WO2020075836A1 - B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物 - Google Patents

B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物 Download PDF

Info

Publication number
WO2020075836A1
WO2020075836A1 PCT/JP2019/040154 JP2019040154W WO2020075836A1 WO 2020075836 A1 WO2020075836 A1 WO 2020075836A1 JP 2019040154 W JP2019040154 W JP 2019040154W WO 2020075836 A1 WO2020075836 A1 WO 2020075836A1
Authority
WO
WIPO (PCT)
Prior art keywords
hbc
hepatitis
hbv
amino acid
δhbc
Prior art date
Application number
PCT/JP2019/040154
Other languages
English (en)
French (fr)
Inventor
小川 健司
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to CN201980066430.4A priority Critical patent/CN112823019A/zh
Priority to KR1020217014114A priority patent/KR20210077711A/ko
Priority to JP2020551243A priority patent/JP7417274B2/ja
Priority to US17/284,142 priority patent/US20210332089A1/en
Priority to EP19870375.3A priority patent/EP3865145A4/en
Publication of WO2020075836A1 publication Critical patent/WO2020075836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/02Hepadnaviridae, e.g. hepatitis B virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/162Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10133Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory

Definitions

  • the present invention relates to a hepatitis B virus replication inhibitor and a pharmaceutical composition for treating hepatitis B containing the same as an active ingredient.
  • Hepatitis B is viral hepatitis caused by infection with hepatitis B virus (hepatitis B virus: often referred to as “HBV” in this specification). Since hepatitis B is transmitted through the blood and body fluids of HBV-infected persons, it causes vertical transmission (mother-to-child transmission) of the HBV-infected mother through the blood of the mother of the HBV-infected mother and sexual contact. Horizontal infection due to misuse of syringes and accidental needle sticks in tattoos, blood transfusions, and mass vaccinations is known as the main infection route (Non-Patent Document 1).
  • HBV infection is roughly classified into transient infection and persistent infection. Infections at age 5 and older are often transient because of the well-developed immune system. 70-80% of these are subclinical infections and the remaining 20-30% develop acute hepatitis B. However, in most cases, HBs antibody is induced, so that lifelong immunity is not acquired and persistent infection does not occur. On the other hand, if HBV infection occurs due to mother-infant infection or when the immune system of the child is immature at the age of 3 or younger due to medical treatment or family infection, a persistent infection can be established. The majority of HBV persistently infected patients progress as "HBV carriers" who maintain normal liver function, of which 85-90% undergo seroconversion and become asymptomatic carriers. However, the remaining 10 to 15% develop chronic hepatitis and progress to cirrhosis and hepatocellular carcinoma. The number of HBV persistent infections is estimated to be 1.5 million in Japan and 300 to 400 million worldwide (Non-Patent Document 2).
  • nucleic acid analog preparations such as Lamivudine and Entecavir are widely used as therapeutic agents for chronic hepatitis B. These therapeutic agents can reduce the amount of HBV in blood by competitive antagonism against HBV DNA polymerase and HBV DNA elongation-terminating action, thereby delaying the onset and progression of cirrhosis and hepatocellular carcinoma.
  • HBV DNA in hepatocytes cannot be eliminated, if the administration of the drug is stopped, blood HBV DNA will rise again and hepatitis will relapse. Therefore, long-term administration of therapeutic agents is required. Further, relapse during long-term treatment using the nucleic acid analog preparation is accompanied by the emergence of drug resistant virus.
  • Non-patent Documents 3 and 4 That makes the treatment of chronic hepatitis B more difficult.
  • Non-patent Documents 3 and 4 it is desired to develop a novel therapeutic agent for hepatitis B having a mechanism of action different from that of conventional nucleic acid analog preparations.
  • the present invention is to develop and provide a novel therapeutic agent for hepatitis B, which has a different mechanism of action or target object from the conventional therapeutic agents for hepatitis B.
  • the present inventors have attempted to develop a novel hepatitis B therapeutic agent that inhibits HBV replication.
  • HBV is a DNA virus, and its genome has a single-stranded structure as shown in Fig. 1 in which the positive strand ((+) strand) is shorter than the negative strand ((-)). It consists of approximately 3.2 Kb of circular incomplete double-stranded DNA (relaxed circular DNA: rcDNA).
  • rcDNA circular incomplete double-stranded DNA
  • the ORF (open reading frame) (C-ORF) of the C gene is the main component of the nucleocapsid of HBV, encodes the core protein (HBc) and HBe antigen that are essential for HBV replication, and the ORF of the P gene.
  • P-ORF encodes reverse transcriptase (HBV-Pol).
  • the ORF of the S gene (S-ORF) encodes three types of S protein regions (preS1, preS2, and S) that compose the envelope, and the ORF of the X gene (X-ORF) is a transcriptional regulator. , Encodes an X protein (HBx) that is considered to be important for the establishment of hepatocellular carcinoma.
  • HBV infection and replication The mechanism of HBV infection and replication is that HBV first enters the host hepatocytes via an unknown HBV-specific receptor and is infected. After infection, the single-stranded portion is repaired in the nucleus of the host cell by the endogenous DNA polymerase derived from the host cell, resulting in complete double-stranded DNA (covalently closed circular DNA: cccDNA). Next, using the (-) strand of this cccDNA as a template, RNA polymerase II (RNApol II) from the host cell was used to generate four types of mRNA (3.5 kb, 2.4 kb, 2.1 kb, and 0.7 kb) with different lengths. Is synthesized.
  • RNApol II RNA polymerase II
  • HBc is a major component of the nucleocapsid that forms the diaphyseal part of virus particles, and at the same time, is an extremely important protein that plays an essential role in genome replication.
  • the present inventors focused on HBc as a target protein of a novel hepatitis B therapeutic agent that inhibits HBV replication, and attempted to create a mutant HBc that can competitively inhibit HBV replication.
  • the infection efficiency is very low, and replication is possible using cell lines (HepG2.2.15, HepAD38, etc.) in which the HBV genome has been inserted. It took 7 to 12 days for the culture to be detected. Therefore, the conventional HBV replication evaluation system has a big problem that it lacks throughput.
  • the present inventors in WO2018 / 030534, without using infectious HBV to solve the above problems, using general cells, inexpensive, safe and quickly HBV genomic replication in a short time
  • the present inventors used the HBV replication activity evaluation system described in WO2018 / 030534 to verify the effects of various deletion mutant HBc on HBV replication, and act antagonistically on HBc to replicate HBV.
  • the present invention is based on the research results, and provides the following.
  • An HBV replication inhibitor comprising any of the following (I) to (III).
  • (I) Peptide fragment constituting a spike region in HBV core protein (II) Peptide fragment in which an arbitrary amino acid sequence different from that of the core protein is added to the N-terminal and / or C-terminal of the spike region (III)
  • the peptide fragment constituting the spike region is the following (a) to ( The HBV replication inhibitor according to (1), which consists of the amino acid sequence of any one of c).
  • nucleic acid comprises any of the following base sequences (i) to (iv) The HBV replication inhibitor according to (1).
  • any of the base sequences shown in SEQ ID NOs: 8 to 14 (ii) any of the base sequences shown in SEQ ID NOs: 8 to 14 with one or more bases added, deleted, or replaced (Iii) a nucleotide sequence having a base identity of 80% or more with any of the nucleotide sequences shown in SEQ ID NOs: 8 to 14 (iv) a nucleotide sequence complementary to any of the nucleotide sequences shown in SEQ ID NOs: 8 to 14
  • the phenylalanine (F) residue at position 23 is an alanine (A) residue
  • the leucine (L) residue at the position is an alanine (A) residue, or in the amino acid sequence of SEQ ID NO: 7, the phenylalanine (F) residue at the 35th position is an alanine (A) residue, and
  • An HBV nucleocapsid formation inhibitor comprising any of the following (I) to (III).
  • An expression vector comprising a nucleic acid encoding the peptide fragment described in (I) or (II) and capable of expressing the peptide fragment in a cell
  • a pharmaceutical composition for treating hepatitis B which comprises the HBV replication inhibitor, and a carrier and / or a solvent.
  • the pharmaceutical composition for treating hepatitis B according to (6) which further comprises an anti-HBV agent.
  • (9) (I) A peptide fragment that constitutes a spike region in the HBV core protein, (II) A peptide fragment in which an arbitrary amino acid sequence different from that of the core protein is added to the N-terminal and / or C-terminal of the spike region Or a method for inhibiting HBV replication, which comprises the step of introducing into a host an expression vector containing the nucleic acid encoding the peptide fragment described in (I) or (II) above and capable of expressing the peptide fragment in cells.
  • the present specification includes the disclosure content of Japanese Patent Application No. 2018-193812, which is the basis of priority of the present application.
  • the HBV replication inhibitor of the present invention can be a novel anti-HBV agent.
  • hepatitis B of the present invention by using the HBV replication inhibitor of the present invention as an active ingredient, hepatitis B having a different mechanism of action or target target from conventional hepatitis B therapeutic agents, A therapeutic pharmaceutical composition can be provided.
  • the thick black line in the center is an incomplete circular double-stranded genomic DNA (rcDNA) of HBV consisting of about 3.2 Kb.
  • the thick gray line is the ORF (open reading frame) of the four genes encoded in the HBV genomic DNA, where C is the C gene, P is the P gene, S is the S gene, and X is the position of the X gene.
  • the thin black line at the outer edge is pregenomic RNA (pregenomic RNA), which is the longest 3.5 kb mRNA among mRNA synthesized using the (-) strand of HBV genomic DNA as a template: often referred to as "pgRNA" in this specification. ) Is shown.
  • HBc HBV core protein
  • HBc consists of a total length of 183 amino acids, and consists of an N-terminal assembly domain (1-144 residues) and a C-terminal RNA / DNA binding domain (145-183 residues).
  • the assembly domain contains five ⁇ -helices ( ⁇ 1- ⁇ 3, ⁇ 4a, ⁇ 4b, and ⁇ 5.
  • B Schematic diagram of HBc conformation (modified from Wynne et al., 1999).
  • FIG. 2 is an alignment diagram of amino acid sequences constituting each genotype of HBc. An asterisk at the bottom of the sequence indicates that the amino acid at the corresponding position in all genotypes is identical, and a colon indicates that the amino acid at the corresponding position in all genotypes is similar.
  • FIG. 3 is a conceptual diagram showing an example of various expression vectors constituting the HBV replication activity evaluation system described in WO2018 / 030534 used in Examples.
  • FIG. 3 is a conceptual diagram of pCI-HBc, which is an expression vector of a C gene encoding C: HBc.
  • FIG. 3 is a conceptual diagram of pCI-HBx, which is an expression vector of an X gene encoding D: HBx.
  • A It is a conceptual diagram showing an example of a nucleic acid for evaluating HBV replication activity of the present invention.
  • FIG. 2 is a conceptual diagram of a reporter pgRNA when an HBV replication activity evaluation vector, in which the HBV replication activity evaluation nucleic acid represented by B: A is incorporated into an expression vector, is introduced into cells and expressed.
  • FIG. 2 is a conceptual diagram of reporter minus-strand DNA (reporter ( ⁇ ) DNA) synthesized by the reverse transcription activity of HBV-Pol using a reporter pgRNA represented by C: B as a template.
  • HBV replication activity evaluation nucleic acid and reporter minus strand DNA can be distinguished by the presence or absence of an intron. It is a figure which showed the inhibitory effect to HBV replication of (DELTA) HBc.
  • a to C are the results of evaluation by the HBV replication activity evaluation system of the effects of 11 types of ⁇ HBc constructed in the example on HBV replication.
  • FIG. 8 is a graph showing the quantitative effect of HBV replication inhibition by ⁇ HBc ( ⁇ 1-4b) corresponding to the spiked region of HBc in which the HBV replication inhibition effect was observed in FIG. 7.
  • the ⁇ HBc ( ⁇ 1-4b) expression vector was introduced into HeLa cells together with the HBV replication activity evaluation system.
  • ⁇ HBc ( ⁇ 1-4b) is a quantitative ratio with the full-length wild-type HBc expression vector contained in the HBV replication activity evaluation system, and ⁇ HBc ( ⁇ 1-4b) / WT-HBc is 1/9, 3/9, 9/9. , And 26/9.
  • FIG. 3 is a diagram showing the HBV replication inhibitory effect of ⁇ HBc ( ⁇ 1-4b) derived from each genotype.
  • FIG. 3 is a diagram showing the effects of HBV nucleocapsid formation inhibition and HBV replication inhibition by HBc amino acid point mutation.
  • WT indicates full length wild type HBc
  • F23A indicates full length HBc-F23A
  • L42A indicates full length HBc-L42A.
  • B Results of particle blotting.
  • C It is a figure showing the HBV replication activity when the HBc expression vector contained in the HBV replication activity evaluation system is replaced with the F23A or L42A mutant HBc expression vector.
  • FIG. 6 is a view showing an inhibitory effect on HBV replication by ⁇ HBc ( ⁇ 1-4b) introduced with an F23A or L42A mutation.
  • A Inhibition of HBV replication of ⁇ HBc ( ⁇ 1-4b) introduced with a point mutation using the HBV replication activity evaluation system.
  • B It is a figure which shows the result of the dose-dependent effect of HBV replication inhibition.
  • FIG. 3 is a graph showing the inhibitory effect of ⁇ HBc ( ⁇ 1-4b) or ⁇ HBc ( ⁇ 1-4b) -F23A on HBc multimer formation and the inhibitory effect of HBc on nucleocapsid formation.
  • A The effect of the expression of ⁇ HBc ( ⁇ 1-4b) or ⁇ HBc ( ⁇ 1-4b) -F23A added with a PA tag on dimerization and multimerization of HBc was measured using anti-HBc monoclonal antibody # 511. It is the result of analysis by Western blotting.
  • Mlt is a multimer
  • T is a multimer
  • D is a dimer
  • M is a monomer band position.
  • FIG. 2 shows the quantitative effect of HBV replication inhibition by the nucleocapsid formation inhibitor GLS4.
  • HBc-WT wild-type HBc
  • HBc-T33N HBc introduced with a T33N mutation in place of wild-type HBc was used.
  • the vertical axis of the figure shows the inhibition efficiency of HBV replication.
  • the inhibitory efficiency of HBV replication in the presence of a specific concentration of GLS4 is based on the measurement value of HBV replication activity at that concentration, ⁇ 0% inhibition '' of HBV replication activity when GLS4 concentration is 0 ⁇ M, and HBV replication activity is 0%. The value is calculated as "100% inhibition" in the case of.
  • FIG. 6 shows the quantitative effect of HBV replication inhibition by ⁇ HBc ( ⁇ 1-4b).
  • HBc included in the HBV replication activity evaluation system wild-type HBc (HBc-WT) or HBc-T33N was used instead of HBc-WT.
  • the ⁇ HBc ( ⁇ 1-4b) expression vector was introduced into HeLa cells together with the HBV replication activity evaluation system.
  • ⁇ HBc ( ⁇ 1-4b) is the amount ratio with HBc-WT or HBc-T33N contained in the HBV replication activity evaluation system, ⁇ HBc ( ⁇ 1-4b) / HBc-WT or ⁇ HBc ( ⁇ 1-4b) / HBc-T33N
  • the vertical axis of the figure shows the relative HBV replication activity when the replication activity when ⁇ HBc ( ⁇ 1-4b) was not introduced is 1.
  • HBV replication inhibitor Hepatitis B virus replication inhibitor 1-1.
  • the first aspect of the present invention is an HBV replication inhibitor.
  • the HBV replication inhibitor of the present invention is a peptide fragment constituting a spike region of a core protein (HBc), or a peptide fragment in which an arbitrary amino acid sequence different from the core protein is added to the N-terminal and / or C-terminal of the spike region. Or an expression vector capable of expressing the spike region in cells.
  • the HBV replication inhibitor of the present invention can be an active ingredient of a pharmaceutical composition for treating hepatitis B, which has a high inhibitory effect on HBV proliferation in hepatocytes.
  • Hepatitis B virus is a DNA virus belonging to the genus Orthohepadnavirus of the family Hepadnaviridae and is a causative virus of hepatitis B.
  • HBV is known to have eight genotypes (genotypes A, B, C, D, E, F, G, and H) depending on the difference in gene sequence. These genotypes differ in terms of regional distribution and pathological conditions. For example, in Japan, conventional genotype C (often referred to as “HBV / C” in this specification; the same applies to other genotypes) occupy the majority, followed by HBV / B.
  • HBV / A is known to transfer to chronic hepatitis in about 20 to 30% after acute hepatitis, but HBV / B and HBV / C have a low chronicity rate after acute hepatitis.
  • the “core protein” is a protein constituting a nucleocapsid essential for HBV replication. As shown in FIG. 2A, it is composed of an “assembly domain” on the N-terminal side and a subsequent “RNA / DNA binding domain” on the C-terminal side. The assembly domain is further composed of an N-terminal side "spike region” and a C-terminal side "hand region (HR)” (Wynne SA, et al., 1999). , Mol Cell., 3: 771-780). HBc expressed in virus-infected cells forms a dimer in the assembly domain (Fig.
  • the assembly domain consists of five ⁇ -helices as shown in Fig. 2B, the spike region is four ⁇ -helices on the N-terminal side, and the hand region is the C-terminal side. Containing one ⁇ -helix.
  • FIG. 3 eight types of genotypes corresponding to HBV / A to HBV / H are also known for HBc. In the present specification, each genotype of HBc is represented as “HBc / A” for HBc of HBV / A.
  • HBc / A to HBc / F and HBc / H are all 183 amino acid residues in length, of which the assembly domain is 144 amino acid residues from 1 to 144, and the RNA / DNA binding domain is 145 position. It is composed of 39 amino acid residues at positions 183. Only HBc / G contains an additional sequence consisting of 12 amino acid residues at the N-terminal side, so it consists of 195 amino acid residues in total length, the assembly domain is 156 amino acid residues from 1 to 156, and RNA / DNA The binding domain is composed of 39 amino acid residues at positions 157-195.
  • the full-length amino acid sequence of each genotype of HBc is HBc / A in SEQ ID NO: 15, HBc / B and HBc / C in which the amino acid sequences are completely the same are SEQ ID NO: 16, HBc / D is SEQ ID NO: 17, HBc / E. Is SEQ ID NO: 18, HBc / F is SEQ ID NO: 19, HBc / H is SEQ ID NO: 20, and HBc / G having a different total length from other genotypes is SEQ ID NO: 21.
  • the “C gene” is a gene encoding a core protein, and is one of the four types of genes encoded in the HBV genome as described above.
  • the “expression vector” refers to a vector containing a gene or gene fragment (hereinafter referred to as “gene etc.”) in an expressible state and including an expression unit capable of controlling the expression of the gene or the like.
  • the "expressible state” means that a gene or the like to be expressed is arranged in the downstream region of the promoter under the control of the promoter.
  • a plasmid vector, a virus vector and the like are known, and any vector can be used. Usually, a plasmid vector that can be easily subjected to gene recombination is sufficient.
  • the expression vector a commercially available expression vector for mammalian cells may be used. For example, pCI vector and pSI vector manufactured by Promega are listed. Further, the expression vector may be a shuttle vector capable of replicating between mammalian cells and bacteria such as Escherichia coli.
  • the “promoter” is a gene expression control region capable of controlling the expression of a gene or the like located downstream (3 ′ end side) in a cell into which an expression vector has been introduced. Promoters can be classified into ubiquitous promoters (systemic promoters) and site-specific promoters based on the location where a gene under expression control is expressed.
  • the ubiquitous promoter is a promoter that controls the expression of a target gene or the like (target gene or the like) in all cells, that is, the entire host individual.
  • a site-specific promoter is a promoter that controls the expression of a target gene or the like only in specific cells or tissues.
  • promoters are classified into constitutively active promoters, expression-inducible promoters or time-specific active promoters based on the timing of expression.
  • the constitutively active promoter can constitutively express the gene of interest in the cell.
  • the expression-inducible promoter can induce the expression of the target gene or the like in the cell at any time.
  • the stage-specific active promoter can induce expression of a target gene or the like in cells only at a specific stage of the developmental stage. Any promoter can be considered as an overexpressing promoter because it can cause overexpression of the gene of interest in the host cell.
  • inhibiting HBV nucleocapsid formation inhibits dimerization of HBc and multimerization of dimer as a unit, and normal uptake of pgRNA into HBc multimer. Thereby inhibiting the formation of functional nucleocapsids.
  • the “anti-HBV agent” refers to a drug having an action of suppressing or inhibiting HBV replication or proliferation.
  • the HBV replication inhibitor of the present invention is also included in the anti-HBV agent.
  • treatment refers to alleviation or elimination of symptoms associated with the onset of a disease, and / or inhibition or suppression of progression of a disease, and cure of a disease.
  • disease as used herein means hepatitis B unless otherwise specified.
  • the HBV replication inhibitor of the present invention comprises a peptide fragment or an expression vector. Each configuration will be specifically described below.
  • the "peptide fragment" constituting the HBV replication inhibitor of the present invention has a spike region of HBV or an arbitrary amino acid sequence different from HBc added to the N-terminal and / or C-terminal of the spike region.
  • the resulting peptide fragment is a component contained on the N-terminal side of the HBc assembly domain, as described above.
  • HBc / A to HBc / F and HBc / H spike regions consist of 111 amino acid residues consisting of HBc positions 1 to 111, and HBc / G spike regions consist of HBc positions 1 to 123 123. Corresponds to an amino acid residue.
  • Amino acids in the spike region between each genotype are highly conserved, and between HBc / A to HBc / F and HBc / H, amino acid similarity of 95% or more and amino acid identity of 84% or more. Have.
  • amino acid sequences of the peptide fragments constituting the HBV replication inhibitor of the present invention include (a) any of the amino acid sequences shown in SEQ ID NOs: 1 to 7 and (b) any of the amino acid sequences shown in SEQ ID NOs: 1 to 7. 82% or more, 84% or more, 86% or more, with the amino acid sequence of 1 or more amino acids added, deleted, or substituted in the amino acid sequence of Examples include amino acid sequences having amino acid identities of% or more, 88% or more, 90% or more, 92% or more, 94% or more, 96% or more, or 98% or more.
  • SEQ ID NO: 1 is a spike region derived from HBc / A
  • SEQ ID NO: 2 is derived from HBc / B and HBc / C
  • SEQ ID NO: 3 is derived from HBc / D
  • SEQ ID NO: 4 is derived from HBc / E
  • SEQ ID NO: 5 shows the amino acid sequence derived from HBc / F
  • SEQ ID NO: 6 shows the amino acid sequence derived from HBc / H
  • SEQ ID NO: 7 shows the amino acid sequence derived from HBc / G.
  • “plurality” means, for example, 2 to 20, 2 to 15, 2 to 10, 2 to 7, 2 to 5, 2 to 4, or 2 to 3.
  • the amino acid substitution may be a conservative amino acid substitution or a non-conservative amino acid residue.
  • the "conservative amino acid substitution” refers to a substitution between amino acids having similar properties such as charge, side chain, polarity and aromaticity.
  • Amino acids with similar properties include, for example, basic amino acids (arginine, lysine, histidine), acidic amino acids (aspartic acid, glutamic acid), uncharged polar amino acids (glycine, asparagine, glutamine, serine, threonine, cysteine, tyrosine), apolar.
  • Amino acids (leucine, isoleucine, alanine, valine, proline, phenylalanine, tryptophan, methionine), branched chain amino acids (leucine, valine, isoleucine), aromatic amino acids (phenylalanine, tyrosine, tryptophan, histidine), etc. it can.
  • amino acid substitution in the amino acid sequence constituting the peptide fragment is, but not limited to, point mutation.
  • point mutation in the amino acid sequence of any of the spike regions shown in SEQ ID NOs: 1 to 6, the phenylalanine (F) residue at position 23 is replaced with an alanine (A) residue (in this specification, this point mutation is referred to as “F23A”).
  • F23A this point mutation
  • L42A a point mutation in which the leucine (L) residue at position 42 is replaced with an alanine (A) residue
  • the phenylalanine (F) residue at position 35 is an alanine (A) residue (F35A) and / or the leucine (L) residue at position 54 is an alanine ( A)
  • a point mutation that substitutes the residue (L54A) can be mentioned.
  • amino acid identity means that when two amino acid sequences are aligned (aligned) and a gap is introduced as necessary so that the degree of amino acid identity between the two amino acid sequences is the highest. The ratio (%) of the same amino acid residue between the two amino acid sequences to the total amino acid residues of the amino acid sequence. Amino acid identity can be calculated using a protein search system based on BLAST or FASTA.
  • An arbitrary amino acid sequence different from HBc added to the N-terminal and / or C-terminal of the spike region is not particularly limited. Examples include ubiquitinated sequences, nuclear localization signals, tag sequences and the like.
  • the peptide fragment can include one or more amino acid sequences of the spike region at either the N-terminus or the C-terminus, or both. The number of amino acids added is not limited, for example, 20, 19, 18, 17, 17, 16, 15, 14, 13, 12, 11, 10, 9, respectively. , 8, 7, 6, 5, 4, 3, 2, or 1.
  • the "expression vector" constituting the HBV replication inhibitor of the present invention is an expression vector containing a nucleic acid encoding the peptide fragment and a promoter and capable of expressing the spike region in cells.
  • the expression vector may contain components such as a marker gene (selection marker), an enhancer, a terminator, an origin of replication, and a poly A signal, if necessary, in addition to the nucleic acid and the promoter which are the above components.
  • selection marker selection marker
  • an enhancer an enhancer
  • a terminator an origin of replication
  • poly A signal if necessary, in addition to the nucleic acid and the promoter which are the above components.
  • nucleic acid encoding a peptide fragment that constitutes the spike region of HBc may be any nucleic acid that includes a nucleic acid encoding any spike region of each genotype.
  • the base sequence of such nucleic acid is not limited.
  • the nucleotide sequences of genes of each genotype encoded on the genome can be mentioned.
  • the nucleotide sequence of the nucleic acid encoding the HBc / A spike region of Accession No. AY707087.1 the nucleotide sequence of the nucleic acid encoding the HBc / B spike region of Accession No.
  • GU357842.1 the access sequence Base sequence of nucleic acid encoding spike region of HBc / C of session No.AB033556.1, base sequence of nucleic acid encoding spike region of HBc / D of accession No.GU357846.1, accession No.X75664.1 Nucleotide sequence encoding the HBc / E spike region of HBc / E, nucleotide sequence encoding the HBc / F spike region of Accession No. JN792913.1, HBc / G spike of Accession No.
  • nucleotide sequence of the nucleic acid encoding the spike region of HBc / A shown in SEQ ID NO: 8 the nucleotide sequence of the nucleic acid encoding the spike region of HBc / B or HBc / C shown in SEQ ID NO: 9, the sequence The nucleotide sequence of the nucleic acid encoding the spike region of HBc / D shown in No. 10
  • nucleotide sequence of the nucleic acid encoding the HBc / H spike region shown in SEQ ID NO: 13 or the nucleotide sequence of the nucleic acid encoding the HBc / G spike region shown in SEQ ID NO: 14.
  • a termination codon TGA is added to each 3 ′ end in order to express only the spike region.
  • one or more bases are added, deleted, or substituted, or any of the above base sequences, 80% or more, 82% or more, 85% or more, 88 % Or more, 90% or more, 93% or more, 95% or more, 98% or more, 99% or more of base sequence having a base identity, or a base sequence complementary to any of the above base sequences and highly stringent conditions Examples include base sequences that hybridize below.
  • nucleotide sequences constituting the nucleic acid examples include, but are not limited to, degenerate mutations, gene polymorphisms such as SNIPs, splice mutations, point mutations, and the like.
  • point mutations include point mutations in which any of the nucleotide sequences shown in SEQ ID NOs: 8 to 13 has TTC at positions 67 to 69 replaced with GCC, and / or CTG at positions 124 to 126 replaced with GCC. .
  • nucleotide sequence shown in SEQ ID NO: 14 there may be mentioned point mutations in which the TTC at positions 106 to 108 are replaced with GCC and / or the CTG at positions 160 to 162 are replaced with GCC.
  • base identity means that when two base sequences are aligned (aligned) and a gap is introduced as necessary so that the base coincidence between the two becomes highest. It refers to the ratio (%) of the same base between the two base sequences to all the bases of the base sequence represented by SEQ ID NO.
  • hybridize under the condition of high stringency means that hybridization and washing are performed under conditions of low salt concentration and / or high temperature.
  • the salt concentration in the washing solution is lowered to 0.1 ⁇ SSC, and the temperature is raised to 68 ° C., and washing is performed until no background signal is detected.
  • the promoter is a promoter capable of inducing expression of a nucleic acid encoding the peptide fragment in cells. Since the target cell to which the HBV replication inhibitor of the present invention is applied, that is, the expression vector is introduced, is a mammalian cell, in particular, a cell derived from human or chimpanzee in principle, so that a gene downstream thereof can be expressed in those cells. Any promoter will do. Examples include CMV promoter (CMV-IE promoter), SV40 early promoter, RSV promoter, EF1 ⁇ promoter, Ub promoter and the like.
  • a "marker gene” is a gene that encodes a marker protein also called a selectable marker or reporter protein.
  • the “labeled protein” refers to a peptide that can determine the presence or absence of expression of the labeled gene based on its activity. The activity may be detected by directly detecting the activity of the labeled protein itself or indirectly by detecting a metabolite generated by the activity of the labeled protein such as a dye. Good.
  • Detection includes biological detection (including detection by binding of peptides or nucleic acids such as antibodies and aptamers), chemical detection (including enzymatic reaction detection), physical detection (including behavioral analysis detection), or detection It may be any of sensory detection (including detection by sight, touch, smell, hearing, and taste) of a person.
  • labeled protein encoded by the labeled gene is not particularly limited as long as its activity can be detected by a method known in the art. Labeled proteins that are less invasive to transformants upon detection are preferred. Examples include tag peptides, drug resistant proteins, dye proteins, fluorescent proteins, luminescent proteins and the like.
  • Tag peptide is a short peptide consisting of dozens of amino acids to several tens of amino acids that can label proteins, and is used for protein detection and purification. Usually, the nucleotide sequence encoding the tag peptide is ligated to the 5'-terminal side or the 3'-terminal side of the gene encoding the protein to be labeled, and the gene is expressed as a fusion protein with the tag peptide for labeling. Although various types of tag peptides have been developed in the art, any tag peptide may be used. Specific examples of the tag peptide include FLAG, HA, His, myc and the like.
  • Drug-resistant protein is a protein that imparts resistance to cells such as antibiotics added to the medium such as antibiotics, and most of them are enzymes. Examples include ⁇ -lactamase that confers resistance to ampicillin, aminoglycoside 3'phosphotransferase that confers resistance to kanamycin, tetracycline efflux transporter that confers resistance to tetracycline, and chloramphenicol. Examples thereof include CAT (chloramphenicol acetyltransferase) which imparts resistance.
  • “Dye protein” is a protein involved in dye biosynthesis, or a protein that enables chemical detection of a transformant by a dye by adding a substrate, and is usually an enzyme.
  • the term “dye” as used herein refers to a low molecular weight compound or peptide capable of imparting a dye to a transformant, and its type is not limited.
  • ⁇ -galactosidase (LacZ) ⁇ -glucuronidase (GUS), melanin pigment synthetic protein, omochrome pigment, or pteridine pigment may be mentioned.
  • Fluorescent protein refers to a protein that emits fluorescence of a specific wavelength when irradiated with excitation light of a specific wavelength. It may be either a natural type or a non-natural type. Moreover, the excitation wavelength and the fluorescence wavelength are not particularly limited. Specific examples include CFP, RFP, DsRed (including derivatives such as 3xP3-DsRed), YFP, PE, PerCP, APC, GFP (including derivatives such as EGFP and 3xP3-EGFP), and the like. To be
  • Luminescent protein refers to a substrate protein that can emit light without the need for excitation light or an enzyme that catalyzes the light emission of the substrate protein.
  • luciferin or aequorin as a substrate protein and luciferase as an enzyme can be mentioned.
  • the “enhancer” is not particularly limited as long as it can enhance the expression efficiency of the gene or the fragment thereof in the vector.
  • the “terminator” is a sequence capable of terminating the transcription of the expressed gene or the like by the activity of the promoter.
  • the type of terminator is not particularly limited. Preferred is a terminator derived from the same species as the promoter. A terminator paired with the promoter on the genome in the one-gene expression control system is particularly preferable.
  • the expression vector of the present invention only needs to be capable of transiently expressing the spike region of HBc in mammalian cells. Therefore, no origin of replication for mammalian cells is required.
  • the shuttle vector when expressed in bacteria such as Escherichia coli, its origin of replication is essential.
  • a known sequence can be used as the origin of replication. For example, if the origin of replication is E. coli, f1 origin or the like may be used.
  • HBV nucleocapsid formation inhibitor HBV nucleocapsid formation inhibitor
  • HBV nucleocapsid formation inhibitors target HBc.
  • HBc is a protein essential for HBV genome replication, and at the same time, it is also a main component of the nucleocapsid that forms the diaphysis of HBV particles.
  • the inhibitory effect on HBV nucleocapsid formation simultaneously brings about an inhibitory effect on HBV replication.
  • the HBV replication inhibitor of the present invention may also function as an HBV nucleocapsid formation inhibitor.
  • the composition of the HBV nucleocapsid formation inhibitor may be the same as the composition described in HBV replication inhibitor.
  • the second aspect of the present invention is a pharmaceutical composition for treating hepatitis B.
  • the pharmaceutical composition for treating hepatitis B of the present invention comprises the HBV replication inhibitor of the first aspect as an essential active ingredient, inhibits the replication of HBV after HBV infection, and suppresses the growth of HBV. Hepatitis can be treated.
  • composition 2-2-1 Constituents
  • the constituents of the pharmaceutical composition for treating hepatitis B of the present invention will be described.
  • the pharmaceutical composition for treating hepatitis B of the present invention contains one or more active ingredients as essential constituents, a solvent and / or a carrier, and further drug delivery system (DDS) particles.
  • DDS drug delivery system
  • the pharmaceutical composition for treating hepatitis B of the present invention includes the HBV replication inhibitor according to the first aspect as an essential active ingredient.
  • one or more anti-hepatitis B virus agents may be included, if necessary.
  • the structure of the HBV replication inhibitor, which is an essential active ingredient, has been described in detail in the first aspect, and thus a detailed description thereof is omitted here.
  • the pharmaceutical composition for treating hepatitis B of the present invention can contain one or more HBV replication inhibitors.
  • the pharmaceutical composition for treating hepatitis B of the present invention may contain only an essential HBV replication inhibitor as an active ingredient, but a combination composition further containing one or more other anti-HBV agents in combination of two or more. Good as a thing.
  • Such other anti-HBV agents include, but are not limited to, known anti-HBV agents such as hepatitis B therapeutic nucleic acid analogs and hepatitis B virus polymerase activity inhibitors (HBV-Pol activity inhibitors). It
  • Nucleic acid analogs for treating hepatitis B include, for example, Entecavir (ETV), Lamivudine (LAM), Adefovir (Adefovir), Tenofovir (Tenofovir), Terbivudine, Clevudine, etc.
  • ETV Entecavir
  • LAM Lamivudine
  • Adefovir Adefovir
  • Tenofovir Teenofovir
  • Terbivudine Clevudine, etc.
  • pharmaceutical compositions for treating hepatitis B which inhibit the reverse transcriptase activity of HBV.
  • the “HBV-Pol activity inhibitor” includes a phosphorylation inhibitor that inhibits phosphorylation of the activation site in HBV-Pol described in WO2018 / 030534 developed by the present inventor.
  • MAPK kinase inhibitors are relevant. More specific examples of the MAPK kinase inhibitor include the following hypothemycin represented by Formula 1, trametinib represented by Formula 2, PD98059 represented by Formula 3, PD184352 represented by Formula 4, and Formula 5 below. U-126 and the like are shown.
  • Nucleic acid analogs for treating hepatitis B have competitive antagonism against HBV DNA polymerase and HBV DNA elongation-terminating action. Therefore, the HBV replication inhibitor described in the first aspect acts on the HBV replication pathway. Mechanism is different.
  • HBV-Pol activity inhibitors act on the HBV replication pathway in the same manner as HBV replication inhibitors, but use TxY motif as the target site, and proteins containing such motifs, such as MAPK kinase, are the target molecule. Therefore, the target target is different from the HBV replication inhibitor described in the first aspect, which uses HBcDNA as the target molecule.
  • HBV replication inhibitor according to the first aspect with another anti-HBV agent such as a nucleic acid analog for treating hepatitis B and / or an HBV-Pol activity inhibitor, a synergistic effect on anti-HBV inhibition is obtained. Can be obtained.
  • another anti-HBV agent such as a nucleic acid analog for treating hepatitis B and / or an HBV-Pol activity inhibitor
  • the content of the active ingredient contained in the pharmaceutical composition for treating hepatitis B of the present invention is not particularly limited. Generally, the content varies depending on the type of active ingredient, the dosage form, and the types of solvents and carriers which are other constituents described later. Therefore, it may be appropriately determined in consideration of each condition. It suffices that a single application amount of the pharmaceutical composition for treating hepatitis B contains an effective amount of the active ingredient. However, when it is necessary to administer a large amount of the pharmaceutical composition for treating hepatitis B to the subject in order to obtain the pharmacological effect of the active ingredient, it is administered in several divided doses to reduce the burden on the subject. You can also In this case, the amount of the active ingredient may include the effective amount in the total amount.
  • Effective amount means an amount necessary for exhibiting the function as an active ingredient and giving little or no harmful side effects to the subject to which it is applied. This effective amount can vary depending on various conditions such as the subject's information, the route of application, and the number of applications. Therefore, when the pharmaceutical composition for treating hepatitis B is used as a medicine, the content of the active ingredient is finally determined by the judgment of a doctor or pharmacist.
  • the “subject” refers to an object to which the HBV replication inhibitor according to the first aspect or the pharmaceutical composition for treating hepatitis B according to the present aspect is applied.
  • cells including cultured cells
  • tissues including organs, or individuals.
  • subject In the case of an individual, it is preferably a human individual, in which case it is particularly referred to as “subject”.
  • Subjects infected with HBV, ie patients with hepatitis B, are particularly preferred.
  • the “subject information” is various information regarding the characteristics and condition of the subject.
  • examples include age, weight, sex, general health status, presence / absence of disease, disease progression / severity, drug sensitivity, presence / absence of concomitant drug, resistance to treatment, and the like. .
  • the pharmaceutical composition for treating hepatitis B of the present invention may contain a pharmaceutically acceptable solvent, if necessary.
  • a pharmaceutically acceptable solvent refers to a solvent usually used in the technical field of formulation.
  • water or an aqueous solution, or an organic solvent can be used.
  • Aqueous solutions include, for example, saline, isotonic solutions containing glucose or other auxiliaries, phosphate buffers, sodium acetate buffers.
  • the auxiliary agent include D-sorbitol, D-mannose, D-mannitol, sodium chloride, and other low-concentration nonionic surfactants, polyoxyethylene sorbitan fatty acid esters, and the like.
  • the organic solvent include ethanol.
  • composition for treating hepatitis B of the present invention can contain a pharmaceutically acceptable carrier, if necessary.
  • “Pharmaceutically acceptable carrier” refers to an additive usually used in the technical field of formulation. Examples thereof include excipients, binders, disintegrants, fillers, emulsifiers, flow control agents, lubricants, human serum albumin and the like.
  • Excipients include, for example, sugars such as monosaccharides, disaccharides, cyclodextrins and polysaccharides, metal salts, citric acid, tartaric acid, glycine, polyethylene glycol, pluronics, kaolin, silicic acid, or combinations thereof.
  • sugars such as monosaccharides, disaccharides, cyclodextrins and polysaccharides, metal salts, citric acid, tartaric acid, glycine, polyethylene glycol, pluronics, kaolin, silicic acid, or combinations thereof.
  • the binder for example, starch paste using vegetable starch, pectin, xanthan gum, simple syrup, glucose solution, gelatin, tragacanth, methylcellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, shellac, paraffin, polyvinylpyrrolidone or a combination thereof. Can be mentioned.
  • the disintegrant for example, the starch, lactose, carboxymethyl starch, crosslinked polyvinylpyrrolidone, agar, laminaran powder, sodium hydrogen carbonate, calcium carbonate, alginic acid or sodium alginate, polyoxyethylene sorbitan fatty acid ester, sodium lauryl sulfate, stearin.
  • examples thereof include acid monoglyceride and salts thereof.
  • Examples of the filler include petrolatum, the above sugar and / or calcium phosphate.
  • emulsifiers examples include sorbitan fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, and propylene glycol fatty acid ester.
  • fluid addition modifiers and lubricants examples include silicates, talc, stearates or polyethylene glycols.
  • solubilizers in addition to the above, if necessary, solubilizers, suspensions, diluents, dispersants, surfactants, soothing agents, stabilizers, absorption enhancers, bulking agents, etc. that are commonly used in pharmaceutical compositions and the like.
  • Moisturizers moisturizers, humectants, adsorbents, flavoring agents, disintegration inhibitors, coating agents, colorants, preservatives, preservatives, antioxidants, fragrances, flavors, sweeteners, buffers, isotonic agents.
  • An agent and the like can also be included as appropriate.
  • the carrier is used for avoiding or suppressing the decomposition of the active ingredient by an enzyme or the like in the subject, facilitating the formulation and administration method, and maintaining the dosage form and the drug effect, and is appropriately used as necessary. You can use it.
  • DDS particles Drug delivery system particles
  • the pharmaceutical composition for treating hepatitis B of the present invention may optionally contain DDS particles.
  • DDS particles include an active ingredient and other carriers in the interior thereof, etc. to deliver the contents to the target site, particularly the active ingredient without degrading it, and to temporally distribute the drug in the living body. It refers to particles that can be quantitatively controlled. Since the active ingredient of the pharmaceutical composition for treating hepatitis B of the present invention is a peptide or a nucleic acid, the use of DDS particles is also suitable for protecting from degradation by protease or nuclease in vivo after administration.
  • the type of DDS particles does not matter. Examples thereof include liposomes, polymer micelles, virus particles and the like.
  • the dosage form of the pharmaceutical composition for treating hepatitis B of the present invention is not particularly limited.
  • the form may be such that the active ingredient is delivered to the intended site without inactivating the active ingredient in the subject.
  • the specific dosage form depends on the application method described below. The method of application can be roughly divided into parenteral administration and oral administration, and thus the dosage form may be adapted to each administration method.
  • the preferred dosage form is a liquid formulation that can be directly administered to the target site or systemically administered via the circulatory system.
  • An injection is mentioned as a preferable example of the liquid preparation.
  • injectables are appropriately combined with the above-mentioned excipients, emulsifiers, suspensions, surfactants, stabilizers, pH adjusters, etc. in addition to solvents, and mixed in the unit dosage form generally required for pharmaceutical practice. By doing so, it can be formulated.
  • preferable dosage forms include solid preparations (including tablets, capsules, drops, and troches), granules, powders, powders, solutions (internal water preparations, emulsions, syrups) ) Is mentioned. If it is a solid formulation, it may be formed into a coated form known in the art, for example, a sugar-coated tablet, a gelatin-coated tablet, an enteric coated tablet, a film-coated tablet, a double tablet, or a multilayer tablet, if necessary. be able to.
  • the specific shapes and sizes of the above dosage forms are not particularly limited as long as they are within the range of dosage forms known in the art for each dosage form.
  • the method for producing the pharmaceutical composition for treating hepatitis B of the present invention may be formulated according to a conventional method in the art.
  • the method of applying the pharmaceutical composition for treating hepatitis B of the present invention may be oral administration or parenteral administration.
  • the oral administration method is systemic administration, but the parenteral administration method can be further subdivided into systemic administration and local administration.
  • Local administration includes, for example, intramuscular administration, subcutaneous administration, tissue administration, and organ administration, and systemic administration of parenteral administration includes intracardiac administration, such as intravenous administration (intravenous injection) and arterial administration. Internal administration and intralymphatic administration are included.
  • the pharmaceutical composition for treating hepatitis B of the present invention When the pharmaceutical composition for treating hepatitis B of the present invention is locally administered, it may be directly administered to the liver by injection or the like. Further, in the case of systemic administration, it may be administered into the circulatory organ such as intravenous injection.
  • the dose may be an amount effective for the active ingredient to respond effectively. The effective amount is appropriately selected depending on the subject information as described above.
  • two or more other known anti-HBV agents can be separately used in combination.
  • a third aspect of the present invention is a method for inhibiting HBV replication.
  • the method for inhibiting HBV replication of the present invention comprises: (I) a peptide fragment constituting a spike region in a core protein of hepatitis B virus in an HBV-infected cell or a cell that may be infected with the HBV-infected cell; Or a peptide fragment having an arbitrary amino acid sequence different from the core protein added to the C-terminus, or (III) containing the nucleic acid encoding the peptide fragment described in (I) or (II), and the peptide in a cell
  • an expression vector capable of expressing the fragment HBV replication in cells can be inhibited, thereby inhibiting HBV replication and suppressing proliferation.
  • this method is administered to a patient suffering from hepatitis B or a person at risk of suffering from it, it can be a method for treating hepatit
  • the method for inhibiting HBV replication in this embodiment includes an introduction step as an essential step.
  • the "introduction step” is (I) a peptide fragment constituting the spike region of HBc, (II) a peptide fragment in which an arbitrary amino acid sequence different from the core protein is added to the N-terminal and / or C-terminal of the spike region.
  • an expression vector comprising the nucleic acid encoding the peptide fragment described in (I) or (II) above and capable of expressing the peptide fragment in a cell, that is, the HBV replication inhibitor according to the first aspect. Is a step of introducing into the host.
  • the “host” refers to a cell, tissue or individual into which an HBV replication inhibitor can be introduced.
  • the cell may be one or more mammalian cells. Preferred are cells derived from human or chimpanzee, which is the host of HBV. The type of origin cell does not matter. In addition to hepatocytes, which are the target cells for HBV infection, cells derived from various organs and tissues can be targeted.
  • the host may be either a cell line system or a primary culture cell line.
  • the host is preferably, but not limited to, a cell infected with HBV or a cell that may be infected with HBV. When the host is an individual, the above-mentioned subject may be used.
  • the method of introducing each expression vector into the host is not particularly limited.
  • the host is a cell or tissue
  • lipofectin method PNAS, 1989, 86: 6077; PNAS, 1987, 84: 7413
  • electroporation method calcium phosphate method (Virology, 1973, 52: 456-467), DEAE-Dextran method and the like can be mentioned.
  • the host is an individual, for example, a subject
  • the HBV replication inhibitor or a medicament for treating hepatitis B which comprises the subject as an active ingredient, according to the method described in "2-3.
  • the composition may be administered.
  • the method for inhibiting HBV replication of this embodiment can be a method for treating hepatitis B.
  • Example 1 Inhibitory effect of mutant HBc on HBV replication> (Purpose) Mutant HBc in which HBc is deleted in various forms is prepared, and its inhibitory effect on HBV replication is verified.
  • HBc # 1 is an RNA / DNA binding domain (RDBD) deletion type and is composed only of the assembly domain consisting of positions 1-144 of SEQ ID NO: 16. In the embodiment, it is written as "AD”.
  • ⁇ HBc # 2 consists of positions 1-111 of SEQ ID NO: 16.
  • This ⁇ 1-4b corresponds to the spike region of HBc in which the hand region (HR) is deleted from AD.
  • ⁇ HBc # 3 consists of positions 1 to 91 of SEQ ID NO: 16.
  • (4) ⁇ HBc # 4 consists of positions 1 to 78 of SEQ ID NO: 16.
  • a structure in which ⁇ 4a to ⁇ 5 are deleted from ⁇ HBc # 1 and includes ⁇ 1 to ⁇ 3. In the examples, it is described as " ⁇ 1-3”.
  • ⁇ HBc # 5 consists of positions 1 to 49 of SEQ ID NO: 16.
  • ⁇ HBc # 6 consists of positions 1 to 26 of SEQ ID NO: 16.
  • ⁇ 2 to ⁇ 5 are deleted from ⁇ HBc # 1 and includes only ⁇ 1.
  • ⁇ HBc # 7 consists of the 1st position (starting methionine) and 18th to 111st positions of SEQ ID NO: 16.
  • ⁇ 1 and ⁇ 5 are deleted from ⁇ HBc # 1 and includes ⁇ 2 to ⁇ 4b helices. In the examples, it is described as “ ⁇ 2-4b”.
  • ⁇ HBc # 8 consists of position 1 (starting methionine) and positions 44 to 111 of SEQ ID NO: 16.
  • ⁇ HBc # 9 consists of position 1 (starting methionine) and positions 74 to 111 of SEQ ID NO: 16.
  • a structure in which ⁇ 1 to ⁇ 3 and ⁇ 5 are deleted from ⁇ HBc # 1 and includes ⁇ 4a and ⁇ 4b. In the examples, it is described as “ ⁇ 4ab”.
  • ⁇ HBc # 10 consists of positions 1 (starting methionine) and 111-144 of SEQ ID NO: 16. This is a structure in which ⁇ 1 to ⁇ 4b are deleted from ⁇ HBc # 1 and includes only ⁇ 5. In the examples, it is written as "HR”. This HR corresponds to the hand region (HR) of HBc in which the spike region has been deleted from AD. (11) ⁇ HBc # 11 consists of position 1 (starting methionine) and positions 111 to 183 of SEQ ID NO: 16. It is a structure in which ⁇ 1 to ⁇ 4b is deleted from HBc, and contains ⁇ 5 corresponding to HR and an RNA / DNA binding domain (RDBD). In the examples, it is described as "HR-RDBD”.
  • HBc / C gene represented by SEQ ID NO: 22 in which the codon of the DNA sequence encoding full length HBc / C is optimized for human cells
  • the region encoding each ⁇ HBc is excised and the mammal shown in FIG.
  • pCI Promega
  • the expression vector thus obtained is ⁇ HBc expression vector (pCI- ⁇ HBc), for example, ⁇ HBc expression vector incorporating ⁇ 1-4b of ⁇ HBc # 2 is ⁇ HBc ( ⁇ 1-4b) expression vector (pCI- ⁇ HBc ( ⁇ 1-4b)).
  • an HBV replication activity evaluation vector (pBB-intron) encoding the reporter pgRNA shown in FIG. 5A, an HBV-P expression vector (pCI-HBV-Pol) shown in FIG. 5B, and an HBc expression vector shown in FIG. 5C.
  • PCI-HBc the HBV replication activity evaluation system consisting of the HBx expression vector (pCI-HBx) shown in FIG. 5D were introduced into HeLa cells together with each pCI- ⁇ HBc.
  • ⁇ HBc is about 3 times (2.89 times) the amount of wild-type HBc that acts on HBV replication.
  • empty vector pCI
  • the electroporation method was used for gene transfer into HeLa cells. Using an electroporator Nepa21 (Neppagene), 10 ⁇ g of DNA was introduced into about 1 ⁇ 10 6 cells under the condition of 125 V / 2.5 ms plus length. The HeLa cells after gene transfer were cultured in 2 mL of 10% FBS-added DMEM in the presence of 5% CO 2 at 37 ° C. for 24 hours.
  • RNA-pol II of HeLa cells synthesizes the pre-mRNA shown in FIG. 6A, and then pBB-in the HeLa cells by pre-mRNA splicing.
  • the intron contained in the intron reporter sequence is immediately removed.
  • the mature mRNA with the intron spliced out becomes the reporter pgRNA shown in FIG. 6B.
  • the reporter pgRNA is reverse transcribed by the action of HBV-Pol, HBc, and HBx expressed from the HBV-P expression vector, the HBc expression vector, and the HBx expression vector, respectively, and is shown in FIG. 6A as shown in FIG. 6C.
  • the amount of this reporter ( ⁇ ) DNA reflects the replication activity and replication amount of HBV. Therefore, by extracting the DNA from the cells introduced with the HBV replication activity evaluation system and pCI- ⁇ HBc, and quantifying the amount with a primer set specific to the reporter (-) DNA, by comparing with the amount of the positive control, The effect of pCI- ⁇ HBc on HBV replication can be evaluated.
  • PrimerF forward primer
  • PrimerR reverse primer
  • PrimerF is designed so that the two bases at the 3'end match the two bases at the 5'end in the downstream exon, but not the two bases at the 5'end of the intron. Therefore, it functions as a primer only when a reporter (-) DNA having a reporter sequence with an intron removed is present, and a 131-base DNA fragment is amplified.
  • Example 2 Quantitative effect of HBV replication inhibition by spike region> (Purpose) It is verified whether the spiked region inhibits HBV replication in a dose-dependent manner.
  • FIG. 8 shows the results. As shown in this figure, replication of HBV was suppressed in a dose-dependent manner of pCI- ⁇ HBc ( ⁇ 1-4b) to be introduced, and about 3 times the amount (26/9 amount) of ⁇ HBc ( ⁇ 1- It was revealed that when 4b) was introduced, the replication activity of HBV was almost lost. From this result, it was shown that the spike region of HBc inhibits HBV replication depending on its expression level.
  • Example 3 Effect of HBV replication inhibitory activity of spike region derived from each HBc genotype> (Purpose) There are eight genotypes (HBc / A to HBc / H) in HBc. It is verified that the effect of HBV replication inhibitory activity by the spiked region of HBc / C obtained in Example 1 can be obtained also by spiked regions of other genotypes.
  • the wild type nucleotide sequence information of each genotype of the HBc gene is the nucleotide sequence shown in SEQ ID NO: 25, the HBc / D gene Is based on the nucleotide sequence represented by SEQ ID NO: 26, the HBc / E gene is represented by SEQ ID NO: 27, and the HBc / F gene is represented by SEQ ID NO: 28, using pCI- ⁇ HBc ( ⁇ 1-4b) as a template.
  • Sitedirected mutagenesis (PrimeSTAR Mutagenesis BasalKit, TaKaRa) was used to introduce amino acid substitutions to generate ⁇ HBc ⁇ 1-4b expression plasmids derived from genotypes A, D, E and F.
  • FIG. 9 shows the results. As shown in this figure, a remarkable HBV replication inhibitory activity was observed in all genotype spike regions. This result revealed that the spiked region of HBc has HBV inhibitory activity regardless of genotype.
  • Example 4 Verification of HBV nucleocapsid formation inhibition and HBV replication inhibition by amino acid point mutation of HBc> (Purpose) From the structural analysis of HBc, phenylalanine (F) at the 23rd position (35th position in HBc / G) or leucine (L) at the 42nd position (54th position in HBc / G) in the spike region ( ⁇ 1-4b) was replaced with alanine (L). It has been reported that the substitution of A) can inhibit the nucleocapsid formation of HBc (Alexander CG, et al., 2013, PNAS, 110 (30): E2782-E2791). Therefore, it is examined whether or not these point mutations have an inhibitory effect on nucleocapsid formation and HBV replication.
  • Anti-HBc monoclonal antibody for HBc detection by Western blotting or the like was prepared. Synthesized a peptide represented by SEQ ID NO: 29 (PAYRPPNAPILSTLP) corresponding to positions 130 to 144 in the HBc / C hand region, and immunized BALB / c mice (8 weeks old, female) with the synthetic peptide. Then, a mouse anti-human HBc monoclonal antibody (# 511) was prepared by a hybridoma method using spleen cells of a mouse immunized by a conventional method.
  • HBV replication activity was based on the method described in Example 1. However, in this example, the HBc expression vector (pCI-HBc) contained in the HBV replication evaluation system described in Example 1 was replaced with HBc-F23A or HBc-L42A.
  • FIG. A is the result of Western blotting under non-reducing conditions.
  • M monomer band
  • Mlt multimer band
  • D dimer
  • C is a result of examining the inhibitory effect of HBV replication by introducing HBc-F23A or HBc-L42A into cells in place of HBc-WT in the HBV replication activity evaluation system. From the results of A, it was revealed that HBc-F23A has almost completely lost the HBV replication activity, although there was no significant difference in the ability to form multimers from HBc-WT. Although HBc-L42A retains the replication activity, it was revealed to be significantly attenuated as compared with that of HBc-WT. From the above results, it was clarified that the introduction of the F23A or L42A point mutation into the full-length wild type HBc affects the HBV replication inhibitory activity.
  • ⁇ Example 5 Verification of HBV replication inhibitory activity of known amino acid mutations that inhibit HBc nucleocapsid formation> (Purpose) It is examined how the introduction of the F23A or L42A mutation into ⁇ HBc ( ⁇ 1-4b) affects the HBV replication inhibitory activity of ⁇ HBc ( ⁇ 1-4b).
  • ⁇ HBc ( ⁇ 1-4b) Expression Vector Introduced with F24A or L42A
  • genotype C ⁇ HBc ( ⁇ 1-4b) expression vector (pCI- ⁇ HBc ( ⁇ 1-4b)) used in Example 1 The 23rd F residue or the 42nd L residue was replaced with an A residue by a site-directed mutagenesis method using PrimeSTAR Mutagenesis Basal Kit (TaKaRa) (represented as F23A and L42A, respectively).
  • ⁇ HBc ( ⁇ 1-4b) introduced with F23A or L42A is designated as ⁇ HBc ( ⁇ 1-4b) -F23A and ⁇ HBc ( ⁇ 1-4b) -L42A, respectively.
  • HBV replication activity of HBc having a point mutation introduced was based on the method described in Example 1.
  • wild-type pCI- ⁇ HBc ( ⁇ 1-4b), point mutant pCI- ⁇ HBc ( ⁇ 1-4b) -F23A or pCI- ⁇ HBc ( ⁇ 1- 4b) -L42A was introduced into HeLa cells.
  • pCI- ⁇ HBc ( ⁇ 1-4b) and pCI- ⁇ HBc ( ⁇ 1-4b) -F23A the plasmid to be introduced was serially diluted with an empty vector (pCI) in the same manner as in Example 2 to obtain the respective HBV. The dose-dependent effect of replication inhibition was verified.
  • FIG. A shows the result of HBV replication activity evaluation. From this figure, pCI- ⁇ HBc ( ⁇ 1-4b) -F23A, and pCI- ⁇ HBc ( ⁇ 1-4b) -L42A was introduced, the inhibitory effect of HBV replication activity was maintained, pCI- ⁇ HBc ( In the cells into which ⁇ 1-4b) -L42A had been introduced, the HBV replication inhibitory activity was weaker than that of wild-type pCI- ⁇ HBc ( ⁇ 1-4b).
  • HeLa cells were introduced with pCI- ⁇ HBc ( ⁇ 1-4b) -PA alone or pCI- ⁇ HBc ( ⁇ 1-4b) -PA and pCI- ⁇ HBc ( ⁇ 1-4b) -F23A-PA at a ratio of 1: 1. .
  • the anti-HBc monoclonal antibody # 511 and the anti-PA monoclonal antibody NZ-1 (Fujifilm Wako Pure Chemical Industries) shown in Example 4 were used.
  • Anti-HBc monoclonal antibody # 511 recognizes the hand region of HBc, and therefore only recognizes full-length HBc here, and the hand region is deleted ⁇ HBc ( ⁇ 1-4b) -PA and ⁇ HBc ( ⁇ 1-4b) -F23A- PA does not recognize.
  • the anti-PA monoclonal antibody NZ-1 recognizes the PA tag, it recognizes only ⁇ HBc ( ⁇ 1-4b) -PA and ⁇ HBc ( ⁇ 1-4b) -F23A-PA, and recognizes full-length HBc without PA tag. do not do.
  • Particle blotting The basic operation was in accordance with the method described in Example 4.
  • the introduction ratio of pCI- ⁇ HBc ( ⁇ 1-4b) -PA and pCI- ⁇ HBc ( ⁇ 1-4b) -F23A-PA was 1: 3.
  • HeLa cells were lysed with 300 ⁇ L of TNE buffer (10 mM Tris pH8.0, 100 mM NaCl, 1 mM EDTA).
  • 100 ⁇ L of 4 x PNE buffer (26% PEG 8000, 1.4 M NaCl, 40 mM EDTA) was added to the sample, incubated on ice for 2 hours, and then centrifuged at 15,000 rpm for 15 minutes at 4 ° C., and then in Example 4.
  • Particle blotting was performed by the method described.
  • FIG. A The effect of the expression of ⁇ HBc ( ⁇ 1-4b) or ⁇ HBc ( ⁇ 1-4b) -F23A added with a PA tag on dimerization and multimerization of HBc was measured using anti-HBc monoclonal antibody # 511. It is the result of analysis by Western blotting. From these results, in cells expressing only full-length HBc (lanes 1 to 3), full-length HBc exists as a multimer (Mlt) of dimer (D) or more, and monomer (M) Hardly detected.
  • Mlt multimer of dimer
  • M monomer
  • HBc-T33N HBc with a T33N mutation
  • HBV replication inhibition efficiency The measurement of HBV replication activity by HBc-WT or HBc-T33N was carried out by using HBc-WT or HBc-T33N as HBc contained in the HBV replication evaluation system described in Example 1, It was performed according to the method described in Example 1 in the presence of GLS4 at a concentration of 0 ⁇ M, 0.08 ⁇ M, 0.16 ⁇ M, 0.31 ⁇ M, 0.63 ⁇ M, 1.25 ⁇ M, 2.5 ⁇ M, or 5 ⁇ M. The HBV replication inhibitory efficiency (%) was calculated based on the obtained measurement value of HBV replication activity (amount of reverse-transcribed HBV DNA).
  • HBV replication inhibition efficiency (%) in the presence of a specific concentration of GLS4 is “0% inhibition” of reverse transcribed HBV DNA amount when GLS4 concentration is 0 ⁇ M (GLS4 is not added), and reverse transcribed HBV DNA amount. Is a value calculated as “100% inhibition” when 0 is 0 (when reverse transcription does not occur at all).
  • FIG. 13 shows the results of examining the inhibitory effect of HBV replication in the presence of various concentrations of GLS4 by transfecting HBc-WT or HBc-T33N in place of HBc-WT in a cell using an HBV replication activity evaluation system.
  • GLS4 inhibited HBV replication by HBc-WT in a concentration-dependent manner, while showing no inhibitory effect on HBV replication by HBc-T33N, indicating that HBc-T33N is resistant to GLS4. It was From this result, it was shown that by using HBc-T33N in place of HBc-WT in the HBV replication activity evaluation system, replication of nucleocapsid formation inhibitor resistant virus is reproduced.
  • ⁇ Example 8 Examination of inhibitory effect of spike region ⁇ HBc ( ⁇ 1-4b) on HBV replication by HBc-T33N> (Purpose) It is verified whether the spiked region ⁇ HBc ( ⁇ 1-4b) inhibits HBV replication by nucleocapsid formation inhibitor resistant mutant HBc (HBc-T33N).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

従来のB型肝炎治療剤とは作用機序又は標的対象が異なる新規B型肝炎治療剤を開発し、提供することである。 B型肝炎ウイルスのコアタンパク質におけるスパイク領域、又はそれをコードする核酸を含む発現ベクターからなるB型肝炎ウイルス複製阻害剤を提供する。

Description

B型肝炎ウイルス複製阻害剤及びそれを含むB型肝炎治療用医薬組成物
 本発明は、B型肝炎ウイルス複製阻害剤及びそれを有効成分として含むB型肝炎治療用医薬組成物に関する。
 B型肝炎は、B型肝炎ウイルス(hepatitis B virus:本明細書では、しばしば「HBV」と表記する)の感染により発症するウイルス性肝炎である。B型肝炎は、HBV感染者の血液や体液を介して伝播することから、出産時にHBV感染者の母親の血液を介してその子供が感染する垂直感染(母児感染)や、性的接触、刺青、輸血や集団予防接種における注射器の使いまわしや針刺し事故等による水平感染が主な感染経路として知られている(非特許文献1)。
 HBV感染は、一過性感染と持続感染に大別される。5歳以上での感染は、免疫能が十分発達していることから、多くは一過性感染となる。その70~80%は不顕性感染で、残りの20~30%が急性B型肝炎を発症する。しかし、ほとんどの場合、HBs抗体が誘導されるため、終生免疫を獲得し、持続感染に移行することはない。一方、母児感染や、自己の免疫システムが未熟な3歳以下の時期に医療行為や家族内感染等の理由によりHBV感染した場合には持続感染が成立し得る。HBVの持続感染患者の大部分は、正常な肝機能を維持する「HBVキャリア」として経過し、そのうち85~90%はセロコンバージョンを起こして無症候性キャリアとなる。しかし、残りの10~15%は慢性肝炎を発症し、肝硬変や肝細胞癌に進展する。HBVの持続感染者数は、日本では150万人、また全世界では3~4億人と推計されている(非特許文献2)。
 現在、慢性B型肝炎の治療薬には、ラミブジン(Lamivudine)やエンテカビル(Entecavir)に代表される核酸アナログ製剤が汎用されている。これらの治療薬は、HBV DNAポリメラーゼに対する競合的拮抗作用とHBV DNAの伸長停止作用によって血中HBV量を減少させることで、肝硬変、肝細胞癌の発生や進行を遅延できる。しかし、肝細胞内のHBV DNAを排除できないため、薬剤の投与を中止すると血中HBV DNAが再上昇し肝炎が再燃してしまう。そのため治療薬の長期投与が必要となる。また、前記核酸アナログ製剤を使用した長期治療時の再燃は、薬剤耐性ウイルスの出現を伴う。それが慢性B型肝炎治療を一層困難なものにしている(非特許文献3及び4)。上記理由により、従来の核酸アナログ製剤とは作用機序の異なる新規B型肝炎治療薬の開発が望まれている。
Aspinall E.J. et al., 2011, Occup Med (Lond), 61: 531-540. Fattovich G., et al., 2008, J Hepatol, 48: 335-352. Lau D.T. et al., 2000, Hepatology, 32: 828-834. Koumbi L., 2015, World J Hepatol, 7: 1030-1040.
 本発明は、従来のB型肝炎治療剤とは作用機序又は標的対象が異なる新規B型肝炎治療剤を開発し、提供することである。
 上記課題を解決するために、本発明者らは、HBVの複製を阻害する新規B型肝炎治療剤の開発を試みた。
 HBVはDNAウイルスであり、そのゲノムは、図1で示すようにプラス鎖((+)鎖)がマイナス鎖((-)鎖)に対して短く、それ故に一部に一本鎖構造を有する約3.2Kbの環状不完全二本鎖DNA(relaxed circular DNA:rcDNA)からなる。HBVゲノム上には、C、P、S及びXの4種類の遺伝子が存在する(Arzumanyan A, et al., 2013, Nat Rev Cancer., 13:123-135)。C遺伝子のORF(open reading frame)(C-ORF)は、HBVのヌクレオカプシドの主成分であり、HBVの複製に必須のコアタンパク質(HBc)及びHBe抗原をコードしており、またP遺伝子のORF(P-ORF)は逆転写酵素(HBV-Pol)をコードしている。さらに、S遺伝子のORF(S-ORF)はエンベロープを構成する3種類のSタンパク質領域(preS1、preS2、及びS)をコードし、またX遺伝子のORF(X-ORF)は転写制御因子であり、肝細胞癌の成立に重要と考えられるXタンパク質(HBx)をコードしている。
 HBVの感染及び複製機構は、まずHBVがHBV特異的な未知のレセプターを介して宿主である肝細胞内に侵入し、感染する。感染後は、宿主細胞の核内で宿主細胞由来の内在性DNAポリメラーゼによって一本鎖部分が修復され、完全二本鎖DNA(covalently closed circular DNA:cccDNA)となる。続いて、このcccDNAの(-)鎖を鋳型として、宿主細胞由来のRNAポリメラーゼII(RNA pol II)により、長さの異なる4種(3.5kb、2.4kb、2.1kb、及び0.7kb)のmRNAが合成される。このうち最長の3.5kb mRNAは、プレゲノムRNA(pgRNA)と呼ばれ、HBVゲノムDNAの鋳型となる。pgRNAの5'及び3'両末端に存在するRNA encapsidation signal epsilon (ε)は、HBV-Polと相互作用して、HBcによって構成されるヌクレオカプシドに取り込まれる(Beck J, & Nassal M., 2007, World J Gastroenterol., 13: 48-64)。続いて、pgRNAを鋳型として、逆転写酵素活性によりマイナス鎖DNAを合成する。このゲノム複製の過程には、pgRNAがHBV-Polと共にヌクレオカプシドに取り込まれることが必要である。これらのHBVの感染及び複製機構は、HBcがウイルス粒子の骨幹をなすヌクレオカプシドの主成分であると同時に、ゲノム複製においても必須の役割を果たす極めて重要なタンパク質であることを示唆している。
 そこで、本発明者らは、HBVの複製を阻害する新規B型肝炎治療剤の標的タンパク質としてHBcに着目し、HBVの複製を拮抗的に阻害できる変異型HBcの作製を試みた。
 ところで、上記HBVの複製阻害を検証するためには、HBV複製を正確に定量し、評価できる実験系が必須である。HBV感染やHBV複製を解析する評価系は、これまでにも複数存在したが、いずれも感染性のあるHBVを使用する点から安全面や大量の試料を扱いづらいという問題があった。また、現段階でHBVを効率的に感染させることのできる細胞は、ヒト肝細胞初代培養系、又は高価なHepaRG(登録商標)細胞に限られており、使用可能な細胞に大きな制限があった。さらに、HBVのレセプターとされるNTCPを過剰発現させた細胞でも感染は成立するものの感染効率は非常に低く、HBVのゲノムを挿入した株化細胞(HepG2.2.15、HepAD38等)を用いても複製の検出までには7~12日間という長時間の培養を要していた。それ故に、従来のHBV複製評価系にはスループット性に欠けるという大きな問題があった。
 本発明者らは、WO2018/030534において、上記課題を解決するために感染性のあるHBVを用いずに、一般的な細胞を使って、安価、安全かつ迅速にHBVのゲノム複製を短時間で可視化し、かつその活性を数値化できるHBV複製活性評価システムを構築した。さらに、そのHBV複製活性評価システムを用いて、新規HBV-Pol活性阻害剤を開発することに成功した。今回、本発明者らは、WO2018/030534に記載のHBV複製活性評価システムを用いて様々な欠損変異型HBcのHBV複製に及ぼす影響を検証し、HBcに拮抗的に作用し、HBVの複製を著しく阻害する変異型HBcを見出した。本発明は、当該研究結果に基づくものであり、以下を提供する。
(1)以下の(I)~(III)のいずれかからなるHBV複製阻害剤。
  (I)HBVのコアタンパク質におけるスパイク領域を構成するペプチド断片
  (II)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片
  (III)前記(I)又は(II)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター
(2)前記スパイク領域を構成するペプチド断片が以下の(a)~(c)のいずれかのアミノ酸配列からなる、(1)に記載のHBV複製阻害剤。
  (a)配列番号1~7で示すいずれかのアミノ酸配列
  (b)配列番号1~7で示すいずれかのアミノ酸配列において、1又は複数個のアミノ酸が付加、欠失、又は置換されたアミノ酸配列
  (c)配列番号1~7で示すいずれかのアミノ酸配列と82%以上のアミノ酸同一性を有するアミノ酸配列
(3)前記核酸が以下の(i)~(iv)のいずれかの塩基配列からなる、(1)に記載のHBV複製阻害剤。
 (i)配列番号8~14で示すいずれかの塩基配列
 (ii)配列番号8~14で示すいずれかの塩基配列において、1又は複数個の塩基が付加、欠失、又は置換された塩基配列
 (iii)配列番号8~14で示すいずれかの塩基配列と80%以上の塩基同一性を有する塩基配列
 (iv)配列番号8~14で示すいずれかの塩基配列に相補的な塩基配列と高ストリンジェントな条件下でハイブリダイズする塩基配列
(4)配列番号1~6で示すいずれかのアミノ酸配列において、23位のフェニルアラニン(F)残基がアラニン(A)残基に、及び/又は42位のロイシン(L)残基がアラニン(A)残基に、又は配列番号7で示すアミノ酸配列において、35位のフェニルアラニン(F)残基がアラニン(A)残基に、及び/又は54位のロイシン(L)残基がアラニン(A)残基に、置換された、(2)に記載のHBV複製阻害剤。
(5)以下の(I)~(III)のいずれかからなるHBVヌクレオカプシド形成阻害剤。
 (I)HBVのコアタンパク質におけるスパイク領域を構成するペプチド断片
 (II)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片
 (III)前記(I)又は(II)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター
(6)有効成分としての(1)~(4)のいずれかに記載のHBV複製阻害剤、及び担体及び/又は溶媒を含むB型肝炎治療用医薬組成物。
(7)抗HBV剤をさらに含む、(6)に記載のB型肝炎治療用医薬組成物。
(8)抗HBV剤が核酸アナログ及び/又はHBV-Pol活性阻害剤である、(7)に記載のB型肝炎治療用医薬組成物。
(9)(I)HBVのコアタンパク質におけるスパイク領域を構成するペプチド断片、(II)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片、又は前記(I)又は(II)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクターを宿主内に導入する工程を含むHBV複製阻害方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-193812号の開示内容を包含する。
 本発明のHBV複製阻害剤によれば、新規抗HBV剤となり得る。
 本発明のB型肝炎治療用医薬組成物によれば、本発明のHBV複製阻害剤を有効成分とすることで、従来のB型肝炎治療剤とは作用機序又は標的対象が異なるB型肝炎治療用医薬組成物を提供することができる。
HBVのゲノムDNA構造の概念図である。中心部の黒太線で示す部分が約3.2KbからなるHBVの不完全環状二本鎖ゲノムDNA(rcDNA)である。グレーの太線は、HBVのゲノムDNAにコードされる4種の遺伝子のORF(open reading frame)で、CはC遺伝子、PはP遺伝子、SはS遺伝子、そしてXはX遺伝子の位置を示す。外縁の細黒線は、HBVのゲノムDNAの(-)鎖を鋳型に合成されるmRNAのうち、最長の3.5kb mRNAであるプレゲノムRNA(pregenomic RNA:本明細書ではしばしば「pgRNA」と表記する)を示している。 A:HBVコアタンパク質(HBc)のドメイン構造を示す模式図である。HBcは、全長183アミノ酸からなり、N末端のアッセンブリドメイン(1~144残基)とC末端のRNA/DNA結合ドメイン(145~183残基)からなる。アッセンブリドメインは5個のαヘリックス(α1~α3、α4a、α4b、及びα5を含む。B:HBcの立体構造の模式図(Wynne et al., 1999より改変)。N末端側に位置するα1からα4bを含むアミノ酸1-111(111残基)はカプシドのスパイク構造を、C末端側のα5を含むアミノ酸112~144(33残基)はハンド領域を構成する。C:HBc二量体の模式図を示す。HBcは安定な二量体を形成し、これ単位として90又は120個が集合し、正十二面体のヌクレオカプシドを形成する。 HBcの各ジェノタイプを構成するアミノ酸配列をアラインメントした図である。配列下部の星印は、全ジェノタイプにおいて対応する位置のアミノ酸が同一であることを示し、コロンは、全ジェノタイプにおいて対応する位置のアミノ酸が類似することを示す。また、ピリオドは、対応する位置のアミノ酸が一部のジェノタイプで同一性及び類似性がないことを示す。ハイフンはギャップを示す。配列上部には、HBcの各ドメインに相当する位置を示している。 実施例で使用した各ΔHBcの名称、それぞれのΔHBcに対応するアミノ酸配列及びペプチド鎖長、並びにドメイン構造を示す。 実施例で使用したWO2018/030534に記載のHBV複製活性評価システムを構成する各種発現ベクターの一例を示す概念図である。A: HBV複製活性評価ベクターの一例であるpBB-intronの概念図である。B:HBV-PolをコードするP遺伝子の発現ベクターであるpCI-HBV-Polの概念図である。C:HBcをコードするC遺伝子の発現ベクターであるpCI-HBcの概念図である。D:HBxをコードするX遺伝子の発現ベクターであるpCI-HBxの概念図である。 A:本発明のHBV複製活性評価核酸の一例を示す概念図である。B:Aで示すHBV複製活性評価核酸が発現ベクターに組み込まれたHBV複製活性評価ベクターを細胞内に導入し、発現させたときのレポーターpgRNAの概念図である。レポーターpgRNAでは、レポーター配列内のイントロンがpre-mRNAスプライシングによって除去されている。C:Bで示すレポーターpgRNAを鋳型にHBV-Polの逆転写活性によって合成されたレポーターマイナス鎖DNA(reporter (-)DNA)の概念図である。HBV複製活性評価核酸とレポーターマイナス鎖DNAはイントロンの有無によって区別することができる。 ΔHBcのHBV複製に対する阻害効果を示した図である。A~Cは、実施例で構築した11種類のΔHBcによるHBV複製への影響をHBV複製活性評価システムで評価した結果である。図中、BL(Blank)は、発現ベクターを導入していないHeLa細胞のみのMockを示す。‐は、pCI-ΔHBcを導入していない陽性対照を示す。 図7でHBV複製阻害効果がみられた、HBcのスパイク領域に相当するΔHBc(α1-4b)によるHBV複製阻害の量的効果を示す図である。HBV複製活性評価システムと共にΔHBc(α1-4b)発現ベクターをHeLa細胞に導入した。ΔHBc(α1-4b)は、HBV複製活性評価システムに含まれる全長野生型HBc発現ベクターとの量比で、ΔHBc(α1-4b)/WT-HBcが1/9、3/9、9/9、及び26/9となるように導入した。 各ジェノタイプに由来するΔHBc(α1-4b)のHBV複製阻害効果を示す図である。 HBcのアミノ酸点変異によるHBVヌクレオカプシド形成阻害及びHBV複製阻害の効果を示す図である。A:非還元条件下でのウェスタンブロッティングの結果である。図中、Mltは多量体を、Tは多量体を、Dは二量体を、そしてMは単量体のバンド位置を示す。WTは全長野生型HBcを、F23Aは全長HBc-F23Aを、そしてL42Aは全長HBc-L42Aを示す。B:パーティクルブロッティングの結果である。C:HBV複製活性評価システムに含まれるHBc発現ベクターをF23A又はL42A変異型HBc発現ベクターに置き換えたときのHBV複製活性を示した図である。 F23A又はL42A変異を導入したΔHBc(α1-4b)によるHBV複製阻害効果を示した図である。A:HBV複製活性評価システムを用いて、点変異を導入したΔHBc(α1-4b)のHBV複製阻害を示す。B: HBV複製阻害の量依存的効果の結果を示す図である。 ΔHBc(α1-4b)又はΔHBc(α1-4b)-F23AによるHBcの多量体形成抑制効果とそれによるHBcのヌクレオカプシド形成の阻害効果を示す図である。A:PAタグを付加したΔHBc(α1-4b)又はΔHBc(α1-4b)-F23Aの発現が、HBcの二量体形成及び多量体形成に与える影響を、抗HBcモノクローナル抗体#511を用いたウェスタンブロッティングによって解析した結果である。図中、Mltは多量体を、Tは多量体を、Dは二量体を、そしてMは単量体のバンド位置を示す。B:HBcの二量体形成及び多量体形成に与えるΔHBc(α1-4b)又はΔHBc(α1-4b)-F23A発現の影響を、抗PAモノクローナル抗体NZ-1を用いたウェスタンブロッティングによって解析した結果である。C:Hela細胞でΔHBc(α1-4b)-PAを単独発現、又は全長HBcと共発現させた後、NZ-1抗体を用いたウェスタンブロッティングによる解析結果である。D:パーティクルブロットの結果である。 ヌクレオカプシド形成阻害剤GLS4によるHBV複製阻害の量的効果を示す図である。HBV複製活性評価システムに含まれるHBcとして、野生型HBc(HBc-WT)、又は野生型HBcに代えてT33N変異を導入したHBc(HBc-T33N)を用いた。図の縦軸はHBV複製の阻害効率を示す。特定の濃度のGLS4存在下におけるHBV複製の阻害効率は、その濃度におけるHBV複製活性の測定値に基づいて、GLS4濃度が0μMの場合のHBV複製活性を「0%阻害」、HBV複製活性が0の場合を「100%阻害」として算出した値である。 ΔHBc(α1-4b)によるHBV複製阻害の量的効果を示す図である。HBV複製活性評価システムに含まれるHBcとして、野生型HBc(HBc-WT)、又はHBc-WTに代えてHBc-T33Nを用いた。HBV複製活性評価システムと共にΔHBc(α1-4b)発現ベクターをHeLa細胞に導入した。ΔHBc(α1-4b)は、HBV複製活性評価システムに含まれるHBc-WT又はHBc-T33Nとの量比で、ΔHBc(α1-4b)/HBc-WT又はΔHBc(α1-4b)/HBc-T33Nが1/9、3/9、9/9、及び26/9となるように導入した。図の縦軸は、ΔHBc(α1-4b)が導入されなかった場合の複製活性を1とした場合の相対的なHBV複製活性を示す。
1.B型肝炎ウイルス複製阻害剤(HBV複製阻害剤)
1-1.概要
 本発明の第1の態様はHBV複製阻害剤である。本発明のHBV複製阻害剤は、コアタンパク質(HBc)のスパイク領域を構成するペプチド断片、スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片、又は細胞内でスパイク領域を発現可能な発現ベクターからなる。本発明のHBV複製阻害剤は、肝細胞におけるHBVの増殖抑制効果の高いB型肝炎治療用医薬組成物の有効成分となり得る。
1-2.定義
 本明細書で使用する用語について、以下で定義する。
 「B型肝炎ウイルス(hepatitis B virus:HBV)」とは、ヘパドナウイルス科オルソヘパドナウイルス属に属するDNAウイルスで、B型肝炎の原因ウイルスである。HBVは、遺伝子配列の違いにより8種類の遺伝子型(ジェノタイプA、B、C、D、E、F、G、及びH)が知られている。これらの遺伝子型には、地域分布や病態面で差異が見られる。例えば、日本では、従来ジェノタイプC(本明細書では、しばしば「HBV/C」と表記する。他のジェノタイプについても同様とする。)感染者が大半を占め、次いでHBV/B感染者が多くみられていたが、近年ではHBV/A感染者が増加している。一方、欧米ではHBV/AやHBV/Dの感染者が多くみられる。HBV/Aでは、急性肝炎罹患後の約20~30%が慢性肝炎に移行することが知られているが、HBV/BやHBV/Cは急性肝炎罹患後の慢性化率は低い。
 「コアタンパク質(本明細書では、しばしば「HBc」と表記する。)」とは、HBVの複製に必須のヌクレオカプシドを構成するタンパク質である。図2Aに示すように、N末端側の「アッセンブリドメイン」と、それに続くC末端側の「RNA/DNA結合ドメイン」で構成されている。アッセンブリドメインは、さらに、N末端側の「スパイク領域(spike region)」と、それに続くC末端側の「ハンド領域(hand region:HR)」で構成されている(Wynne S.A., et al., 1999, Mol Cell., 3: 771-780)。ウイルス感染細胞で発現したHBcは、アッセンブリドメインで二量体を形成し(図2C)、その二量体を1単位とした90~120単位からなる多量体が形成される。多量体は、正十二面体のHBVヌクレオカプシドを構成する。結晶構造解析及びクライオ電顕の結果から、アッセンブリドメインは、図2Bで示すように5個のαヘリックスから成り、スパイク領域がN末端側の4個のαヘリックスを、またハンド領域がC末端側の1個のαヘリックスを含む。なお、図3で示すように、HBcにもHBV/A~HBV/Hのそれぞれに対応する8種類のジェノタイプが知られている。本明細書では、HBcの各ジェノタイプを、例えば、HBV/AのHBcであれば、「HBc/A」のように表記する。HBc/A~HBc/F、及びHBc/Hは、いずれも全長183アミノ酸残基からなり、このうちアッセンブリドメインは1位~144位の144アミノ酸残基で、またRNA/DNA結合ドメインは145位~183位の39アミノ酸残基で構成されている。HBc/Gのみは、N末端側に12アミノ酸残基からなる付加配列を含むことから、全長195アミノ酸残基からなり、アッセンブリドメインは1位~156位の156アミノ酸残基で、またRNA/DNA結合ドメインは157位~195位の39アミノ酸残基で構成されている。HBcの各ジェノタイプの全長アミノ酸配列をHBc/Aは配列番号15で、アミノ酸配列が完全同一のHBc/BとHBc/Cは配列番号16で、HBc/Dは配列番号17で、HBc/Eは配列番号18で、HBc/Fは配列番号19で、HBc/Hは配列番号20で、そして他のジェノタイプと全長の異なるHBc/Gは配列番号21で示す。
 「C遺伝子」とは、コアタンパク質をコードする遺伝子で、前述のようにHBVゲノムにコードされた4種類の遺伝子のうちの1つである。
 本明細書において「発現ベクター」とは、遺伝子や遺伝子断片(以下「遺伝子等」と表記する)を発現可能な状態で含み、その遺伝子等の発現を制御できる発現単位を包含するベクターをいう。本明細書において「発現可能な状態」とは、プロモーターの制御下にあるプロモーター下流域に、発現すべき遺伝子等を配置していることをいう。ベクターには、プラスミドベクター、ウイルスベクター等が知られるが、いずれのベクターも利用することができる。通常は、遺伝子組換え操作の容易なプラスミドベクターでよい。発現ベクターは、市販の哺乳動物細胞用発現ベクターを利用してもよい。例えば、Promega社のpCIベクターやpSIベクター等が挙げられる。また、発現ベクターは、哺乳動物細胞と大腸菌等の細菌間とで複製可能なシャトルベクターであってもよい。
 本明細書において「プロモーター」とは、発現ベクターを導入した細胞において、下流(3’末端側)に配置された遺伝子等の発現を制御することのできる遺伝子発現調節領域である。プロモーターは、発現制御下にある遺伝子等を発現させる場所に基づいて、ユビキタスプロモーター(全身性プロモーター)と部位特異的プロモーターに分類することができる。ユビキタスプロモーターは、全細胞、すなわち宿主個体全体で対象とする遺伝子等(対象遺伝子等)の発現を制御するプロモーターである。また、部位特異的プロモーターは、特定の細胞又は組織でのみ対象遺伝子等の発現を制御するプロモーターである。
 また、プロモーターには、発現の時期に基づいて構成的活性型プロモーター、発現誘導型プロモーター又は時期特異的活性型プロモーターに分類される。構成的活性型プロモーターは、細胞内で対象遺伝子等を恒常的に発現させることができる。発現誘導型プロモーターは、細胞内で対象遺伝子等の発現を任意の時期に誘導することができる。また、時期特異的活性型プロモーターは、細胞内で対象遺伝子等を発生段階の特定の時期にのみに発現誘導することができる。いずれのプロモーターも、宿主細胞内で対象遺伝子の過剰な発現をもたらし得ることから過剰発現型プロモーターと解することができる。
 本明細書において「HBV(の)ヌクレオカプシド形成阻害」とは、HBcの二量体形成や二量体をユニットとした多量体形成の阻害、及びpgRNAのHBc多量体への正常な取り込みを阻害することにより機能的なヌクレオカプシドの形成を阻害することをいう。
 本明細書において「抗HBV剤」とは、HBVの複製、又は増殖を抑制若しくは阻害する作用を有する薬剤をいう。ラミブジンやエンテカビルのような慢性B型肝炎の治療薬として公知の核酸アナログ製剤の他、本発明のHBV複製阻害剤も抗HBV剤に包含される。
 本明細書において「治療」とは、疾患の罹患に伴う症状の緩和又は除去、及び/又は疾患の進行の阻止又は抑制、並びに疾患の治癒をいう。本明細書において「疾患」とは、断りのない限り、B型肝炎を意味する。
1-3.構成
 本発明のHBV複製阻害剤は、ペプチド断片又は発現ベクターからなる。それぞれの構成を以下で具体的に説明する。
(1)ペプチド断片
 本発明のHBV複製阻害剤を構成する「ペプチド断片」は、HBVのスパイク領域、又はそのスパイク領域のN末端及び/又はC末端に前記HBcとは異なる任意のアミノ酸配列が付加されたペプチド断片からなる。スパイク領域は、前述のように、HBcのアッセンブリドメインのN末端側に含まれる構成要素である。HBc/A~HBc/F、及びHBc/Hのスパイク領域は、HBcの1位~111位からなる111アミノ酸残基に、またHBc/Gのスパイク領域はHBcの1位~123位からなる123アミノ酸残基に相当する。各ジェノタイプ間におけるスパイク領域のアミノ酸は高度に保存されており、HBc/A~HBc/F、及びHBc/H間であれば、アミノ酸類似性で95%以上、アミノ酸同一性で84%以上を有する。
 本発明のHBV複製阻害剤を構成するペプチド断片のアミノ酸配列の具体例として、以下の(a)配列番号1~7で示すいずれかのアミノ酸配列、(b)配列番号1~7で示すいずれかのアミノ酸配列において、1又は複数個のアミノ酸が付加、欠失、又は置換されたアミノ酸配列、又は(c)配列番号1~7で示すいずれかのアミノ酸配列と82%以上、84%以上、86%以上、88%以上、90%以上、92%以上、94%以上、96%以上、又は98%以上のアミノ酸同一性を有するアミノ酸配列が挙げられる。ここで、配列番号1はHBc/A由来のスパイク領域の、配列番号2はHBc/BとHBc/C由来の、配列番号3はHBc/D由来の、配列番号4はHBc/E由来の、配列番号5はHBc/F由来の、配列番号6はHBc/H由来の、そして配列番号7はHBc/G由来の、アミノ酸配列を示す。
 本明細書において「複数個」とは、例えば、2~20個、2~15個、2~10個、2~7個、2~5個、2~4個又は2~3個をいう。また、前記アミノ酸の置換は、保存的アミノ酸置換であってもよいし、非保存的アミノ酸残基であっても良い。「保存的アミノ酸置換」とは、電荷、側鎖、極性、芳香族性等の性質が類似するアミノ酸間の置換をいう。性質の類似するアミノ酸は、例えば、塩基性アミノ酸(アルギニン、リジン、ヒスチジン)、酸性アミノ酸(アスパラギン酸、グルタミン酸)、無電荷極性アミノ酸(グリシン、アスパラギン、グルタミン、セリン、トレオニン、システイン、チロシン)、無極性アミノ酸(ロイシン、イソロイシン、アラニン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニン)、分枝鎖アミノ酸(ロイシン、バリン、イソロイシン)、芳香族アミノ酸(フェニルアラニン、チロシン、トリプトファン、ヒスチジン)等に分類することができる。
 ペプチド断片を構成するアミノ酸配列におけるアミノ酸置換の一例として、限定はしないが、点変異が挙げられる。その具体例として、配列番号1~6で示すいずれかのスパイク領域のアミノ酸配列において、23位のフェニルアラニン(F)残基をアラニン(A)残基(本明細書では、この点変異を「F23A」のように表記する。以下、同様とする。)に、及び/又は42位のロイシン(L)残基をアラニン(A)残基(L42A)に置換する点変異が挙げられる。また、配列番号7で示すスパイク領域のアミノ酸配列において、35位のフェニルアラニン(F)残基をアラニン(A)残基(F35A)に、及び/又は54位のロイシン(L)残基をアラニン(A)残基(L54A)に置換する点変異が挙げられる。
 本明細書において「アミノ酸同一性」とは、二つのアミノ酸配列を整列(アラインメント)し、必要に応じてギャップを導入して、両者のアミノ酸一致度が最も高くなるようにしたときに、一方のアミノ酸配列の全アミノ酸残基に対する前記二つのアミノ酸配列間で同一のアミノ酸残基の割合(%)をいう。アミノ酸同一性は、BLASTやFASTAによるタンパク質の検索システムを用いて算出することができる。
 スパイク領域のN末端及び/又はC末端に付加されるHBcとは異なる任意のアミノ酸配列は、特に限定はしない。例えば、ユビキチン化配列、核移行シグナル、タグ配列等が挙げられる。ペプチド断片は、スパイク領域のアミノ酸配列をN末端又はC末端のいずれか一方、又は両方に1つ又は2つ以上含むことができる。付加されるアミノ酸数は限定はしないが、例えば、それぞれ、20個、19個、18個、17個、16個、15個、14個、13個、12個、11個、10個、9個、8個、7個、6個、5個、4個、3個、2個、又は1個であってもよい。
(2)発現ベクター
 本発明のHBV複製阻害剤を構成する「発現ベクター」は、前記ペプチド断片をコードする核酸、及びプロモーターを含み、細胞内で前記スパイク領域を発現可能な発現ベクターである。発現ベクターは、前記構成要素である核酸及びプロモーターに加えて、必要に応じて、標識遺伝子(選抜マーカー)、エンハンサー、ターミネーター、複製起点、及びポリAシグナル等の構成要素を含んでいてもよい。以下、各構成要素について説明をする。
 (核酸)
 「HBcのスパイク領域を構成するペプチド断片をコードする核酸」は、前記各ジェノタイプのいずれかのスパイク領域をコードする核酸を含むものであればよい。そのような核酸の塩基配列として、限定はしない。例えば、ゲノム上にコードされた各ジェノタイプの遺伝子の塩基配列が挙げられる。具体的には、アクセッションNo.AY707087.1のHBc/Aのスパイク領域をコードする核酸の塩基配列、アクセッションNo.GU357842.1のHBc/Bのスパイク領域をコードする核酸の塩基配列、アクセッションNo.AB033556.1のHBc/Cのスパイク領域をコードする核酸の塩基配列、アクセッションNo.GU357846.1のHBc/Dのスパイク領域をコードする核酸の塩基配列、アクセッションNo.X75664.1のHBc/Eのスパイク領域をコードする核酸の塩基配列、アクセッションNo.JN792913.1のHBc/Fのスパイク領域をコードする核酸の塩基配列、アクセッションNo.AB625342.1のHBc/Gのスパイク領域をコードする核酸の塩基配列、及びアクセッションNo.AP007261.1のHBc/Hのスパイク領域をコードする核酸の塩基配列である。また、上記ゲノム上の遺伝子のコドンをヒト細胞での発現に最適化した塩基配列であってもよい。そのような具体例として、配列番号8で示すHBc/Aのスパイク領域をコードする核酸の塩基配列、配列番号9で示すHBc/B又はHBc/Cのスパイク領域をコードする核酸の塩基配列、配列番号10で示すHBc/Dのスパイク領域をコードする核酸の塩基配列、配列番号11で示すHBc/Eのスパイク領域をコードする核酸の塩基配列、配列番号12で示すHBc/Fのスパイク領域をコードする核酸の塩基配列、配列番号13で示すHBc/Hのスパイク領域をコードする核酸の塩基配列、又は配列番号14で示すHBc/Gのスパイク領域をコードする核酸の塩基配列が挙げられる。なお、配列番号8~14には、スパイク領域のみを発現させるために、それぞれの3'末端に終始コドン(TGA)が付加されている。その他、上記いずれかの塩基配列において、1又は複数個の塩基が付加、欠失、又は置換された塩基配列や、上記いずれかの塩基配列と80%以上、82%以上、85%以上、88%以上、90%以上、93%以上、95%以上、98%以上、99%以上の塩基同一性を有する塩基配列、又は上記いずれかの塩基配列に相補的な塩基配列と高ストリンジェントな条件下でハイブリダイズする塩基配列が挙げられる。
 前記核酸を構成する塩基配列における塩基置換の一例として、限定はしないが、縮重変異、SNIPs等の遺伝子多型、スプライス変異、点変異等が挙げられる。点変異の具体例として、配列番号8~13で示すいずれかの塩基配列において、67~69位のTTCをGCCに、及び/又は124~126位のCTGをGCCに置換する点変異が挙げられる。また、配列番号14で示す塩基配列において、106~108位のTTCをGCCに、及び/又は160~162位のCTGをGCCに置換する点変異が挙げられる。
 本明細書において「塩基同一性」とは、二つの塩基配列を整列(アラインメント)し、必要に応じてギャップを導入して、両者の塩基一致度が最も高くなるようにしたときに、一方の配列番号で示される塩基配列の全塩基に対する前記二つの塩基配列間で同一の塩基の割合(%)をいう。
 本明細書において「高ストリンジェントな条件下でハイブリダイズ(する)」とは、低塩濃度及び/又は高温の条件下でハイブリダイゼーションと洗浄を行うことをいう。例えば、6×SSC、5×Denhardt試薬、0.5% SDS、100μg/mL変性断片化サケ精子DNA中で65℃~68℃にてプローブと共にインキュベートし、その後、2×SSC、0.1%SDSの洗浄液中で室温から開始して、洗浄液中の塩濃度を0.1×SSCまで下げ、かつ温度を68℃まで上げて、バックグラウンドシグナルが検出されなくなるまで洗浄することが例示される。高ストリンジェントなハイブリダイゼーションの条件については、Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Yorkに記載されているので参考にすることができる。
 (プロモーター)
 本明細書においてプロモーターは、前記ペプチド断片をコードする核酸を細胞内で発現誘導できるプロモーターである。本発明のHBV複製阻害剤を適用する、すなわち発現ベクターを導入する標的細胞は、原則として哺乳動物細胞、特にヒト又はチンパンジー由来の細胞であることから、それらの細胞内で下流の遺伝子を発現できるプロモーターであればよい。例えば、CMVプロモーター(CMV-IEプロモーター)、SV40初期プロモーター、RSVプロモーター、EF1αプロモーター、Ubプロモーター等が挙げられる。
 (標識遺伝子)
 本明細書において「標識遺伝子」は、選抜マーカー又はレポータータンパク質とも呼ばれる標識タンパク質をコードする遺伝子である。「標識タンパク質」とは、その活性に基づいて標識遺伝子の発現の有無を判別することのできるペプチドをいう。活性の検出は、標識タンパク質の活性そのものを直接的に検出するものであってもよいし、色素のような標識タンパク質の活性によって発生する代謝物を介して間接的に検出するものであってもよい。検出は、生物学的検出(抗体、アプタマー等のペプチドや核酸の結合による検出を含む)、化学的検出(酵素反応的検出を含む)、物理的検出(行動分析的検出を含む)、又は検出者の感覚的検出(視覚、触覚、嗅覚、聴覚、味覚による検出を含む)のいずれであってもよい。
 標識遺伝子がコードする標識タンパク質の種類は、当該分野で公知の方法によりその活性を検出可能な限り、特に限定はしない。検出に際して形質転換体に対する侵襲性の低い標識タンパク質は好ましい。例えば、タグペプチド、薬剤耐性タンパク質、色素タンパク質、蛍光タンパク質、発光タンパク質等が挙げられる。
 「タグペプチド」は、タンパク質を標識化することのできる十数アミノ酸~数十アミノ酸からなる短ペプチドであって、タンパク質の検出用、精製用として用いられる。通常は、標識すべきタンパク質をコードする遺伝子の5’末端側又は3’末端側にタグペプチドをコードする塩基配列を連結し、タグペプチドとの融合タンパク質として発現させることで標識化する。タグペプチドは、当該分野で様々な種類が開発されているが、いずれのタグペプチドを使用してもよい。タグペプチドの具体例として、FLAG、HA、His、及びmyc等が挙げられる。
 「薬剤耐性タンパク質」は、培地等に添加された抗生物質等の薬剤に対する抵抗性を細胞に付与するタンパク質であり、多くは酵素である。例えば、アンピシリンに対して抵抗性を付与するβラクタマーゼ、カナマイシンに対して抵抗性を付与するアミノグリコシド3’ホスホトランスフェラーゼ、テトラサイクリンに対して抵抗性を付与するテトラサイクリン排出トランスポーター、クロラムフェニコールに対して抵抗性を付与するCAT(クロラムフェニコールアセチルトランスフェラーゼ)等が挙げられる。
 「色素タンパク質」は、色素の生合成に関与するタンパク質、又は基質の付与により色素による形質転換体の化学的検出を可能にするタンパク質であり、通常は酵素である。ここでいう「色素」とは、形質転換体に色素を付与することができる低分子化合物又はペプチドで、その種類は問わない。例えば、β-ガラクトシダーゼ(LacZ)、β-グルクロニターゼ(GUS)、メラニン系色素合成タンパク質、オモクローム系色素、又はプテリジン系色素が挙げられる。
 「蛍光タンパク質」は、特定波長の励起光を照射したときに特定波長の蛍光を発するタンパク質をいう。天然型及び非天然型のいずれであってもよい。また、励起波長、蛍光波長も特に限定はしない。具体的には、例えば、CFP、RFP、DsRed(3xP3-DsRedのような派生物を含む)、YFP、PE、PerCP、APC、GFP(EGFP、3xP3-EGFP等の派生物を含む)等が挙げられる。
 「発光タンパク質」とは、励起光を必要とすることなく発光することのできる基質タンパク質又はその基質タンパク質の発光を触媒する酵素をいう。例えば、基質タンパク質としてのルシフェリン又はイクオリン、酵素としてのルシフェラーゼが挙げられる。
 (エンハンサー)
 本明細書において「エンハンサー」は、ベクター内の遺伝子又はその断片の発現効率を増強できるものであれば特に限定はされない。
 (ターミネーター)
 本明細書において「ターミネーター」は、前記プロモーターの活性により発現した遺伝子等の転写を終結できる配列である。ターミネーターの種類は、特に限定はしない。好ましくはプロモーターと同一生物種由来のターミネーターである。一遺伝子発現制御系においてゲノム上で前記プロモーターと対になっているターミネーターは特に好ましい。
 (複製起点)
 本発明における発現ベクターは、HBcのスパイク領域を哺乳動物細胞内で一過的に発現することができればよい。したがって、哺乳動物細胞用の複製起点は不要である。しかし、シャトルベクターとして、例えば、大腸菌等の細菌内で発現させる場合には、その複製起点が必須となる。複製起点は、公知の配列を利用することができる。例えば、大腸菌用の複製起点であればf1 origin等を利用すればよい。
1-4.B型肝炎ウイルスのヌクレオカプシド形成阻害剤(HBVヌクレオカプシド形成阻害剤)
 HBVヌクレオカプシド形成阻害剤は、HBcを標的分子とする。HBcは、前述のように、HBVゲノム複製に不可欠なタンパク質であると同時に、HBV粒子の骨幹をなすヌクレオカプシドの主成分でもある。つまり、HBVヌクレオカプシド形成の阻害効果は、同時にHBVの複製阻害効果をもたらす。本明細書の実施例においても、その効果は実証されている。したがって、本発明のHBV複製阻害剤は、HBVヌクレオカプシド形成阻害剤としても機能し得る。HBVヌクレオカプシド形成阻害剤の構成は、HBV複製阻害剤に記載の構成と同一で良い。
2.B型肝炎治療用医薬組成物
2-1.概要
 本発明の第2の態様は、B型肝炎治療用医薬組成物である。本発明のB型肝炎治療用医薬組成物は、前記第1態様のHBV複製阻害剤を必須の有効成分とし、HBV感染後のHBVの複製を阻害することでHBVの増殖を抑制し、B型肝炎を治療することができる。
2-2.構成
2-2-1.構成成分
 本発明のB型肝炎治療用医薬組成物の構成成分について説明をする。本発明のB型肝炎治療用医薬組成物は、必須の構成成分として一以上の有効成分、及び溶媒及び/又は担体、さらに薬剤送達系(DDS;Drug Delivery System)粒子を含む。以下、各構成成分について具体的に説明をする。
(1)有効成分
 本発明のB型肝炎治療用医薬組成物は、必須の有効成分として第1態様に記載のHBV複製阻害剤を包含する。また、必要に応じて、1又は複数の抗B型肝炎ウイルス剤(抗HBV剤)を包含していてもよい。
 必須の有効成分であるHBV複製阻害剤の構成については、第1態様で詳述していることから、ここでの具体的な説明は省略する。本発明のB型肝炎治療用医薬組成物は、1種又は複数種のHBV複製阻害剤を含むことができる。
 本発明のB型肝炎治療用医薬組成物は、有効成分として、必須であるHBV複製阻害剤のみを含んでいてもよいが、1又は複数の他の抗HBV剤をさらに2種以上含む組み合わせ組成物としてもよい。そのような他の抗HBV剤は、限定はしないが、B型肝炎治療用核酸アナログやB型肝炎ウイルスポリメラーゼ活性阻害剤(HBV-Pol活性阻害剤)のような公知の抗HBV剤が例示される。
 「B型肝炎治療用核酸アナログ」には、例えば、エンテカビル(Entecavir:ETV)、ラミブジン(Lamivudine:LAM)、アデホビル(Adefovir)、テノホビル(Tenofovir)、テルビブジン(Telbivudine)、クレブジン(clevudine)等が挙げられる。いずれもHBVの逆転写酵素活性を阻害するB型肝炎治療用医薬組成物である。
 「HBV-Pol活性阻害剤」には、本発明者が開発したWO2018/030534に記載のHBV-Polにおける活性化部位のリン酸化を阻害するリン酸化阻害剤が挙げられる。例えば、MAPKキナーゼ阻害剤が該当する。MAPKキナーゼ阻害剤のより具体的な例として、以下の式1で示すハイポセマイシン(Hypothemycin)、式2で示すトラメチニブ(Trametinib)、式3で示すPD98059、式4で示すPD184352、及び式5で示すU-126等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 B型肝炎治療用核酸アナログは、HBV DNAポリメラーゼに対する競合的拮抗作用とHBV DNAの伸長停止作用を有することから、HBVの複製経路に作用する第1態様に記載のHBV複製阻害剤とは、作用機序が異なる。また、HBV-Pol活性阻害剤は、HBV複製阻害剤と同様にHBVの複製経路に作用するが、TxYモチーフを標的部位とし、そのようなモチーフを含むタンパク質、例えばMAPKキナーゼ等が標的分子となるため、HBc DNAを標的分子とする第1態様に記載のHBV複製阻害剤とは、標的対象が異なる。したがって、第1態様に記載のHBV複製阻害剤と、B型肝炎治療用核酸アナログ及び/又はHBV-Pol活性阻害剤のような他の抗HBV剤を併用することで、抗HBV阻害に対する相乗効果を得ることができる。
 本発明のB型肝炎治療用医薬組成物に含まれる有効成分の含有量は、特に限定はしない。一般に含有量は、有効成分の種類、剤形、並びに後述する他の構成成分である溶媒や担体の種類によって異なる。したがって、それぞれの条件を勘案して適宜定めればよい。単回適用量のB型肝炎治療用医薬組成物に有効量の有効成分が含有されていればよい。ただし、有効成分の薬理効果を得る上で被験体にB型肝炎治療用医薬組成物を大量に投与する必要がある場合には、被験体の負担軽減のために数回に分割して投与することもできる。この場合、有効成分の量は、総合量で有効量を含んでいればよい。「有効量」とは、有効成分としての機能を発揮する上で必要な量であって、かつそれを適用する被験体に対して有害な副作用をほとんど又は全く付与しない量をいう。この有効量は、被験体の情報、適用経路、及び適用回数等の様々な条件によって変わり得る。したがって、B型肝炎治療用医薬組成物を医薬として使用する場合、有効成分の含有量は、最終的には、医師又は薬剤師等の判断によって決定される。
 本明細書において「被験体」とは、第1態様に記載のHBV複製阻害剤、又は本態様のB型肝炎治療用医薬組成物の適用対象物をいう。例えば、細胞(培養細胞を含む)、組織、器官、又は個体である。個体の場合、好ましくはヒト個体であり、この場合、特に「被験者」と表記する。HBVに感染した被験者、すなわちB型肝炎罹患患者は特に好ましい。
 本明細書において、「被験体の情報」とは、被験体の特徴や状態に関する様々な情報である。例えば、被験体がヒト個体の場合には、年齢、体重、性別、全身の健康状態、疾患の有無、疾患の進行度や重症度、薬剤感受性、併用薬物の有無及び治療に対する耐性等が挙げられる。
(2)溶媒
 本発明のB型肝炎治療用医薬組成物は、必要に応じて薬学的に許容可能な溶媒を含むことができる。「薬学的に許容可能な溶媒」とは、製剤技術分野において通常使用する溶媒をいう。例えば、水若しくは水溶液、又は有機溶剤が挙げられる。水溶液には、例えば、生理食塩水、ブドウ糖又はその他の補助剤を含む等張液、リン酸塩緩衝液、酢酸ナトリウム緩衝液が挙げられる。補助剤には、例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウム、その他にも低濃度の非イオン性界面活性剤、ポリオキシエチレンソルビタン脂肪酸エステル類等が挙げられる。有機溶剤には、エタノールが挙げられる。
(3)担体
 本発明のB型肝炎治療用医薬組成物は、必要に応じて薬学的に許容可能な担体を含むことができる。「薬学的に許容可能な担体」とは、製剤技術分野において通常使用する添加剤をいう。例えば、賦形剤、結合剤、崩壊剤、充填剤、乳化剤、流動添加調節剤、滑沢剤、ヒト血清アルブミン等が挙げられる。
 賦形剤には、例えば、単糖、二糖類、シクロデキストリン及び多糖類のような糖、金属塩、クエン酸、酒石酸、グリシン、ポリエチレングリコール、プルロニック、カオリン、ケイ酸、又はそれらの組み合わせが挙げられる。
 結合剤には、例えば、植物デンプンを用いたデンプン糊、ペクチン、キサンタンガム、単シロップ、グルコース液、ゼラチン、トラガカント、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、セラック、パラフィン、ポリビニルピロリドン又はそれらの組み合わせが挙げられる。
 崩壊剤としては、例えば、前記デンプンや、乳糖、カルボキシメチルデンプン、架橋ポリビニルピロリドン、アガー、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、アルギン酸若しくはアルギン酸ナトリウム、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド又はそれらの塩が挙げられる。
 充填剤としては、ワセリン、前記糖及び/又はリン酸カルシウムが例として挙げられる。
 乳化剤としては、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、プロピレングリコール脂肪酸エステルが例として挙げられる。
 流動添加調節剤及び滑沢剤としては、ケイ酸塩、タルク、ステアリン酸塩又はポリエチレングリコールが例として挙げられる。
 上記の他にも、必要であれば医薬組成物等において通常用いられる可溶化剤、懸濁剤、希釈剤、分散剤、界面活性剤、無痛化剤、安定剤、吸収促進剤、増量剤、付湿剤、保湿剤、湿潤剤、吸着剤、矯味矯臭剤、崩壊抑制剤、コーティング剤、着色剤、保存剤、防腐剤、抗酸化剤、香料、風味剤、甘味剤、緩衝剤、等張化剤等を適宜含むこともできる。
 担体は、被験体内で酵素等による前記有効成分の分解を回避又は抑制する他、製剤化や投与方法を容易にし、剤形及び薬効を維持するために用いられるものであり、必要に応じて適宜使用すればよい。
(4)薬剤送達系粒子(DDS粒子)
 本発明のB型肝炎治療用医薬組成物は、必要に応じてDDS粒子を含むことができる。DDS粒子は、その内部等に有効成分や他の担体等を包含して、標的部位にまで内容物、特に有効成分を分解させることなく送達し、また生体内での薬物分布を時間的に、量的に制御し得る粒子をいう。本発明のB型肝炎治療用医薬組成物の有効成分はペプチド又は核酸であることから、投与後に生体内でプロテアーゼやヌクレアーゼによる分解から保護するためにも、DDS粒子の使用は好適である。DDS粒子の種類は問わない。例えば、リポソーム、高分子ミセル、ウイルス粒子等が挙げられる。
2-2-2.剤形
 本発明のB型肝炎治療用医薬組成物の剤形は、特に限定しない。被験体の体内で有効成分を失活させることなく目的の部位にまで送達される形態であればよい。
 具体的な剤形は、後述する適用方法によって異なる。適用方法は、非経口投与と経口投与に大別することができるので、それぞれの投与法に適した剤形にすればよい。
 例えば、投与方法が非経口投与であれば、好ましい剤形は、対象部位への直接投与又は循環系を介した全身投与が可能な液剤である。液剤の好例としては、注射剤が挙げられる。注射剤は、溶媒の他、前記賦形剤、乳化剤、懸濁剤、界面活性剤、安定剤、pH調節剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。
 投与方法が経口投与であれば、好ましい剤形は、固形剤(錠剤、カプセル剤、ドロップ剤、トローチ剤を含む)、顆粒剤、粉剤、散剤、液剤(内用水剤、乳剤、シロップ剤を含む)が挙げられる。固形剤であれば、必要に応じて、当該技術分野で公知の剤皮を施した剤形、例えば、糖衣錠、ゼラチン被包錠、腸溶錠、フィルムコーティング錠、二重錠、多層錠にすることができる。
 なお、上記各剤形の具体的な形状、大きさについては、いずれもそれぞれの剤形において当該分野で公知の剤形の範囲内にあればよく、特に限定はしない。本発明のB型肝炎治療用医薬組成物の製造方法については、当該技術分野の常法に従って製剤化すればよい。
2-3.適用方法
 本発明のB型肝炎治療用医薬組成物の適用方法は、経口投与でも、非経口投与でもよい。一般に経口投与法は全身投与となるが、非経口投与法は、さらに全身投与と局所投与に細分できる。局所投与には、例えば、筋肉内投与、皮下投与、組織投与、及び器官投与が該当し、非経口投与法の全身投与には、循環器内投与、例えば、静脈内投与(静注)、動脈内投与及びリンパ管内投与が挙げられる。本発明のB型肝炎治療用医薬組成物を局所投与する場合には、注射等で肝臓に直接投与すればよい。また、全身投与する場合には、静注等の循環器内に投与すればよい。投与量は、有効成分が奏効する上で有効な量であればよい。有効量は、前述のように被験体情報に応じて適宜選択される。
 また、本発明のB型肝炎治療用医薬組成物は、他の2種以上の公知の抗HBV剤を別個に併用することもできる。
3.B型肝炎ウイルスの複製阻害方法(HBV複製阻害方法)
3-1.概要
 本発明の第3の態様は、HBV複製阻害方法である。本発明のHBV複製阻害方法は、HBV感染細胞若しくはその恐れのある細胞に、(I)B型肝炎ウイルスのコアタンパク質におけるスパイク領域を構成するペプチド断片、(II)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片、又は(III)前記(I)又は(II)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクターを導入することで細胞内におけるHBVの複製を阻害し、それによってHBVの複製を阻害し、増殖を抑制することができる。また、この方法をB型肝炎罹患患者若しくはその罹患の恐れがある者に投与すれば、B型肝炎の治療方法となり得る。
3-2.方法
 本態様におけるHBV複製阻害方法は、必須の工程として導入工程を含む。
 「導入工程」は、(I)HBcのスパイク領域を構成するペプチド断片、(II)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片、又は(III)前記(I)又は(II)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター、すなわち、第1態様に記載のHBV複製阻害剤を宿主内に導入する工程である。
 本態様において「宿主」とは、HBV複製阻害剤を導入可能な、細胞、組織、又は個体をいう。宿主が細胞の場合、細胞は、1又は複数の哺乳動物細胞であればよい。好ましくはHBVの宿主であるヒト又はチンパンジー由来の細胞である。由来細胞の種類は問わない。HBVの感染対象細胞である肝細胞の他にも各種器官や組織由来の細胞が対象となり得る。また宿主は、細胞株系又は初代培養細胞系のいずれであってもよい。限定はしないが、宿主はHBVに感染した細胞やその恐れがある細胞が好ましい。宿主が個体の場合、前述の被験者であればよい。
 各発現ベクターの宿主への導入方法は、特に限定はしない。例えば、宿主が細胞や組織であれば、Green & Sambrook、2012、Molecular Cloning: A Laboratory Manual Fourth Ed.、Cold Spring Harbor Laboratory Press、Cold Spring Harbor、New York等に記載された当該分野で公知の遺伝子導入方法(形質転換方法)を用いればよい。例えば、リポフェクチン法(PNAS、1989、86: 6077;PNAS、1987、84: 7413)、エレクトロポレーション法、リン酸カルシウム法(Virology、1973、52: 456-467)、DEAE-Dextran法等が挙げられる。一方、宿主が個体、例えば被験者であれば、第2態様の「2-3.適用方法」に記載の方法で、被験者にHBV複製阻害剤、又はそれを有効成分として含むB型肝炎治療用医薬組成物を投与すればよい。それらを被験者に投与することで、本態様のHBV複製阻害方法は、B型肝炎治療方法となり得る。
<実施例1:変異型HBcのHBV複製に対する阻害効果>
(目的)
 HBcを様々な形で欠失させた変異型HBcを作製し、HBV複製に対する阻害効果を検証する。
(方法)
1.欠失変異型HBcの作製
 アミノ酸配列番号16で示されるHBcのジェノタイプC(HBc/C)を検証対象として、図4に示す以下の11種類の欠失変異型HBc(ΔHBc)を作製した。
 (1)ΔHBc#1は、RNA/DNA結合ドメイン(RDBD)欠失型で、配列番号16の1~144位からなるアッセンブリドメインのみで構成されている。実施例では「AD」と表記する。
 (2)ΔHBc#2は、配列番号16の1~111位からなる。ΔHBc#1から第5αヘリックス(α5)が欠失した構造で、α1~α4bを含む。実施例では「α1-4b」と表記する。このα1-4bは、ADからハンド領域(HR)が欠失したHBcのスパイク領域に相当する。
 (3)ΔHBc#3は、配列番号16の1~91位からなる。ΔHBc#1からα4b~α5が欠失した構造で、α1~α4aを含む。実施例では「α1-4a」と表記する。
 (4)ΔHBc#4は、配列番号16の1~78位からなる。ΔHBc#1からα4a~α5が欠失した構造で、α1~α3を含む。実施例では「α1-3」と表記する。
 (5)ΔHBc#5は、配列番号16の1~49位からなる。ΔHBc#1からα3~α5が欠失した構造で、α1~α2を含む。実施例では「α1-2b」と表記する。
 (6)ΔHBc#6は、配列番号16の1~26位からなる。ΔHBc#1からα2~α5が欠失した構造で、α1のみを含む。実施例では「α1」と表記する。
 (7)ΔHBc#7は、配列番号16の1位(開始メチオニン)及び18~111位からなる。ΔHBc#1からα1及びα5が欠失した構造で、α2~α4bヘリックスを含む。実施例では「α2-4b」と表記する。
 (8)ΔHBc#8は、配列番号16の1位(開始メチオニン)及び44~111位からなる。ΔHBc#1からα1、α2、及びα5が欠失した構造で、α3~α4bを含む。実施例では「α3-4b」と表記する。
 (9)ΔHBc#9は、配列番号16の1位(開始メチオニン)及び74~111位からなる。ΔHBc#1からα1~α3、及びα5が欠失した構造で、α4a及びα4bを含む。実施例では「α4ab」と表記する。
 (10)ΔHBc#10は、配列番号16の1位(開始メチオニン)及び111~144位からなる。ΔHBc#1からα1~α4bが欠失した構造で、α5のみを含む。実施例では「HR」と表記する。このHRは、ADからスパイク領域が欠失したHBcのハンド領域(HR)に相当する。
 (11)ΔHBc#11は、配列番号16の1位(開始メチオニン)及び111~183位からなる。HBcからα1~α4bが欠失した構造で、HRに相当するα5と、RNA/DNA結合ドメイン(RDBD)とを含む。実施例では「HR-RDBD」と表記する。
 全長HBc/CをコードするDNA塩基配列のコドンをヒト細胞に最適化した配列番号22で示すHBc/C遺伝子に基づいて、各ΔHBcをコードする領域を切出し、常法により図5Cで示す哺乳動物細胞発現ベクターpCI (Promega)にサブクローニングした。こうして得られた発現ベクターをΔHBc発現ベクター(pCI-ΔHBc)とし、例えば、ΔHBc#2のα1-4bを組み込んだΔHBc発現ベクターはΔHBc(α1-4b)発現ベクター(pCI-ΔHBc(α1-4b))と表記する。
2.ΔHBcのHBV複製活性への影響
 前記各ΔHBc発現ベクター(pCI-ΔHBc)によるHBV複製への影響は、本発明者らが開発し、WO2018/030534に記載のHBV複製活性評価システムを用いて検証した。
 具体的には、図5Aで示すレポーターpgRNAをコードするHBV複製活性評価ベクター(pBB-intron)と、図5Bで示すHBV-P発現ベクター(pCI-HBV-Pol)、図5Cで示すHBc発現ベクター(pCI-HBc)、及び図5Dで示すHBx発現ベクター(pCI-HBx)からなるHBV複製活性評価システムを各pCI-ΔHBcと共にHeLa細胞に導入した。各発現ベクターの導入比率は、pBB-intron:pCI-HBc:pCI-HBV-Pol:pCI-HBx:pCI-ΔHBc=13:9:3:1:26とした。この比率によれば、ΔHBcがHBV複製に働く野生型HBcの約3倍(2.89倍)量となる。陽性対照として、空ベクター(pCI)をpCI-ΔHBcと同比率で導入した。HeLa細胞への遺伝子導入には、エレクトロポレーション法を用いた。エレクトロポレーターNepa21(ネッパジーン社)により、10 μgのDNAを125V/2.5ms plus lengthの条件で、約1×106個の細胞に導入した。遺伝子導入後のHeLa細胞は、2mLの10% FBS添加したDMEMで5% CO2存在下にて37℃で24時間培養した。
 前記HBV複製活性評価ベクター(pBB-intron)をHeLa細胞に導入すると、HeLa細胞のRNA-pol IIによって図6Aで示すpre-mRNAが合成された後、HeLa細胞内でpre-mRNAスプライシングによってpBB-intronのレポーター配列中に含まれるイントロンが直ちに除去される。イントロンがスプライスアウトされた成熟mRNAが図6Bで示すレポーターpgRNAとなる。レポーターpgRNAは、HBV-P発現ベクター、HBc発現ベクター、そしてHBx発現ベクターのそれぞれから発現されるHBV-Pol、HBc、及びHBxの働きによって逆転写され、図6Cで示すような、図6Aで示す元のHBV複製活性評価ベクターのレポーター配列とは異なる、イントロンが除去されたレポーター配列を含むレポーターマイナス鎖DNA(レポーター(-)DNA)が合成される。このレポーター(-)DNAの量は、HBVの複製活性及び複製量を反映する。したがって、HBV複製活性評価システムとpCI-ΔHBcを導入した細胞からDNAを抽出し、レポーター(-)DNAに特異的なプライマーセットでその量を定量した後、陽性対照の量と対比することで、pCI-ΔHBcのHBV複製に対する効果を評価することができる。
 培養後のHeLa細胞からDNeasy Mini(Qiagen社)用いてDNAを抽出した。続いて、逆転写後のレポーター(-)DNAに特異的なプライマーセットを用いて定量的PCRを実施した。プライマーには、配列番号23で示す塩基配列からなるフォワードプライマー(Primer F)と配列番号24で示す塩基配列からなるリバースプライマー(Primer R)を用いた。Primer Fは3'末端の2塩基が下流側のエクソンにおける5’末端の2塩基に一致するが、イントロンの5’末端の2塩基とは一致しないように設計されている。したがって、イントロンが除去されたレポーター配列を有するレポーター(-)DNAが存在する場合にのみプライマーとして機能し、131塩基のDNA断片が増幅される。
(結果)
 図7A~Cに結果を示す。これらの図からα1-4bで示すスパイク領域を導入したHeLa細胞においてのみ、HBVの複製が著しく抑制されることが明らかとなった。一方、スパイク領域のα1-4bからさらにC末端側のアミノ酸配列を欠失させたΔHBc(α1-4a、α1-3、α1-2b、及びα1)(図7A)や、α1-4bのN末端側のアミノ酸配列を欠失させたΔHBc(α2-4b、α3-4b、及びα4ab)(図7B)では、HBV複製阻害活性が消失した。これらの結果から、HBVの複製阻害活性には、スパイク領域に含まれる全てのαヘリックス(α1~α4b)が必要であることが明らかとなった。
 また、非常に興味深いことに、アッセンブリドメイン(AD)はα1-4bの全てを包含するにもかかわらず、HBV複製の阻害活性を示さず、むしろHBV複製を促進する傾向が認められた(図7A)。また、ハンド領域のみで構成されるHRを導入したときにもHBV複製の阻害活性効果が認められなかった(図7C)ことから、ハンド領域を含まないことが複製阻害活性には重要であることが示された。さらに、HR-RDBDにもHBV複製を阻害する活性は認められなかった(図7C)。
<実施例2:スパイク領域によるHBV複製阻害の量的効果>
(目的)
 スパイク領域がHBV複製を量依存的に阻害するか否かを検証する。
(方法)
 基本的な操作は実施例1に準じた。HeLa細胞にHBV複製活性評価システムと共に導入するpCI-ΔHBcとしてpCI-ΔHBc(α1-4b)のみを用いた。各発現ベクターの導入比率は、pCI-HBc:pCI-HBV-Pol:pCI-HBxの比率が9:3:1で、かつpBB-intron:pCI-HBc/pCI-HBV-Pol/pCI-HBxの比率が1:1となるように設定した上で、pCI-ΔHBc(α1-4b):pBB-intron/pCI-HBc/pCI-HBV-Pol/pCI-HBxの比率が1:26、3:26、9:26、及び26:26に調整して導入したHBV複製活性評価システムのみを陽性対照として導入した。各試料で、導入するベクター量が同一となるように空ベクター(pCI)で調製した。
(結果)
 図8に結果を示す。この図で示すように、導入するpCI-ΔHBc(α1-4b)の量依存的にHBVの複製が抑制され、野生型HBcに対して約3倍量(26/9量)のΔHBc(α1-4b)を導入するとHBVの複製活性がほとんど失われてしまうことが明らかとなった。この結果からHBcのスパイク領域は、その発現量に依存してHBV複製を阻害することが示された。
<実施例3:各HBcジェノタイプに由来するスパイク領域のHBV複製阻害活性効果>
(目的)
 HBcには8種類のジェノタイプ(HBc/A~HBc/H)が存在する。実施例1で得られたHBc/Cのスパイク領域によるHBV複製阻害活性の効果が他のジェノタイプのスパイク領域でも得られることを検証する。
(方法)
 基本的な操作は、実施例1に準じた。HBc/C以外のジェノタイプとして、HBc/A、HBc/D、HBc/E、及びHBc/Fを用いた。なお、HBc/Bは、HBc/Cとアミノ酸配列が完全一致することから、HBc/B/Cとして対照用に用いた。
 各ジェノタイプのpCI-ΔHBc(α1-4b)を調製するために、HBc遺伝子の各ジェノタイプの野生型塩基配列情報、すなわち、HBc/A遺伝子は配列番号25で示す塩基配列、HBc/D遺伝子は配列番号26で示す塩基配列、HBc/E遺伝子は配列番号27で示す塩基配列、そしてHBc/F遺伝子は配列番号28で示す塩基配列に基づいて、pCI-ΔHBc(α1-4b)を鋳型として、Site directed mutagenesis(PrimeSTAR Mutagenesis Basal Kit, TaKaRa)によってアミノ酸置換を導入し、ジェノタイプA、D、E及びFに由来するΔHBc α1-4b発現プラスミドを作製した。
(結果)
 図9に結果を示す。この図で示すように、いずれのジェノタイプのスパイク領域も著しいHBV複製阻害活性が認められた。この結果は、HBcのスパイク領域はジェノタイプに関係なく、HBV阻害活性を有することが明らかとなった。
<実施例4:HBcのアミノ酸点変異によるHBVヌクレオカプシド形成阻害及びHBV複製阻害の検証>
(目的)
 HBcの構造解析からスパイク領域(α1-4b)内の23位(HBc/Gでは35位)のフェニルアラニン(F)、又は42位(HBc/Gでは54位)のロイシン(L)をそれぞれアラニン(A)に置換することで、HBcのヌクレオカプシド形成が阻害され得ることが報告されている(Alexander C.G., et al., 2013, PNAS, 110(30): E2782-E2791)。そこで、これらの点変異がヌクレオカプシド形成、及びHBV複製に関して阻害効果を有するか否かについて検証する。
(方法)
(1)F24A又はL42Aを導入したHBc発現ベクターの作製
 実施例1で用いたジェノタイプCの全長HBc発現ベクター(pCI-HBc)を鋳型として、PrimeSTAR Mutagenesis Basal Kit(TaKaRa)を用いた部位特異的変異誘発法により、23番目のF残基又は42番目のL残基をそれぞれA残基に置換した(それぞれF23A及びL42Aと表記する)。点変異導入をした全長HBcのF23A及びL42A変異体は、それぞれHBc-F23A及びHBc-L42Aとする。
(2)抗HBcモノクローナル抗体
 ウェスタンブロッティング等でのHBc検出用の抗HBcモノクローナル抗体を作製した。は、HBc/Cのハンド領域において130~144位に相当する配列番号29(PAYRPPNAPILSTLP)で示されるペプチドを合成し、その合成ペプチドでBALB/cマウス(8週齢、雌)を免疫した。その後、常法により免疫したマウスの脾臓細胞を用いたハイブリドーマ法によりマウス抗ヒトHBcモノクローナル抗体(#511)を作製した。
(3)ウェスタンブロッティング
 HeLa細胞に野生型の全長HBc(HBc-WT)、及び変異型全長HBc(HBc-F23A及びHBc-L42A)の各発現ベクターを導入し、24時間培養した後にWB lysis buffer (1%Triton、25mM Tris pH7.4、150mM NaCl)でタンパク質を抽出した。タンパク抽出液はCuSO(100μM)を添加して室温で20分間インキュベートした後、1mM EDTAで中和し、β-ME不含SDS-PAGE sample bufferを添加して、10~20%ポリアクリルアミドゲル(スーパーセップTMエース、富士フィルム和光純薬)を用いてSDS-PAGEを施した。電気泳動後、タンパク質をセミドライ式ブロッターによってPVDF膜に転写し、マウス抗ヒトHBcモノクローナル抗体(#511)を用いてウェスタンブロッティングを実施した。
(4)パーティクルブロッティング
 HeLa細胞に野生型HBc(HBc-WT)、変異型全長HBc(HBc-F23A及びHBc-L42A)の各発現ベクターを遺伝子導入し、24時間培養後にPB lysis buffer(1% NP40、25mM Tris pH7.4、150mM NaCl、1mM EDTA、50mM NaF)で溶解した。サンプルは1.2%アガロース(TAE)に泳動し、PVDF膜に転写し、マウス抗ヒトHBcモノクローナル抗体(#511)を用いて検出した。
(5)HBV複製活性評価
 点変異を導入したHBcのHBV複製活性評価は、実施例1に記載の方法に準じた。ただし、本実施例では、実施例1に記載のHBV複製評価システムに含まれるHBc発現ベクター(pCI-HBc)を、HBc-F23A又はHBc-L42Aに置き換えて実施した。
(結果)
 図10に結果を示す。Aは、非還元条件下でのウェスタンブロッティングの結果である。HBc-WTを導入した細胞では、HBcの単量体バンド(M)がほとんど存在せず、二量体(D)以上の多量体バンド(Mlt)が強く認められた。HBc-F23Aを導入した細胞も、HBc-WTを導入した細胞と同様に、単量体(M)がほとんど存在せず、二量体(D)以上の多量体バンド(Mlt)が強く認められた。この結果は、F23Aの変異は、HBcの多量体形成能を阻害しないことを示唆している。一方、HBc-L42Aを導入した細胞では、単量体バンド(M)が強く認められると共に二量体バンド(D)がHBc-WTやHBc-F23Aと比較して減弱しており、多量体形成能が阻害されているかと思われたが、HBc-WTやHBc-F23Aを導入した細胞と同程度の多量体バンド(Mlt)が認められた。Bは、パーティクルブロッティングの結果である。この結果から、HBc-WT、HBc-F23A、及びHBc-L42Aは、いずれもカプシド形成能を維持していることが示された。Cは、HBV複製活性評価システムで、HBc-WTに代えてHBc-F23A又はHBc-L42Aを細胞導入してHBV複製の阻害効果を検討した結果である。HBc-F23Aは、Aの結果から多量体形成能において、HBc-WTと著しい差異が認められなかったにもかかわらず、HBV複製活性はほぼ完全に失われていることが明らかとなった。HBc-L42Aは、複製活性を残しているものの、HBc-WTのそれと比較して、有意に減弱することが明らかとなった。以上の結果から、全長野生型のHBcにF23A又はL42Aの点変異を導入すると、HBV複製阻害活性に影響を及ぼすことが判明した。
<実施例5:HBcのヌクレオカプシド形成を阻害する既知アミノ酸変異のHBV複製阻害活性の検証>
(目的)
 ΔHBc(α1-4b)にF23A又はL42A変異を導入した場合、ΔHBc(α1-4b)のHBV複製阻害活性にどのような影響を及ぼすかを検証する。
(方法)
(1)F24A又はL42Aを導入したΔHBc(α1-4b)発現ベクターの作製
 実施例1で用いたジェノタイプCのΔHBc(α1-4b)発現ベクター(pCI-ΔHBc(α1-4b))を鋳型として、PrimeSTAR Mutagenesis Basal Kit(TaKaRa)を用いた部位特異的変異誘発法により、23番目のF残基又は42番目のL残基をそれぞれA残基に置換した(それぞれF23A及びL42Aと表記する)。F23A又はL42Aを導入したΔHBc(α1-4b)を、それぞれΔHBc(α1-4b)-F23A及びΔHBc(α1-4b)-L42Aとする。
(2)HBV複製活性評価
 点変異を導入したHBcのHBV複製活性評価は、実施例1に記載の方法に準じた。本実施例では、実施例1に記載のHBV複製評価システムと共に、野生型のpCI-ΔHBc(α1-4b)、点変異型のpCI-ΔHBc(α1-4b)-F23A又はpCI-ΔHBc(α1-4b)-L42AをHeLa細胞に導入した。
 またpCI-ΔHBc(α1-4b)、及びpCI-ΔHBc(α1-4b)-F23Aについては、実施例2と同様の操作で、導入するプラスミドを空ベクター(pCI)で段階希釈し、それぞれのHBV複製阻害の量依存的効果を検証した。
(結果)
 図11に結果を示す。A:HBV複製活性評価の結果を示す。この図から、pCI-ΔHBc(α1-4b)-F23A、及びpCI-ΔHBc(α1-4b)-L42Aのいずれを導入した場合にもHBV複製活性の阻害効果は維持されたが、pCI-ΔHBc(α1-4b)-L42Aを導入した細胞では、野生型pCI-ΔHBc(α1-4b)に比してHBV複製阻害活性が減弱していた。一方、pCI-ΔHBc(α1-4b)-F23Aを導入した細胞では、野生型pCI-ΔHBc(α1-4b)を導入した細胞よりもHBV複製が強く阻害された。B: HBV複製阻害の量依存的効果の結果を示す。この結果らΔHBc(α1-4b)-F23AもΔHBc(α1-4b)と同様に、阻害発現量に依存してHBV複製を阻害することが示された。また、Aの結果と同様に、ΔHBc(α1-4b)-F23AがΔHBc(α1-4b)よりも強いHBV複製阻害活性を有することが確認された。
<実施例6:スパイク領域ΔHBc(α1-4b)によるHBV複製阻害の作用機序>
(目的)
 スパイク領域ΔHBc(α1-4b)によるHBV複製阻害の作用機序について検証する。
(方法)
(1)タグ付加ΔHBc発現ベクターの作製
 野生型及びF23A変異型ΔHBc(α1-4b)発現ベクター(それぞれ、pCI-ΔHBc(α1-4b)及びpCI-ΔHBc(α1-4b)-F23A)を用いて、それぞれのΔHBc(α1-4b)のC末端に、配列番号30で示す12アミノ酸残基からなるPAタグ(GVAMPGAEDDVV)をコードする核酸断片を挿入した。得られたタグ付加ΔHBc発現ベクターをpCI-ΔHBc(α1-4b)-PA及びpCI-ΔHBc(α1-4b)-F23A-PAとした。
(2)HBV複製アッセイ
 実施例1に記載のHBV複製阻害活性システムを用いてpCI-ΔHBc(α1-4b)-PA及びpCI-ΔHBc(α1-4b)-F23A-PAのHBV複製阻害活性を評価した。HBV複製阻害活性システムとΔHBc発現ベクターの細胞導入比率は26:26とした。その結果、ΔHBc(α1-4b)及びΔHBc(α1-4b)-F23AのC末端にPAタグが付加した場合であっても、HBV複製阻害活性が維持されることが示された(図示せず)。
(3)ウェスタンブロッティング
 基本操作は、実施例4に記載の方法に準じた。HeLa細胞にpCI-ΔHBc(α1-4b)-PAを単独で、又はpCI-ΔHBc(α1-4b)-PAとpCI-ΔHBc(α1-4b)-F23A-PAを1:1の比率で導入した。ΔHBcの検出には、実施例4に示した抗HBcモノクローナル抗体#511と抗PAモノクローナル抗体NZ-1(富士フィルム和光純薬)を用いた。抗HBcモノクローナル抗体#511は、HBcのハンド領域を認識するため、ここでは全長HBcのみを認識し、ハンド領域が欠失したΔHBc(α1-4b)-PA及びΔHBc(α1-4b)-F23A-PAは認識しない。一方、抗PAモノクローナル抗体NZ-1は、PAタグを認識するため、ΔHBc(α1-4b)-PA及びΔHBc(α1-4b)-F23A-PAのみを認識し、PAタグのない全長HBcは認識しない。
(4)パーティクルブロッティング
 基本操作は、実施例4に記載の方法に準じた。pCI-ΔHBc(α1-4b)-PAとpCI-ΔHBc(α1-4b)-F23A-PAの導入比率は1:3とした。24時間培養後に300μLのTNE buffer(10mM Tris pH8.0、100mM NaCl、1mM EDTA)でHeLa細胞を溶解した。サンプルに100μLの4 x PNE buffer(26% PEG 8000、1.4M NaCl、40mM EDTA)を添加し、氷上で2時間インキュベートした後、4℃にて15,000rpmで15分間遠心分離後、実施例4に記載の方法でパーティクルブロッティングを行った。
(結果)
 図12に結果を示す。A:PAタグを付加したΔHBc(α1-4b)又はΔHBc(α1-4b)-F23Aの発現が、HBcの二量体形成及び多量体形成に与える影響を、抗HBcモノクローナル抗体#511を用いたウェスタンブロッティングによって解析した結果である。この結果から、全長HBcのみを発現させた細胞(レーン1~3)では、全長HBcは二量体(D)以上の多量体(Mlt)として存在しており、単量体(M)は、ほとんど検出されなかった。一方、全長HBcとΔHBc(α1-4b)-PA(レーン4~6)及びΔHBc(α1-4b)-F23A-PA(レーン7~9)を共発現させた細胞では、全長HBcの二量体(D)のみならず、四量体(T)以上の多量体(Mlt)が減少する一方で、単量体(M)は多数検出された。この結果から、ΔHBc(α1-4b)及びΔHBc(α1-4b)-F23Aは、全長HBcの正常な多量体形成を阻害することが示唆された。B:Aと同様に、HBcの二量体形成及び多量体形成に与えるΔHBc(α1-4b)又はΔHBc(α1-4b)-F23A発現の影響を、抗PAモノクローナル抗体NZ-1を用いたウェスタンブロッティングによって解析した結果である。Aとは異なり、NZ-1では、PAタグのない全長HBcは認識されていない(レーン1~3)。一方、ΔHBc(α1-4b)-PA(レーン4~6)、及びΔHBc(α1-4b)-F23A-PA(レーン7~9)では、二量体(D)の他、四量体(T)以上も僅かに検出されたが、単量体(M)が圧倒的な量であった。C:Hela細胞でΔHBc(α1-4b)-PAを単独発現、又は全長HBcと共発現させた後、NZ-1抗体を用いたウェスタンブロッティングによる解析結果である。ΔHBc(α1-4b)は、単量体(M)又はホモ二量体(Homo-D)で存在しており、四量体(T)以上の多量体は形成しないことが示された。一方、全長HBcとΔHBc(α1-4b)を共発現させたHeLa細胞では、Bの結果と同様に、四量体(T)及び多量体(Mlt)も検出される他、二量体が2本のバンドで現れた。このうち一方は、ΔHBc(α1-4b)のホモ二量体のバンドと同位置にあり、他方のバンドはそれよりも上部に位置していた。つまり、全長HBcとΔHBc(α1-4b)を共発現させた場合、ΔHBc(α1-4b)は全長HBcとの間でヘテロ二量体(Hetero-D)を形成していることが示唆された。ΔHBc(α1-4b)は単独では二量体より大きな複合体を形成しないにもかかわらず、野生型HBcと共発現させると、野生型HBcとの間で少なくとも4量体以上の複合体を形成していることが明らかとなった。D:パーティクルブロットの結果からも、α1-4bの発現はカプシド形成を阻害することが明らかとなった。以上の結果から、細胞で発現したΔHBc(α1-4b)、すなわちHBcのスパイク領域は、機能的な全長HBcとヘテロ二量体を形成し、引き続く多量体形成、カプシド形成を阻害することによりHBVの複製を阻害することが明らかとなった。
<実施例7:T33N変異を有するHBcのヌクレオカプシド形成阻害剤GLS4に対する抵抗性の検証>
(目的)
 T33N変異を有するHBc(HBc-T33N)は、既存の低分子化合物で構成されるヌクレオカプシド形成阻害剤に対して強い抵抗性を示すことが報告されている(Zhou Z. et al., 2017, Sci Rep, 2017 Feb 13;7:42374.)。そこで、HBV複製活性評価システムにおいてHBc-WTに代えてHBc-T33Nを用いることにより、ヌクレオカプシド形成阻害剤耐性ウイルスの複製を再現し、低分子化合物で構成されるヌクレオカプシド形成阻害剤GLS4に対する抵抗性を示すか否かを検証する。
(方法)
(1)T33N変異を導入したHBc発現ベクターの作製
 実施例1で用いたジェノタイプCの全長HBc発現ベクター(pCI-HBc)を鋳型として、PrimeSTAR Mutagenesis Basal Kit(TaKaRa)を用いた部位特異的変異誘発法により、33番目のT残基をN残基に置換した(T33Nと表記する)。点変異導入をした全長HBcのT33N変異体は、HBc-T33Nとする。
(2)HBV複製阻害効率の評価
 HBc-WT又はHBc-T33NによるHBV複製活性の測定は、実施例1に記載のHBV複製評価システムに含まれるHBcとしてHBc-WT又はHBc-T33Nを用いて、0μM、0.08μM、0.16μM、0.31μM、0.63μM、1.25μM、2.5μM、又は5μMの濃度のGLS4存在下で、実施例1に記載の方法に準じて行った。得られたHBV複製活性の測定値(逆転写されたHBV DNA量)に基づいて、HBV複製阻害効率(%)を計算した。特定の濃度のGLS4存在下におけるHBV複製阻害効率(%)は、GLS4濃度が0μM(GLS4無添加)の場合の逆転写されたHBV DNA量を「0%阻害」、逆転写されたHBV DNA量が0の場合(逆転写が一切起こらなかった場合)を「100%阻害」として算出した値である。
(結果)
 HBV複製活性評価システムで、HBc-WT、又はHBc-WTに代えてHBc-T33Nを細胞導入して、各種濃度のGLS4の存在下でHBV複製の阻害効果を検討した結果を図13に示す。GLS4は、HBc-WTによるHBV複製を濃度依存的に阻害した一方、HBc-T33NによるHBV複製に対しては阻害効果を示さず、HBc-T33NはGLS4に対して抵抗性を有することが示された。この結果から、HBV複製活性評価システムにおいてHBc-WTに代えてHBc-T33Nを用いることによって、ヌクレオカプシド形成阻害剤耐性ウイルスの複製が再現されることが示された。
<実施例8:スパイク領域ΔHBc(α1-4b)の、HBc-T33NによるHBV複製に対する阻害効果の検討>
(目的)
 スパイク領域ΔHBc(α1-4b)が、ヌクレオカプシド形成阻害剤耐性変異型HBc(HBc-T33N)によるHBV複製を阻害するか否かを検証する。
(方法と結果)
 スパイク領域ΔHBc(α1-4b)のHBV複製阻害効果の評価は、実施例2に記載の方法に準じた。ただし、本実施例では、実施例2に記載のHBV複製評価システムに含まれるHBcとしてHBc-WT又はHBc-T33Nを用いた。
(結果)
 図14に結果を示す。野生型ΔHBc(α1-4b)は、HBc-WTによるHBV複製を量依存的に阻害した(図14左側)のと同様に、HBc-T33NによるHBV複製を量依存的に阻害した(図14右側)。この結果から、スパイク領域ΔHBc(α1-4b)は、実施例7においてGLS4耐性を示したHBc-T33Nに対しても、HBV複製阻害効果を有することが示された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (9)

  1.  以下の(1)~(3)のいずれかからなるB型肝炎ウイルス複製阻害剤。
     (1)B型肝炎ウイルスのコアタンパク質におけるスパイク領域を構成するペプチド断片
     (2)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片
     (3)前記(1)又は(2)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター
  2.  前記スパイク領域を構成するペプチド断片が以下の(a)~(c)のいずれかのアミノ酸配列からなる、請求項1に記載のB型肝炎ウイルス複製阻害剤。
      (a)配列番号1~7で示すいずれかのアミノ酸配列
      (b)配列番号1~7で示すいずれかのアミノ酸配列において、1又は複数個のアミノ酸が付加、欠失、又は置換されたアミノ酸配列
      (c)配列番号1~7で示すいずれかのアミノ酸配列と82%以上のアミノ酸同一性を有するアミノ酸配列
  3.  前記核酸が以下の(i)~(iv)のいずれかの塩基配列からなる、請求項1に記載のB型肝炎ウイルス複製阻害剤。
     (i)配列番号8~14で示すいずれかの塩基配列
     (ii)配列番号8~14で示すいずれかの塩基配列において、1又は複数個の塩基が付加、欠失、又は置換された塩基配列
     (iii)配列番号8~14で示すいずれかの塩基配列と80%以上の塩基同一性を有する塩基配列
     (iv)配列番号8~14で示すいずれかの塩基配列に相補的な塩基配列と高ストリンジェントな条件下でハイブリダイズする塩基配列
  4.  配列番号1~6で示すいずれかのアミノ酸配列において、
      23位のフェニルアラニン(F)残基がアラニン(A)残基に、及び/又は
      42位のロイシン(L)残基がアラニン(A)残基に、又は
     配列番号7で示すアミノ酸配列において、
      35位のフェニルアラニン(F)残基がアラニン(A)残基に、及び/又は
      54位のロイシン(L)残基がアラニン(A)残基に
    置換された、請求項2に記載のB型肝炎ウイルス複製阻害剤。
  5.  以下の(1)~(3)のいずれかからなるB型肝炎ウイルスのヌクレオカプシド形成阻害剤。
     (1)B型肝炎ウイルスのコアタンパク質におけるスパイク領域を構成するペプチド断片
     (2)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片
     (3)前記(1)又は(2)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター
  6.  有効成分としての請求項1~4のいずれか一項に記載のB型肝炎ウイルス複製阻害剤、及び担体及び/又は溶媒を含むB型肝炎治療用医薬組成物。
  7.  抗B型肝炎ウイルス剤をさらに含む、請求項6に記載のB型肝炎治療用医薬組成物。
  8.  抗B型肝炎ウイルス剤が核酸アナログ及び/又はHBV-Pol活性阻害剤である、請求項7に記載のB型肝炎治療用医薬組成物。
  9.  (1)B型肝炎ウイルスのコアタンパク質におけるスパイク領域を構成するペプチド断片、
     (2)前記スパイク領域のN末端及び/又はC末端に前記コアタンパク質とは異なる任意のアミノ酸配列が付加されたペプチド断片、
    又は
     (3)前記(1)又は(2)に記載のペプチド断片をコードする核酸を含み、細胞内で前記ペプチド断片を発現可能な発現ベクター
    を宿主内に導入する工程を含むB型肝炎ウイルスの複製阻害方法。
PCT/JP2019/040154 2018-10-12 2019-10-11 B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物 WO2020075836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980066430.4A CN112823019A (zh) 2018-10-12 2019-10-11 乙型肝炎病毒复制抑制剂和包含该抑制剂的乙型肝炎治疗用药物组合物
KR1020217014114A KR20210077711A (ko) 2018-10-12 2019-10-11 B형 간염 바이러스 복제 저해제 및 그것을 포함하는 b형 간염 치료용 의약 조성물
JP2020551243A JP7417274B2 (ja) 2018-10-12 2019-10-11 B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物
US17/284,142 US20210332089A1 (en) 2018-10-12 2019-10-11 Hepatitis b virus replication inhibitor and pharmaceutical composition for treating hepatitis b comprising the same
EP19870375.3A EP3865145A4 (en) 2018-10-12 2019-10-11 HEPATITIS B VIRUS REPLICATION INHIBITOR AND CONTAINING PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF HEPATITIS B

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193812 2018-10-12
JP2018193812 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075836A1 true WO2020075836A1 (ja) 2020-04-16

Family

ID=70164116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040154 WO2020075836A1 (ja) 2018-10-12 2019-10-11 B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物

Country Status (6)

Country Link
US (1) US20210332089A1 (ja)
EP (1) EP3865145A4 (ja)
JP (1) JP7417274B2 (ja)
KR (1) KR20210077711A (ja)
CN (1) CN112823019A (ja)
WO (1) WO2020075836A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171303A (ja) * 1997-08-27 1999-03-16 Rikagaku Kenkyusho B型肝炎ワクチン
WO2018030534A1 (ja) 2016-08-10 2018-02-15 国立研究開発法人理化学研究所 B型肝炎治療用組成物、及びb型肝炎ウイルスの複製活性の評価方法
JP2018193812A (ja) 2017-05-19 2018-12-06 大成ロテック株式会社 道路敷設物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508766A (ja) * 1995-06-20 1999-08-03 ザ・ジェネラル・ホスピタル・コーポレイション B型肝炎複製の抑制
KR100949310B1 (ko) * 2007-11-21 2010-03-23 한국과학기술연구원 세포 영상 기법을 이용한 hbv 캡시드 단백질과 표면단백질 간 상호작용 측정 방법과 이를 이용한 hbv 증식억제물질의 검색방법
JP2014527072A (ja) * 2011-09-09 2014-10-09 バイオメド リアルティー, エル.ピー. ウイルスタンパク質の集合を制御するための方法および組成物
US9963751B2 (en) * 2015-11-24 2018-05-08 The Penn State Research Foundation Compositions and methods for identifying agents to reduce hepatitis B virus covalently closed circular DNA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171303A (ja) * 1997-08-27 1999-03-16 Rikagaku Kenkyusho B型肝炎ワクチン
WO2018030534A1 (ja) 2016-08-10 2018-02-15 国立研究開発法人理化学研究所 B型肝炎治療用組成物、及びb型肝炎ウイルスの複製活性の評価方法
JP2018193812A (ja) 2017-05-19 2018-12-06 大成ロテック株式会社 道路敷設物

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ALEXANDER C.G. ET AL., PNAS, vol. 110, no. 30, 2013, pages E2782 - E2791
ARZUMANYAN A ET AL., NAT REV CANCER., vol. 13, 2013, pages 123 - 135
ASPINALL E. J. ET AL., OCCUP MED (LOND, vol. 61, 2011, pages 531 - 540
BECK JNASSAL M., WORLD J GASTROENTEROL., vol. 13, 2007, pages 48 - 64
FATTOVICH G. ET AL., J HEPATOL, vol. 48, 2008, pages 335 - 352
GREEN, M. R.SAMBROOK, J.: "Molecular Cloning: A Laboratory Manual", 2012, COLD SPRING HARBOR LABORATORY PRESS
KOUMBI L., WORLD J HEPATOL, vol. 7, 2015, pages 1030 - 1040
LAUD. T. ET AL., HEPATOLOGY, vol. 32, 2000, pages 828 - 834
PNAS, vol. 84, 1987, pages 7413
PNAS, vol. 86, 1989, pages 6077
See also references of EP3865145A4
VIROLOGY, vol. 52, 1973, pages 456 - 467
WYNNE S.A. ET AL., MOL CELL, vol. 3, 1999, pages 771 - 780
ZHOU Z. ET AL., SCI REP, vol. 7, 13 February 2017 (2017-02-13), pages 42374

Also Published As

Publication number Publication date
JPWO2020075836A1 (ja) 2021-09-02
KR20210077711A (ko) 2021-06-25
JP7417274B2 (ja) 2024-01-18
US20210332089A1 (en) 2021-10-28
EP3865145A1 (en) 2021-08-18
CN112823019A (zh) 2021-05-18
EP3865145A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
Alfaiate et al. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options
Wang et al. HBV genome and life cycle
CN110420331B (zh) Alkbh5抑制物在治疗病毒感染性疾病中的应用
US20210046168A1 (en) Compositions and methods for inducing tripartite motif-containing protein 16 (trim16) signaling
Song et al. E3 ubiquitin ligase TRIM21 restricts hepatitis B virus replication by targeting HBx for proteasomal degradation
JP2023089268A (ja) B型肝炎治療用組成物、及びb型肝炎ウイルスの複製活性の評価方法
CN107827970B (zh) 一种抑制foxm1的抗肿瘤蛋白肽
JP6986263B2 (ja) 抗ウイルス薬
WO2018213412A1 (en) Recombinant oncolytic virus
WO2020075836A1 (ja) B型肝炎ウイルス複製阻害剤及びそれを含むb型肝炎治療用医薬組成物
CA2251818A1 (en) Mammalian genes involved in viral infection and tumor suppression
JP7109040B2 (ja) 線維化抑制剤
KR101123130B1 (ko) Ptk7 단백질의 기능 저해를 통한 세포의 이동, 침윤 또는 혈관신생 억제제
US11384338B2 (en) Oncolytic T7 bacteriophage having cytokine gene and displaying homing peptide on capsid and its use for treating melanoma
CN111465697B (zh) 用于预防或治疗心力衰竭的药物组合物
CN112996802A (zh) 用于制备抗肿瘤沙粒病毒的方法以及沙粒病毒突变体
WO2022163564A1 (ja) フィロウイルス科ウイルス複製阻害剤
Zheng et al. Possible involvement of multidrug-resistant hepatitis B virus sW172* truncation variant in the ER stress signaling pathway during hepatocarcinogenesis
RU2812046C2 (ru) Способ продуцирования аренавируса, а также мутантов аренавируса с противоопухолевыми свойствами
US20230140435A1 (en) Composition and methods for improving heart function and treating heart failure
Zheng et al. HBV multidrug resistant sW172* truncated variant possibly involve in the ER stress pathway during hepatocarcinogenesis
WO2022237621A1 (zh) 诊断和治疗肿瘤的试剂及其用途
Tang Analysis of cellular gene expression changes associated with hepatitis B virus infection and hepatocellular carcinoma
Zehnder Genetic code expansion as a tool for the visualisation of Hepatitis B and Delta viruses
Maestro-Galilea Elucidating the mechanisms involved in Hepatitis Delta virus (HDV) pathogenesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014114

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019870375

Country of ref document: EP

Effective date: 20210512