック1(電池部10)の短絡を抑制することが可能になる。
 特に、本実施の形態では、切断に伴って形成された2つの切断端部E2のそれぞれに、絶縁性接着剤IAを硬化させてなる、絶縁性を有する被覆部70を形成するようにした。これにより、さらに、第1金属層313と第2金属層323とが直接に接触することに起因する短絡を抑制することができる。
 また、本実施の形態では、第1積層フィルム31と第2積層フィルム32とを融着してなる融着部33のうちの第1融着部331および第3融着部333を、第1積層フィルム31および第2積層フィルム32の各端部よりも内側に形成するようにした。これにより、第1積層フィルム31および/または第2積層フィルム32の端部にて、第1積層フィルム31を構成する第1金属層313と第2積層フィルム32を構成する第2金属層323とが、融着に伴って直接に接触することが生じ難くなる。このため、これら第1金属層313と第2金属層323とが直接に接触することに起因する、充電池パック1(電池部10)の短絡を抑制することが可能になる。
 さらに、本実施の形態では、電池部10に設けられた基板11と第1積層フィルム31に設けられた第1金属層313とを、第1導電性接着剤CA1を硬化させた第1接着部51で接続した。さらにまた、本実施の形態では、電池部10に設けられた負極集電体層15と第2積層フィルム32に設けられた第2金属層323とを、第2導電性接着剤CA2を硬化させた第2接着部52で接続した。これにより、導電性接着剤を使用しない場合と比較して、電池部10と第1金属層313との接触抵抗および電池部10と第2金属層323との接触抵抗を低下させることができ、得られた充電池パック1の内部抵抗の増加に伴う放電容量の低下を抑制することが可能となる。
 ここで、本実施の形態では、電池部10における基板11の外周縁を、第1積層フィルム31に設けられた第1内部接続用露出部316の内周縁よりも外側に位置させるようにした。そして、第1内部接続用露出部316の内側に、第1導電性接着剤CA1を塗布するようにした。これにより、第1導電性接着剤CA1が、電池部10と第1積層フィルム31とに挟まれることで第1内部接続用露出部316からはみ出すような場合であっても、はみ出した第1導電性接着剤CA1は、基板11の表面を介して電池部10の側面に到達しにくくなる。このため、第1導電性接着剤CA1を硬化させて得た第1接着部51による、電池部10の短絡すなわち充電池パック1における短絡の発生を抑制することができる。
 また、本実施の形態では、第1内部接続用露出部316の内周縁と第1接着部51の外周縁との間の少なくとも一部に、隙間を存在させるようにした。これにより、電池部10と第1積層フィルム31とに挟まれた第1接着部51を、第1内部接続用露出部316からはみ出させにくくすることができる。
 一方、本実施の形態では、電池部10における負極集電体層15の外周縁を、第2積層フィルム32に設けられた第2内部接続用露出部326の内周縁よりも外側に位置させるようにした。そして、第2内部接続用露出部326の内側に、第2導電性接着剤CA2を塗布するようにした。これにより、第2導電性接着剤CA2が、電池部10と第2積層フィルム32とに挟まれることで第2内部接続用露出部326からはみ出すような場合であっても、はみ出した第2導電性接着剤CA2は、負極集電体層15の表面を介して電池部10の側面に到達しにくくなる。このため、第2導電性接着剤CA2を硬化させて得た第2接着部52による、電池部10の短絡すなわち充電池パック1における短絡の発生を抑制することができる。
 また、本実施の形態では、第2内部接続用露出部326の内周縁と第2接着部52の外周縁との間の少なくとも一部に、隙間を存在させるようにした。これにより、電池部10と第2積層フィルム32とに挟まれた第2接着部52を、第2内部接続用露出部326からはみ出させにくくすることができる。
[その他]
 なお、本実施の形態では、基板11上に、正極層12、固体電解質層13、負極層14および負極集電体層15の順に積層を行うことで、電池部10を形成していた。すなわち、固体電解質層13からみて基板11に近い側に正極層12を配置し、基板11から遠い側に負極層14を配置する構成を採用していた。ただし、これに限られるものではなく、固体電解質層13からみて基板11に近い側に負極層14を配置し、基板11から遠い側に正極層12を配置する構成を採用してもかまわない。ただし、この場合は、基板11に対する各層の積層順が、上述したものとは逆になる。また、この場合は、外装部30において、第1積層フィルム31に設けられた第1金属層313が負の電極となり、第2積層フィルム32に設けられた第2金属層323が正の電極となる。
 また、本実施の形態では、電池部10を構成する基板11において、基板長さL11>基板幅W11としていたが、これに限られるものではなく、基板長さL11≦基板幅W11としてもかまわない。一方、本実施の形態では、電池部10を構成する負極集電体層15において、負極集電体層長さL15>負極集電体層幅W15としていたが、これに限られるものではなく、負極集電体層長さL15≦負極集電体層幅W15としてもかまわない。そして、本実施の形態では、電池部10の全体形状を矩形状としていたが、矩形状以外の形状であってもよい。
 さらに、本実施の形態では、外装部30を構成する第1積層フィルム31において、第1内部接続用露出部長さL316>第1内部接続用露出部幅W316としていたが、これに限られるものではなく、第1内部接続用露出部長さL316≦第1内部接続用露出部幅W316としてもかまわない。一方、本実施の形態では、外装部30を構成する第2積層フィルム32において、第2内部接続用露出部長さL326>第2内部接続用露出部幅W326としていたが、これに限られるものではなく、第2内部接続用露出部長さL326≦第2内部接続用露出部幅W326としてもかまわない。そして、本実施の形態では、第1内部接続用露出部316および第2内部接続用露出部326の形状をそれぞれ矩形状としていたが、矩形状以外の形状であってもよい。
 また、本実施の形態では、図10に示す、所謂バーシール方式を採用した融着装置100を用いて、第1積層フィルム31および第2積層フィルム32の積層体に対する融着部33の形成を行っていたが、これに限られるものではない。このような融着部33の形成手法としては、他に、互いに回転する一対のロールを用いるロールシール方式や、互いに回転する一対の無端ベルトを用いるベルトシール方式等が挙げられる。
1…充電池パック、10…電池部、11…基板、12…正極層、13…固体電解質層、14…負極層、15…負極集電体層、30…外装部、31…第1積層フィルム、32…第2積層フィルム、33…融着部、34…切れ端、50…接着部、51…第1接着部、52…第2接着部、70…被覆部、CA1…第1導電性接着剤、CA2…第2導電性接着剤、IA…絶縁性接着剤、100…融着装置、110…第1シールバー、111…第1突当面、120…第2シールバー、121…第2突当面

Claims (9)

  1.  正極活物質を含む正極層と、無機固体電解質を含む固体電解質層と、負極活物質を含む負極層と、をこの順に有する電池部と、
     金属を含む第1金属層と、樹脂を含み且つ当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部を形成する第1樹脂層と、をこの順に有し、当該第1露出部に露出する当該第1金属層には前記電池部の前記正極層側が対峙する第1積層フィルムと、
     金属を含む第2金属層と、樹脂を含み且つ当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部を形成する第2樹脂層と、をこの順に有し、当該第2露出部に露出する当該第2金属層には前記電池部の前記負極層側が対峙する第2積層フィルムと、
     前記第1樹脂層と前記第2樹脂層とを、前記電池部の外周縁よりも外側で融着する融着部と、
     前記融着部に沿って当該融着部が露出するように前記第1積層フィルムおよび前記第2積層フィルムを切断してなる切断部と
    を有する充電池パック。
  2.  絶縁性を有するとともに前記切断部を覆うように形成される絶縁部と
    をさらに有することを特徴とする請求項1記載の充電池パック。
  3.  前記融着部は、前記電池部の全外周縁よりも外側に配置されること
    を特徴とする請求項1または2記載の充電池パック。
  4.  前記電池部は、
     導電性を有し且つ前記正極層側に設けられる正極集電体層と、
     導電性を有し且つ前記負極層側に設けられる負極集電体層と
    をさらに有し、
     前記正極集電体層と前記第1露出部に露出する前記第1金属層とを、導電性を確保しながら接着する第1接着部と、
     前記負極集電体層と前記第2露出部に露出する前記第2金属層とを、導電性を確保しながら接着する第2接着部と
    をさらに含むことを特徴とする請求項1乃至3のいずれか1項記載の充電池パック。
  5.  前記正極集電体層の外周縁は、前記第1露出部の内周縁よりも外側に位置し、
     前記負極集電体層の外周縁は、前記第2露出部の内周縁よりも外側に位置すること
    を特徴とする請求項4記載の充電池パック。
  6.  前記第1露出部の内周縁と前記第1接着部の外周縁との間には、少なくとも一部に隙間が存在し、
     前記第2露出部の内周縁と前記第2接着部の外周縁との間には、少なくとも一部に隙間が存在すること
    を特徴とする請求項4または5記載の充電池パック。
  7.  正極活物質を含む正極層と、無機固体電解質を含む固体電解質層と、負極活物質を含む負極層と、をこの順に有する電池部と、
     金属を含む第1金属層と、樹脂を含み且つ当該第1金属層の一方の面に当該第1金属層の一部が露出する第1露出部を形成する第1樹脂層と、をこの順に有し、当該第1露出部に露出する当該第1金属層には前記電池部の前記正極層側が対峙する第1積層フィルムと、
     金属を含む第2金属層と、樹脂を含み且つ当該第2金属層の一方の面に当該第2金属層の一部が露出する第2露出部を形成する第2樹脂層と、をこの順に有し、当該第2露出部に露出する当該第2金属層には前記電池部の前記負極層側が対峙する第2積層フィルムと、
     前記第1樹脂層と前記第2樹脂層とを、前記電池部の外周縁よりも外側であって、前記第1金属層および前記第2金属層の外周縁よりも内側で融着する融着部と
    を含む充電池パック。
  8.  前記電池部は、
     導電性を有し且つ前記正極層側に設けられる正極集電体層と、
     導電性を有し且つ前記負極層側に設けられる負極集電体層と
    をさらに有し、
     前記正極集電体層の外周縁は、前記第1露出部の内周縁よりも外側に位置し、
     前記負極集電体層の外周縁は、前記第2露出部の内周縁よりも外側に位置すること
    を特徴とする請求項7記載の充電池パック。
  9.  前記正極集電体層と前記第1露出部に露出する前記第1金属層とを、導電性を確保しながら接着する第1接着部と、
     前記負極集電体層と前記第2露出部に露出する前記第2金属層とを、導電性を確保しながら接着する第2接着部と
    をさらに含み、
     前記第1露出部の内周縁と前記第1接着部の外周縁との間には、少なくとも一部に隙間が存在し、
     前記第2露出部の内周縁と前記第2接着部の外周縁との間には、少なくとも一部に隙間が存在すること
    を特徴とする請求項8記載の充電池パック。
PCT/JP2019/039310 2018-10-16 2019-10-04 充電池パック WO2020080146A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-195115 2018-10-16
JP2018195115A JP2020064742A (ja) 2018-10-16 2018-10-16 充電池パック、充電池パックの製造方法
JP2018-206854 2018-11-01
JP2018206854A JP2020072048A (ja) 2018-11-01 2018-11-01 充電池パック
JP2018227425A JP2020091972A (ja) 2018-12-04 2018-12-04 充電池パック
JP2018-227425 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020080146A1 true WO2020080146A1 (ja) 2020-04-23

Family

ID=70283906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039310 WO2020080146A1 (ja) 2018-10-16 2019-10-04 充電池パック

Country Status (1)

Country Link
WO (1) WO2020080146A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129234A (ja) * 2003-10-21 2005-05-19 Nec Tokin Corp 二次電池及びその製造方法
JP2009043442A (ja) * 2007-08-06 2009-02-26 Nec Tokin Corp ラミネート電池の製造方法
JP2017069163A (ja) * 2015-10-02 2017-04-06 昭和電工パッケージング株式会社 蓄電デバイス
WO2017212985A1 (ja) * 2016-06-06 2017-12-14 昭和電工パッケージング株式会社 ラミネート材の製造方法
WO2018110130A1 (ja) * 2016-12-14 2018-06-21 昭和電工株式会社 リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129234A (ja) * 2003-10-21 2005-05-19 Nec Tokin Corp 二次電池及びその製造方法
JP2009043442A (ja) * 2007-08-06 2009-02-26 Nec Tokin Corp ラミネート電池の製造方法
JP2017069163A (ja) * 2015-10-02 2017-04-06 昭和電工パッケージング株式会社 蓄電デバイス
WO2017212985A1 (ja) * 2016-06-06 2017-12-14 昭和電工パッケージング株式会社 ラミネート材の製造方法
WO2018110130A1 (ja) * 2016-12-14 2018-06-21 昭和電工株式会社 リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法

Similar Documents

Publication Publication Date Title
KR100891383B1 (ko) 파우치형 이차 전지
JP5169820B2 (ja) フィルム外装電気デバイス
JP5108228B2 (ja) 電気部品、非水電解質電池、並びに、それらに用いられる絶縁被覆層つきリード導体及び封入容器
JP6315572B2 (ja) 電気化学セル
JPH1055792A (ja) 薄形電池
JP2022175247A (ja) 全固体電池
KR101011807B1 (ko) 개선된 구조의 상단 실링부를 포함하고 있는 이차전지
JP2020064742A (ja) 充電池パック、充電池パックの製造方法
JP3931983B2 (ja) 電気リード部の構造、該リード部構造を有する電気デバイス、電池および組電池
JP2018092885A (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
WO2018198461A1 (ja) リチウムイオン二次電池
JP2018098167A (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
CN112514128B (zh) 层压型二次电池及其制造方法
JP2017091614A (ja) フィルム外装電池
JP2020091972A (ja) 充電池パック
JP5527717B2 (ja) 電気部品、非水電解質電池、並びに、それらに用いられる絶縁被覆層つきリード導体及び封入容器
WO2020080146A1 (ja) 充電池パック
JP2018098168A (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
JP2020072048A (ja) 充電池パック
CN111630677B (zh) 袋型二次电池及其制造方法
JP2002190283A (ja) 薄型二次電池の製造方法および薄型二次電池
WO2018096817A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
JP2017228381A (ja) 電池及び電池の製造方法
JP7193407B2 (ja) 積層型電池
JP4793529B2 (ja) リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872620

Country of ref document: EP

Kind code of ref document: A1