WO2020078239A1 - 一种无人机交互式自检方法、系统及设备 - Google Patents

一种无人机交互式自检方法、系统及设备 Download PDF

Info

Publication number
WO2020078239A1
WO2020078239A1 PCT/CN2019/110147 CN2019110147W WO2020078239A1 WO 2020078239 A1 WO2020078239 A1 WO 2020078239A1 CN 2019110147 W CN2019110147 W CN 2019110147W WO 2020078239 A1 WO2020078239 A1 WO 2020078239A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
information
calibration
self
drone
Prior art date
Application number
PCT/CN2019/110147
Other languages
English (en)
French (fr)
Inventor
冯银华
周峰安
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020078239A1 publication Critical patent/WO2020078239A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24215Scada supervisory control and data acquisition

Definitions

  • the present invention relates to the field of unmanned aerial vehicles, and more specifically, to an interactive self-checking method, system and equipment for unmanned aerial vehicles.
  • the aircraft will also respond to various warning information, such as the flying altitude is too low, the maximum distance range of the aircraft is exceeded, the proximity to the airport, the flight is prohibited, and so on. These are all responses to ensure that the user's normal flight is not affected.
  • the detection work is complicated, cumbersome and time-consuming.
  • the technical problem to be solved by the present invention is to provide an interactive self-checking method, system and equipment for an unmanned aerial vehicle in view of the above defects of the prior art.
  • an embodiment of the present invention provides an interactive self-checking method for a drone, which is applied to an interactive self-checking system for a drone.
  • the system includes a drone and a wireless communication
  • Step S1 the drone obtains the status information of each functional module of the drone, and delivers the status information to the remote controller;
  • Step S2 The remote controller forwards the status information to the terminal device
  • Step S3 The terminal device detects each functional module according to the status information to obtain a detection result
  • Step S4 The terminal device broadcasts the detection result through its voice broadcast module.
  • the step S3 includes:
  • the terminal device compares the state information of each function module of the drone with a standard state parameter to determine a normal function module and an abnormal function module to obtain the detection result; wherein the standard state
  • the parameter is a state parameter of each functional module in a normal working state.
  • the step S4 includes: the voice broadcast module of the terminal device separately broadcasts the normal function module and / or the abnormal function module in the detection result.
  • step S4 if the detection result of step S3 includes an abnormal function module, after step S4, the method further includes:
  • Step S5 Determine whether the abnormal function module can complete self-calibration
  • Step S6 If yes, start the self-calibration function to perform self-calibration, and broadcast the calibration progress through the voice broadcast module.
  • the method further includes:
  • Step S7 If the abnormal function module cannot complete the self-calibration, broadcast the first prompt information through the voice broadcast module, and the first prompt information is used to prompt the user to perform manual calibration.
  • the method further includes:
  • Step S8 The voice broadcast module broadcasts the first operation information that prompts the user to manually calibrate
  • Step S9 Detect whether an operation action corresponding to the operation information of this step is received
  • Step S10 If yes, the voice broadcast module continues to broadcast the next operation information prompting the user to manually calibrate;
  • Step S11. Repeat the steps S9 and S10 until manual calibration is completed.
  • the method further includes:
  • Step S12 If the operation action corresponding to the operation information of this step is not received, the voice broadcast module broadcasts second prompt information, and the second prompt information is used to prompt the user that the operation is incorrect and prompt the user to perform the operation again.
  • the step S2 includes the remote controller sending the received status information of the drone and its own status information to the terminal device.
  • the status information includes compass information, IMU information, remote control battery information, drone battery information, drone battery temperature information, graph soft signal strength information, gimbal status information, SDCARD status information One or more.
  • the terminal device is one of a smart phone, a tablet computer, and a notebook computer.
  • an embodiment of the present invention also provides an interactive self-checking system for a drone, which includes a drone, a remote controller for wireless communication with the drone, and a remote controller connected to the drone Terminal equipment, the terminal equipment is connected to the drone through the remote control;
  • the UAV is used to obtain status information of each functional module of the UAV, and deliver the status information to the remote controller;
  • the remote controller is used to forward the status information to the terminal device
  • the terminal device is configured to detect each functional module according to the status information, obtain a detection result, and broadcast the detection result.
  • the terminal device includes a function module detection module and a voice broadcast module
  • the functional module detection module is used to compare the status information of each functional module with standard status parameters one by one to determine normal and abnormal functional modules to obtain the detection result; wherein the standard status parameters It is the state parameter of each function module under normal working state;
  • the voice broadcast module is configured to receive the detection result obtained by the functional module detection module and broadcast the detection result.
  • the voice broadcast module is specifically configured to: receive the detection result obtained by the functional module detection module, and separately broadcast the normal functional module and / or the abnormal functional module in the detection result.
  • the terminal device further includes a calibration module, the calibration module is configured to, when the detection result includes an abnormal function module:
  • the calibration module is further used to send first prompt information to the voice broadcast module when the abnormal function module cannot complete self-calibration, the first prompt information is used to prompt the user to manually calibration;
  • the voice broadcast module is also used to broadcast the first prompt information.
  • the voice broadcast module is specifically used to:
  • the remote controller When the remote controller receives the operation action corresponding to the operation information of this step, it continues to broadcast the next operation information prompting the user to manually calibrate;
  • the voice broadcast module is further used to:
  • the second prompt information is broadcast, and the second prompt information is used to prompt the user that the operation is incorrect and prompt the user to perform the operation again.
  • the remote controller is specifically configured to send the received status information of the drone and its own status information to the terminal device.
  • the status information includes compass information, IMU information, remote control battery information, drone battery information, drone battery temperature information, graph soft signal strength information, gimbal status information, SDCARD status information One or more.
  • the terminal device is one of a smart phone, a tablet computer, and a notebook computer.
  • an embodiment of the present invention also provides an unmanned aerial vehicle self-checking device, including a processor and a memory connected to the processor in communication;
  • the memory stores an instruction program executable by the processor, and the instruction program is executed by the processor, so that the processor can execute the drone interactive self-checking method as described above.
  • the system includes a drone, a remote controller that communicates with the drone wirelessly, and a remote controller connected to the remote controller Terminal device, the terminal device is connected to the drone through the remote control.
  • the method includes: step S1, the drone obtains the status information of each functional module of the drone, and sends the status information to the remote controller; step S2, the remote controller forwards the status information to the terminal device; step S3, The terminal device detects each functional module according to the status information to obtain a detection result; Step S4, the terminal device broadcasts the detection result through its voice broadcast module.
  • FIG. 1 is a schematic structural diagram of an interactive self-checking system for a drone according to the present invention
  • FIG. 2 is a flowchart of a first embodiment of a method for interactive self-checking of a drone according to the present invention
  • FIG. 3 is a flowchart of a second embodiment of a method for interactive self-checking of a drone according to the present invention
  • FIG. 4 is a flowchart of a third embodiment of a method for interactive self-checking of a drone according to the present invention.
  • FIG. 5 is a schematic block diagram of an interactive self-checking system for a drone provided by an embodiment of the present invention
  • FIG. 6 is a block diagram of an interactive self-checking device for a drone provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an interactive self-checking system of a drone according to the present invention
  • FIG. 2 is a flowchart of a first embodiment of an interactive self-checking method of a drone according to the present invention
  • 3 is a flowchart of a second embodiment of a method for interactive self-checking of a drone of the present invention
  • FIG. 4 is a flowchart of a third embodiment of a method of interactive self-checking of a drone of the present invention
  • FIG. 5 is the present invention
  • FIG. 6 is a block diagram of a UAV interactive self-checking device provided by an embodiment of the present invention.
  • the embodiment of the present invention is applicable to a system for remotely controlling a drone through a wireless transmission method by a remote controller.
  • the drone interactive self-checking system includes: a drone 100, a remote controller 200, and a terminal device 300 connected to the remote controller 200.
  • a wireless communication connection is established between the drone 100 and the remote controller 200.
  • the drone 100 and the remote controller 200 can perform data transmission through wireless communication.
  • the remote controller 200 transmits the remote controller control signal to the drone 100 to The operations of flying, shooting, and calibration of the UAV 100 are controlled from a long distance.
  • the terminal device 300 is connected to the remote controller 200 in a wired or wireless manner.
  • the drone 100 and the remote controller 200 have modules for data transmission between each other, for example, a radio frequency module (RF module).
  • the UAV 100 uses its radio frequency module to collect its data, for example, the image data collected by its image acquisition device, the data representing the flight status or flight environment output by the flight control module, and the status of the various functional modules of the UAV itself.
  • the information is transmitted to the radio frequency module of the remote controller 200, and then the relevant data information is directly transmitted to the user through the multimedia component on the remote controller 200 or the output result is processed and then transmitted to the user, for example, through the installation on the remote controller 200
  • the display device on the terminal device 300 is displayed to the user, or played to the user through the audio playback device on the terminal device 300.
  • a user when a user inputs a flight command for operating the drone 100 through the remote controller 200, or a calibration command for each functional module of the drone 100, etc., it is sent to the drone via the radio frequency module of the remote controller 200 After receiving the control instruction, the radio frequency module of the UAV 100 sends the radio frequency module of the UAV 100 to the processor of the UAV 100, and the processor completes the corresponding task.
  • the drone 100 is used to send data representing the status information of each function module of the remote controller 200;
  • the remote controller 200 is used to receive the status information sent by the drone 100 and send the status information to the terminal device 300;
  • the terminal device 300 is configured to detect each functional module of the drone according to the status information, obtain a detection result, and broadcast the detection result through its voice broadcast module.
  • the terminal device 300 includes a voice broadcast module for broadcasting prompt sounds and operation steps.
  • the voice broadcast module can convert text information into an audio signal and play it out through audio devices such as a speaker and a speaker; or the voice broadcast module directly converts the detection result into audio signal.
  • the storage module of the terminal device 300 stores the standard status parameters of each function module of the drone 100.
  • the storage module of the terminal device 300 also stores the standard status parameters of each function module of the remote controller 200.
  • the state parameter is the state parameter of each function module in the normal working state.
  • the calibration procedure includes a self-calibration procedure and a manual calibration procedure.
  • the self-calibration procedure is used for the function module to perform self-calibration.
  • the manual calibration module requires the user to manually calibrate.
  • Manual calibration The program includes a prompt tone for each step in the calibration process and a verification program to verify whether to receive user operation.
  • the calibration program may be stored in one or more storage modules in the drone 100, the remote controller 200, and the terminal device 300.
  • the unmanned aerial vehicle 100 may be a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • the unmanned aerial vehicle 100 may be a four-rotor aircraft, that is, an aircraft with four power components, each of which includes a power A motor and a propeller driven by the power motor.
  • the UAV may also be a six-rotor aircraft, an eight-rotor aircraft, a twelve-rotor aircraft, and so on.
  • the terminal device 300 includes, but is not limited to, a smart phone, a tablet computer, a notebook computer, etc. connected to the remote controller 200.
  • the terminal device 300 can be freely detached from the remote controller 200; in other implementations, the terminal device 300 can also be The display device of the remote controller 200 fixedly mounted on the remote controller 200, that is, the terminal device 300 and the remote controller 200 may be an integral piece.
  • the terminal device 300 may be a display device such as a liquid crystal display (LCD).
  • the UAV interactive self-inspection system performs the following UAV interactive self-inspection method for self-inspection, which will be described below through specific embodiments.
  • FIG. 2 it is an operation flowchart of an interactive self-checking method of a drone provided by an embodiment of the present invention.
  • the method of this embodiment can be applied to the interactive self-checking of a drone shown in FIG.
  • the method specifically includes the following steps:
  • Step S1 The drone 100 obtains the status information of each functional module of the drone 100, and delivers the status information to the remote controller 200.
  • the status information includes but is not limited to compass information, IMU information, drone battery information, drone battery temperature information, graph soft signal strength information, gimbal status information, SDCARD status information, etc., which can be known through these status information The current state of the drone 100.
  • Step S2 The remote controller 200 forwards the state information to the terminal device 300.
  • step S2 includes: the remote controller 200 transmits the received status information of the drone 100 and the status information of the remote controller 200 itself to the terminal device 300, which can simultaneously detect the drone 100 and the remote controller 200.
  • the status information includes but is not limited to compass information, IMU information, remote control battery information, drone battery information, drone battery temperature information, graph soft signal strength information, PTZ status information, SDCARD status information, etc. These state information can know the current state of the drone 100 and the remote controller 200.
  • the terminal device 300 is connected to the remote controller 200 through a wired connection such as a USB cable connection, and receives status information transmitted by the remote controller 200. It should be understood that, in other embodiments, the terminal device 300 may be connected to the remote controller 200 through a wireless connection.
  • Step S3 The terminal device 200 detects each functional module according to the status information, and obtains a detection result. Specifically, step S3 includes: the terminal device 200 compares the state information of each functional module of the drone 100 with the standard state parameter to determine the normal functional module and the abnormal functional module, thereby obtaining the detection result;
  • the standard state parameter is a state parameter of each functional module in a normal working state, and the standard state information is stored in a storage module of the terminal device.
  • Step S4 The terminal device 300 broadcasts the detection result through its voice broadcast module.
  • the terminal device 300 compares the state information of each function module of the drone 100 with the standard state parameters one by one to determine the normal function module and the abnormal function module to obtain the detection result.
  • the terminal device 300 uses the voice broadcast module
  • the normal function module and / or the abnormal function module in the detection result are broadcast separately.
  • step S4 includes: voice broadcast of terminal device 300 The module only broadcasts the abnormal function module in the detection result.
  • the voice broadcast module of this embodiment has a voice conversion unit that converts the text information into voice, and the status information can be broadcast by converting the text into audio.
  • the collected status information is transmitted to the terminal device 300, and the terminal device 300 completes the judgment of the status of the drone 100, finds out abnormal function modules, and broadcasts through voice, which is convenient for the user to grasp the function modules status.
  • step S4 if the detection result of step S3 includes an abnormal function module, the abnormal function module needs to be corrected, then After step S4, it also includes:
  • Step S5 Determine whether the abnormal function module can complete self-calibration. Alternatively, it can be judged whether the function module can complete the self-calibration by judging the cause of the abnormality of the abnormal function module, and the reason for completing the self-calibration is stored in the storage module in advance. Or, you can judge whether the function module can perform self-calibration by trying to perform self-calibration. If the calibration is successful, it means that self-calibration can be achieved; if the calibration fails, it means that self-calibration cannot be performed. Or, pre-set a list of function modules that can be self-calibrated to determine whether the abnormal function module is on the list. If it is, it means that self-calibration can be achieved; if it is not, it means that self-calibration cannot be achieved.
  • Step S6 If the abnormal function module can complete self-calibration, start the self-calibration function to perform self-calibration, and broadcast the calibration progress through the voice broadcast module, such as "calibration start”, “calibration in progress”, “remaining calibration time”, “complete calibration” "Wait. Understandably, the self-calibration function is realized by an automatic control program, which is stored in the storage module in advance, and the abnormal function module can be calibrated by executing the automatic control program. In particular, if the functional module determined to be able to complete self-calibration fails during the calibration process, the abnormal module is again determined to be a functional module that cannot complete self-calibration.
  • Step S7 If the abnormal function module cannot complete self-calibration, the first prompt message is broadcasted through the voice broadcast module, and the first prompt message is used to prompt the user to perform manual calibration.
  • This embodiment judges whether the abnormal function module can realize self-calibration. If it can, it performs self-calibration and broadcasts the calibration progress. If not, the user is prompted to perform manual calibration. Thus, semi-automatic calibration of the drone is realized, and the operation amount of the user is reduced.
  • the interactive self-checking method of the drone of this embodiment further provides a manual calibration step of the abnormal function module. Specifically, after step S7, it further includes:
  • Step S8 The voice broadcast module broadcasts the first operation information that prompts the user to manually calibrate.
  • Manual calibration includes multiple steps, and each step of the operation information corresponds to a series of operation actions. The user completes these operation actions under the guidance of voice, and then completes this step Calibration of operating information.
  • the manual calibration is stored in the storage module of the terminal device.
  • Step S9 Detect whether the operation action corresponding to the operation information of this step is received. After each step of broadcasting the operation information, start to detect the corresponding functional module in the drone or remote control, and transmit the operation action received by the corresponding module to the terminal device. It can be understood that when the user performs the operation action, the corresponding induction signal is generated, and the induction signal is transmitted to the terminal device. If the operation is performed on the functional module of the UAV, the sensing signal is forwarded to the terminal device through the remote control; if the operation is performed on the functional module of the remote control, the sensing signal is directly transmitted to the terminal device.
  • Step S10 If an operation action corresponding to the operation information of this step is received, the voice broadcast module continues to broadcast the next operation information prompting the user to manually calibrate. If the operation action corresponding to the operation information of the step is received includes: receiving the operation action, and judging whether the sensing signal of the operation action corresponds to the operation information of the step. If it corresponds, the user's operation is correct, and the voice broadcast module continues to broadcast the next operation information of manual calibration. If it does not correspond, it means that the user's operation is incorrect.
  • Step S11. Repeat Step S9 and Step S10 until manual calibration is completed.
  • the method further includes:
  • Step S12 If the operation action corresponding to the operation information of this step is not received, the voice broadcast module broadcasts the second prompt information.
  • the second prompt information is used to prompt the user that the operation is incorrect and prompt the user to perform the operation again. If the operation action corresponding to the operation information of this step is not received, there are two cases:
  • the first case no induction signal of any operation action is received.
  • the second case the sensory signal of the operation action is received, but it is determined that the sensory signal does not correspond to the operation information of the step.
  • the calibration process when performing the calibration step, in addition to broadcasting the voice, can also be displayed at the same time through the display screen, indicator light, vibration, etc., so that the user can be informed of the calibration process in a timely manner.
  • the calibration process is displayed by the number and color of indicators.
  • FIG. 5 it is a schematic block diagram of an interactive self-checking system for a drone provided by an exemplary embodiment of the present invention.
  • the drone interactive self-checking system includes a drone 100, a remote controller 200 wirelessly communicating with the drone 100, and a terminal device 300 connected to the remote controller 200.
  • the terminal device 300 is connected to the drone 100 through the remote controller 200; the drone 100 is used to obtain the status information of each functional module of the drone 100 and deliver the status information to the Remote controller 200; the remote controller 200 is used to forward the status information to the terminal device 300; the terminal device 300 is used to detect each functional module according to the status information to obtain a detection result, and Broadcast the test results.
  • the terminal device 300 includes a function module detection module 301, a voice broadcast module 302, and a calibration module 303.
  • the functional module detection module 301 is used to compare the status information of each functional module with standard status parameters one by one to determine normal and abnormal functional modules to obtain the detection result; wherein the standard status parameters It is the state parameter of each functional module in a normal working state; the voice broadcast module 302 is used to receive the detection result obtained by the functional module detection module 301 and broadcast the detection result. Specifically, the voice broadcast module 302 receives the detection result obtained by the functional module detection module 301, and separately broadcasts the normal functional module and / or the abnormal functional module in the detection result.
  • the calibration module 303 is used to determine whether the abnormal function module can complete self-calibration when the abnormal function module is included in the detection result; if the abnormal function module can complete self-calibration, the calibration module 303 is started The self-calibration function performs self-calibration and sends the calibration progress to the voice broadcast module, and the voice broadcast module broadcasts the calibration progress; if it is determined that the abnormal function module cannot complete self-calibration, the calibration module 303 reports The voice broadcast module 302 sends first prompt information, and the first prompt information is used to prompt the user to perform manual calibration; thus, the voice broadcast module 302 broadcasts the first prompt information.
  • the voice broadcast module 302 broadcasts the first operation information that prompts the user to manually calibrate.
  • the remote controller 200 receives the operation action corresponding to the operation information of this step, it continues to broadcast the next operation information prompting the user to manually calibrate; then repeat the above steps until the manual calibration is completed; the remote controller 200 does not receive the operation step
  • the voice broadcast module 302 broadcasts second prompt information for prompting the user that the operation is incorrect and prompting the user to perform the operation again.
  • the UAV interactive self-checking device may include one or more of the following components: a processing component 2001, a memory 2002, a multimedia component 2003, an input / output (I / O) interface 2004, and a communication component 2005.
  • the processing component 2001 controls the overall operation of the UAV interactive self-inspection device, such as operations associated with display, data communication, shooting operations, calibration, and control of the drone's flight.
  • the processing component 2001 may include one or more processors 2010 to execute instructions to complete all or part of the steps of the method on the mobile control terminal side in the foregoing embodiments.
  • the memory 2002 is configured to store various types of data that support operations on the drone interactive self-checking device, such as instructions, contacts for any applications or methods for operating on the drone interactive self-checking device Data, messages, pictures, videos, files, etc.
  • the memory 2002 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable and removable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable and removable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the multimedia component 2003 includes an audio device that provides an output interface between the UAV interactive self-checking device and the user, for example, an audio device for playing audio, a speaker, and the like.
  • the multimedia component 2003 may also be a display device that provides an output interface between the UAV interactive self-checking device and the user.
  • the display device may include a liquid crystal display (LCD) and / or a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user; or, display prompt information for prompting the user to perform calibration to the user.
  • LCD liquid crystal display
  • TP touch panel
  • the input / output (I / O) interface 2004 provides an interface between the processing component 2001 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, buttons, virtual keys, etc., such as the Home button, volume button, and lock screen on a smartphone Button.
  • the communication component 2005 is configured to perform wired or wireless communication between the UAV interactive self-checking device and other devices.
  • UAV interactive self-checking equipment can access wireless networks based on communication standards, such as WiFi, 3G, or 4G networks.
  • the communication component 2005 further includes a near field communication (NFC) module for short-range communication.
  • NFC near field communication
  • the NFC module may be based on radio frequency identification (RFID) technology, infrared communication (IrDA) technology, and ultra-wideband ( UWB) technology, Bluetooth (BT) technology and other technologies to achieve.
  • RFID radio frequency identification
  • IrDA infrared communication
  • UWB ultra-wideband
  • BT Bluetooth
  • the UAV interactive self-checking device may be composed of one or more application specific integrated circuits (ASIC), digital signal processor (DSP), digital signal processing device (DSro), programmable logic device (PLD) ), A field programmable gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components to implement the method on the display terminal side.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • DSro digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components to implement the method on the display terminal side.
  • An embodiment of the present invention also provides a non-volatile computer-readable storage medium, such as the memory 2002, where the non-volatile computer-readable storage medium stores computer-executable instructions, which are executed by the drone
  • the processor 2010 of the interactive self-checking device executes to complete the shooting method in any of the method embodiments on the display terminal side, for example, executes some or all of the steps in the methods of FIGS. 2-4 described above to implement the diagram The function of the module in 5.
  • the non-volatile computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Selective Calling Equipment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种无人机交互式自检方法及系统,包括无人机(100)、与无人机(100)无线通信的遥控器(200)、以及连接至遥控器(200)的终端设备(300),终端设备(300)通过遥控器(200)连接无人机(100)。自检方法包括:步骤S1、无人机(100)获取无人机(100)的各个功能模块的状态信息,并将状态信息下发至遥控器(200);步骤S2、遥控器(200)将状态信息转发至终端设备(300);步骤S3、终端设备(300)根据状态信息检测各个功能模块得到检测结果;步骤S4、终端设备(300)通过其语音播报模块(302)播报检测结果。能够通过终端设备实现对无人机的自动或半自动检测,以语音播报形式反馈各种信息,可更准确的实时提醒用户,使自检更简单方便,提高监测效率和用户体验度。

Description

一种无人机交互式自检方法、系统及设备
相关申请交叉引用
本申请要求于2018年10月18日申请的、申请号为201811217677.5、申请名称为“一种无人机交互式自检方法、系统及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人机领域,更具体地说,涉及一种无人机交互式自检方法、系统及设备。
背景技术
随着无人机航拍技术的不断发展,越来越多的消费级无人机也正在生产研制,无人机也逐步日趋普及。在使用操控无人机的准备过程中,用户会根据飞行器当前的情况进行检查,检查每个零头部件是否存在问题。当某模块有问题时,如果没有进行适当的调整或者校准及修理,轻者会引起整个飞行的体验效果,重者还会有炸机的风险,引起一定的财产损失。特别是利用在工业级的大飞机上,在起飞前都会做各种繁琐的检查校准操作,每个模块都一定是需要人为去按照要求来移动飞行器。飞行器也会给对应响应各种各样的告警信息,如飞行高度过低、超过飞行器的最大距离范围、靠近机场附近、禁止飞行等等。这些都是为了保证用户的正常飞行不受到影响而做出的响应。检测工作复杂、繁琐及又耗时。
另外众多的告警信息仅通过文字来提示用户,难免会引起疏漏,因为每一条文本信息都有一个显示的时间设置,一般情况显示不会超过3秒。当用户忙于操作飞行器,很容易疏漏终端设备上的文字提示。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种无人机交互式自检方法、系统及设备。
为了解决上述技术问题,本发明实施例提供一种无人机交互式自检方法,应用于无人机交互式自检系统,所述系统包括无人机、与所述无人机无线通讯的遥控器、以及连接至所述遥控器的终端设备,所述终端设备通过所述遥控器连接所述无人机,所述方法包括:
步骤S1、所述无人机获取所述无人机的各个功能模块的状态信息,并将所述状态信息下发至所述遥控器;
步骤S2、所述遥控器将所述状态信息转发至所述终端设备;
步骤S3、所述终端设备根据所述状态信息检测所述各个功能模块,得到检测结果;
步骤S4、所述终端设备通过其语音播报模块播报所述检测结果。
在一些实施例中,所述步骤S3包括:
所述终端设备将所述无人机的所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中所述标准状态参数为所述各个功能模块在正常工作状态下的状态参数。
在一些实施例中,所述步骤S4包括:所述终端设备的所述语音播报模块对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。
在一些实施例中,若所述步骤S3的检测结果中包含异常功能模块,则在所述步骤S4之后还包括:
步骤S5、判断异常功能模块能否完成自我校准;
步骤S6、若是,则启动自我校准功能进行自我校准,并通过所述语音播报模块播报校准进度。
在一些实施例中,在所述步骤S5之后还包括:
步骤S7、若异常功能模块无法完成自我校准,则通过所述语音播报模块播报第一提示信息,所述第一提示信息用于提示用户进行手动校准。
在一些实施例中,在所述步骤S7之后还包括:
步骤S8、所述语音播报模块播报提示用户手动校准的第一步操作信息;
步骤S9、检测是否接收到与该步操作信息对应的操作动作;
步骤S10、若是,则所述语音播报模块继续播报提示用户手动校准的下一步操作信息;
步骤S11、重复执行所述步骤S9和步骤S10,直至完成手动校准。
在一些实施例中,在所述步骤S9之后还包括:
步骤S12、若未接收到与该步操作信息对应的操作动作,则所述语音播报模块播报第二提示信息,所述第二提示信息用于提示用户操作有误并提示用户重新进行操作。
在一些实施例中,所述步骤S2包括:所述遥控器将接收的所述无人机的状态信息以及自身的状态信息发送至所述终端设备。
在一些实施例中,所述状态信息包括指南针信息、IMU信息、遥控器电池信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息中的一种或多种。
在一些实施例中,所述终端设备为智能手机、平板电脑、笔记本电脑中的一种。
为了解决上述技术问题,本发明实施例还提供一种无人机交互式自检系统,所述系统包括无人机、与所述无人机无线通讯的遥控器、以及连接至所述遥控器的终端设备,所述终端设备通过所述遥控器连接所述无人机;
所述无人机,用于获取所述无人机的各个功能模块的状态信息,并将所述状态信息下发至所述遥控器;
所述遥控器,用于将所述状态信息转发至所述终端设备;
所述终端设备,用于根据所述状态信息检测所述各个功能模块,得到检测结果,并播报所述检测结果。
在一些实施例中,所述终端设备包括功能模块检测模块和语音播报模块;
所述功能模块检测模块,用于将所述各个功能模块的状态信息与标准状 态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中所述标准状态参数为所述各个功能模块在正常工作状态下的状态参数;
所述语音播报模块,用于接收所述功能模块检测模块得到的检测结果,并播报所述检测结果。
在一些实施例中,所述语音播报模块具体用于:接收所述功能模块检测模块得到的检测结果,并对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。
在一些实施例中,所述终端设备还包括校准模块,所述校准模块用于,在所述检测结果中包含异常功能模块时:
判断所述异常功能模块能否完成自我校准;若是,则启动自我校准功能进行自我校准,并将校准进度发送给所述语音播报模块,由所述语音播报模块播报所述校准进度。
在一些实施例中,所述校准模块还用于,在所述异常功能模块无法完成自我校准时,向所述语音播报模块发送第一提示信息,所述第一提示信息用于提示用户进行手动校准;
所述语音播报模块还用于播报所述第一提示信息。
在一些实施例中,所述语音播报模块具体用于:
播报提示用户手动校准的第一步操作信息;
在所述遥控器接收到与该步操作信息对应的操作动作时,继续播报提示用户手动校准的下一步操作信息;
重复执行以上步骤,直至完成手动校准。
在一些实施例中,所述语音播报模块具体还用于:
在所述遥控器未接收到与该步操作信息对应的操作动作,播报第二提示信息,所述第二提示信息用于提示用户操作有误并提示用户重新进行操作。
在一些实施例中,所述遥控器具体用于:将接收的所述无人机的状态信息以及自身的状态信息发送至所述终端设备。
在一些实施例中,所述状态信息包括指南针信息、IMU信息、遥控器电池 信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息中的一种或多种。
在一些实施例中,所述终端设备为智能手机、平板电脑、笔记本电脑中的一种。
为了解决上述技术问题,本发明实施例还提供一种无人机交互式自检设备,包括处理器和与所述处理器通信连接的存储器;
其中,所述存储器存储有可被所述处理器执行的指令程序,所述指令程序被所述处理器执行,以使所述处理器能够执行如上所述的无人机交互式自检方法。
实施本发明的一种无人机交互式自检方法、系统和设备,具有以下有益效果:该系统包括无人机、与所述无人机无线通许的遥控器、以及连接至说是遥控器的终端设备,终端设备通过遥控器连接无人机。该方法包括:步骤S1、无人机获取所述无人机的各个功能模块的状态信息,并将状态信息下发至遥控器;步骤S2、遥控器将状态信息转发至终端设备;步骤S3、终端设备根据状态信息检测所述各个功能模块,得到检测结果;步骤S4、终端设备通过其语音播报模块播报检测结果。通过实施本发明,通过终端设备实现对无人机的自动或半自动检测,并通过语音播报形式来反馈各种信息,从而能更准确的实时提醒用户,让飞行前的模块检查更加简单方便,提高监测效率和用户使用飞机的体验度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一种无人机交互式自检系统的结构示意图;
图2是本发明一种无人机交互式自检方法第一实施例的流程图;
图3是本发明一种无人机交互式自检方法第二实施例的流程图;
图4是本发明一种无人机交互式自检方法第三实施例的流程图;
图5为本发明一实施例提供的无人机交互式自检系统的模块示意图;
图6为本发明一实施例提供的无人机交互式自检设备的框图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
照图1至图6,图1是本发明一种无人机交互式自检系统的结构示意图;图2是本发明一种无人机交互式自检方法第一实施例的流程图;图3是本发明一种无人机交互式自检方法第二实施例的流程图;图4是本发明一种无人机交互式自检方法第三实施例的流程图;图5为本发明一实施例提供的无人机交互式自检系统的模块示意图;图6为本发明一实施例提供的无人机交互式自检设备的框图。
本发明实施例适用于由遥控器通过无线传输方式进行远距离控制无人机 的系统上,例如,适用于图1中所示的由遥控器与无人机进行交互以实现无人机的自检的无人机交互式自检系统上。如图1所示,该无人机交互式自检系统包括:无人机100、遥控器200、以及连接至所述遥控器200的终端设备300。其中,无人机100与遥控器200之间建立有无线通信连接,无人机100与遥控器200可以通过无线通信进行数据传输,遥控器200向无人机100传输遥控器控制信号,以对无人机100的飞行、拍摄、校准等操作进行远距离控制。终端设备300通过有线方式或无线方式连接遥控器200。
具体地,在本发明实施例中,无人机100和遥控器200具有用于进行彼此间的数据传输的模块,例如,射频模块(RF模块)。无人机100通过其射频模块将其数据,例如,其图像采集装置采集到的图像数据、飞控模块输出的表征飞行状态或飞行环境等的数据、表征无人机自身各个功能模块的状态的信息等传输给遥控器200的射频模块,再通过遥控器200上的多媒体组件将相关数据信息直接传递给用户或经处理输出结果后传递给用户,例如,通过安装在与遥控器200相连接的终端设备300上的显示装置显示给用户,或通过终端设备300上的音频播放装置播放给用户。另一方面,当用户通过遥控器200输入用于操作无人机100飞行的飞行指令,或用于无人机100各个功能模块的校准指令等,经由遥控器200的射频模块发送给无人机100的射频模块,无人机100的射频模块接收到该控制指令后,发送给无人机100的处理器,由处理器完成相应的任务。
具体地,在本发明实施例中,所述无人机100,用于向遥控器200发送表征其各个功能模块的状态信息的数据;
所述遥控器200,用于接收所述无人机100发送的状态信息,并将状态信息发送给终端设备300;
所述终端设备300,用于根据所述状态信息检测无人机的各个功能模块,得到检测结果,并通过其语音播报模块播报所述检测结果。
终端设备300包括用于播报提示音和操作步骤的语音播报模块,语音播报模块可将文字信息转化为音频信号,并通过音响、喇叭等音频装置播放出来;或者语音播报模块将检测结果直接转换为音频信号。进一步,终端设备 300的存储模块中存储有无人机100的各个功能模块的标准状态参数,作为选择,终端设备300的存储模块中还存储有遥控器200的各个功能模块的标准状态参数,标准状态参数为各个功能模块在正常工作状态下的状态参数。作为选择,自检后异常功能模块的恢复可通过校准程序实现,校准程序包括自我校准程序和手动校准程序,其中自我校准程序用于功能模块进行自我校准,手动校准模块需用户手动校准,手动校准程序中包含校准过程中每个步骤的提示音以及验证是否接收要用户操作的验证程序。作为选择,校准程序可存储在无人机100、遥控器200、终端设备300中一个或多个的存储模块中。
优选地,无人机100可以为固定翼无人机和旋翼无人机,例如,所述无人机100可以为四旋翼飞行器,即具有四个动力组件的飞行器,每个动力组件包括一个动力电机和一个由所述动力电机驱动的螺旋桨。可以理解,所述无人机还可以为六旋翼飞行器、八旋翼飞行器、十二旋翼飞行器等。终端设备300包括但不限于为外接到遥控器200上的智能手机、平板电脑、笔记本电脑等,终端设备300可从遥控器200上自由拆卸;在另一些实现方式中,终端设备300还可以为固定安装在遥控器200上的遥控器200自带的显示装置,即,终端设备300和遥控器200可为一体件,例如,终端设备300可以为液晶显示屏(LCD)等显示装置。
进一步,该无人机交互式自检系统执行下文的无人机交互式自检方法进行自检,以下通过具体实施例进行说明。
实施例1
如图2所示,为本发明的一个实施例提供的一种无人机交互式自检方法的操作流程图,本实施例的方法可应用于图1所示的无人机交互式自检系统中,该方法具体包括下述步骤:
步骤S1、无人机100获取所述无人机100的各个功能模块的状态信息,并将状态信息下发至遥控器200。优选地,状态信息包括但不限于指南针信息、IMU信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息等,通过这些状态信息可获知无人机100的当前状态。
步骤S2、遥控器200将状态信息转发至终端设备300。进一步,步骤S2包括:遥控器200将接收的无人机100的状态信息以及遥控器200自身的状态信息发送至终端设备300,可同时实现对无人机100和遥控器200的检测。优选地,状态信息包括但不限于指南针信息、IMU信息、遥控器电池信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息等,通过这些状态信息可获知无人机100和遥控器200的当前状态。优选地,终端设备300通过USB连接线连接等有线连接的方式连接至遥控器200,并接收遥控器200传输的状态信息。应理解的是,在另一些实施例中,终端设备300可以通过无线连接的方式与遥控器200连接。
步骤S3、终端设备200根据状态信息检测所述各个功能模块,得到检测结果。具体的,步骤S3包括:终端设备200将无人机100的所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中标准状态参数为所述各个功能模块在正常工作状态下的状态参数,该标准状态信息存储在终端设备的存储模块中。
步骤S4、终端设备300通过其语音播报模块播报检测结果。终端设备300将无人机100的所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果,终端设备300通过语音播报模块对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。优选地,在日常操作中,出现异常状况的往往是少数功能模块,通常只有一两个,如果每次都播报正常功能模块,则会浪费大量时间,所以步骤S4包括:终端设备300的语音播报模块仅播报检测结果中的异常功能模块。
进一步,若现有状态信息通过文字显示,则本实施例的语音播报模块播具有将文字信息转化为语音的语音转换单元,通过将文字转化为音频即可实现对状态信息播报。
本实施例将采集的状态信息传输至终端设备300,由终端设备300完成对无人机100的状态判断,找出异常功能模块,并通过语音进行播报,方便用户及时准确的掌握各个功能模块的状态。
实施例2
参考图3,在第一实施例的基础上,在本实施例的无人机交互式自检方法中,若步骤S3的检测结果中包含异常功能模块,需要对异常功能模块进行校正,则在步骤S4之后还包括:
步骤S5、判断异常功能模块能否完成自我校准。作为选择,可通过判断异常功能模块出现的异常原因来判断该功能模块能否完成自我校准,可完成自我校准的原因预先存储在存储模块中。或者,可通过尝试进行自我校准来判断该功能模块能否进行自我校准,若尝试校准成功,则说明可实现自我校准;若校准失败,则说明不能进行自我校准。或者,预先设置可进行自我校准的功能模块名单,判断异常功能模块是否在该名单中,若在,则说明可实现自我校准;若不在,则说明不能实现自我校准。
步骤S6、若异常功能模块能完成自我校准,则启动自我校准功能进行自我校准,并通过语音播报模块播报校准进度,例如“校准开始”、“校准中”、“剩余校准时间”、“完成校准”等。可以理解的,自我校准功能通过自动控制程序实现,自动控制程序预先存储在存储模块中,通过执行自动控制程序即可完成对异常功能模块的校准。特别的,如果判定为可完成自我校准的功能模块在校准过程中失败,则将该异常模块再判定为不能完成自我校准的功能模块。
步骤S7、若异常功能模块无法完成自我校准,则通过语音播报模块播报第一提示信息,所述第一提示信息用于提示用户进行手动校准。
本实施例判断异常功能模块能否实现自我校准,若能,则进行自我校准并播报校准进度。若不能,则提示用户进行手动校准。从而实现无人机的半自动化校准,减少用户的操作量。
实施例3
参考图4,在第二实施例的基础上,本实施例的无人机交互式自检方法进一步提供了异常功能模块的手动校准步骤。具体的,在步骤S7之后还包括:
步骤S8、语音播报模块播报提示用户手动校准的第一步操作信息,手动校准包括多个步骤,每一步操作信息都对应一系列操作动作,用户在语音指 导下完成这些操作动作,便完成这一步操作信息的校准。优选地,手动校准存储在终端设备的存储模块中。
步骤S9、检测是否接收到与该步操作信息对应的操作动作,每播报一步操作信息后,开始检测无人机或遥控器中的对应功能模块,并将对应模块接收到的操作动作传输至终端设备。可以理解,用户在执行操作动作时,产生对应的感应信号,并将感应信号传输至终端设备。如果是对无人机的功能模块进行操作动作,则感应信号通过遥控器转发至终端设备;若是对遥控器的功能模块进行操作动作,则感应信号直接传输至终端设备。
步骤S10、若接收到与该步操作信息对应的操作动作,则语音播报模块继续播报提示用户手动校准的下一步操作信息。若接收到与该步操作信息对应的操作动作包括:接收到操作动作,并判断该操作动作的感应信号是否与该步骤操作信息对应。若对应,则说明用户操作正确,语音播报模块继续播报手动校准的下一步操作信息。若不对应,说明用户操作不正确。
步骤S11、重复执行步骤S9和步骤S10,直至完成手动校准。
进一步,本实施例的无人机交互式自检方法中,在步骤S9之后还包括:
步骤S12、若未接收到与该步操作信息对应的操作动作,则语音播报模块播报第二提示信息,所述第二提示信息用于提示用户操作有误并提示用户重新进行操作。若未接收到与该步操作信息对应的操作动作包括两种情况:
第一种情况:未接收到任何操作动作的感应信号。
第二种情况:接收到操作动作的感应信号,但通过判断得知该感应信号与该步骤操作信息不对应。
无论是以上哪种情况,都认为未接收到与该步操作信息对应的操作动作。
一些实施例中,在执行校准步骤时,除播报语音外,还可同时通过显示屏、指示灯、震动等方式显示校准过程,使用户能及时获知校准进程。例如,通过指示灯的数量和颜色来显示校准进程。
在本发明实施例提供的无人机交互式自检方法中,通过终端设备实现对无人机的自动或半自动检测,并通过语音播报形式来反馈各种信息,从而能更准确的实时提醒用户,让飞行前的模块检查更加简单方便,提高监测效率 和用户使用飞机的体验度;进一步地,在需要用户手动进行校准时,通过语音播报校准步骤,指导用户进行一步一步的校准操作,使用户不用再去查看说明书,能够更专心的进行校准工作,提高校准效率。
如图5所示,是本发明一示例性实施例提供的一种无人机交互式自检系统的模块示意图。
参照图5,该无人机交互式自检系统包括无人机100、与所述无人机100无线通讯的遥控器200、以及连接至所述遥控器200的终端设备300,所述终端设备300通过所述遥控器200连接所述无人机100;所述无人机100,用于获取所述无人机100的各个功能模块的状态信息,并将所述状态信息下发至所述遥控器200;所述遥控器200,用于将所述状态信息转发至所述终端设备300;所述终端设备300,用于根据所述状态信息检测所述各个功能模块,得到检测结果,并播报所述检测结果。
具体地,所述终端设备300包括功能模块检测模块301、语音播报模块302和校准模块303。
所述功能模块检测模块301用于将所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中所述标准状态参数为所述各个功能模块在正常工作状态下的状态参数;所述语音播报模块302,用于接收所述功能模块检测模块301得到的检测结果,并播报所述检测结果。具体地,所述语音播报模块302接收所述功能模块检测模块301得到的检测结果,并对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。
所述校准模块303用于在所述检测结果中包含异常功能模块时:判断所述异常功能模块能否完成自我校准;若判断所述异常功能模块能够完成自我校准,则所述校准模块303启动自我校准功能进行自我校准,并将校准进度发送给所述语音播报模块,由所述语音播报模块播报所述校准进度;若判断所述异常功能模块无法完成自我校准,则所述校准模块303向所述语音播报模块302发送第一提示信息,所述第一提示信息用于提示用户进行手动校准;从而,所述语音播报模块302对所述第一提示信息进行播报。
具体地,所述语音播报模块302播报提示用户手动校准的第一步操作信息。在遥控器200接收到与该步操作信息对应的操作动作时,继续播报提示用户手动校准的下一步操作信息;然后重复执行以上步骤,直至完成手动校准;在遥控器200未接收到与该步操作信息对应的操作动作,语音播报模块302播报用于提示用户操作有误并提示用户重新进行操作的第二提示信息。
所述无人机100、所述遥控器200、所述终端设备300及其能模块检测模块301、语音播报模块302和校准模块303与结合图2-图4所描述的方法实施例中的原理相同,在此不再赘述。
在本发明实施例提供的无人机交互式自检系统中,通过终端设备实现对无人机的自动或半自动检测,并通过语音播报形式来反馈各种信息,从而能更准确的实时提醒用户,让飞行前的模块检查更加简单方便,提高监测效率和用户使用飞机的体验度;进一步地,在需要用户手动进行校准时,通过语音播报校准步骤,指导用户进行一步一步的校准操作,使用户不用再去查看说明书,能够更专心的进行校准工作,提高校准效率。
参照图6,为本发明一实施例提供的无人机交互式自检设备的框图。该无人机交互式自检设备可以包括以下一个或多个组件:处理组件2001、存储器2002、多媒体组件2003、输入/输出(I/O)接口2004以及通信组件2005。
处理组件2001控制该无人机交互式自检设备的整体操作,例如与显示、数据通信、拍摄操作、校准、对无人机的飞行进行控制等相关联的操作。处理组件2001可以包括一个或多个处理器2010来执行指令,以完成上述实施例中的移动控制终端一侧的方法的全部或部分步骤。
存储器2002配置为存储支持在无人机交互式自检设备上的操作的各种类型的数据,例如用于在无人机交互式自检设备上操作的任何应用程序或方法的指令、联系人数据、消息、图片、视频、文件等。存储器2002可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(R0M),磁存储器,快闪存储器,磁盘或光盘。
多媒体组件2003包括在无人机交互式自检设备和用户之间提供一个输出接口的音频装置,例如,用于播放音频的音响、喇叭等音频装置。多媒体组件2003还可以是在所述无人机交互式自检设备和用户之间提供一个输出接口的显示装置,在一些实施例中,该显示装置可以包括液晶显示器(LCD)和/或触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号;或者,向用户显示用于提示用户进行校准的提示信息。
输入/输出(I/O)接口2004为处理组件2001和外围接口模块之间提供接口,上述外围接口模块可以是键盘、按钮、虚拟按键等,例如智能手机上的Home按钮、音量按钮、锁屏按钮。
通信组件2005配置为用于为无人机交互式自检设备和其他设备之间进行有线或无线方式的通信。无人机交互式自检设备可以接入基于通信标准的无线网络,如WiFi、3G或4G网络。在一些实施例中,所述通信组件2005还包括用于短程通信的近场通信(NFC)模块,例如,该NFC模块可基于射频识别(RFID)技术、红外通信(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术等其他技术来实现。
在本发明实施例中,无人机交互式自检设备可以由一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSro)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,以执行上述显示终端一侧的方法。
本发明实施例还提供了一种非易失性计算机可读存储介质,例如存储器2002,所述非易失性计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令由无人机交互式自检设备的处理器2010执行,以完成上述显示终端一侧的任意方法实施例中的拍摄方法,例如,执行以上描述的图2-4的方法中的部分或全部步骤,以实现图5中的模块的功能。所述非易失性计算机可读存储介质可以是R0M、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
通过实施本发明,通过终端设备实现对无人机的自动或半自动检测,并通过语音播报形式来反馈各种信息,从而能更准确的实时提醒用户,让飞行 前的模块检查更加简单方便,提高监测效率和用户使用飞机的体验度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (21)

  1. 一种无人机交互式自检方法,应用于无人机交互式自检系统,所述系统包括无人机、与所述无人机无线通讯的遥控器、以及连接至所述遥控器的终端设备,所述终端设备通过所述遥控器连接所述无人机,其特征在于,所述方法包括:
    步骤S1、所述无人机获取所述无人机的各个功能模块的状态信息,并将所述状态信息下发至所述遥控器;
    步骤S2、所述遥控器将所述状态信息转发至所述终端设备;
    步骤S3、所述终端设备根据所述状态信息检测所述各个功能模块,得到检测结果;
    步骤S4、所述终端设备通过其语音播报模块播报所述检测结果。
  2. 根据权利要求1所述的无人机交互式自检方法,其特征在于,所述步骤S3包括:
    所述终端设备将所述无人机的所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中所述标准状态参数为所述各个功能模块在正常工作状态下的状态参数。
  3. 根据权利要求2所述的无人机交互式自检方法,其特征在于,所述步骤S4包括:所述终端设备的所述语音播报模块对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。
  4. 根据权利要求2所述的无人机交互式自检方法,其特征在于,若所述步骤S3的检测结果中包含异常功能模块,则在所述步骤S4之后还包括:
    步骤S5、判断异常功能模块能否完成自我校准;
    步骤S6、若是,则启动自我校准功能进行自我校准,并通过所述语音播报模块播报校准进度。
  5. 根据权利要求4所述的无人机交互式自检方法,其特征在于,在所述步骤S5之后还包括:
    步骤S7、若异常功能模块无法完成自我校准,则通过所述语音播报模块播报第一提示信息,所述第一提示信息用于提示用户进行手动校准。
  6. 根据权利要求5所述的无人机交互式自检方法,其特征在于,在所述步骤S7之后还包括:
    步骤S8、所述语音播报模块播报提示用户手动校准的第一步操作信息;
    步骤S9、检测是否接收到与该步操作信息对应的操作动作;
    步骤S10、若是,则所述语音播报模块继续播报提示用户手动校准的下一步操作信息;
    步骤S11、重复执行所述步骤S9和步骤S10,直至完成手动校准。
  7. 根据权利要求6所述的无人机交互式自检方法,其特征在于,在所述步骤S9之后还包括:
    步骤S12、若未接收到与该步操作信息对应的操作动作,则所述语音播报模块播报第二提示信息,所述第二提示信息用于提示用户操作有误并提示用户重新进行操作。
  8. 根据权利要求1至7中任一项所述的无人机交互式自检方法,其特征在于,所述步骤S2包括:所述遥控器将接收的所述无人机的状态信息以及自身的状态信息发送至所述终端设备。
  9. 根据权利要求1至8中任一项所述的无人机交互式自检方法,其特征在于,所述状态信息包括指南针信息、IMU信息、遥控器电池信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息中的一种或多种。
  10. 根据权利要求1至9中任一项所述的无人机交互式自检方法,其特征在于,所述终端设备为智能手机、平板电脑、笔记本电脑中的一种。
  11. 一种无人机交互式自检系统,其特征在于,所述系统包括无人机、与所述无人机无线通讯的遥控器、以及连接至所述遥控器的终端设备,所述终端设备通过所述遥控器连接所述无人机;
    所述无人机,用于获取所述无人机的各个功能模块的状态信息,并将所述状态信息下发至所述遥控器;
    所述遥控器,用于将所述状态信息转发至所述终端设备;
    所述终端设备,用于根据所述状态信息检测所述各个功能模块,得到检测结果,并播报所述检测结果。
  12. 根据权利要求11所述的无人机交互式自检系统,其特征在于,所述终端设备包括功能模块检测模块和语音播报模块;
    所述功能模块检测模块,用于将所述各个功能模块的状态信息与标准状态参数进行一一比对,确定正常功能模块和异常功能模块,从而得到所述检测结果;其中所述标准状态参数为所述各个功能模块在正常工作状态下的状态参数;
    所述语音播报模块,用于接收所述功能模块检测模块得到的检测结果,并播报所述检测结果。
  13. 根据权利要求12所述的无人机交互式自检系统,其特征在于,所述语音播报模块具体用于:接收所述功能模块检测模块得到的检测结果,并对所述检测结果中的正常功能模块和/或异常功能模块分别进行播报。
  14. 根据权利要求12所述的无人机交互式自检系统,其特征在于,所述终端设备还包括校准模块,所述校准模块用于,在所述检测结果中包含异常功能模块时:
    判断所述异常功能模块能否完成自我校准;若是,则启动自我校准功能进行自我校准,并将校准进度发送给所述语音播报模块,由所述语音播报模块播报所述校准进度。
  15. 根据权利要求14所述的无人机交互式自检系统,其特征在于,所述校准模块还用于,在所述异常功能模块无法完成自我校准时,向所述语音播报模块发送第一提示信息,所述第一提示信息用于提示用户进行手动校准;
    所述语音播报模块还用于播报所述第一提示信息。
  16. 根据权利要求15所述的无人机交互式自检系统,其特征在于,所述语音播报模块具体用于:
    播报提示用户手动校准的第一步操作信息;
    在所述遥控器接收到与该步操作信息对应的操作动作时,继续播报提示 用户手动校准的下一步操作信息;
    重复执行以上步骤,直至完成手动校准。
  17. 根据权利要求16所述的无人机交互式自检系统,其特征在于,所述语音播报模块具体还用于:
    在所述遥控器未接收到与该步操作信息对应的操作动作,播报第二提示信息,所述第二提示信息用于提示用户操作有误并提示用户重新进行操作。
  18. 根据权利要求11至17中任一项所述的无人机交互式自检系统,其特征在于,所述遥控器具体用于:将接收的所述无人机的状态信息以及自身的状态信息发送至所述终端设备。
  19. 根据权利要求11至18中任一项所述的无人机交互式自检系统,其特征在于,所述状态信息包括指南针信息、IMU信息、遥控器电池信息、无人机电池信息、无人机电池温度信息、图软信号强度信息、云台状态信息、SDCARD状态信息中的一种或多种。
  20. 根据权利要求11至19中任一项所述的无人机交互式自检系统,其特征在于,所述终端设备为智能手机、平板电脑、笔记本电脑中的一种。
  21. 一种无人机交互式自检设备,其特征在于,包括处理器和与所述处理器通信连接的存储器;
    其中,所述存储器存储有可被所述处理器执行的指令程序,所述指令程序被所述处理器执行,以使所述处理器能够执行如权利要求1-10任一项所述的无人机交互式自检方法。
PCT/CN2019/110147 2018-10-18 2019-10-09 一种无人机交互式自检方法、系统及设备 WO2020078239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811217677.5 2018-10-18
CN201811217677.5A CN109459946A (zh) 2018-10-18 2018-10-18 一种无人机交互式自检方法、系统及设备

Publications (1)

Publication Number Publication Date
WO2020078239A1 true WO2020078239A1 (zh) 2020-04-23

Family

ID=65607843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110147 WO2020078239A1 (zh) 2018-10-18 2019-10-09 一种无人机交互式自检方法、系统及设备

Country Status (2)

Country Link
CN (1) CN109459946A (zh)
WO (1) WO2020078239A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112947236A (zh) * 2021-03-12 2021-06-11 安徽理工大学 一种矿用无人驾驶电机车的智能控制装置、方法及电机车

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
CN110362114A (zh) * 2019-07-26 2019-10-22 深圳市道通智能航空技术有限公司 无人飞行器的启动方法、无人飞行器及遥控装置
CN110928409B (zh) * 2019-11-12 2023-05-09 中国第一汽车股份有限公司 车载场景模式控制方法、装置、车辆及存储介质
CN111204474B (zh) * 2020-01-15 2022-11-08 广东中科瑞泰智能科技有限公司 一种无人机功能模块检测方法、装置、设备及存储介质
CN111324124A (zh) * 2020-03-06 2020-06-23 新石器慧通(北京)科技有限公司 一种无人车遥控控制方法、控制系统及无人车
CN111619806A (zh) * 2020-06-03 2020-09-04 深圳市道通智能航空技术有限公司 一种无人机故障检测方法、无人机及无人机系统
CN112118553A (zh) * 2020-09-22 2020-12-22 苏州臻迪智能科技有限公司 一种无人机信息提示方法及装置
CN112256508A (zh) * 2020-10-23 2021-01-22 广州极飞科技有限公司 一种无人机自检方法
CN112596540A (zh) * 2020-12-11 2021-04-02 广州极飞科技有限公司 无人设备的控制方法及控制装置、无人设备
CN113433972A (zh) * 2021-07-20 2021-09-24 一飞(海南)科技有限公司 一种异常飞机筛选方法、存储介质、信息数据处理终端
CN114348280B (zh) * 2022-01-11 2023-08-18 广东汇天航空航天科技有限公司 地空通行设备及其自检方法、系统、及计算设备
CN114781666A (zh) * 2022-04-11 2022-07-22 杭州国测测绘技术有限公司 无人机维修方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017096598A1 (zh) * 2015-12-10 2017-06-15 深圳市大疆创新科技有限公司 无人机及其状态监控方法、状态监控系统、状态监控装置
CN108045596A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种固定翼无人机的飞行性能检验检测系统及方法
CN108196571A (zh) * 2017-12-27 2018-06-22 深圳常锋信息技术有限公司 一种飞行控制系统、无人机及无人机系统
JP2018147424A (ja) * 2017-03-09 2018-09-20 株式会社Nttドコモ 遠隔制御装置及び制御システム
CN108629961A (zh) * 2018-05-11 2018-10-09 广州极飞科技有限公司 设备检查方法、设备检查装置、遥控器以及无人机
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142122A (zh) * 2005-03-18 2008-03-12 雅马哈发动机株式会社 飞行控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017096598A1 (zh) * 2015-12-10 2017-06-15 深圳市大疆创新科技有限公司 无人机及其状态监控方法、状态监控系统、状态监控装置
JP2018147424A (ja) * 2017-03-09 2018-09-20 株式会社Nttドコモ 遠隔制御装置及び制御システム
CN108045596A (zh) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 一种固定翼无人机的飞行性能检验检测系统及方法
CN108196571A (zh) * 2017-12-27 2018-06-22 深圳常锋信息技术有限公司 一种飞行控制系统、无人机及无人机系统
CN108629961A (zh) * 2018-05-11 2018-10-09 广州极飞科技有限公司 设备检查方法、设备检查装置、遥控器以及无人机
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112947236A (zh) * 2021-03-12 2021-06-11 安徽理工大学 一种矿用无人驾驶电机车的智能控制装置、方法及电机车

Also Published As

Publication number Publication date
CN109459946A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2020078239A1 (zh) 一种无人机交互式自检方法、系统及设备
US9106337B2 (en) Terminal apparatus for auto pairing, remote control apparatus and method thereof
EP3471074B1 (en) Remote controller, display apparatus, system and method for controlling thereof
WO2018053815A1 (zh) 应用于遥控器的信息提示方法及遥控器
EP3163924B1 (en) Method, device and system for establishing wireless network connection
WO2022047968A1 (zh) 蓝牙设备的配对方法、设备及存储介质
EP3474517B1 (en) Electronic device for controlling iot device to correspond to state of external electronic device and operation method thereof
EP2654291B1 (en) Broadcasting signal receiving apparatus, remote controller and pairing method thereof
US20170155523A1 (en) Method and apparatus for identifying type of electronic device on smart socket, and storage medium
WO2017208355A1 (ja) 無人航空機飛行制御アプリケーション及び無人航空機飛行制御方法
WO2018141170A1 (zh) 无人机认证方法及装置
EP3389332B1 (en) Commissioning of a plurality of devices
US20200302799A1 (en) Unmanned aerial vehicle control method and device, and unmanned aerial vehicle operating method and device
US20210337105A1 (en) Photographing method for aircraft, aircraft, terminal device and flight system
US20170019482A1 (en) Method and apparatus for downloading control program
WO2021018049A1 (zh) 无人飞行器的启动方法、无人飞行器及遥控装置
WO2021068122A1 (zh) 返航控制方法、控制终端及系统
WO2023193611A1 (zh) 无人飞行器及其控制方法、装置、系统
US9640067B1 (en) Determining commands on a media device interface
EP3439311A1 (en) Image transmission equipment and image transmission method
US20060121863A1 (en) Device control
US20210009268A1 (en) Method for managing load apparatus, terminal device, and mobile platform system
US9325829B2 (en) Communication apparatus
CN110595014A (zh) 扫风角度控制方法、系统、遥控装置、空调器及可读存取介质
TWI605427B (zh) Learning pairing system and its learning matching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873010

Country of ref document: EP

Kind code of ref document: A1