WO2017096598A1 - 无人机及其状态监控方法、状态监控系统、状态监控装置 - Google Patents

无人机及其状态监控方法、状态监控系统、状态监控装置 Download PDF

Info

Publication number
WO2017096598A1
WO2017096598A1 PCT/CN2015/097058 CN2015097058W WO2017096598A1 WO 2017096598 A1 WO2017096598 A1 WO 2017096598A1 CN 2015097058 W CN2015097058 W CN 2015097058W WO 2017096598 A1 WO2017096598 A1 WO 2017096598A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional component
state
calibration
displayed
state monitoring
Prior art date
Application number
PCT/CN2015/097058
Other languages
English (en)
French (fr)
Inventor
赖镇洲
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2015/097058 priority Critical patent/WO2017096598A1/zh
Priority to CN201580072283.3A priority patent/CN107209489B/zh
Publication of WO2017096598A1 publication Critical patent/WO2017096598A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors

Definitions

  • the invention relates to the technical field of parameter processing and interaction of a drone, in particular to a drone and its state monitoring method, a state monitoring system and a state monitoring device.
  • the Flight Controller system for unmanned aerial vehicles usually provides health monitoring functions. The user will be prompted when the flight control system is abnormal.
  • the monitoring and interaction of the existing flight control system is unfriendly and not intuitive. The user cannot correctly evaluate the health status of the flight control system after seeing the abnormal information, and does not know how to operate to solve the corresponding problem. This makes it impossible for the user to easily understand the health of the flight control system and to make correct operations when the flight control system is abnormal.
  • a UAV state monitoring method is applied to a UAV, the state monitoring method includes the steps of: receiving state parameters of each functional component of the UAV; and confirming each functional component based on the state parameters of the functional components Status; according to the status of each functional component, the status prompt information of each functional component is displayed on the corresponding graphical user interface.
  • the method specifically includes detecting a state parameter of at least one of an inertial measurement unit and a positioning system of the drone.
  • the method further includes comparing the received state parameters of the functional components with thresholds and/or ranges preset by the respective functional components to determine the health status and use of the functional components. At least one of a state, an offset state, and/or an abnormal state.
  • the method further comprises presenting prompt information for the health status of the respective functional components using a health status indicator icon that displays different states on the graphical user interface.
  • the health status indication icons of the functional components when the health status indication icons of the functional components are in the first state, indicating that the health status of the functional components is healthy; when the health status indication icons of the functional components are in the second state Indicates that the health status of each functional component is abnormal; when the health status indication icon of each functional component is the third state, it indicates that the health status of each functional component is unconnected.
  • the method further comprises: presenting prompt information of the usage status of each functional component by using a prompt light on the graphical user interface with preset text information or a preset color.
  • the method further comprises presenting prompt information for the bias states of the respective functional components using a display form of the offset parameter values and the bias progress bar on the graphical user interface.
  • the offset progress bars corresponding to the respective functional components are displayed in different colors according to different numerical ranges in which the bias parameter values are located.
  • the corresponding offset progress bar of each functional component when the corresponding offset parameter values of the functional components are in the first value range, the corresponding offset progress bar of each functional component is displayed in a first color; when the corresponding functional components correspond to each other When the offset parameter value is in the second value range, the corresponding offset progress bar of each functional component is displayed in the second color; and when the corresponding offset parameter value of each functional component is in the third numerical range, The offset progress bar corresponding to each functional component is displayed in a third color; wherein, when the corresponding offset progress bar of the functional component is displayed in the third color, it indicates that the functional component needs to be calibrated.
  • the method further comprises: when the bias progress bar of the at least one functional component is displayed in the third color, controlling the preset calibration prompt button to be displayed in a preset state to guide the user to perform the calibration action.
  • the method further includes displaying a calibration page that displays one or more functional components that require calibration when the calibration prompt button is triggered.
  • the method further comprises: calibrating the selected functional component according to a preset calibration parameter corresponding to the functional component selected in the calibration page, and displaying a corresponding calibration progress on the graphical user interface The bar presents the calibration progress corresponding to the selected functional component.
  • the calibration progress bar corresponding to the selected functional component when the calibration progress bar corresponding to the selected functional component is displayed in the first preset color, indicating that the calibration progress of the selected functional component is normal; when the selected functional component corresponds to the calibration progress bar is second When the preset color is displayed, it indicates that the calibration of the selected function component has failed.
  • the abnormal state of each functional component includes data anomaly, calibration, calibration failure, disconnected state, and/or non-stationary, directional anomaly, at least one abnormal state, and when each When the functional component is in an abnormal state, the corresponding abnormal state is displayed at the offset parameter value of each of the functional components.
  • the method further includes: obtaining a switching history and a historical abnormal state of each functional component.
  • the historical switch records of the various functional components include a handover requestor, a handover path, a handover cause, a handover location, and/or a handover time.
  • the status monitoring system includes: a receiving module, configured to receive status parameters of each functional component of the drone; and an confirming module, configured to confirm each functional component based on the status parameter of each functional component
  • a display module is configured to display status prompt information of each functional component on a corresponding graphical user interface according to the state of each functional component.
  • the method specifically includes detecting a state parameter of at least one of an inertial measurement unit and a positioning system of the drone.
  • the determining module compares the received state parameters of the functional components with the preset thresholds and/or ranges of the functional components to determine the health state, the use state, and the state of use of the functional components. At least one of an offset state, and/or an abnormal state.
  • the display module is further configured to: present prompt information of the health status of each functional component by displaying a health status indication icon of a different state on the graphical user interface.
  • the display module controls the health status indication icons of the functional components to display a first state, indicating that the health status of the functional components is healthy; and the display module controls the health status of the functional components.
  • the indication icon displays a second state, indicating that the health status of the functional components is abnormal; the display module controls the health status indication icons of the functional components to display a third state, indicating that the health status of the functional components is unconnected.
  • the display module is further configured to: use the prompt light on the graphical user interface with preset text information or a preset color to present prompt information of the usage status of each functional component.
  • the display module is further configured to present prompt information of the bias status of each functional component by using a display form of a bias parameter value and an offset progress bar on the graphical user interface.
  • the display module controls the offset progress bars corresponding to the respective functional components to be displayed in different colors according to different numerical ranges in which the offset parameter values are located.
  • the display module controls the offset progress bar corresponding to the functional components to be displayed in the first color;
  • the display module controls the offset progress bar corresponding to the functional component to be displayed in the second color;
  • the corresponding offset of each functional component is When the parameter value is in the third value range, the display module controls the offset progress bar corresponding to each function component to be displayed in a third color; wherein, when the offset progress bar corresponding to the function component is displayed in the third color, Indicates that the functional component needs to be calibrated.
  • the display module is further configured to: when the offset progress bar of the at least one functional component is displayed in the third color, control the preset calibration prompt button to be displayed in a preset state to guide the user to perform the calibration action. .
  • the display module is further configured to: when the calibration prompt button is triggered, display a calibration page on which one or more functional components requiring calibration are displayed.
  • the status monitoring system further includes: a control module, configured to calibrate the selected function component according to a preset calibration parameter corresponding to the function component selected in the calibration page, and the display The module is also used to display a corresponding calibration progress bar on the graphical user interface to present a calibration progress corresponding to the selected functional component.
  • the display module controls the calibration progress bar corresponding to the selected function component to be displayed in a first preset color, indicating that the calibration progress of the selected functional component is normal; and the display module controls the selected function.
  • the calibration progress bar corresponding to the component is displayed in a second preset color, indicating that the calibration of the selected functional component fails.
  • the abnormal state of each functional component includes data anomaly, calibration, calibration failure, disconnected state, and/or non-stationary, directional anomaly, at least one abnormal state, and when each When the functional component is in an abnormal state, the corresponding abnormal state is displayed at the offset parameter value of each of the functional components.
  • the method further includes: obtaining a switching history and a historical abnormal state of each functional component.
  • the historical switch records of the various functional components include a handover requestor, a handover path, a handover cause, a handover location, and/or a handover time.
  • a state monitoring device includes a processor, the processor is configured to: receive state parameters of each functional component of the drone; and confirm a state of each functional component based on state parameters of the functional components; The status, the status prompt information of each functional component is displayed on the corresponding graphical user interface.
  • the processor is configured to detect a state parameter of at least one of an inertial measurement unit, a positioning system of the drone.
  • the processor compares the received state parameters of each functional component with preset thresholds and/or ranges of the functional components to determine a health state, a usage state, and a state of use of the functional components. At least one of an offset state, and/or an abnormal state.
  • the processor is further configured to: present prompt information of the health status of each functional component by displaying a health status indication icon of a different state on the graphical user interface.
  • the processor controls the health status indication icons of the functional components to display a first state, indicating that the health status of the functional components is healthy; and controlling the health status indication icons of the functional components to display The second state indicates that the health status of each functional component is abnormal; and the health status indication icon that controls the functional components displays a third state, indicating that the health status of each functional component is unconnected.
  • the processor is further configured to: use the prompt light on the graphical user interface with preset text information or a preset color to present prompt information of the usage status of each functional component.
  • the processor is further configured to present prompt information of the bias states of the respective functional components by using a display form of offset parameter values and offset progress bars on the graphical user interface.
  • the processor controls the offset progress bars corresponding to the respective functional components to be displayed in different colors according to different numerical ranges in which the bias parameter values are located.
  • the processor controls the corresponding offset progress bar of the functional components to be displayed in the first color;
  • the processor controls the offset progress bar corresponding to the functional component to be displayed in the second color;
  • the processor controls the offset progress bar corresponding to each function component to be displayed in a third color; wherein, when the offset progress bar corresponding to the function component is displayed in the third color, Indicates that the functional component needs to be calibrated.
  • the processor is further configured to: when the offset progress bar of the at least one functional component is displayed in the third color, control the preset calibration prompt button to be displayed in a preset state to guide the user to perform the calibration action. .
  • the processor is further configured to: when the calibration prompt button is triggered, display a calibration page on which one or more functional components requiring calibration are displayed.
  • the processor is further configured to calibrate the selected functional component according to a preset calibration parameter corresponding to the functional component selected in the calibration page, and display the corresponding on the graphical user interface.
  • a calibration progress bar is presented to present the calibration progress for the selected functional component.
  • the processor controls the calibration progress bar corresponding to the selected functional component to be displayed in a first preset color, indicating that the calibration progress of the selected functional component is normal; the processor controls the selected function The calibration progress bar corresponding to the component is displayed in a second preset color, indicating that the calibration of the selected functional component fails.
  • the abnormal state of each functional component includes data anomaly, calibration, calibration failure, disconnected state, and/or non-stationary, directional anomaly, at least one abnormal state, and when each When the functional component is in an abnormal state, the corresponding abnormal state is displayed at the offset parameter value of each of the functional components.
  • the processor is further configured to acquire a switching history and a historical abnormal state of each functional component.
  • the historical switch records of the various functional components include a handover requestor, a handover path, a handover cause, a handover location, and/or a handover time.
  • An unmanned aerial vehicle comprising a detecting component and at least one functional component, the drone further comprising a drone condition monitoring device, the drone state monitoring device configured to receive the none from the detecting component State parameters of each functional component of the human machine; confirming the state of each functional component based on the state parameters of the functional components; and displaying state prompt information of each functional component on the corresponding graphical user interface according to the state of each functional component.
  • the state monitoring method of the invention displays the state of each functional component of the drone in a graphical interactive form, and greatly optimizes the interactive experience of the drone state monitoring. This allows users to quickly and easily understand the health of the flight control system. In addition, the user can quickly and correctly evaluate the health status of the flight control system after seeing the abnormal information and make the correct operation.
  • FIG. 1 is a schematic diagram of functional modules of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of functional modules of a UAV state monitoring system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a graphical user interface of state parameters of a functional component of a drone according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a graphical user interface of a history of functional components of a drone according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a graphical user interface of state parameters of a sensor of a drone according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a graphical user interface of an IMU calibration of a drone according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for monitoring a state of a drone according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of functional modules of a drone according to an embodiment of the present invention.
  • the UAV 1 may include, but is not limited to, a processor 11 electrically connected to each other, a storage device 12, and a UAV status monitoring system 120 (hereinafter referred to as "Status Monitoring System 120").
  • Display device 13 detection element 14, at least one functional component 15 and calibration unit 16.
  • the drone 1 detects the state parameters of the at least one functional component 15 by using the detecting component 14, and detects the above by the processor 11 and the state monitoring system 120.
  • the status parameters are processed to generate corresponding prompt information and displayed on the graphical user interface to guide the user to perform corresponding operations.
  • the drone 1 described herein is a system including an aircraft and a monitoring device.
  • the processor 11, the storage device 12, the UAV status monitoring system 120, and/or the display device 13 can all run on the UAV 1
  • the electronic device functions as a state monitoring device of the drone 1 .
  • the electronic device receives various types of status data of the drone 1 from the drone 1 and receives the received data by using the processor 11, the UAV status monitoring system 120, and/or the display device 13.
  • the status data is processed to generate corresponding prompt information and displayed on the graphical user interface to monitor the status of the drone 1 .
  • the processor 11 is configured to perform functions of each functional module in the state monitoring system 120.
  • the status monitoring system 120 is installed in the storage device 12 in the form of a software program or instruction and is executed by the processor 11.
  • the processor 11 can be a Central Processing Unit (CPU), a microprocessor or other data processing chip.
  • the storage device 12 is configured to store various types of data of the drone 1 .
  • the storage device 12 may be an internal memory of the drone 1 or a removable memory such as a removable media card, an external USB flash drive, and other flash memory or storage devices.
  • the display device 13 is configured to display various types of visualization data of the drone 1 .
  • the display device 13 is configured to display a graphical user interface (GUI) 130.
  • GUI graphical user interface
  • the display device 13 can be a liquid crystal display, a touch display or other type of display.
  • the plurality of display devices 13 may be built in the drone 1 or externally connected to the drone 1 .
  • the detection element 14 is used to detect a status parameter of each functional component 15.
  • the status parameters may include, but are not limited to, a connection status of the respective functional components 15, basic parameters (eg, X/Y/Z triaxial parameters of the sensor), offset parameters, and the like.
  • the detecting element 14 may include a plurality of detecting devices (not shown) to detect the state parameters of the respective functional components 15 respectively.
  • the detecting component 14 can directly detect and confirm the health state, the use state, the offset state, and/or the abnormal state of the functional components 15.
  • the detection element 14 can be a flight controller (not shown) of the drone 1 .
  • the at least one functional component 15 may be one or more sensors of an inertial measurement unit (IMU), a positioning system (GPS), and/or a compass.
  • IMU inertial measurement unit
  • GPS positioning system
  • compass compass
  • the calibration unit 16 is configured to calibrate the multi-function components 15 using preset calibration parameters and methods, and determine the cause of the calibration failure when the calibration fails.
  • the calibration unit 16 can be a plurality of calibration modules (not shown) that respectively calibrate the respective functional components 15.
  • the status monitoring system 120 can be partitioned into one or more modules that are stored in the storage device 12 and configured to be processed by one or more
  • the apparatus (this embodiment is a processor 11) is executed, and the drone 1 can clearly display the state of each functional component 15 of the drone 1 in graphical interactive form by the state monitoring system 120.
  • the status monitoring system 120 includes at least, but not limited to, a receiving module 122, a confirmation module 124, a display module 126, and a control module 128.
  • Each of the above functional modules 122, 124, 126, 128 is a respective program segment that performs a specific function, and is more suitable than the software program itself to describe the execution process of the software in the computer, such as executing in the processor 11 of the drone 1 or The description of the software program is performed in the processor of the electronic device, and thus the description of the software program of the present invention is described in modules.
  • each of the above functional modules 122, 124, 126, and 128 may be implemented by hardware or firmware.
  • the receiving module 122 is configured to receive status parameters of each functional component 15. In an embodiment, the receiving module 122 receives status parameters of each functional component 15 from the detecting component 14. In some embodiments, the received status parameters may include, but are not limited to, connection status parameters of the respective functional components 15, basic parameters (eg, X/Y/Z triaxial parameters of the sensor), offset parameters, and abnormal parameters. Wait.
  • the confirmation module 124 is configured to confirm the status of each functional component 15 based on the status parameters of the respective functional components 15. In an embodiment, the confirmation module 124 may compare the state parameters of the received functional components 15 with preset thresholds and/or ranges of the functional components 15 to determine whether the functional components 15 are Health status, usage status, offset status, and abnormal status.
  • the receiving module 122 can directly receive and confirm the health status, the use status, the offset status, and/or the abnormal status of the functional components 15 from the detecting component 14.
  • the display module 126 is configured to display corresponding status prompt information on the corresponding graphical user interface 130 according to the status of each functional component 15.
  • the display module 126 presents the prompt information of the health status of each functional component 15 by using the health status indication icon 131 displaying different states on the graphical user interface 130 (see FIG. 3).
  • the health status indication icon 131 of each functional component When the health status indication icon 131 of each functional component is in the first state, it indicates that the health status of each functional component 15 is healthy.
  • the health status indication icon 131 of each function component 15 When the health status indication icon 131 of each function component 15 is in the second state, it indicates that the health status of each function component 15 is abnormal; when the health status indication icon 131 of each function component 15 is in the third state, Indicates that the health status of each functional component is not connected.
  • the health status indication icon 131 of the different states may refer to a difference in color and/or shape of the icon.
  • the first state may be a green circular icon
  • the second state may be a red circular icon
  • the third state may be a gray circular icon.
  • the display module 126 uses the use prompt icon 132 on the graphical user interface 130 with preset text information or a preset color to present prompt information of the usage status of each functional component 15. Wherein, when the name of the one functional component 15 (for example, the left side) has the use prompt icon 132, it indicates that the functional component 15 is in use (see FIGS. 3 and 5).
  • the display module 126 utilizes the display form of the offset parameter value and the offset progress bar 133 on the graphical user interface 130 to present prompt information for the bias status of each functional component 15 (see FIG. 5).
  • the offset progress bar 133 corresponding to each functional component 15 is displayed in a different color according to different numerical ranges in which the offset parameter values are located.
  • the offset progress bar 133 corresponding to each functional component 15 is displayed in a first color; when the functional components 15 are When the corresponding offset parameter value is in the second value range, the offset progress bar 133 corresponding to each functional component 15 is displayed in the second color; when the corresponding offset parameter value of each functional component 15 is in the third numerical range The offset progress bar 133 corresponding to each functional component 15 is displayed in a third color; wherein when the bias progress bar 133 corresponding to the functional component 15 is displayed in the third color, it indicates that the functional component 15 needs to be calibrated. .
  • the above offset parameter value is displayed when the corresponding functional component 15 is in a healthy state, if the functional component 15 is in an abnormal state, such as data abnormality, calibration, calibration failure, disconnection.
  • the state of the state, and/or at least one abnormal state of the non-stationary, directional anomaly, etc., the corresponding abnormal state is displayed at the value of the offset parameter corresponding to the functional component 15 (see FIG. 5).
  • the display module 126 controls a preset calibration prompt button 134 to be displayed in a preset state to guide the user to perform the calibration action (see Figure 5).
  • the preset state may be that the calibration prompt button 134 is blinkingly displayed.
  • the display module 126 displays a calibration page on the graphical user interface 130 that displays one or more functional components 15 that need to be calibrated (see Figure 6), and A preset start calibration button 135.
  • the control module 128 is configured to control the calibration unit 16 to calibrate the selected functional component 15, and the display module 126 displays a corresponding calibration on the graphical user interface 130.
  • a progress bar 136 presents the calibration progress for the selected functional component 15.
  • the calibration progress bar 136 corresponding to the selected functional component 15 is displayed in the first preset color, it indicates that the calibration progress of the selected functional component 15 is normal; when the selected functional component 15 corresponds to the calibration progress bar 136 to the second pre-
  • the color display is displayed, it indicates that the calibration of the selected functional component 15 has failed.
  • the control module 128 obtains the reason why the selected functional component 15 failed to be calibrated and displays it on the graphical user interface 130.
  • the display module 126 displays a prompt window on the graphical user interface 130 to prompt the user how to place the The time required for drone 1 and the entire calibration process.
  • the calibration page is returned.
  • the control module 128 is configured to control the calibration unit 16 to calibrate the selected functional component 15, and the display module 126 displays a corresponding calibration on the graphical user interface 130.
  • a progress bar 136 presents the calibration progress for the selected functional component 15.
  • the receiving module 122 is further configured to acquire a switching history and a historical abnormal state of each functional component 15 from the drone 1, and the display module 126 is further configured to display each functional component when it is required to display When the switching history and the historical abnormal state of 15 are displayed, the acquired switching history and the historical abnormal state of each of the acquired functional components 15 are displayed on the graphical user interface 130.
  • the history switching records of the respective functional components 15 include a handover requester, a handover path, a handover cause, a handover location, and/or a handover time (see FIG. 4).
  • Redundant status page for the name, health status, and usage status of functional component 15 (IMU).
  • the display module 126 displays the text "in use” by the field corresponding to the functional component 15 in the use state to indicate that the functional component 15 is in use.
  • the field corresponding to the functional component 15 in the status page of the status page also displays a switch button, such as "prioritized start" as shown in FIG. 3, by clicking the switch button, the currently used function component 15 can be switched. Among them, the switching button of the functional component 15 in the use state is in a highlighted state.
  • the redundant status page also displays an option for a preset history
  • the display module 126 will be in the graphic after the history option is triggered (eg, clicked)
  • a history page as shown in FIG. 4 is displayed on the user interface 130.
  • the history of the switch and the historical abnormal state of each functional component 15 can be displayed in the history page.
  • the history page also displays a preset option to clear the record. By triggering the option, the switch history and historical abnormal state of each of the functional components 15 can be cleared.
  • a sensor page is displayed on the graphical user interface 130.
  • the sensor page is divided into multiple pages to display functional components 15 of different functions, each page displaying the status of functional components 15 having the same function.
  • the sensor page displays the status of the three IMUs.
  • the color of the offset progress bar 133 corresponding to the value of the offset parameter of different numerical ranges is different.
  • the IMU includes an accelerometer and a gyroscope. Therefore, the accelerometer and the offset parameter value and the bias progress bar 133 of the gyroscope are respectively displayed in the sensor page.
  • the use of the prompt icon 132 on the left side of the "external IMU1" indicates that the "external IMU1" is in use; the value of the offset parameter corresponding to the "built-in IMU” is a calibration failure, indicating that the built-in IMU is abnormal.
  • the offset parameter value of the "external IMU2" gyroscope is in the third value range, the offset progress bar 133 corresponding to the "external IMU2" is displayed in a third color, indicating the "external IMU2" Need to be calibrated. Since the offset progress bar 133 corresponding to the "external IMU2" is displayed in the third color, the calibration prompt button 134 is displayed in a preset state, prompting the user to perform a calibration operation.
  • the graphical user interface 130 displays a calibration page back.
  • the calibration page displays one or more IMUs that need to be calibrated (as shown, external IMU2), and a preset start calibration button 135. Also displayed in the calibration page are one or more IMUs that can be calibrated, or one or more that cannot be calibrated.
  • whether the corresponding IMU is selected for calibration is indicated by displaying a corresponding check box on the left side of the displayed IMU. When the check box is checked, it indicates that the IMU needs to be calibrated. When the check box is not checked, it means that the IMU does not need to be calibrated.
  • the check box When the check box is in a specific color (for example, gray), it means that the IMU cannot be checked for calibration. For example, when the IMU is in an unconnected state, its corresponding check box is in a specific color, and the user cannot check.
  • the start calibration button 135 When the start calibration button 135 is triggered, the drone 1 begins to calibrate the selected IMU.
  • the health status indication icon 131, the usage prompt icon 132, the bias progress bar 133, the calibration prompt button 134, the start calibration button 135, and the shape of the calibration progress bar 136 It is not limited to the shapes shown in FIGS. 3-6. In other preferred embodiments, the health indication icon 131 may also be any suitable shape such as a diamond shape or a rectangle.
  • the use hint icon 132 may also be any suitable shape such as a rectangle or a circle.
  • the bias progress bar 133 and the calibration progress bar 136 may be any suitable shape such as a circular ring shape, an elliptical ring shape, a rectangular ring shape, or a triangular ring shape lamp.
  • the calibration prompt button 134 and the start calibration button 135 may have various shapes that are arbitrarily used, such as a circular shape and a three-dimensional circular shape.
  • the above-mentioned pages displayed on the graphical user interface 130 each include a preset close icon for closing the currently displayed page.
  • the shape of the close icon is not limited to that shown in FIGS. 3-6.
  • a flow chart 700 of a preferred embodiment of the UAV status monitoring method of the present invention is shown. It should be noted that the UAV state monitoring method of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. The steps in the flow chart shown in Figure 7 may be added, removed, or changed in order, according to various embodiments. In the preferred embodiment, the method 700 can begin at step S700.
  • the receiving module 122 receives the state parameters of each functional component 15.
  • the receiving module 122 receives status parameters of each functional component 15 from the detecting component 14.
  • the received status parameters may include, but are not limited to, connection status parameters of the respective functional components 15, basic parameters (eg, X/Y/Z triaxial parameters of the sensor), offset parameters, and abnormal parameters. Wait.
  • the confirmation module 124 confirms the status of each functional component 15 based on the state parameters of the respective functional components 15.
  • the confirmation module 124 may compare the state parameters of the received functional components 15 with preset thresholds and/or ranges of the functional components 15 to determine whether the functional components 15 are Health status, usage status, offset status, and abnormal status.
  • step S701 and the step S702 may be combined into one step, and the receiving module 122 directly receives and confirms the health status and the use status of the functional components 15 from the detecting component 14. , offset state, and/or abnormal state.
  • step S703 the display module 126 displays corresponding status prompt information on the corresponding graphical user interface 130 according to the status of each functional component 15.
  • the display module 126 uses the health status indication icon 131 displaying different states on the graphic user interface 130 to present prompt information of the health status of each functional component 15 (see FIG. 3);
  • the prompting information 132 of the function component 15 is presented by using the preset text information or the preset color usage prompt icon 132 on the graphical user interface 130 (see FIGS. 3 and 5); and the graphical user interface 130 is utilized.
  • the bias parameter values and the display form of the bias progress bar 133 present prompt information for the bias states of the respective functional components 15 (see FIG. 5).
  • the offset progress bar 133 corresponding to each functional component 15 is displayed in a different color according to different numerical ranges in which the offset parameter values are located.
  • the above offset parameter value is displayed when the corresponding functional component 15 is in a healthy state, if the functional component 15 is in an abnormal state, such as data abnormality, calibration, calibration failure, disconnection.
  • the state of the state, and/or at least one abnormal state of the non-stationary, directional anomaly, etc., the corresponding abnormal state is displayed at the value of the offset parameter corresponding to the functional component 15 (see FIG. 5).
  • the display module 126 controls a preset calibration prompt button 134 to be displayed in a preset state to guide the user to perform the calibration action (see Figure 5).
  • the preset state may be that the calibration prompt button 134 is blinkingly displayed.
  • the display module 126 displays a calibration page on the graphical user interface 130 that displays one or more functional components 15 that need to be calibrated (see Figure 6), and A preset start calibration button 135.
  • the control module 128 is configured to control the calibration unit 16 to calibrate the selected functional component 15, and the display module 126 displays a corresponding calibration on the graphical user interface 130.
  • a progress bar 136 presents the calibration progress for the selected functional component 15.
  • the calibration progress bar 136 corresponding to the selected functional component 15 is displayed in the first preset color, it indicates that the calibration progress of the selected functional component 15 is normal; when the selected functional component 15 corresponds to the calibration progress bar 136 to the second pre-
  • the color display is displayed, it indicates that the calibration of the selected functional component 15 has failed.
  • the control module 128 obtains the reason why the selected functional component 15 failed to be calibrated and displays it on the graphical user interface 130.
  • the display module 126 displays a prompt window on the graphical user interface 130 to prompt the user how to place the The time required for drone 1 and the entire calibration process.
  • the calibration page is returned.
  • the control module 128 is configured to control the calibration unit 16 to calibrate the selected functional component 15, and the display module 126 displays a corresponding calibration on the graphical user interface 130.
  • a progress bar 136 presents the calibration progress for the selected functional component 15.
  • the receiving module 122 is further configured to acquire a switching history and a historical abnormal state of each functional component 15 from the drone 1, and the display module 126 is further configured to display each functional component when it is required to display When the switching history and the historical abnormal state of 15 are displayed, the acquired switching history and the historical abnormal state of each of the acquired functional components 15 are displayed on the graphical user interface 130.
  • the history switching records of the respective functional components 15 include a handover requester, a handover path, a handover cause, a handover location, and/or a handover time (see FIG. 4).
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种应用于无人机(1)上的状态监控方法,以及一种无人机(1)及其状态监控系统(120)及状态监控装置,所述方法包括以下步骤:接收所述无人机(1)的各功能组件(15)的状态参数(S701);基于所述各功能组件(15)的状态参数确认各功能组件(15)的状态(S702);根据各功能组件(15)的状态,在相应的图形用户界面(130)上显示各功能组件(15)的状态提示信息(S703)。

Description

无人机及其状态监控方法、状态监控系统、状态监控装置 技术领域
本发明涉及无人机的参数处理及交互的技术领域,特别涉及一种无人机及其状态监控方法、状态监控系统及状态监控装置。
背景技术
目前,无人无人机的飞控(Flight Controller)系统通常会提供健康监控的功能。当飞控系统出现异常的时候会提示用户。然而,现有飞控系统的监控及交互不友好且不够直观,用户在看到异常信息之后无法正确地评估飞控系统的健康状态,也不太了解如何操作才能解决相应的问题。使得用户无法方便地了解飞控系统的健康状况,也无法在飞控系统出现异常的时候做出正确的操作。
发明内容
有鉴于此,有必要提出一种无人机及其状态监控方法、状态监控系统及状态监控装置,以解决上述问题。
一种无人机状态监控方法,应用于无人机上,该状态监控方法包括以下步骤:接收所述无人机的各功能组件的状态参数;基于所述各功能组件的状态参数确认各功能组件的状态;根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
在一些实施例中,所述方法具体包括:检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
在一些实施例中,所述方法还包括:将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
在一些实施例中,该方法还包括:利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
在一些实施例中,当所述各功能组件的健康状态指示图标为第一状态时,表示该各功能组件的健康状态为健康;当所述各功能组件的健康状态指示图标为第二状态时,表示该各功能组件的健康状态为异常;当所述各功能组件的健康状态指示图标为第三状态时,表示该各功能组件的健康状态为未连接。
在一些实施例中,该方法还包括:利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
在一些实施例中,该方法还包括:利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
在一些实施例中,所述各功能组件对应的偏置进度条根据偏置参数数值所处的不同数值范围以不同的颜色显示。
在一些实施例中,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,该各功能组件对应的偏置进度条以第一颜色显示;当所述各功能组件的对应的偏置参数数值处于第二数值范围时,该各功能组件对应的偏置进度条以第二颜色显示;及当所述各功能组件的对应的偏置参数数值处于第三数值范围时,该各功能组件对应的偏置进度条以第三颜色显示;其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
在一些实施例中,该方法还包括:当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
在一些实施例中,该方法还包括:当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
在一些实施例中,该方法还包括:依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
在一些实施例中,当所选择的功能组件对应的校准进度条以第一预设颜色显示时,表示该所选择的功能组件的校准进度正常;当所选择的功能组件对应的校准进度条以第二预设颜色显示时,表示该所选择的功能组件的校准失败。
在一些实施例中,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
在一些实施例中,该方法还包括:获取各功能组件的切换历史记录及历史异常状态。
在一些实施例中,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
在一些实施例中,该状态监控系统包括:接收模块,用于接收所述无人机的各功能组件的状态参数;确认模块,用于基于所述各功能组件的状态参数确认各功能组件的状态;显示模块,用于根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
在一些实施例中,所述方法具体包括:检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
在一些实施例中,所述确定模块将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
在一些实施例中,所述显示模块还用于:利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
在一些实施例中,所述显示模块控制所述各功能组件的健康状态指示图标显示第一状态,表示该各功能组件的健康状态为健康;所述显示模块控制所述各功能组件的健康状态指示图标显示第二状态,表示该各功能组件的健康状态为异常;所述显示模块控制所述各功能组件的健康状态指示图标显示第三状态,表示该各功能组件的健康状态为未连接。
在一些实施例中,所述显示模块还用于:利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
在一些实施例中,所述显示模块还用于:利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
在一些实施例中,所述显示模块根据偏置参数数值所处的不同数值范围控制所述各功能组件对应的偏置进度条以不同的颜色显示。
在一些实施例中,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第一颜色显示;当所述各功能组件的对应的偏置参数数值处于第二数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第二颜色显示;及当所述各功能组件的对应的偏置参数数值处于第三数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第三颜色显示;其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
在一些实施例中,所述显示模块还用于:当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
在一些实施例中,所述显示模块还用于:当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
在一些实施例中,该状态监控系统还包括:控制模块,用于依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及所述显示模块还用于在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
在一些实施例中,所述显示模块控制所选择的功能组件对应的校准进度条以第一预设颜色显示,表示该所选择的功能组件的校准进度正常;所述显示模块控制所选择的功能组件对应的校准进度条以第二预设颜色显示,表示该所选择的功能组件的校准失败。
在一些实施例中,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
在一些实施例中,该方法还包括:获取各功能组件的切换历史记录及历史异常状态。
在一些实施例中,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
一种状态监控装置,包括处理器,所述处理器用于:接收所述无人机的各功能组件的状态参数;基于所述各功能组件的状态参数确认各功能组件的状态;根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
在一些实施例中,所述处理器用于检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
在一些实施例中,所述处理器将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
在一些实施例中,所述处理器还用于:利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
在一些实施例中,所述处理器控制所述各功能组件的健康状态指示图标显示第一状态,表示该各功能组件的健康状态为健康;控制所述各功能组件的健康状态指示图标显示第二状态,表示该各功能组件的健康状态为异常;控制所述各功能组件的健康状态指示图标显示第三状态,表示该各功能组件的健康状态为未连接。
在一些实施例中,所述处理器还用于:利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
在一些实施例中,所述处理器还用于:利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
在一些实施例中,所述处理器根据偏置参数数值所处的不同数值范围控制所述各功能组件对应的偏置进度条以不同的颜色显示。
在一些实施例中,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第一颜色显示;当所述各功能组件的对应的偏置参数数值处于第二数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第二颜色显示;及当所述各功能组件的对应的偏置参数数值处于第三数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第三颜色显示;其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
在一些实施例中,所述处理器还用于:当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
在一些实施例中,所述处理器还用于:当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
在一些实施例中,所述处理器还用于依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
在一些实施例中,所述处理器控制所选择的功能组件对应的校准进度条以第一预设颜色显示,表示该所选择的功能组件的校准进度正常;所述处理器控制所选择的功能组件对应的校准进度条以第二预设颜色显示,表示该所选择的功能组件的校准失败。
在一些实施例中,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
在一些实施例中,所述处理器还用于获取各功能组件的切换历史记录及历史异常状态。
在一些实施例中,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
一种无人机,该无人机包括检测元件及至少一个功能组件,该无人机还包括无人机状态监控装置,该无人机状态监控装置用于从所述检测元件接收所述无人机的各功能组件的状态参数;基于所述各功能组件的状态参数确认各功能组件的状态;根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
本发明的状态监控方法以图形交互形式显示无人机各功能组件的状态,大大优化了无人机状态监控的交互体验。使得用户可以快速方便地了解飞控系统的健康状况。此外, 用户在看到异常信息之后可以快速正确地评估飞控系统的健康状态,并做出正确的操作。
附图说明
图1是本发明实施例的一种无人机的功能模块示意图。
图2是本发明实施例的一种无人机状态监控系统的功能模块示意图。
图3是本发明实施例的一种无人机的功能组件的状态参数的图形用户界面示意图。
图4是本发明实施例的一种无人机的功能组件的历史记录的图形用户界面示意图。
图5是本发明实施例的一种无人机的传感器的状态参数的图形用户界面示意图。
图6是本发明实施例的一种无人机的IMU校准的图形用户界面示意图。
图7是本发明实施例的无人机状态监控方法的流程示意图。
主要元件符号说明
无人机 1
处理器 11
存储装置 12
状态监控系统 120
接收模块 122
确认模块 124
显示模块 126
控制模块 128
显示装置 13
图形用户界面 130
检测元件 14
功能组件 15
校准单元 16
健康状态指示图标 131
使用提示图标 132
偏置进度条 133
校准提示按钮 134
开始校准按钮 135
校准进度条 136
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体的,请参阅图1,是本发明实施例的一种无人机的功能模块示意图。在本较佳实施例中,所述无人机1可以包括,但不限于相互电性连接的处理器11、存储装置12、无人机状态监控系统120(以下简称“状态监控系统120”)、显示装置13、检测元件14、至少一个功能组件15及校准单元16。在本较佳实施方式中,所述无人机1利用检测元件14对所述至少一个功能组件15的状态参数进行检测,并通过所述处理器11及所述状态监控系统120将上述检测到的状态参数进行处理而生成相应的提示信息并显示于图形用户界面上,以指导用户进行相应的操作。此处所描述的无人机1为包括飞行器和监控装置的系统。
在其他较佳实施例中,所述处理器11、所述存储装置12、所述无人机状态监控系统120、及/或所述显示装置13均可以运行于一与所述无人机1通信连接(例如,无线连接的通信方式)的电子装置(图中未示出,例如移动控制终端)上,该电子装置即作为无人机1的状态监控装置。该电子装置从无人机1接收该无人机1的各类状态数据,通过利用所述处理器11、所述无人机状态监控系统120、及/或所述显示装置13对接收到的状态数据进行处理,从而生成相应的提示信息并显示于图形用户界面上,以对无人机1的状态进行监控。
所述处理器11用于执行所述状态监控系统120中各功能模块的功能。所述状态监控系统120以软件程序或指令的形式安装在所述存储装置12中,并由该处理器11执行。在一些实施例中,所述处理器11可以是中央处理器(Central Processing Unit, CPU),微处理器或其他数据处理芯片。
所述存储装置12用于存储所述无人机1的各类数据。所述存储装置12可以是所述无人机1的内部存储器,也可为可移除的存储器,例如可移除媒体卡,外置U盘,及其他闪存或存储设备等。
所述显示装置13用于显示所述无人机1的各类可视化数据。在本较佳实施例中,所述显示装置13用于显示图形用户界面(Graphical User Interface,GUI)130。
所述显示装置13可以为液晶显示屏、触摸显示屏或其他类型的显示屏。所述多个显示装置13可以内置于所述无人机1上,也可以外接于所述无人机1。
所述检测元件14用于检测各功能组件15的状态参数。所述状态参数可以包括,但不限于,所述各功能组件15的连接状态、基本参数(例如传感器的X/Y/Z三轴参数)、偏移参数等。在一些实施例中,所述检测元件14可以包括多个检测装置(图中未实处)分别对各功能组件15的状态参数进行检测。在其他较佳实施例中,所述检测元件14可以直接检测并确认所述各功能组件15的健康状态、使用状态、偏移状态,及/或异常状态。在本较佳实施例中,所述检测元件14可以是无人机1的飞行控制器(图中未示出)。
所述至少一个功能组件15可以是一个或多个惯性测量单元(Inertial measurement unit,简称IMU),定位系统(GPS),及/或指南针等传感器。
所述校准单元16用于利用预设的校准参数及方法对所述个多功能组件15进行校准,并在校准失败时确定校准失败的原因。所述校准单元16可以为多个分别校准各功能组件15的校准模块(图中未示出)。
在本较佳实施例中,所述状态监控系统120可以被分割成一个或多个模块,所述一个或多个模块被存储在所述存储装置12中并被配置成由一个或多个处理器(本实施例为一个处理器11)执行,所述无人机1利用该状态监控系统120可以清楚地以图形交互形式显示无人机1各功能组件15的状态。
参阅图2所示,是本发明状态监控系统120的较佳实施例的功能模块图。所述状态监控系统120至少包括,但不限于,接收模块122、确认模块124、显示模块126及控制模块128。上述各功能模块122、124、126、128是完成特定功能的各个程序段,比软件程序本身更适合于描述软件在计算机中的执行过程,如在无人机1的处理器11中执行或在电子装置的处理器中执行,因此本发明对软件程序的描述都以模块描述。另外,上述各功能模块122、124、126、128亦可以由硬件、固件(firmware)方式实现。
在本较佳实施例中,所述接收模块122用于接收各功能组件15的状态参数。在一实施方式中,所述接收模块122从所述检测元件14接收各功能组件15的状态参数。在一些实施例中,所接收的状态参数可以包括,但不限于所述各功能组件15的连接状态参数、基本参数(例如传感器的X/Y/Z三轴参数)、偏移参数、异常参数等。
所述确认模块124用于基于所述各功能组件15的状态参数确认各个功能组件15的状态。在一实施方式中,所述确认模块124可以通过将所接收的各功能组件15的状态参数与各功能组件15预设的阈值及/或范围进行比较,以确定所述各功能组件15是否处于健康状态,使用状态、偏移状态、以及异常状态。
在另一较佳实施例中,所述接收模块122可以直接从所述检测元件14接收并确认所述各功能组件15的健康状态、使用状态、偏移状态,及/或异常状态。
所述显示模块126用于根据各功能组件15的状态在相应的图形用户界面130上显示相应的状态提示信息。
具体地,所述显示模块126利用在所述图形用户界面130上显示不同状态的健康状态指示图标131来呈现所述各功能组件15健康状态的提示信息(参见图3)。其中,当所述各功能组件的健康状态指示图标131为第一状态时,表示该各功能组件15的健康状态为健康。当所述各功能组件15的健康状态指示图标131为第二状态时,表示该各功能组件15的健康状态为异常;当所述各功能组件15的健康状态指示图标131为第三状态时,表示该各功能组件的健康状态为未连接。在一具体实施方式中,所述不同状态的健康状态指示图标131可以指的是图标的颜色及/或形状的不同。例如所述第一状态可以是绿色的圆形图标,所述第二状态可以为红色的圆形图标,所述第三状态可以是灰色的圆形图标。
所述显示模块126利用在所述图形用户界面130上以预设文字信息或预设颜色的使用提示图标132来呈现所述各功能组件15使用状态的提示信息。其中,当所述一个功能组件15的名称的旁边(例如,左侧)具有使用提示图标132时,表示该功能组件15正处于使用状态(参见图3、图5)。
所述显示模块126利用在图形用户界面130上以偏置参数数值和偏置进度条133的显示形式来呈现所述各功能组件15偏置状态的提示信息(参见图5)。所述各功能组件15对应的偏置进度条133根据偏置参数数值所处的不同数值范围以不同的颜色显示。具体地,当所述各功能组件15的对应的偏置参数数值处于第一数值范围时,该各功能组件15对应的偏置进度条133以第一颜色显示;当所述各功能组件15的对应的偏置参数数值处于第二数值范围时,该各功能组件15对应的偏置进度条133以第二颜色显示;当所述各功能组件15的对应的偏置参数数值处于第三数值范围时,该各功能组件15对应的偏置进度条133以第三颜色显示;其中,当所述功能组件15对应的偏置进度条133以第三颜色显示时,表示该功能组件15需要被校准。
应说明的是,上述偏置参数数值是在其对应的功能组件15处于健康状态的时候才会显示,如果该功能组件15处于异常状态时,例如数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态等,该功能组件15所对应的偏置参数数值处会显示所述相应的异常状态(参见图5)。
进一步地,当至少一个功能组件15的偏置进度条133以第三颜色显示时,所述显示模块126控制一预设的校准提示按钮134以预设状态显示,以指导用户进行校准动作(参见图5)。在一实施方式中,所述预设状态可以是所述校准提示按钮134闪烁显示。
当所述校准提示按钮134被触发时,所述显示模块126显示一校准页面于图形用户界面130上,该校准页面上显示有一个或多个需要校准的功能组件15(参见图6),以及一个预设的开始校准按钮135。
当所述开始校准按钮135被触发时,所述控制模块128用于控制所述校准单元16对所选择的功能组件15进行校准,以及所述显示模块126在图形用户界面130上显示对应的校准进度条136来呈现所选择的功能组件15对应的校准进度。当所选择的功能组件15对应的校准进度条136以第一预设颜色显示时,表示该所选择的功能组件15的校准进度正常;当所选择的功能组件15对应的校准进度条136以第二预设颜色显示时,表示该所选择的功能组件15的校准失败。当所述功能组件15校准失败时,所述控制模块128获取所选择的功能组件15校准失败的原因,并于图形用户界面130上显示。
应说明的是,在另一较佳实施例中,当所述开始校准按钮135被触发时,所述显示模块126会在所述图形用户界面130上显示提示窗口,以提示用户如何放置所述无人机1以及整个校准过程大致所需要的时间。并提供“取消”与“确定”两个选项供用户选择。当所述“取消”选项被选择时,返回所述校准页面。当所述“确定”选项被选择时,所述控制模块128用于控制所述校准单元16对所选择的功能组件15进行校准,以及所述显示模块126在图形用户界面130上显示对应的校准进度条136来呈现所选择的功能组件15对应的校准进度。
在进一步的实施例中,当所述接收模块122还用于从无人机1获取各功能组件15的切换历史记录及历史异常状态,以及所述显示模块126还用于当需要显示各功能组件15的切换历史记录及历史异常状态时,在图形用户界面130上显示所获取的各功能组件15的切换历史记录及历史异常状态。所述各功能组件15的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间(参见图4)。
参见图3-图4,当需要查看无人机1的处于冗余状态的功能组件15时,如图3所示,所述图形用户界面130上会显示至少包括所述冗余状态的至少一个功能组件15(IMU)的名称、健康状态及使用状态的冗余状态页面。其中,所述显示模块126通过在处于使用状态的功能组件15对应的栏位显示文字“正在使用”以说明该功能组件15正处于使用状态。该状态页面中处于健康状态的功能组件15所对应的栏位还显示有一个切换按钮,如图3所示的“优先启动”,通过点击该切换按钮,可以切换当前使用的功能组件15。其中,处于使用状态的功能组件15的切换按钮处于高亮状态。
在一较佳实施例中,所述冗余状态页面还显示有一预设的历史记录的选项,当该历史记录的选项被触发(例如被点击)后,所述显示模块126会在所述图形用户界面130上显示如图4所示的历史记录页面。该历史记录页面中可以显示出各功能组件15的切换历史记录及历史异常状态。在一些实施例中,该历史记录页面还显示有一预设的清除记录的选项,通过触发该选项可以清除上述各功能组件15的切换历史记录及历史异常状态。
参见图5,当需要查看所述功能组件15的状态时,所述图形用户界面130上会显示一传感器页面。该传感器页面分为多页来显示不同功能的功能组件15,每一页显示功能相同的功能组件15的状态。参见图5,所述传感器页面显示的是三个IMU的状态。其中,不同数值范围的偏置参数数值所对应的偏置进度条133的颜色是不同的。在本较佳实施例中,所述IMU包括加速度计和陀螺仪。因此,该传感器页面中分别显示有所述加速度计和所述陀螺仪的偏置参数数值和偏置进度条133。其中“外置IMU1”左侧具有使用提示图标132,表示该“外置IMU1”处于使用状态;所述“内置IMU”所对应的偏置参数数值处为校准失败,即表示该内置IMU处于异常状态;所述“外置IMU2”的陀螺仪的偏置参数数值处于第三数值范围时,该“外置IMU2”对应的偏置进度条133以第三颜色显示,表示该“外置IMU2”需要被校准。由于“外置IMU2”对应的偏置进度条133以第三颜色显示,所述校准提示按钮134以预设状态显示,提醒用户需要进行校准操作。
当所述校准提示按钮134被触发时,参阅图6,所述图形用户界面130上回显示一校准页面。该校准页面中显示有一个或多个需要校准的IMU(如图所示,外置IMU2),以及一个预设的开始校准按钮135。该校准页面中还显示有一个或多个能够校准、或一个或多个不能够校准的IMU。所述校准页面中,通过在所显示的IMU的左侧显示对应的勾选框来表示其对应的IMU是否被选择进行校准。当勾选框被勾选时,表示该IMU需要被校准。当勾选框没有被勾选时,表示该IMU不需要被校准。当勾选框处于一特定颜色(例如灰色)时,表示不能勾选该IMU进行校准,例如,该IMU处于未连接状态时,其对应的勾选框处于特定颜色,是用户无法勾选。当所述开始校准按钮135被触发时,所述无人机1开始对所选择的IMU进行校准。
应说明的是,所述健康状态指示图标131、所述使用提示图标132、所述偏置进度条133、所述校准提示按钮134、所述开始校准按钮135、所述校准进度条136的形状并不限于图3-图6所示的形状。在其他较佳实施例中,所述健康状态指示图标131也可以是菱形、矩形等各种任意适用的形状。所述使用提示图标132也可以是矩形、圆形等各种任意适用的形状。所述偏置进度条133与所述校准进度条136也可以是圆形环状、椭圆形环状、矩形环状、三角形环状灯等各种任意适用的形状。所述校准提示按钮134及所述开始校准按钮135也可以是圆形、立体圆形等各种任意使用的形状。
此外,为了是用户能够更好地操作,上述显示于所述图形用户界面130上的页面均包括一个预设的关闭图标,用于关闭当前显示的页面。所述关闭图标的形状并不限于图3-图6中所示。
参阅图7,是本发明无人机状态监控方法较佳实施例的流程图700。应说明的是,本发明所述无人机状态监控方法并不限于图7所示流程图中的步骤及顺序。根据不同的实施例,图7所示流程图中的步骤可以增加、移除、或者改变顺序。在本较佳实施例中,所述方法700可以从步骤S700开始。
步骤S701,所述接收模块122接收各功能组件15的状态参数。在一实施方式中,所述接收模块122从所述检测元件14接收各功能组件15的状态参数。在一些实施例中,所接收的状态参数可以包括,但不限于所述各功能组件15的连接状态参数、基本参数(例如传感器的X/Y/Z三轴参数)、偏移参数、异常参数等。
步骤S702,所述确认模块124基于所述各功能组件15的状态参数确认各个功能组件15的状态。在一实施方式中,所述确认模块124可以通过将所接收的各功能组件15的状态参数与各功能组件15预设的阈值及/或范围进行比较,以确定所述各功能组件15是否处于健康状态,使用状态、偏移状态、以及异常状态。
在另一较佳实施例中,所述步骤S701与步骤S702可以合并为一个步骤,由所述接收模块122直接从所述检测元件14接收并确认所述各功能组件15的健康状态、使用状态、偏移状态,及/或异常状态。
步骤S703,所述显示模块126根据各功能组件15的状态在相应的图形用户界面130上显示相应的状态提示信息。
具体地,其中,所述显示模块126利用在所述图形用户界面130上显示不同状态的健康状态指示图标131来呈现所述各功能组件15健康状态的提示信息(参见图3);利用在所述图形用户界面130上以预设文字信息或预设颜色的使用提示图标132来呈现所述各功能组件15使用状态的提示信息(参见图3和图5);利用在图形用户界面130上以偏置参数数值和偏置进度条133的显示形式来呈现所述各功能组件15偏置状态的提示信息(参见图5)。所述各功能组件15对应的偏置进度条133根据偏置参数数值所处的不同数值范围以不同的颜色显示。应说明的是,上述偏置参数数值是在其对应的功能组件15处于健康状态的时候才会显示,如果该功能组件15处于异常状态时,例如数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态等,该功能组件15所对应的偏置参数数值处会显示所述相应的异常状态(参见图5)。
进一步地,当至少一个功能组件15的偏置进度条133以第三颜色显示时,所述显示模块126控制一预设的校准提示按钮134以预设状态显示,以指导用户进行校准动作(参见图5)。在一实施方式中,所述预设状态可以是所述校准提示按钮134闪烁显示。
当所述校准提示按钮134被触发时,所述显示模块126显示一校准页面于图形用户界面130上,该校准页面上显示有一个或多个需要校准的功能组件15(参见图6),以及一个预设的开始校准按钮135。
当所述开始校准按钮135被触发时,所述控制模块128用于控制所述校准单元16对所选择的功能组件15进行校准,以及所述显示模块126在图形用户界面130上显示对应的校准进度条136来呈现所选择的功能组件15对应的校准进度。当所选择的功能组件15对应的校准进度条136以第一预设颜色显示时,表示该所选择的功能组件15的校准进度正常;当所选择的功能组件15对应的校准进度条136以第二预设颜色显示时,表示该所选择的功能组件15的校准失败。当所述功能组件15校准失败时,所述控制模块128获取所选择的功能组件15校准失败的原因,并于图形用户界面130上显示。
应说明的是,在另一较佳实施例中,当所述开始校准按钮135被触发时,所述显示模块126会在所述图形用户界面130上显示提示窗口,以提示用户如何放置所述无人机1以及整个校准过程大致所需要的时间。并提供“取消”与“确定”两个选项供用户选择。当所述“取消”选项被选择时,返回所述校准页面。当所述“确定”选项被选择时,所述控制模块128用于控制所述校准单元16对所选择的功能组件15进行校准,以及所述显示模块126在图形用户界面130上显示对应的校准进度条136来呈现所选择的功能组件15对应的校准进度。
在进一步的实施例中,当所述接收模块122还用于从无人机1获取各功能组件15的切换历史记录及历史异常状态,以及所述显示模块126还用于当需要显示各功能组件15的切换历史记录及历史异常状态时,在图形用户界面130上显示所获取的各功能组件15的切换历史记录及历史异常状态。所述各功能组件15的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间(参见图4)。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (49)

  1. 一种无人机状态监控方法,应用于无人机上,其特征在于,该状态监控方法包括以下步骤:
    接收所述无人机的各功能组件的状态参数;
    基于所述各功能组件的状态参数确认各功能组件的状态;
    根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
  2. 如权利要求1所述的无人机状态监控方法,其特征在于,所述方法具体包括:
    检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
  3. 如权利要求1所述的无人机状态监控方法,其特征在于,该方法进一步包括:
    将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
  4. 如权利要求3所述的无人机状态监控方法,其特征在于,该方法还包括:
    利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
  5. 如权利要求4所述的无人机状态监控方法,其特征在于,当所述各功能组件的健康状态指示图标为第一状态时,表示该各功能组件的健康状态为健康;
    当所述各功能组件的健康状态指示图标为第二状态时,表示该各功能组件的健康状态为异常;
    当所述各功能组件的健康状态指示图标为第三状态时,表示该各功能组件的健康状态为未连接。
  6. 如权利要求3所述的无人机状态监控方法,其特征在于,该方法还包括:利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
  7. 如权利要求3所述的无人机状态监控方法,其特征在于,该方法还包括:利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
  8. 如权利要求7所述的无人机状态监控方法,其特征在于,所述各功能组件对应的偏置进度条根据偏置参数数值所处的不同数值范围以不同的颜色显示。
  9. 如权利要求8所述的无人机状态监控方法,其特征在于,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,该各功能组件对应的偏置进度条以第一颜色显示;
    当所述各功能组件的对应的偏置参数数值处于第二数值范围时,该各功能组件对应的偏置进度条以第二颜色显示;及
    当所述各功能组件的对应的偏置参数数值处于第三数值范围时,该各功能组件对应的偏置进度条以第三颜色显示;
    其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
  10. 如权利要求9所述的无人机状态监控方法,其特征在于,该方法还包括:
    当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
  11. 如权利要求10所述的无人机状态监控方法,其特征在于,该方法还包括:
    当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
  12. 如权利要求11所述的无人机状态监控方法,其特征在于,该方法还包括:依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
  13. 如权利要求12所述的无人机状态监控方法,其特征在于,当所选择的功能组件对应的校准进度条以第一预设颜色显示时,表示该所选择的功能组件的校准进度正常;当所选择的功能组件对应的校准进度条以第二预设颜色显示时,表示该所选择的功能组件的校准失败。
  14. 如权利要求7所述的无人机状态监控方法,其特征在于,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
  15. 如权利要求1所述的无人机状态监控方法,其特征在于,该方法还包括:
    获取各功能组件的切换历史记录及历史异常状态。
  16. 如权利要求15所述的无人机状态监控方法,其特征在于,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
  17. 一种无人机状态监控系统,运行于无人机上,其特征在于,该状态监控系统包括:
    接收模块,用于接收所述无人机的各功能组件的状态参数;
    确认模块,用于基于所述各功能组件的状态参数确认各功能组件的状态;
    显示模块,用于根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
  18. 如权利要求17所述的无人机状态监控系统,其特征在于,所述方法具体包括:
    检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
  19. 如权利要求17所述的无人机状态监控系统,其特征在于,所述确定模块将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
  20. 如权利要求19所述的无人机状态监控系统,其特征在于,所述显示模块还用于:
    利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
  21. 如权利要求20所述的无人机状态监控系统,其特征在于,所述显示模块控制所述各功能组件的健康状态指示图标显示第一状态,表示该各功能组件的健康状态为健康;
    所述显示模块控制所述各功能组件的健康状态指示图标显示第二状态,表示该各功能组件的健康状态为异常;
    所述显示模块控制所述各功能组件的健康状态指示图标显示第三状态,表示该各功能组件的健康状态为未连接。
  22. 如权利要求19所述的无人机状态监控系统,其特征在于,所述显示模块还用于:
    利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
  23. 如权利要求19所述的无人机状态监控系统,其特征在于,所述显示模块还用于:
    利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
  24. 如权利要求23所述的无人机状态监控系统,其特征在于,所述显示模块根据偏置参数数值所处的不同数值范围控制所述各功能组件对应的偏置进度条以不同的颜色显示。
  25. 如权利要求24所述的无人机状态监控系统,其特征在于,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第一颜色显示;
    当所述各功能组件的对应的偏置参数数值处于第二数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第二颜色显示;及
    当所述各功能组件的对应的偏置参数数值处于第三数值范围时,所述显示模块控制该各功能组件对应的偏置进度条以第三颜色显示;
    其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
  26. 如权利要求25所述的无人机状态监控系统,其特征在于,所述显示模块还用于:
    当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
  27. 如权利要求26所述的无人机状态监控系统,其特征在于,所述显示模块还用于:
    当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
  28. 如权利要求27所述的无人机状态监控系统,其特征在于,该状态监控系统还包括:
    控制模块,用于依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及所述显示模块还用于在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
  29. 如权利要求28所述的无人机状态监控系统,其特征在于,所述显示模块控制所选择的功能组件对应的校准进度条以第一预设颜色显示,表示该所选择的功能组件的校准进度正常;所述显示模块控制所选择的功能组件对应的校准进度条以第二预设颜色显示,表示该所选择的功能组件的校准失败。
  30. 如权利要求23所述的无人机状态监控系统,其特征在于,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
  31. 如权利要求17所述的无人机状态监控系统,其特征在于,该方法还包括:
    获取各功能组件的切换历史记录及历史异常状态。
  32. 如权利要求31所述的无人机状态监控系统,其特征在于,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
  33. 一种无人机状态监控装置,包括处理器,所述处理器用于:
    接收所述无人机的各功能组件的状态参数;
    基于所述各功能组件的状态参数确认各功能组件的状态;
    根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
  34. 如权利要求33所述的无人机状态监控装置,其特征在于,所述处理器用于检测所述无人机的惯性测量单元、定位系统中至少一个的状态参数。
  35. 如权利要求33所述的无人机状态监控装置,其特征在于,所述处理器将所接收的各功能组件的状态参数与各功能组件预设的阈值及/或范围进行比较处理,以确定所述各功能组件的健康状态、使用状态、偏置状态,及/或异常状态中的至少一个。
  36. 如权利要求35所述的无人机状态监控装置,其特征在于,所述处理器还用于:
    利用在所述图形用户界面上显示不同状态的健康状态指示图标来呈现所述各功能组件健康状态的提示信息。
  37. 如权利要求36所述的无人机状态监控装置,其特征在于,所述处理器控制所述各功能组件的健康状态指示图标显示第一状态,表示该各功能组件的健康状态为健康;
    控制所述各功能组件的健康状态指示图标显示第二状态,表示该各功能组件的健康状态为异常;
    控制所述各功能组件的健康状态指示图标显示第三状态,表示该各功能组件的健康状态为未连接。
  38. 如权利要求35所述的无人机状态监控装置,其特征在于,所述处理器还用于:
    利用在所述图形用户界面上以预设文字信息或预设颜色的使用提示灯来呈现所述各功能组件使用状态的提示信息。
  39. 如权利要求35所述的无人机状态监控装置,其特征在于,所述处理器还用于:
    利用在图形用户界面上以偏置参数数值和偏置进度条的显示形式来呈现所述各功能组件偏置状态的提示信息。
  40. 如权利要求39所述的无人机状态监控装置,其特征在于,所述处理器根据偏置参数数值所处的不同数值范围控制所述各功能组件对应的偏置进度条以不同的颜色显示。
  41. 如权利要求40所述的无人机状态监控装置,其特征在于,当所述各功能组件的对应的偏置参数数值处于第一数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第一颜色显示;
    当所述各功能组件的对应的偏置参数数值处于第二数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第二颜色显示;及
    当所述各功能组件的对应的偏置参数数值处于第三数值范围时,所述处理器控制该各功能组件对应的偏置进度条以第三颜色显示;
    其中,当所述功能组件对应的偏置进度条以第三颜色显示时,表示该功能组件需要被校准。
  42. 如权利要求41所述的无人机状态监控装置,其特征在于,所述处理器还用于:
    当至少一个功能组件的偏置进度条以第三颜色显示时,控制预设的校准提示按钮以预设状态显示,以指导用户进行校准动作。
  43. 如权利要求42所述的无人机状态监控装置,其特征在于,所述处理器还用于:
    当所述校准提示按钮被触发时,显示一校准页面,该校准页面上显示有一个或多个需要校准的功能组件。
  44. 如权利要求43所述的无人机状态监控装置,其特征在于,所述处理器还用于依据在所述校准页面中选择的功能组件所对应的预设校准参数对该所选择的功能组件进行校准,以及在图形用户界面上显示对应的校准进度条来呈现所选择的功能组件对应的校准进度。
  45. 如权利要求44所述的无人机状态监控装置,其特征在于,所述处理器控制所选择的功能组件对应的校准进度条以第一预设颜色显示,表示该所选择的功能组件的校准进度正常;所述处理器控制所选择的功能组件对应的校准进度条以第二预设颜色显示,表示该所选择的功能组件的校准失败。
  46. 如权利要求39所述的无人机状态监控装置,其特征在于,所述各功能组件的异常状态包括数据异常、校准中、校准失败、断开连接的状态、及/或非静止、方向异常中的至少一个异常状态,以及当所述各功能组件处于异常状态时,该所述各功能组件的所述偏置参数数值处显示所述相应的异常状态。
  47. 如权利要求33所述的无人机状态监控装置,其特征在于,所述处理器还用于获取各功能组件的切换历史记录及历史异常状态。
  48. 如权利要求47所述的无人机状态监控装置,其特征在于,所述各功能组件的历史切换记录包括切换请求者、切换路径、切换原因、切换位置,及/或切换时间。
  49. 一种无人机,该无人机包括检测元件及至少一个功能组件,其特征在于,该无人机还包括无人机状态监控装置,该无人机状态监控装置用于从所述检测元件接收所述无人机的各功能组件的状态参数;
    基于所述各功能组件的状态参数确认各功能组件的状态;
    根据各功能组件的状态,在相应的图形用户界面上显示各功能组件的状态提示信息。
PCT/CN2015/097058 2015-12-10 2015-12-10 无人机及其状态监控方法、状态监控系统、状态监控装置 WO2017096598A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/097058 WO2017096598A1 (zh) 2015-12-10 2015-12-10 无人机及其状态监控方法、状态监控系统、状态监控装置
CN201580072283.3A CN107209489B (zh) 2015-12-10 2015-12-10 无人机及其状态监控方法、状态监控系统、状态监控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097058 WO2017096598A1 (zh) 2015-12-10 2015-12-10 无人机及其状态监控方法、状态监控系统、状态监控装置

Publications (1)

Publication Number Publication Date
WO2017096598A1 true WO2017096598A1 (zh) 2017-06-15

Family

ID=59012579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097058 WO2017096598A1 (zh) 2015-12-10 2015-12-10 无人机及其状态监控方法、状态监控系统、状态监控装置

Country Status (2)

Country Link
CN (1) CN107209489B (zh)
WO (1) WO2017096598A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664289A (zh) * 2018-05-14 2018-10-16 平安科技(深圳)有限公司 业务数据的处理方法及终端设备
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
CN112945592A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 故障原因确定方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221881A (zh) * 2018-03-02 2019-09-10 北京京东尚科信息技术有限公司 一种集群对象在界面的呈现方法和装置
CN109597672A (zh) * 2019-02-18 2019-04-09 北京瓴域航空技术研究院有限公司 无人机监控状态显示方法
CN111537968B (zh) * 2020-05-12 2022-03-01 江铃汽车股份有限公司 角雷达标定方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635030A (en) * 1984-07-30 1987-01-06 Canadian Marconi Company Status display system
CN101142122A (zh) * 2005-03-18 2008-03-12 雅马哈发动机株式会社 飞行控制系统
CN103984339A (zh) * 2014-05-20 2014-08-13 西南交通大学 用于旋翼飞行器的机械故障调试装置
CN104809770A (zh) * 2015-04-16 2015-07-29 沈阳飞羽航空科技有限公司 无人机地面站电子飞行仪表系统
CN105549463A (zh) * 2015-12-10 2016-05-04 深圳市大疆创新科技有限公司 无人机及其状态监控方法、状态监控系统、状态监控装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593764C (zh) * 2008-02-27 2010-03-10 浙江工业大学 通用监控系统的界面控制系统
FR2938092B1 (fr) * 2008-11-03 2010-11-12 Eurocopter France Procede de controle de l'integrite d'un systeme avionique et dispositif de controle pour mettre en oeuvre ledit procede
CN202694152U (zh) * 2012-05-23 2013-01-23 西安翔宇航空科技股份有限公司 无人机控制系统
CN104932529B (zh) * 2015-06-05 2018-01-02 北京中科遥数信息技术有限公司 一种无人机自主飞行的云端控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635030A (en) * 1984-07-30 1987-01-06 Canadian Marconi Company Status display system
CN101142122A (zh) * 2005-03-18 2008-03-12 雅马哈发动机株式会社 飞行控制系统
CN103984339A (zh) * 2014-05-20 2014-08-13 西南交通大学 用于旋翼飞行器的机械故障调试装置
CN104809770A (zh) * 2015-04-16 2015-07-29 沈阳飞羽航空科技有限公司 无人机地面站电子飞行仪表系统
CN105549463A (zh) * 2015-12-10 2016-05-04 深圳市大疆创新科技有限公司 无人机及其状态监控方法、状态监控系统、状态监控装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664289A (zh) * 2018-05-14 2018-10-16 平安科技(深圳)有限公司 业务数据的处理方法及终端设备
CN108664289B (zh) * 2018-05-14 2021-05-28 平安科技(深圳)有限公司 业务数据的处理方法及终端设备
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
WO2020078239A1 (zh) * 2018-10-18 2020-04-23 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
CN112945592A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 故障原因确定方法及装置
CN112945592B (zh) * 2019-12-10 2023-11-21 广州极飞科技股份有限公司 故障原因确定方法及装置

Also Published As

Publication number Publication date
CN107209489A (zh) 2017-09-26
CN107209489B (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2017096598A1 (zh) 无人机及其状态监控方法、状态监控系统、状态监控装置
WO2018182285A1 (ko) 디스플레이의 균열을 감지하기 위한 회로 및 이를 포함하는 전자 장치
CN105338291B (zh) 虚拟拼接屏的处理方法及装置
WO2015190647A1 (en) Display device executing bending operation and method of controlling therefor
TW201333742A (zh) 應用程式狀態的檢測系統以及方法
WO2015122616A1 (en) Photographing method of an electronic device and the electronic device thereof
WO2018124721A1 (en) Method and electronic device for detecting internal short circuit in battery
WO2017183873A1 (en) Method for processing event notification and electronic device for supporting the same
WO2020015115A1 (zh) 故障告警方法及终端设备
EP3510688A1 (en) Apparatus and method for battery management
WO2019017684A1 (en) STRUCTURE FOR DETECTING THE TEMPERATURE OF AN ELECTRONIC DEVICE
WO2015088101A1 (en) Display device and method of controlling the same
CN110262946B (zh) 一种数据库同步规则信息的拓扑显示方法及装置
CN206271394U (zh) 一种自动检测故障的大屏幕
WO2015046683A1 (en) Digital device and control method thereof
WO2014168322A1 (ko) 근접 센서 없이 사용자의 귀가 전자 장치에 근접해 있는지 여부 또는 사용자가 전자 장치의 디스플레이를 보고 있는지 여부를 판단하는 방법 및 장치
CN110427301A (zh) 一种计算机故障报警系统
WO2018016924A1 (ko) 전자 장치 및 전자 장치의 터치 입력 감지 방법
WO2021261901A1 (ko) 함수 호출 패턴 분석을 통한 이상 검출 장치 및 방법
KR20220146230A (ko) 전력기기의 결선상태를 영상으로 확인하는 검사장치
JP4171260B2 (ja) マルチドロップ配線故障検知方法およびマルチドロップ配線システム
WO2021157918A1 (ko) 안전 서비스를 제공하는 전자 장치 및 그 방법
WO2017217762A1 (ko) 터치 처리 방법 및 이를 지원하는 전자 장치
WO2018058313A1 (zh) 控制方法、控制装置及电子装置
CN211066718U (zh) 超声诊断仪故障诊断装置及设备维护管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910073

Country of ref document: EP

Kind code of ref document: A1