WO2020075474A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2020075474A1
WO2020075474A1 PCT/JP2019/036775 JP2019036775W WO2020075474A1 WO 2020075474 A1 WO2020075474 A1 WO 2020075474A1 JP 2019036775 W JP2019036775 W JP 2019036775W WO 2020075474 A1 WO2020075474 A1 WO 2020075474A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
communication passage
refrigerant
main shaft
passage
Prior art date
Application number
PCT/JP2019/036775
Other languages
English (en)
French (fr)
Inventor
雅史 山下
恭弘 沖
忠資 堀田
智貴 方田
遊 杉本
雅至 井ノ上
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020075474A1 publication Critical patent/WO2020075474A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a compressor that compresses and discharges a refrigerant.
  • a stationary compressor in which a compression mechanism portion and an electric motor portion are housed in a housing, and a main shaft for transmitting a driving force of the electric motor portion to the compression mechanism portion is arranged in a substantially horizontal direction ( See, for example, Patent Document 1).
  • the compressor described in Patent Document 1 has a configuration in which oil that has flowed into the compressor together with the refrigerant and oil that lubricates each sliding portion of the compressor are stored in the lower portion of the motor chamber that houses the electric motor unit. ing.
  • a return path that connects the motor chamber to the refrigerant suction chamber of the compression mechanism is formed in the lower part of the motor chamber, and the oil stored in the lower part of the motor chamber passes through the return path to the motor. It is configured to be introduced into the refrigerant suction chamber from the chamber.
  • the present inventors are considering mounting a compressor on a moving body (for example, a vehicle).
  • a moving body for example, a vehicle
  • oil can be stably supplied from the space in which the electric motor unit is housed to the space in which the compression mechanism unit is housed. It has been found that it can be difficult.
  • the main shaft of the compressor inclines due to the inclination of the road surface on which the vehicle travels and the oil level near the inlet of the return path changes, then The oil supply to the machine may become unstable.
  • An object of the present disclosure is to provide a compressor that can stably supply oil from the space in which the electric motor unit is housed to the space in which the compression mechanism unit is housed, even if the posture of the compressor is inclined.
  • the compressor is A compression mechanism section that compresses and discharges the refrigerant mixed with oil, An electric motor unit that outputs a driving force that drives the compression mechanism unit, A housing that houses the compression mechanism section and the electric motor section; A main shaft that is arranged inside the housing in a posture that intersects with the vertical direction and that transmits the driving force of the electric motor unit to the compression mechanism unit; The compression mechanism portion is arranged inside the housing on one side in the axial direction of the main shaft, The electric motor section is arranged on the other side in the axial direction inside the housing, The housing is A partition part having a support part for supporting the main shaft, and partitioning the internal space of the housing into a first housing space in which the compression mechanism part is housed and a second housing space in which the electric motor part is housed, And a refrigerant introducing portion for introducing a refrigerant into the second accommodation space, A refrigerant suction passage for guiding the refrigerant introduced into the second accommodation space from the refrigerant
  • the oil holding portion allows the inlet of the refrigerant suction passage A certain oil level is secured at a position close to. That is, according to the compressor of the present disclosure, even if the main shaft is inclined, the oil is stably supplied from the second accommodation space in which the electric motor section is accommodated to the first accommodation space in which the compression mechanism section is accommodated via the refrigerant suction passage. Can be supplied to. As a result, for example, oil can be stably supplied to each sliding portion of the compressor to form a necessary oil film, so that abnormal wear of each sliding portion of the compressor can be suppressed.
  • the amount of oil required to suppress leakage of the compressed refrigerant from the gap generated in the compression chamber inside the compression mechanism portion Is ensured, it is possible to ensure the sealing performance in the compression mechanism section.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2. It is explanatory drawing for demonstrating the flow way of the refrigerant containing the oil in the compressor which concerns on 1st Embodiment. It is a typical sectional view showing the internal structure of the compressor concerning a 2nd embodiment. It is an enlarged view of the VII part of FIG. FIG. 8 is a sectional view taken along line VIII-VIII of FIG. 7.
  • the refrigeration cycle apparatus 1 is adopted as an air conditioner for air conditioning the inside of a moving body (for example, a vehicle).
  • the refrigeration cycle apparatus 1 includes a compressor 10 that compresses and discharges a refrigerant, a radiator 2 that radiates the refrigerant discharged from the compressor 10, and a decompression that decompresses the refrigerant that flows out from the radiator 2.
  • the device 3 includes an evaporator 4 for evaporating the refrigerant decompressed by the decompression device 3.
  • the refrigeration cycle device 1 uses carbon dioxide as a refrigerant.
  • the refrigerant is mixed with oil for lubricating each sliding portion inside the compressor 10. A part of the oil circulates in the cycle together with the refrigerant.
  • a chlorofluorocarbon refrigerant for example, R134a, R1234yf
  • R134a, R1234yf a chlorofluorocarbon refrigerant
  • FIG. 2 is an axial cross-sectional view showing a cross section taken along the axial center CL of the main shaft 14 of the compressor 10.
  • the up and down arrows shown in FIG. 2 indicate the vertical direction DRv when the compressor 10 is mounted on a moving body.
  • the compressor 10 has a main shaft 14, an electric motor unit 20, and a scroll-type compression mechanism unit 30 housed inside a metal housing 12 forming an outer shell.
  • the compressor 10 is an electric compressor in which the main shaft 14 rotates using the electric motor unit 20 as a power source, and the compression mechanism unit 30 is driven as the main shaft 14 rotates.
  • the electric compressor can change the discharge capacity of the compression mechanism unit 30 by adjusting the rotation speed of the electric motor unit 20, so that the temperature inside the room can be easily adjusted.
  • the compressor 10 is composed of a horizontal compressor in which the axis CL of the main shaft 14 extends in a substantially horizontal direction and the compression mechanism section 30 and the electric motor section 20 are arranged in a substantially horizontal direction.
  • the compression mechanism portion 30 is arranged inside the housing 12 on one side of the main shaft 14 in the axial direction DRa, and the electric motor portion 20 is arranged on the other side of the main shaft 14 in the axial direction DRa.
  • the axial direction DRa of the main shaft 14 is a direction extending along the axis CL of the main shaft 14.
  • the housing 12 includes a bottomed cylindrical main housing part 121 and a sub-housing part 122 that closes an opening of the main housing part 121.
  • the housing 12 has a closed container structure in which the main housing portion 121 and the sub housing portion 122 are airtightly fastened by fastening means such as bolts (not shown).
  • the housing 12 having a closed container structure is excellent in refrigerant airtightness because a shaft seal is not required as compared with an open container structure in which a part of the main shaft 14 projects to the outside.
  • the housing 12 is provided with a refrigerant introducing portion 123 that introduces the low-pressure refrigerant that has passed through the evaporator 4, and a refrigerant discharging portion 124 that discharges the high-pressure refrigerant compressed by the compression mechanism portion 30.
  • a suction pipe (not shown) connected to the evaporator 4 is connected to the refrigerant introducing portion 123.
  • a discharge pipe (not shown) connected to the radiator 2 is connected to the refrigerant discharge unit 124 so that the high-pressure refrigerant compressed by the compression mechanism unit 30 is discharged toward the radiator 2.
  • the refrigerant introduction part 123 is the other of the cylindrical body parts 121a of the main housing part 121 so that the refrigerant is introduced into the second accommodation space 120B of the housing 12 in which the electric motor part 20 is accommodated. It is provided at a position close to the side end surface portion 121b.
  • the other-side end surface portion 121b is a portion that constitutes an end surface of the housing 12 located on the other side in the axial direction DRa.
  • the refrigerant discharge part 124 is provided at a position close to the one side end face part 122b of the tubular body part 122a of the sub-housing part 122.
  • the one-side end surface portion 122b is a portion that constitutes an end surface of the housing 12 located on one side in the axial direction DRa.
  • Most of the space inside the main housing part 121 has a low pressure atmosphere. That is, since the low-pressure refrigerant that has passed through the evaporator 4 flows from the refrigerant introduction portion 123 into most of the space inside the main housing portion 121, the atmospheric pressure thereof is the same as that of the low-pressure refrigerant that has passed through the evaporator 4. Becomes
  • the electric motor section 20 outputs a driving force for driving the compression mechanism section 30.
  • the electric motor unit 20 is composed of a three-phase AC motor driven by power supply from an inverter 25 described later.
  • the electric motor unit 20 is configured as an inner rotor motor in which the rotor 22 is arranged inside the stator 21.
  • the stator 21 is a stator fixed to the housing 12.
  • the stator 21 has a stator core 211 made of a magnetic material and a coil 212 wound around the stator core 211.
  • the stator 21 When electric power is supplied from an inverter 25, which will be described later, the stator 21 generates a rotating magnetic field that rotates the rotor 22.
  • the stator 21 is fixed inside the housing 12 by shrink fitting or the like.
  • the rotor 22 is a mover fixed to the main shaft 14.
  • the rotor 22 is a cylindrical member fastened to the main shaft 14 by shrink fitting or the like. Inside the rotor 22, a permanent magnet (not shown) is arranged.
  • the inverter 25 is a device that supplies electric power to the stator 21.
  • the inverter 25 is attached to the outside of the housing 12. Specifically, the inverter 25 is attached to the other side end surface portion 121b of the main housing portion 121 near the refrigerant introduction portion 123. As a result, the inverter 25 is cooled by the low-temperature low-pressure refrigerant sucked from the refrigerant introducing portion 123.
  • the motor unit 20 configured in this way, when electric power is supplied from the inverter 25 to the stator 21 and a rotating magnetic field is generated around the stator 21, the rotor 22 and the main shaft 14 rotate integrally.
  • the main shaft 14 transmits the driving force of the electric motor unit 20 to the compression mechanism unit 30, and is arranged inside the housing 12 in a posture intersecting the vertical direction DRv. Specifically, the main shaft 14 is arranged inside the housing 12 so that its axis CL extends in a substantially horizontal direction.
  • the main shaft 14 is composed of a substantially cylindrical member.
  • An oil supply passage 140 for supplying oil to the sliding portion of the main shaft 14 is formed in the main shaft 14.
  • the oil supply passage 140 has a main supply hole 140a extending along the axial direction DRa of the main shaft 14, a first oil distribution hole 140b opening to the outside of the main shaft 14 and communicating with the main supply hole 140a, a second oil distribution hole 140c, It is configured by the third oil distribution hole 140d.
  • the main supply hole 140a is opened on one side in the axial direction DRa and closed on the other side in the axial direction DRa.
  • the first oil distribution hole 140b opens in a sliding portion 14a of the main shaft 14 supported by a bearing member 16 described later.
  • the second oil distribution hole 140c opens in a sliding portion 14b of the main shaft 14 supported by a bearing portion 181 described later.
  • the third oil distribution hole 140d is opened in a sliding portion 14c of the main shaft 14 which is supported by an eccentric bearing portion 342a described later.
  • the other side of the main shaft 14 in the axial direction DRa projects to the other side of the rotor 22 in the axial direction DRa.
  • a portion of the main shaft 14 that projects to the other side in the axial direction DRa is rotatably supported by a bearing member 16.
  • the bearing member 16 is composed of a slide bearing, and is fixed to the body portion 121 a of the main housing portion 121 via the interposition member 17.
  • the intervening member 17 has a through hole 171 for allowing the refrigerant introduced from the refrigerant introducing portion 123 to flow to the electric motor section 20 side.
  • the bearing member 16 is configured to include a tubular portion 161 that constitutes a slide bearing, and a connecting portion 162 that extends from the end of the tubular portion 161 in the vertical direction DRv.
  • the connecting portion 162 is fastened and fixed to the interposition member 17 with a bolt B.
  • the one side of the main shaft 14 in the axial direction DRa projects to the one side of the rotor 22 in the axial direction DRa.
  • An eccentric shaft portion 141 that is eccentric from the axial center CL of the main shaft 14 is provided at an end portion on one side of the main shaft 14 on the one side in the axial direction DRa of the main shaft 14.
  • the eccentric shaft portion 141 is slidably supported by an eccentric bearing portion 342a formed on a boss portion 342 of the orbiting scroll 34 of the compression mechanism portion 30 described later.
  • a part of the main shaft 14 between the rotor 22 and the eccentric shaft part 141 is rotatably supported by a bearing part 181 formed in a middle housing 18 housed inside the housing 12.
  • the middle housing 18 has a bearing portion 181 that supports the main shaft 14, and an inner space 120 of the housing 12 is a first accommodation space 120A in which the compression mechanism portion 30 is accommodated and a second accommodation space in which the electric motor portion 20 is accommodated. It is a partition part that partitions into 120B.
  • the bearing portion 181 of the middle housing 18 constitutes a support portion that supports the main shaft 14.
  • the middle housing 18 is fixed to the main housing portion 121 by fastening means such as bolts (not shown) with the outermost peripheral surface of the middle housing 18 abutting on the body portion 121a of the main housing portion 121.
  • a refrigerant suction passage 180 for guiding the refrigerant introduced into the second accommodation space 120B from the refrigerant introduction portion 123 to the first accommodation space 120A is provided at a position located below the bearing portion 181 in the vertical direction DRv. Has been formed.
  • the middle housing 18 is formed with a notch recessed inward in the lower portion in the vertical direction DRv so that the lower portion in the vertical direction DRv is separated from the body portion 121a of the main housing portion 121. Has been done. Then, the refrigerant suction passage 180 is configured by the notch. Although not shown, notches are formed in the middle housing 18 in addition to the portion on the lower side in the vertical direction DRv, and the first housing space 120A and the first accommodation space 120A are provided through the portion having the notches. The two accommodation spaces 120B communicate with each other.
  • the middle housing 18 has a cylindrical shape in which the inner diameter and the outer diameter expand stepwise from the other side in the axial direction DRa toward the one side.
  • a bearing portion 181 is formed inside the small diameter portion having the smallest inner diameter, and the orbiting scroll 34 of the compression mechanism portion 30 is accommodated in the large diameter portion having the largest inner diameter.
  • the bearing portion 181 is composed of a slide bearing.
  • the compression mechanism section 30 compresses the low-pressure refrigerant sucked from the refrigerant introduction section 123 as the main shaft 14 rotates.
  • the compression mechanism unit 30 is composed of a scroll type compression mechanism unit. That is, the compression mechanism unit 30 is configured to include the fixed scroll 32 fixed to the housing 12 and the orbiting scroll 34 arranged to be aligned with the fixed scroll 32 in the axial direction DRa. The compression mechanism unit 30 compresses the refrigerant by meshing with the fixed scroll 32 when the orbiting scroll 34 revolves as the main shaft 14 rotates.
  • the orbiting scroll 34 is arranged on the other side in the axial direction DRa, and the fixed scroll 32 is arranged on one side in the axial direction DRa.
  • the orbiting scroll 34 has an orbiting base plate portion 341 formed in a disc shape.
  • the swivel plate portion 341 has a cylindrical boss portion 342 in which the eccentric shaft portion 141 of the main shaft 14 is slidably inserted at a substantially central portion thereof.
  • the inner portion of the boss portion 342 constitutes an eccentric bearing portion 342a that slidably supports the eccentric shaft portion 141.
  • the eccentric bearing portion 342a is composed of a slide bearing.
  • An oldham ring 36 which constitutes a rotation prevention mechanism for preventing rotation around the eccentric shaft portion 141, is connected to the orbiting scroll 34.
  • the orbiting scroll 34 revolves around the shaft center CL of the main shaft 14 without revolving around the eccentric shaft portion 141.
  • the orbiting scroll 34 revolves around the axis CL of the main shaft 14 when the main shaft 14 rotates.
  • the orbiting scroll 34 may be provided with a rotation preventing mechanism other than the Oldham ring 36.
  • two annular thrust plates 184 and 343 are arranged between the orbiting scroll 34 and the middle housing 18.
  • the thrust plate 184 on the side of the middle housing 18 is fixed to the middle housing 18.
  • the thrust plate 343 on the orbiting scroll 34 side is fixed to the orbiting scroll 34 so as to rotate integrally with the orbiting scroll 34.
  • the orbiting scroll 34 has spiral orbiting teeth 344 protruding from the orbiting base plate 341 toward the fixed scroll 32.
  • the fixed scroll 32 has a fixed substrate portion 321 formed in a disk shape.
  • the fixed scroll 32 is formed with a spiral fixed tooth portion 322 protruding from the fixed base plate portion 321 toward the orbiting scroll 34 side.
  • a spiral groove portion is formed in the fixed substrate portion 321, and the side wall of the spiral groove portion constitutes the fixed tooth portion 322.
  • the fixed tooth portion 322 and the orbiting tooth portion 344 mesh with each other to make contact with each other at a plurality of positions, so that a plurality of crescent-shaped compression chambers 31 are formed.
  • a reference numeral for convenience of illustration, only one working chamber of the plurality of compression chambers 31 is denoted by a reference numeral.
  • the compression chamber 31 moves from the outer peripheral side to the central side while reducing its volume as the orbiting scroll 34 revolves.
  • the refrigerant sucked into the first accommodating space 120A is supplied to the compression chamber 31 through the refrigerant suction passage 180 formed in the middle housing 18 and the suction chamber 320 formed on the outer peripheral side of the fixed scroll 32. ing.
  • the refrigerant in the compression chamber 31 is compressed as the volume of the compression chamber 31 decreases.
  • a discharge hole 323 for discharging the refrigerant compressed in the compression chamber 31 is formed in the center of the fixed substrate portion 321.
  • the fixed substrate portion 321 is provided with a reed valve (not shown) that forms a check valve that prevents the reverse flow of the refrigerant into the compression chamber 31, and a stopper 324 that regulates the maximum opening of the reed valve.
  • the reed valve and the stopper 324 are fastened and fixed to the fixed substrate portion 321 by fastening members such as bolts.
  • a partition wall 125 is disposed on one side of the fixed substrate portion 321 in the axial direction DRa to partition a space formed between the fixed substrate portion 321 and the sub-housing portion 122 into two spaces. There is.
  • a discharge chamber 126 is defined by the upper side portion of the fixed substrate portion 321, the sub-housing portion 122, and the partition wall 125.
  • the discharge chamber 126 is a space into which the refrigerant discharged from the compression chamber V flows, and communicates with the compression chamber V via the discharge hole 323.
  • an oil separating portion 50 having a tubular pipe member 50a built therein is formed on one side of the discharge chamber 126 in the axial direction DRa, and communicates with an internal space 127 of the oil separating portion 50.
  • a high pressure oil storage chamber 128 is formed.
  • a communication hole 50b that connects the discharge chamber 126 and the internal space 127 is formed in the oil separation portion 50. Since the high-pressure oil storage chamber 128 and the discharge chamber 126 are partitioned by the partition wall 125, the pressure pulsation of the refrigerant discharged into the discharge chamber 126 hardly affects the oil stored in the high-pressure oil storage chamber 128.
  • the oil separation unit 50 is an oil separation mechanism that separates oil from the high-pressure refrigerant compressed by the compression mechanism unit 30.
  • the oil separator 50 is composed of a centrifugal separation type oil separator having a double cylinder structure.
  • the high-pressure refrigerant flowing from the discharge chamber 126 into the oil separating section 50 is discharged to the outside from the refrigerant discharging section 124 after the oil is separated.
  • the oil separated by the oil separation unit 50 falls downward due to its own weight and is stored in the high-pressure oil storage chamber 128.
  • the high-pressure oil storage chamber 128 is defined by the lower portion of the fixed scroll 32, the sub-housing portion 122, and the partition wall 125.
  • the high-pressure oil storage chamber 128 is a space that is formed below the oil separation unit 50 and stores the oil separated by the oil separation unit 50. Since the high-pressure oil storage chamber 128 communicates with the discharge chamber 126 through the communication hole 50b and the internal space 127 of the oil separation portion 50, the atmospheric pressure becomes equal to the pressure of the high-pressure refrigerant.
  • the main sliding parts 14a to 14c inside the housing 12 are located in the second accommodation space 120B where the atmospheric pressure of the low-pressure refrigerant is lower than that of the high-pressure refrigerant. Therefore, the oil stored in the high-pressure oil storage chamber 128 passes through the oil supply passage 140 or the like due to the pressure difference between the high-pressure oil storage chamber 128 and the second accommodation space 120B, and the sliding portions 14a to 14c inside the housing 12 184, 343.
  • the oil supply passage 140 constitutes an internal lubrication portion for guiding the oil stored in the high pressure oil storage chamber 128 to at least the sliding portions 14a to 14c of the main shaft 14.
  • the compressor 10 when the compressor 10 is mounted on a moving body, it is difficult to stably supply oil from the second housing space 120B housing the electric motor section 20 to the first housing space 120A housing the compression mechanism section 30.
  • the main shaft 14 of the compressor 10 tilts depending on the road surface tilt state.
  • the oil level in the vicinity of the inlet portion 180A of the refrigerant suction passage 180 may fluctuate, and the oil supply from the second storage space 120B to the first storage space 120A may become unstable.
  • a certain gap is set in the axial direction DRa and the vertical direction DRv in order to avoid interference of various configurations of the electric motor unit 20 and ensure insulation, and thus oil can collect. There are many places.
  • the compressor 10 of the present embodiment is provided with the oil holding portion 60 in the second accommodation space 120B.
  • the oil holding portion 60 is provided to hold oil near the inlet 180A of the refrigerant suction passage 180 in the second storage space 120B. Even if the oil holding portion 60 is in a posture in which the portion located on one side in the axial direction DRa of the main shaft 14 is located above the other side in the vertical direction DRv, the oil suction portion 60 sucks more refrigerant than the other end surface portion 121b. The oil is retained near the inlet 180A of the passage 180.
  • the posture in which the portion of the main shaft 14 located on the other side in the axial direction DRa is higher in the vertical direction DRv than the portion located on one side is referred to as the first posture.
  • the first posture is a posture in which the compression mechanism portion 30 side is low and the electric motor portion 20 side is high in the vertical direction DRv.
  • the posture in which the portion of the main shaft 14 located on one side in the axial direction DRa is higher in the vertical direction DRv than the portion located on the other side is the second posture.
  • the second posture is a posture in which the compression mechanism portion 30 side is high and the electric motor portion 20 side is low in the vertical direction DRv.
  • the oil holding unit 60 will be described below.
  • the oil retaining portion 60 has a protruding wall portion 61 that protrudes upward from a bottom wall portion 121c that is located on the lower side in the vertical direction DRv of the inner wall surface that forms the second accommodation space 120B in the housing 12.
  • the protruding wall portion 61 functions as a weir that holds oil near the inlet portion 180A of the refrigerant suction passage 180, so that the inlet portion of the refrigerant suction passage 180 is located in the bottom wall portion 121c of the housing 12 rather than the other end surface portion 121b. It is provided near 180A. Specifically, the protruding wall portion 61 is provided in a portion of the bottom wall portion 121c of the housing 12 located between the rotor 22 of the electric motor portion 20 and the middle housing 18 in the axial direction DRa.
  • the protruding wall portion 61 is provided with an oil communication passage 610 that penetrates in the thickness direction thereof, and an opening / closing member 62 that opens and closes the oil communication passage 610.
  • the opening / closing member 62 is configured to open the oil communication passage 610 when the main shaft 14 is in the first posture and close the oil communication passage 610 when the main shaft 14 is in the second posture.
  • the protruding wall portion 61 has a first wall surface portion 611 that expands so as to intersect the axial direction DRa on one side of the axial direction DRa and an axial direction on the other side of the axial direction DRa. It has the 2nd wall surface part 612 which expands so that it may intersect DRa.
  • the opening / closing member 62 is an opening / closing door including a plate-shaped door portion 631 having a size capable of closing the opening of the oil communication passage 610 in the first wall surface portion 611, and a door shaft 632 rotatably supporting the door portion 631. It is composed of 63.
  • the door shaft 632 is connected to a portion of the first wall surface portion 611 located above the opening of the oil communication passage 610.
  • a seating surface 611a is formed in the first wall surface portion 611 at a peripheral edge portion of the opening of the oil communication passage 610, which the door portion 631 comes into contact with and separates from when opening and closing the oil communication passage 610.
  • the door portion 631 is pressed by the flow of oil from the second wall surface portion 612 side toward the first wall surface portion 611 side, and the seating surface is seated. It is separated from 611a. As a result, the oil communication passage 610 is opened.
  • the opening / closing door 63 for example, when the main shaft 14 is in the second posture, the door portion 631 is pressed by the flow of oil flowing from the first wall surface portion 611 side to the second wall surface portion 612 side and comes into contact with the seating surface 611a. As a result, the oil communication passage 610 is closed.
  • the opening / closing door 63 allows the flow of oil from the second wall surface portion 612 side to the first wall surface portion 611 side in the oil communication passage 610, and moves from the first wall surface portion 611 side to the second wall surface portion 612 side. It has a structure that functions as a check valve that blocks the flow of oil.
  • the posture of the compressor 10 may tilt not only in the axial direction DRa but also in the circumferential direction of the main shaft 14, depending on the direction. Therefore, in the compressor 10, the allowable tilt angle is set as the tilt allowed in each of the axial direction DRa and the circumferential direction of the main shaft 14.
  • the protruding wall portion 61 of the present embodiment is configured to be able to hold a certain amount of oil even when the compressor 10 tilts in the circumferential direction of the main shaft 14 within the range of the allowable tilt angle.
  • FIG. 4 an example of a configuration in which the protruding wall portion 61 can hold a certain amount of oil even when the compressor 10 is tilted at the allowable tilt angle in the circumferential direction of the main shaft 14 will be described with reference to FIG. 4.
  • the inner wall surface of the body portion 121a of the main housing portion 121 is formed in a substantially circular shape.
  • a projecting wall portion 61 having a predetermined projecting height Hd in a partial region including the lowermost portion 121 d of the inner wall surface is continuously formed in the circumferential direction of the spindle 14.
  • Hd projecting height
  • a part of the inner wall surface including the lowermost portion 121d can be interpreted as the bottom wall portion 121c of the housing 12.
  • the protruding wall portion 61 is set so that the set height Ld from the lowermost portion 121d of the inner wall surface of the housing 12 to the highest position in the vertical direction DRv satisfies the following formula F1.
  • the protruding wall portion 61 configured in this manner, even if the moving body is inclined in the circumferential direction of the main shaft 14, the oil is retained until the oil surface height reaches the protruding height Hd of the protruding wall portion 61. It becomes possible.
  • the opening / closing member 62 of the present embodiment is composed of a plurality of opening / closing doors 63 provided for the protruding wall portion 61 in consideration of the inclination of the moving body in the circumferential direction of the main shaft 14.
  • three opening / closing doors 63 are provided for the protruding wall portion 61 so as to be arranged along the circumferential direction of the main shaft 14.
  • the number of opening / closing doors 63 is not limited to three, and can be set to any number according to the allowable tilt angle ⁇ in the circumferential direction of the main shaft 14.
  • the refrigerant introduced into the second accommodating space 120B passes through a refrigerant passage (not shown) provided in the electric motor unit 20 and gaps of various configurations of the electric motor unit 20, and then, as shown by an arrow FL2 in FIG. It flows into the 1st accommodation space 120A via 180. At this time, the oil held by the opening / closing door 63 flows into the first accommodation space 120A together with the refrigerant through the refrigerant suction passage 180.
  • the refrigerant flowing into the first accommodation space 120A is sucked into the compression chamber 31 via the suction chamber 320 located on the outer peripheral side of the compression mechanism section 30.
  • the refrigerant supplied to the compression chamber 31 is compressed as the volume of the compression chamber 31 decreases.
  • the pressure in the compression chamber 31 reaches the valve opening pressure of the reed valve, the refrigerant compressed in the compression chamber 31 is discharged from the discharge hole 323 of the fixed scroll 32 to the discharge chamber 126.
  • the refrigerant discharged into the discharge chamber 126 flows into the oil separation section 50 through the communication hole 50b, and the oil is separated from the refrigerant in the oil separation section 50.
  • the refrigerant from which the oil has been separated passes through the internal passage of the pipe member 50 a of the oil separation section 50 and is discharged from the refrigerant discharge section 124 as the discharged refrigerant of the compressor 10.
  • the oil separated from the refrigerant falls by its own weight and is stored in the high pressure oil storage chamber 128.
  • the oil stored in the high-pressure oil storage chamber 128 passes through the oil supply path 140 and the like due to the pressure difference between the high-pressure oil storage chamber 128 and the second accommodation space 120B, and the sliding portions 14a to 14c, 184, 343 inside the housing 12 Is supplied to.
  • the oil supplied to the respective sliding portions 14a to 14c, 184, 343 inside the housing 12 flows downward into the second accommodation space 120B of the housing 12, and then is first accommodated together with the refrigerant through the refrigerant suction passage 180. It flows into the space 120A.
  • the opening / closing door 63 allows the flow of oil from the second wall surface portion 612 side to the first wall surface portion 611 side in the oil communication passage 610, and allows the oil flow passage 610 to move from the first wall surface portion 611 side to the second wall surface portion 612 side. It has a structure that functions as a check valve that blocks the flow of oil toward.
  • the oil communication passage 610 is opened, so that the oil existing in the second storage space 120B is not allowed to flow between the protruding wall portion 61 and the middle housing 18. Will be replenished in the space.
  • oil is almost always held in the space between the protruding wall portion 61 and the middle housing 18, that is, in the vicinity of the inlet portion 180A of the refrigerant suction passage 180. Become. Therefore, oil can be stably supplied to the first accommodation space 120A and the compression chamber 31 via the refrigerant suction passage 180.
  • the rise of the oil level in the second accommodation space 120B is suppressed, so that the insulation deterioration and the efficiency reduction due to the motor unit 20 being immersed in the oil are sufficiently suppressed. be able to.
  • the above-described action and effect are obtained not only when the compressor 10 is tilted, but also when the oil moves in the second accommodation space 120B due to the inertial force when the compressor 10 swings in the axial direction DRa, for example. Effectively demonstrated. That is, in a situation where the oil moves from the second storage space 120B side to the first storage space 120A side, the oil is replenished in the space between the protruding wall portion 61 and the middle housing 18. On the contrary, when the oil moves from the first accommodation space 120A side to the second accommodation space 120B side, the oil is retained in the space between the protruding wall portion 61 and the middle housing 18.
  • the compressor 10 holds the oil by the protruding wall portion 61 until the oil surface height becomes the protruding height Hd of the protruding wall portion 61. Is possible. According to this, even if the compressor 10 is inclined in the circumferential direction of the main shaft 14, the oil can be stably supplied from the second accommodation space 120B to the first accommodation space 120A.
  • the bearing member 16, the bearing portion 181, and the eccentric bearing portion 342a are constituted by sliding bearings. According to this, even when the pressure difference between the low-pressure refrigerant and the discharged refrigerant is large and a high load acts on each bearing, as in the case where carbon dioxide is used as the refrigerant, compared with the case where the rolling bearing is used. Further, it becomes possible to improve reliability against wear deterioration and to prolong the service life.
  • the present embodiment differs from the first embodiment in that the opening / closing member 62 is constituted by the ball valve 64 instead of the opening / closing door 63.
  • the opening / closing member 62 is constituted by the ball valve 64 instead of the opening / closing door 63.
  • parts different from the first embodiment will be mainly described, and description of the same parts as the first embodiment may be omitted.
  • the opening / closing member 62 is composed of a ball valve 64 provided in the oil communication passage 610.
  • the ball valve 64 is a spherical member and has a size capable of moving in the oil communication passage 610.
  • the oil communication passage 610 is formed with a valve seat 613 with which the ball valve 64 contacts and separates when the oil communication passage 610 is opened and closed.
  • the valve seat 613 is formed of a portion of the oil communication passage 610 whose passage cross-sectional area is reduced from one side to the other side in the axial direction DRa.
  • the oil communication passage 610 is a passage cross-sectional area D1 of the first section located between the opening of the first wall surface portion 611 and a portion separated from the opening on the other side in the axial direction DRa by a predetermined distance L. Is larger than the diameter d1 of the ball valve 64.
  • the passage sectional area of the second section located between the first section and the opening of the second wall surface section 612 is tapered toward the opening of the second wall section 612.
  • the opening area D2 of the opening of the second wall surface portion 612 is smaller than the diameter d1 of the ball valve 64. That is, the diameter d1 of the ball valve 64 is set so as to satisfy the following formula F4.
  • a lid 614 for preventing the ball valve 64 from jumping out of the oil communication passage 610 is fixed to the opening of the first wall surface portion 611 by press fitting or the like in the oil communication passage 610. As shown in FIG. 8, the lid 614 has a plurality of small holes 615 for allowing oil to flow therethrough.
  • the small hole 615 has a diameter d2 smaller than the diameter d1 of the ball valve 64 so that the ball valve 64 cannot pass through.
  • the ball valve 64 configured as described above is separated from the valve seat 613 by being pressed by the flow of oil from the second wall surface portion 612 side toward the first wall surface portion 611 side when the main shaft 14 is in the first posture, for example. . As a result, the oil communication passage 610 is opened.
  • the ball valve 64 is pressed by the flow of oil flowing from the first wall surface portion 611 side toward the second wall surface portion 612 side due to the influence of gravity and contacts the valve seat 613. As a result, the oil communication passage 610 is closed.
  • the ball valve 64 allows the flow of oil from the second wall surface portion 612 side to the first wall surface portion 611 side in the oil communication passage 610, and moves from the first wall surface portion 611 side to the second wall surface portion 612 side. It has a structure that functions as a check valve that blocks the flow of oil.
  • the ball valve 64 becomes movable in the first section of the oil communication passage 610 when the moving body is tilted and the main shaft 14 is in the first posture.
  • the oil communication passage 610 is opened, so that the oil existing in the second storage space 120B is replenished in the space between the protruding wall portion 61 and the middle housing 18, as shown by an arrow FL3 in FIG.
  • the ball valve 64 rolls from one side to the other side in the axial direction DRa due to the influence of gravity and moves to the second section of the oil communication passage 610. To do. At this time, the ball valve 64 contacts the valve seat 613 to close the oil communication passage 610. Thereby, the oil existing in the space between the protruding wall portion 61 and the middle housing 18 is retained in the space between the protruding wall portion 61 and the middle housing 18.
  • the opening / closing member 62 is configured by the ball valve 64 instead of the opening / closing door 63, but the ball valve 64 performs the same function as the opening / closing door 63. For this reason, the compressor 10 of the present embodiment can obtain the operation and effect described in the first embodiment as in the first embodiment.
  • the opening / closing member 62 of this embodiment preferably has a structure in which a plurality of ball valves 64 are provided on the protruding wall portion 61, as in the first embodiment. That is, it is desirable that a plurality of ball valves 64 be provided on the protruding wall portion 61 so as to be arranged along the circumferential direction of the main shaft 14.
  • the number of ball valves 64 can be set to any number depending on the allowable inclination angle of the main shaft 14 in the circumferential direction.
  • the compressor 10 of the first and second embodiments described above is provided with a fixing portion for fixing the middle housing 18 to the housing 12, for example, in the space between the protruding wall portion 61 and the middle housing 18. May be.
  • a communication hole or a cutout that communicates with the inlet portion 180A of the refrigerant suction passage 180 be formed in the fixed portion.
  • the oil holding portion 70 is a passage forming portion that forms a communication passage 710 that guides the oil existing on the other end surface 121b side in the second accommodation space 120B to the inlet portion 180A of the refrigerant suction passage 180.
  • the passage forming portion 71 is arranged along the bottom wall portion 121c of the housing 12. Specifically, the passage forming portion 71 is arranged so as to penetrate a notch groove formed in a portion of the stator 21 of the electric motor portion 20 facing the bottom wall portion 121c of the housing 12.
  • the passage forming portion 71 has a refrigerant inlet port 711 formed at a portion located on the other side in the axial direction DRa.
  • the introduction port 711 opens in a position closer to the other end face 121b than the stator 21 in the axial direction DRa.
  • a portion located on one side in the axial direction DRa is connected to the inlet portion 180A of the refrigerant suction passage 180.
  • the passage forming portion 71 is provided with a connecting portion 712 connected to the inlet portion 180A of the refrigerant suction passage 180 on one side in the axial direction DRa.
  • the connection portion 712 can be understood as a portion of the passage forming portion 71 that is closer to the contact surface with the inlet portion 180A of the refrigerant suction passage 180 than the introduction port 711.
  • a low-pressure oil storage chamber 713 for storing oil is formed in the connecting portion 712 of the passage forming portion 71. Specifically, the low-pressure oil storage chamber 713 is formed in the passage forming portion 71 from the contact surface with the inlet portion 180A of the refrigerant suction passage 180 to the stator 21.
  • the low pressure oil storage chamber 713 constitutes a part of the communication passage 710.
  • the low-pressure oil storage chamber 713 has a larger cross-sectional area than the passage cross-sectional area of a portion of the communication passage 710 other than the low-pressure oil storage chamber 713 so that oil can be stored.
  • a refrigerant inlet hole 714 is formed in the connecting portion 712 of the passage forming portion 71.
  • the refrigerant intake hole 714 is a through hole for introducing the refrigerant and oil existing in the second accommodation space 120B into the communication passage 710.
  • the refrigerant inlet hole 714 is formed in the passage forming portion 71 in the vicinity of a portion forming the low pressure oil storage chamber 713.
  • the refrigerant intake hole 714 is formed of a through hole having a smaller cross-sectional area than the introduction port 711.
  • an opening / closing member 72 for opening / closing the communication passage 710 is provided inside the portion forming the low pressure oil storage chamber 713.
  • the opening / closing member 72 is configured to open the communication passage 710 while the compression mechanism section 30 is driven.
  • the opening / closing member 72 opens the communication passage 710 when the main shaft 14 is in the first posture while the compression mechanism unit 30 is stopped, and the main shaft 14 is in the second posture when the compression mechanism unit 30 is stopped. Then, the communication passage 710 is closed.
  • the opening / closing member 72 has an opening / closing door 73 configured similarly to the opening / closing door 63 described in the first embodiment. That is, the opening / closing door 73 is configured to include a plate-shaped door portion 731 having a size capable of closing the communication passage 710, and a door shaft 732 that rotatably supports the door portion 731. It should be noted that the door shaft 732 is connected to a portion located on the upper side of the inner wall portion forming the communication passage 710. In addition, a seating surface 711a is formed on the inner wall portion of the communication passage 710, with which the door portion 731 comes in and out when the communication passage 710 is opened and closed.
  • the opening / closing door 73 configured in this way, for example, when the compressor 10 is driven, the door portion 731 is pressed by the flow of oil from the other side to the one side in the axial direction DRa, and the seating surface 711a is pushed. Separate. Further, in the opening / closing door 73, when the main shaft 14 is in the first posture while the compressor 10 is stopped, the door portion 731 is pressed by the flow of oil from the other side to the one side in the axial direction DRa and the seating surface 711a is removed. Separate. By these, the communication passage 710 is opened.
  • the opening / closing door 73 for example, when the main shaft 14 is in the second posture with the compressor 10 stopped, the door portion 731 is pressed by the flow of oil from one side to the other side in the axial direction DRa and the seating surface is seated. Touch. As a result, the communication passage 710 is closed.
  • the opening / closing door 73 allows the flow of oil from the other side in the axial direction DRa to the one side in the communication passage 710, and shuts off the flow of oil from the one side in the axial direction DRa to the other side.
  • the oil sucks the oil from the introduction port 711 of the communication passage 710. become unable.
  • the opening / closing door 73 blocks the flow of oil from one side to the other side in the axial direction DRa in the communication passage 710, so that the low-pressure oil storage chamber 713 holds the oil. Therefore, when the compressor 10 is driven again, the oil held in the low pressure oil storage chamber 713 passes through the refrigerant suction passage 180 and is then supplied to the compression chamber 31 through the first accommodation space 120A.
  • the compressor 10 while the compressor 10 is being driven, the refrigerant and the oil are also sucked from the refrigerant intake hole 714.
  • the cross-sectional area of the refrigerant inlet hole 714 is smaller than the cross-sectional area of the introduction port 711 of the communication passage 710, a differential pressure occurs when sucked, and the inside of the communication passage 710 with respect to the second accommodation space 120B. Becomes low pressure. Therefore, oil can be sucked in stably from the introduction port 711 of the communication passage 710.
  • the oil holding portion 70 ensures a constant oil level near the inlet 180A of the refrigerant suction passage 180. Therefore, even if the main shaft 14 is inclined, oil can be stably supplied from the second accommodation space 120B to the first accommodation space 120A via the refrigerant suction passage 180.
  • the compressor 10 is configured such that the communication passage 710 is opened, for example, when the compression mechanism unit 30 is driven or when the compression mechanism unit 30 is in the first posture with the compression mechanism unit 30 stopped. . Therefore, the oil stored in the second accommodation space 120B can flow into the first accommodation space 120A via the communication passage 710 and the refrigerant suction passage 180.
  • the compressor 10 has a configuration in which the communication passage 710 is closed when the compression mechanism section 30 is in the second posture with the compression mechanism section 30 stopped. It is held near 180A. As a result, the oil held by the opening / closing member 72 can flow into the first accommodation space 120A via the refrigerant suction passage 180.
  • a low pressure oil storage chamber 713 for storing oil is formed in the connection portion 712 of the refrigerant suction passage 180 of the passage forming portion 71. According to this, it is possible to introduce the oil stored in the low-pressure oil storage chamber 713 into the first storage space 120A via the refrigerant suction passage 180, so that even if the main shaft 14 is inclined, the oil is stored in the first storage space 120A. Can be stably supplied.
  • the refrigerant inlet hole 714 is illustrated as being formed close to the portion of the passage forming portion 71 that constitutes the low pressure oil storage chamber 713, but the present invention is not limited to this.
  • a drawing hole for directly drawing the refrigerant into a portion of the passage forming portion 71 that constitutes the low pressure oil storage chamber 713 may be formed.
  • Such a drawing hole is effective in reducing the pressure loss of the refrigerant in the communication passage 710, the opening / closing door 73, and the refrigerant drawing hole 714 when it becomes large. It should be noted that it is desirable to decide whether or not to add the lead-in hole in consideration of the efficiency target of the compressor 10.
  • FIGS. 13 to 15 a fourth embodiment will be described with reference to FIGS. 13 to 15.
  • the present embodiment is different from the third embodiment in that the opening / closing member 72 is configured by the ball valve 74 instead of the opening / closing door 73.
  • parts different from the third embodiment will be mainly described, and description of the same parts as the third embodiment may be omitted.
  • the opening / closing member 72 is composed of a ball valve 74 provided in the communication passage 710.
  • the ball valve 74 is a member configured in a spherical shape, and has a size capable of moving in the communication passage 710.
  • a valve seat 715 is formed on the inner wall portion of the communication passage 710 to contact and separate the ball valve 74 when opening and closing the communication passage 710.
  • the valve seat 715 is formed of a portion of the communication passage 710 whose passage cross-sectional area is reduced from one side to the other side in the axial direction DRa.
  • the valve seat 715 is formed in a portion of the inner wall portion forming the communication passage 710 on the opposite side of the connection portion 712 with the low pressure oil storage chamber 713 interposed therebetween.
  • valve seat 715 is composed of a portion of the communication passage 710 in which the passage cross-sectional area is reduced in a tapered shape from one side in the axial direction DRa to the other side.
  • the minimum opening area of the valve seat 715 is smaller than the diameter of the ball valve 74.
  • a lid for preventing the ball valve 74 from popping out to the low pressure oil storage chamber 713 side is fixed by press fitting or the like between the low pressure oil storage chamber 713 and the valve seat 715.
  • the lid has a plurality of small holes for allowing oil to flow therethrough. The diameter of the small hole is smaller than the diameter of the ball valve 74 so that the ball valve 74 cannot pass through.
  • connection portion 712 is formed with a refrigerant inlet hole 718 having a smaller cross-sectional area than the introduction port 711. Specifically, the refrigerant inlet hole 718 is formed between the portion of the connecting portion 712 that forms the low pressure oil storage chamber 713 and the portion that forms the valve seat 715.
  • the ball valve 74 is pressed by the flow of oil from the other side to the one side in the axial direction DRa and the valve seat 715 is pressed. Separate. Further, when the main shaft 14 takes the first posture with the compressor 10 stopped, the ball valve 74 is pressed by the flow of oil flowing from the other side to the one side in the axial direction DRa and is separated from the valve seat 715. By these, the communication passage 710 is opened.
  • the ball valve 74 is pressed by the flow of oil from one side to the other side in the axial direction DRa generated by the influence of gravity and is pressed by the valve. Touch the seat 715. As a result, the communication passage 710 is closed.
  • the ball valve 74 allows the flow of oil from the other side in the axial direction DRa to the one side in the communication passage 710, and shuts off the flow of oil from the one side in the axial direction DRa to the other side. Is configured to function as.
  • the oil sucks the oil from the introduction port 711 of the communication passage 710. become unable.
  • the ball valve 74 blocks the flow of oil from one side to the other side in the axial direction DRa in the communication passage 710, so that the oil is retained in the low pressure oil storage chamber 713. Therefore, when the compressor 10 is driven again, the oil held in the low pressure oil storage chamber 713 passes through the refrigerant suction passage 180 and is then supplied to the compression chamber 31 through the first accommodation space 120A.
  • the opening / closing member 72 is configured by the ball valve 74 instead of the opening / closing door 73, but the ball valve 74 performs the same function as the opening / closing door 73. Therefore, the compressor 10 of the present embodiment can obtain the same operational effect as that of the third embodiment as in the third embodiment.
  • the refrigerant inlet hole 718 is formed in the passage forming portion 71 in the vicinity of the portion forming the low pressure oil storage chamber 713, but the present invention is not limited to this.
  • a drawing hole 719 for drawing the refrigerant directly into a portion of the passage forming portion 71 that constitutes the low pressure oil storage chamber 713 is formed. It may have been done.
  • Such a drawing hole 719 is effective in reducing the pressure loss of the refrigerant in the communication passage 710, the ball valve 74, and the refrigerant drawing hole 718 when it becomes large. It should be noted that it is desirable to decide whether or not to add the lead-in hole 719 in consideration of the efficiency target of the compressor 10.
  • connection portion 712 and the middle housing 18 are directly connected, but the connection portion 712 and the middle housing 18 are not limited to this.
  • the compressor 10 is connected, for example, with a fixing portion for fixing the middle housing 18 to the housing 12, and is connected to the fixing portion through a communication hole or a cutout that communicates with the inlet portion 180A of the refrigerant suction passage 180. May be configured so as to be open.
  • the oil holding portion 70 has a configuration in which the opening / closing member 72 is arranged inside the passage forming portion 71, but the invention is not limited to this.
  • the oil holding portion 70 may have a configuration in which the opening / closing member 72 is not arranged inside the passage forming portion 71, for example.
  • the oil holding portion 70 has the low-pressure oil storage chamber 713 formed inside the passage forming portion 71, but the invention is not limited to this.
  • the oil holding portion 70 may be configured such that the low pressure oil storage chamber 713 is not formed inside the passage forming portion 71.
  • the compressor 10 in which the oil separation unit 50 and the high-pressure oil storage chamber 128 are formed in the first accommodation space 120A of the housing 12 is illustrated, but the invention is not limited thereto.
  • the oil separation unit 50 and the high-pressure oil storage chamber 128 may be formed in an oil tank provided outside the housing 12.
  • the housing 12 the main housing portion 121 and the sub-housing portion 122 are airtightly fastened by fastening means such as bolts not shown, but the present invention is not limited to this.
  • the housing 12 may have, for example, a configuration in which the main housing portion 121 and the sub-housing portion 122 are airtightly joined by joining means such as welding.
  • the housing 12 is not limited to being configured by combining two divided bodies such as the main housing portion 121 and the sub-housing portion 122, and may be configured by combining, for example, three or more divided bodies.
  • the compressor 10 an inverter-integrated compressor in which the inverter 25 is integrally attached to the housing 12 is illustrated, but the compressor is not limited to this.
  • the compressor 10 may be configured, for example, by the inverter 25 configured separately.
  • the electric motor unit 20 is composed of the inner rotor motor, but the electric motor unit 20 is not limited to this.
  • the electric motor unit 20 may be composed of, for example, a motor having another structure.
  • the compression mechanism unit 30 is a scroll-type compression mechanism unit, but the compression mechanism unit 30 is not limited to this.
  • the compression mechanism unit 30 may be configured by a compression mechanism unit other than the scroll type such as the vane type.
  • the bearing member 16, the bearing portion 181, and the eccentric bearing portion 342a are constituted by the slide bearing, but the present invention is not limited to this.
  • the bearing member 16, the bearing portion 181, and the eccentric bearing portion 342a may be, for example, rolling bearings.
  • the compressor 10 is applied to the air conditioner for air conditioning the interior of the moving body, but the present invention is not limited to this.
  • the object to which the compressor 10 is applied may be any device that tilts the main shaft 14 of the compressor 10 or swings in the axial direction DRa of the main shaft 14 of the compressor 10.
  • the compressor includes a compression mechanism, an electric motor section, a housing, and a main shaft.
  • the housing has a partitioning part that partitions the internal space into a first housing space in which the compression mechanism part is housed and a second housing space in which the electric motor part is housed, and a refrigerant introducing part that introduces a refrigerant into the second housing space.
  • a refrigerant suction passage that guides the refrigerant introduced into the second accommodation space from the refrigerant introduction portion to the first accommodation space is formed in the partition portion at a portion located vertically below the support portion.
  • the oil holding portion holds the oil at the inlet portion of the refrigerant suction passage even when the portion located on the one side in the axial direction is vertically above the portion located on the other side. Section is provided.
  • the oil retaining portion of the compressor has a protruding wall portion that protrudes upward from a bottom wall portion that is located on the lower side in the vertical direction among the inner wall surfaces that form the second accommodation space in the housing.
  • the protruding wall portion is formed with an oil communication passage that penetrates in the thickness direction of the protruding wall portion, and is provided with an opening / closing member that opens and closes the oil communication passage.
  • the opening / closing member is configured to open the oil communication passage when the main shaft is in the first posture and close the oil communication passage when the main shaft is in the second posture.
  • the first posture is a posture in which the portion of the main shaft located on the other side in the axial direction is vertically above the portion of the main shaft located on the other side.
  • the second posture is a posture in which a portion located on one side in the axial direction of the main shaft is vertically above a portion located on the other side. This also applies to the sixth aspect described later.
  • the oil communication passage is opened, so that the oil stored in the second accommodation space is It is introduced into the first accommodation space via the refrigerant suction passage.
  • the oil communication passage is closed, and the oil is retained at a position near the inlet of the refrigerant suction passage by the protruding wall portion. To be done. Therefore, the oil held by the protruding wall portion is introduced into the first accommodation space via the refrigerant suction passage.
  • the projecting wall portion of the compressor is configured such that the first wall surface portion that expands so as to intersect the axial direction on one side in the axial direction and the protruding wall portion that intersects the axial direction of the main shaft at the other side in the axial direction. It has a second wall portion that expands.
  • the opening / closing member is connected to a door portion having a size capable of closing the opening of the oil communication passage in the first wall surface portion, and a portion of the first wall surface portion located above the opening of the oil communication passage, and being connected to the door.
  • the opening / closing door includes a door shaft that rotatably supports the unit.
  • a seating surface is formed in the first wall surface portion at a peripheral portion of the opening of the oil communication passage, the seat portion being in contact with and separated from the door portion when opening and closing the oil communication passage.
  • the opening / closing door allows the flow of oil from the second wall surface portion side of the oil communication passage toward the first wall surface portion side, and the oil flowing from the first wall surface portion side of the oil communication passage toward the second wall surface portion side of the oil communication passage. It functions as a check valve that shuts off the flow. For this reason, the oil easily collects on the side of the first wall surface of the protruding wall portion. That is, the oil is held at a position near the inlet of the refrigerant suction passage by the opening / closing door.
  • the opening / closing member of the compressor is composed of a ball valve provided in the oil communication passage.
  • the oil communication passage is formed with a valve seat on which the ball valve comes in and out when the oil communication passage is opened and closed.
  • the valve seat is formed of a portion of the oil communication passage, the passage cross-sectional area of which is reduced from one axial side toward the other axial side.
  • the ball valve allows the flow of oil from the second wall surface portion side of the oil communication passage toward the first wall surface portion side, and the oil flowing from the first wall surface portion side of the oil communication passage toward the second wall surface portion side of the oil communication passage. It functions as a check valve that shuts off the flow. For this reason, the oil easily collects on the side of the first wall surface of the protruding wall portion. That is, the oil is held at a position near the inlet of the refrigerant suction passage by the ball valve.
  • the oil holding portion of the compressor has a passage forming portion that forms a communication passage that guides the oil existing on the other side in the second accommodation space in the axial direction to the refrigerant suction passage.
  • a portion located on one side in the axial direction is connected to an inlet portion of the refrigerant suction passage, and an inlet port for the refrigerant is provided on a portion located on the other side in the axial direction.
  • At least one refrigerant inlet hole having a cross-sectional area smaller than that of the inlet is formed at the connecting portion of the passage forming portion with the refrigerant suction passage.
  • the oil present in the second accommodation space passes through the refrigerant inlet hole. Are guided to the refrigerant suction passage.
  • the oil existing on the other end side of the second accommodation space communicates. It is guided to the refrigerant suction passage via the passage.
  • the refrigerant can be introduced also from the refrigerant intake hole, but since the refrigerant intake hole has a smaller passage cross-sectional area than the communication passage, the refrigerant containing oil flows into the refrigerant intake passage via the communication passage rather than the refrigerant intake hole. Easy to be introduced.
  • the oil is easily collected near the inlet of the refrigerant suction passage, and a certain oil level is secured near the inlet of the refrigerant suction passage. Therefore, even if the main shaft is inclined, it is possible to stably supply oil from the second accommodation space in which the electric motor portion is accommodated to the first accommodation space in which the compression mechanism portion is accommodated via the refrigerant suction passage. .
  • an opening / closing member for opening / closing the communication passage is provided in the passage forming portion of the compressor.
  • the opening / closing member opens the communication passage when the compression mechanism is driven, and opens the communication passage when the main shaft is in the first posture while the compression mechanism is stopped, and the compression mechanism stops.
  • the communication passage is configured to be closed when the main shaft is in the second posture in the state where the main shaft is in the open position.
  • the communication passage is opened, so that the oil stored in the second storage space is opened. Flows into the first accommodation space via the communication passage and the refrigerant suction passage.
  • the communication passage is closed, so that the oil is held at a position near the inlet of the refrigerant suction passage by the opening / closing member. Therefore, when the compression mechanism is driven, the oil held by the opening / closing member flows into the first accommodation space via the refrigerant suction passage. Therefore, even if the main shaft is inclined, it is possible to stably supply oil from the second accommodation space in which the electric motor portion is accommodated to the first accommodation space in which the compression mechanism portion is accommodated via the refrigerant suction passage. .
  • the opening / closing member of the compressor is connected to a door portion having a size capable of closing the communication passage, and a portion of the inner wall portion forming the communication passage, which is located on the upper side, and is connected to the door portion. It is composed of an opening / closing door including a door shaft that rotatably supports the. A seating surface is formed on the inner wall portion that constitutes the communication passage, and the door portion comes into contact with and separates from the inner wall portion when the communication passage is opened and closed.
  • the opening / closing door functions as a check valve that allows the oil flow from the inlet side of the communication passage to the connection side and shuts off the oil flow from the connection side of the communication passage to the introduction side. . Therefore, even if the main shaft is tilted, oil is likely to be accumulated in the connecting portion side of the communication passage. That is, the oil is held at the inlet of the refrigerant suction passage by the opening / closing door.
  • the opening / closing member of the compressor is composed of a ball valve provided in the communication passage.
  • a valve seat is formed on an inner wall portion forming the communication passage, and a ball valve comes into contact with and separates from the ball seat when the communication passage is opened and closed.
  • the valve seat is formed of a portion of the communication passage, the passage cross-sectional area of which is reduced from one side to the other side in the axial direction.
  • the ball valve functions as a check valve that allows the oil flow from the inlet side of the communication passage to the connection side and shuts off the oil flow from the inlet side of the communication passage to the connection side. . Therefore, even if the main shaft is tilted, oil is likely to be accumulated in the connecting portion side of the communication passage. That is, the oil is held at the inlet of the refrigerant suction passage by the ball valve.
  • a low-pressure oil storage chamber for storing oil is formed at a connection portion of the passage forming portion with the inlet of the refrigerant suction passage. According to this, it is possible to introduce the oil stored in the low-pressure storage chamber into the first storage space via the refrigerant suction passage, so that even if the main shaft is inclined, the oil is transferred from the second storage space to the first storage space. Can be stably supplied.
  • an oil separation unit that separates oil contained in the refrigerant compressed by the compression mechanism unit is provided inside the housing of the compressor, and the oil separated by the oil separation unit is stored.
  • a high-pressure oil storage chamber is formed for this purpose.
  • An internal lubrication mechanism for guiding the oil stored in the high-pressure oil storage chamber to at least the sliding portion of the main shaft is provided inside the housing.
  • the compressor of the present disclosure even if the main shaft is tilted, the oil existing in the second storage space is stably supplied to the first storage space, so that the oil in the high-pressure oil storage chamber is A sufficient amount can be secured. As a result, since the oil stored in the high-pressure oil storage chamber can be supplied to the sliding portion of the main shaft or the like, abnormal wear of each sliding portion of the compressor can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

圧縮機(10)は、圧縮機構部(30)と、電動機部(20)と、ハウジング(12)と、主軸(14)と、を備え、ハウジングの内側における軸方向の一方側に圧縮機構部が配置され、軸方向の他方側に電動機部が配置されている。ハウジングは、ハウジングの内部空間(120)を圧縮機構部が収容される第1収容空間(120A)および電動機部が収容される第2収容空間(120B)に区画する区画部(18)と、第2収容空間に冷媒を導入する冷媒導入部(123)と、が設けられている。区画部には、主軸の支持部位よりも鉛直方向の下方側に位置する部位に冷媒導入部から第2収容空間に導入される冷媒を第1収容空間に導く冷媒吸入通路(180)が形成されている。第2収容空間には、冷媒吸入通路の入口部(180A)にオイルを保持するオイル保持部(60、70)が設けられている。

Description

圧縮機 関連出願への相互参照
 本出願は、2018年10月9日に出願された日本特許出願番号2018-191139号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、冷媒を圧縮して吐出する圧縮機に関する。
 従来、ハウジングに圧縮機構部および電動機部が収容されるとともに、電動機部の駆動力を圧縮機構部に伝達するための主軸が略水平方向に配置される定置型の圧縮機が知られている(例えば、特許文献1参照)。この特許文献1記載の圧縮機は、電動機部が収容されるモータ室の下方部分に、冷媒とともに圧縮機に流入したオイル、圧縮機の各摺動部位を潤滑したオイルが貯留される構成になっている。また、圧縮機は、モータ室の下方部分に、モータ室と圧縮機構部の冷媒吸入室とを連絡する還流路が形成され、モータ室の下方部分に貯留されたオイルが還流路を介してモータ室から冷媒吸入室に導入される構成になっている。
特許第4872798号
 ところで、本発明者らは、圧縮機を移動体(例えば、車両)に搭載することを検討している。本発明者らが検討したところ、圧縮機を移動体に搭載すると、従来技術の圧縮機では、電動機部が収容される空間から圧縮機構部が収容される空間へ安定的にオイルを供給することが困難となる場合があることが判った。例えば、圧縮機を車両に搭載する場合、車両が走行する路面の傾き状態によって圧縮機の主軸が傾斜し、還流路の入口付近の油面高さが変動すると、電動機部側から圧縮機構部側へのオイル供給が不安定となってしまうことがある。電動機部が収容される空間から圧縮機構部が収容される空間へのオイル供給が不安定となると、圧縮機の各摺動部位の異常摩耗等が生じ易くなることから好ましくない。なお、このような課題は、移動体だけでなく、例えば、圧縮機の主軸が傾斜したり、圧縮機の主軸の軸方向に振れたりする機器に対して圧縮機を適用した際に生じ得る。
 本開示は、圧縮機の姿勢が傾斜したとしても電動機部が収容される空間から圧縮機構部が収容される空間へとオイルを安定的に供給可能な圧縮機を提供することを目的とする。
 本開示の1つの観点によれば、
 圧縮機は、
 オイルが混入された冷媒を圧縮して吐出する圧縮機構部と、
 圧縮機構部を駆動する駆動力を出力する電動機部と、
 圧縮機構部および電動機部が収容されるハウジングと、
 ハウジングの内部において鉛直方向に対して交差する姿勢で配置され、電動機部の駆動力を圧縮機構部に伝達する主軸と、を備え、
 圧縮機構部は、ハウジングの内部において主軸の軸方向の一方側に配置され、
 電動機部は、ハウジングの内部において軸方向の他方側に配置され、
 ハウジングは、
 主軸を支持する支持部位を有するとともに、ハウジングの内部空間を圧縮機構部が収容される第1収容空間および電動機部が収容される第2収容空間に区画する区画部と、
 第2収容空間に冷媒を導入する冷媒導入部と、が設けられており、
 区画部には、支持部位よりも鉛直方向の下方側に位置する部位に冷媒導入部から第2収容空間に導入される冷媒を第1収容空間に導く冷媒吸入通路が形成されており、
 第2収容空間には、軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢になっても、冷媒吸入通路の入口部に近い位置にオイルを保持するオイル保持部が設けられている。
 これによると、例えば、圧縮機の主軸における軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢になっても、オイル保持部によって冷媒吸入通路の入口に近い位置で一定の油面が確保される。すなわち、本開示の圧縮機によれば、主軸が傾斜したとしても電動機部が収容される第2収容空間から冷媒吸入通路を介して圧縮機構部が収容される第1収容空間へオイルを安定的に供給することが可能となる。この結果、例えば、圧縮機の各摺動部位へ安定してオイルを供給して必要な油膜を形成することができるので、圧縮機の各摺動部位の異常摩耗を抑制することができる。また、第2収容空間から第1収容空間へオイルを安定的に供給可能な構成では、例えば、圧縮機構部内部の圧縮室に生ずる隙間からの圧縮冷媒の漏れを抑制するのに必要なオイル量が確保されるため、圧縮機構部におけるシール性を確保することが可能になる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る圧縮機を含む冷凍サイクル装置の概略構成図である。 第1実施形態に係る圧縮機の内部構造を示す模式的な断面図である。 図2のIII部分の拡大図である。 図2のIV-IV断面図である。 第1実施形態に係る圧縮機におけるオイルを含む冷媒の流れ方を説明するための説明図である。 第2実施形態に係る圧縮機の内部構造を示す模式的な断面図である。 図6のVII部分の拡大図である。 図7のVIII-VIII断面図である。 第2実施形態に係る圧縮機におけるオイルを含む冷媒の流れ方を説明するための説明図である。 第3実施形態に係る圧縮機の内部構造を示す模式的な断面図である。 第3実施形態に係る圧縮機において第2姿勢となった際のオイルの流れ方を説明するための説明図である。 第3実施形態に係る圧縮機において第1姿勢となった際のオイルの流れ方を説明するための説明図である。 第4実施形態に係る圧縮機の内部構造を示す模式的な断面図である。 第4実施形態に係る圧縮機において第2姿勢となった際のオイルの流れ方を説明するための説明図である。 第4実施形態に係る圧縮機において第1姿勢となった際のオイルの流れ方を説明するための説明図である。 第4実施形態の変形例となる圧縮機の内部構造を示す模式的な断面図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図5を参照して説明する。本実施形態では、蒸気圧縮式の冷凍サイクル装置1に本開示の圧縮機10を適用した例について説明する。冷凍サイクル装置1は、移動体(例えば、車両)の室内を空調する空調装置に採用される。
 図1に示すように、冷凍サイクル装置1は、冷媒を圧縮して吐出する圧縮機10、圧縮機10から吐出された冷媒を放熱させる放熱器2、放熱器2から流出した冷媒を減圧させる減圧機器3、減圧機器3で減圧された冷媒を蒸発させる蒸発器4を含んでいる。
 冷凍サイクル装置1は、冷媒として二酸化炭素が採用されている。冷媒には、圧縮機10の内部の各摺動部位を潤滑するためのオイルが混合されている。オイルの一部は、冷媒とともにサイクル内を循環する。なお、冷媒としては、フロン系冷媒(例えば、R134a、R1234yf)が採用されていてもよい。
 以下、図2を参照して圧縮機10の詳細について説明する。図2は、圧縮機10の主軸14の軸心CLに沿って切断した断面を示す軸方向断面図である。なお、図2に示す上下を示す矢印は、圧縮機10を移動体に搭載した状態における鉛直方向DRvを示している。
 図2に示すように、圧縮機10は、外殻を構成する金属製のハウジング12の内部に、主軸14、電動機部20、およびスクロール型の圧縮機構部30が収容されている。圧縮機10は、電動機部20を動力源として主軸14が回転し、主軸14の回転に伴って圧縮機構部30が駆動される電動圧縮機である。電動圧縮機は、エンジン駆動型の圧縮機とは異なり、電動機部20の回転数を調整することで圧縮機構部30の吐出容量を変更可能であるため、室内の温度調整が容易である。
 圧縮機10は、主軸14の軸心CLが略水平方向に延びるとともに、圧縮機構部30と電動機部20とが略水平方向に並んで配置される横置型の圧縮機で構成されている。圧縮機10は、ハウジング12の内部において主軸14の軸方向DRaの一方側に圧縮機構部30が配置され、主軸14の軸方向DRaの他方側に電動機部20が配置されている。なお、主軸14の軸方向DRaは、主軸14の軸心CLに沿って延びる方向である。
 ハウジング12は、有底円筒状のメインハウジング部121、メインハウジング部121の開口を閉塞するサブハウジング部122を備えている。ハウジング12は、メインハウジング部121およびサブハウジング部122が図示しないボルト等の締結手段によって気密に締結される密閉容器構造を有している。密閉容器構造のハウジング12は、主軸14の一部が外部に突き出る開放型容器構造に比べて、シャフトシールが不要となるので冷媒の気密性に優れる。
 ハウジング12には、蒸発器4を通過した低圧冷媒を導入する冷媒導入部123、および圧縮機構部30で圧縮された高圧冷媒を吐出する冷媒吐出部124が設けられている。冷媒導入部123には、蒸発器4に連なる図示しない吸入配管が接続されている。また、冷媒吐出部124には、圧縮機構部30で圧縮された高圧冷媒が放熱器2に向けて吐出されるように、放熱器2に連なる図示しない吐出配管が接続されている。
 具体的には、冷媒導入部123は、ハウジング12のうち電動機部20が収容される第2収容空間120Bに冷媒が導入されるように、メインハウジング部121の筒状の胴部121aのうち他方側端面部121bに近い位置に設けられている。他方側端面部121bは、ハウジング12における軸方向DRaの他方側に位置する端面を構成する部位である。
 また、冷媒吐出部124は、サブハウジング部122の筒状の胴部122aのうち一方側端面部122bに近い位置に設けられている。一方側端面部122bは、ハウジング12における軸方向DRaの一方側に位置する端面を構成する部位である。
 メインハウジング部121の内側の殆どの空間は、低圧雰囲気となる。すなわち、メインハウジング部121の内側の殆どの空間には、冷媒導入部123から蒸発器4を通過した低圧冷媒が流入するので、その雰囲気圧力が蒸発器4を通過した低圧冷媒と同程度の圧力となる。
 電動機部20は、圧縮機構部30を駆動する駆動力を出力するものである。電動機部20は、後述するインバータ25からの給電により駆動される三相交流モータで構成されている。電動機部20は、ステータ21の内側にロータ22が配置されるインナーロータモータとして構成されている。
 ステータ21は、ハウジング12に対して固定された固定子である。ステータ21は、磁性材からなるステータコア211、ステータコア211に巻き付けられたコイル212を有する。ステータ21は、後述するインバータ25から電力が供給されると、ロータ22を回転させる回転磁界を発生させる。なお、ステータ21は、焼嵌め等によってハウジング12の内側に固定されている。
 ロータ22は、主軸14に対して固定された可動子である。ロータ22は、主軸14に対して焼嵌め等によって締結された円筒状の部材である。ロータ22の内部には、図示しない永久磁石が配置されている。
 インバータ25は、ステータ21に対して電力を供給する装置である。インバータ25は、ハウジング12の外側に対して取り付けられている。具体的には、インバータ25は、メインハウジング部121のうち冷媒導入部123に近い他方側端面部121bに対して取り付けられている。これにより、インバータ25は、冷媒導入部123から吸い込まれる低温の低圧冷媒によって冷却される。
 このように構成される電動機部20は、インバータ25からステータ21に電力が供給されてステータ21の周囲に回転磁界が発生すると、ロータ22および主軸14が一体に回転する。
 主軸14は、電動機部20の駆動力を圧縮機構部30に伝達するもので、ハウジング12の内部において鉛直方向DRvに対して交差する姿勢で配置されている。具体的には、主軸14は、その軸心CLが略水平方向に延びるようにハウジング12の内部に配置されている。
 主軸14は、略円筒状の部材で構成されている。主軸14には、主軸14の摺動部位にオイルを供給するためのオイル供給路140が形成されている。オイル供給路140は、主軸14の軸方向DRaに沿って延びる主供給穴140a、主軸14の外側に開口するとともに主供給穴140aに連通する第1油分配穴140b、第2油分配穴140c、第3油分配穴140dで構成されている。
 主供給穴140aは、軸方向DRaの一方側が開口され、軸方向DRaの他方側が閉塞されている。第1油分配穴140bは、主軸14のうち後述する軸受部材16に支持される摺動部位14aに開口している。第2油分配穴140cは、主軸14のうち後述する軸受部181に支持される摺動部位14bに開口している。第3油分配穴140dは、主軸14のうち後述する偏心軸受部342aに支持される摺動部位14cに開口している。
 主軸14の軸方向DRaの他方側は、ロータ22よりも軸方向DRaの他方側に突き出ている。主軸14のうち軸方向DRaの他方側に突き出た部位は、軸受部材16によって回転自在に支持されている。
 軸受部材16は、すべり軸受で構成され、介在部材17を介してメインハウジング部121の胴部121aに固定されている。なお、介在部材17には、冷媒導入部123から導入された冷媒を電動機部20側に流すための貫通穴171が形成されている。
 軸受部材16には、すべり軸受を構成する筒状部161、および筒状部161の端部から鉛直方向DRvに拡がる連結部162を含んで構成されている。連結部162は、介在部材17に対してボルトBによって締結固定されている。
 主軸14の軸方向DRaの一方側は、ロータ22よりも軸方向DRaの一方側に突き出ている。主軸14のうち軸方向DRaの一方側に突き出た部位には、軸方向DRaの一方側の端部に主軸14の軸心CLから偏心した偏心軸部141が設けられている。偏心軸部141は、後述する圧縮機構部30の旋回スクロール34のボス部342に形成される偏心軸受部342aによって摺動可能に支持されている。
 主軸14のうちロータ22と偏心軸部141との間の部位は、ハウジング12の内側に収容されるミドルハウジング18に構成された軸受部181によって回転自在に支持されている。
 ミドルハウジング18は、主軸14を支持する軸受部181を有するとともに、ハウジング12の内部空間120を圧縮機構部30が収容される第1収容空間120A、および電動機部20が収容される第2収容空間120Bに区画する区画部である。本実施形態では、ミドルハウジング18の軸受部181が、主軸14を支持する支持部位を構成する。
 ミドルハウジング18は、その最外周面がメインハウジング部121の胴部121aに当接した状態で図示しないボルト等の締結手段によってメインハウジング部121に対して固定されている。
 ミドルハウジング18には、軸受部181よりも鉛直方向DRvの下方側に位置する部位に冷媒導入部123から第2収容空間120Bに導入された冷媒を第1収容空間120Aに導く冷媒吸入通路180が形成されている。
 具体的には、ミドルハウジング18は、鉛直方向DRvの下方側の部位がメインハウジング部121の胴部121aから離間するように、鉛直方向DRvの下方側の部位に内側に窪んだ切欠きが形成されている。そして、当該切欠きによって冷媒吸入通路180が構成されている。なお、図示しないが、ミドルハウジング18には、鉛直方向DRvの下方側の部位以外にも切欠きが形成されており、当該切欠きが形成された部位を介して、第1収容空間120Aと第2収容空間120Bとが連通している。
 また、ミドルハウジング18は、軸方向DRaの他方側から一方側に向かって内径および外径が階段状に拡大する円筒形状を有している。ミドルハウジング18には、内径の最も小さい小径部位の内側に軸受部181が形成され、内径が最も拡大された大径部位に圧縮機構部30の旋回スクロール34が収容されている。軸受部181は、すべり軸受で構成されている。
 圧縮機構部30は、主軸14の回転に伴って冷媒導入部123から吸い込まれた低圧冷媒を圧縮するものである。圧縮機構部30は、スクロール型の圧縮機構部で構成されている。すなわち、圧縮機構部30は、ハウジング12に対して固定された固定スクロール32、軸方向DRaに固定スクロール32と並ぶように配置された旋回スクロール34を含んで構成されている。圧縮機構部30は、主軸14の回転に伴って旋回スクロール34が公転する際に固定スクロール32と噛み合うことで冷媒を圧縮する。
 旋回スクロール34および固定スクロール32は、旋回スクロール34が軸方向DRaの他方側に配置され、固定スクロール32が軸方向DRaの一方側に配置されている。旋回スクロール34は、円盤状に形成された旋回基板部341を有する。旋回基板部341は、その略中心部に主軸14の偏心軸部141が摺動可能に挿入される円筒状のボス部342が形成されている。ボス部342は、その内側の部位が、偏心軸部141を摺動可能に支持する偏心軸受部342aを構成している。偏心軸受部342aは、すべり軸受で構成されている。
 旋回スクロール34には、偏心軸部141の周りを自転することを防止する自転防止機構を構成するオルダムリング36が連結されている。これにより、旋回スクロール34は、主軸14が回転すると、偏心軸部141の周りを自転することなく、主軸14の軸心CLを公転中心として公転する。換言すれば、旋回スクロール34は、主軸14が回転すると、主軸14の軸心CLを中心として旋回する。なお、旋回スクロール34は、オルダムリング36以外の自転防止機構が設けられていてもよい。
 旋回スクロール34とミドルハウジング18との間には、円環状に構成された2枚のスラストプレート184、343が配置されている。2枚のスラストプレート184、343のうちミドルハウジング18側のスラストプレート184は、ミドルハウジング18に対して固定されている。また、旋回スクロール34側のスラストプレート343は、旋回スクロール34と一体的に回転するように旋回スクロール34に対して固定されている。
 旋回スクロール34には、旋回基板部341から固定スクロール32側に向かって突き出る渦巻き状の旋回歯部344が形成されている。
 一方、固定スクロール32は、円盤状に形成された固定基板部321を有する。固定スクロール32には、固定基板部321から旋回スクロール34側に向かって突き出る渦巻き状の固定歯部322が形成されている。具体的には、固定基板部321には、渦巻き状の溝部が形成されており、当該渦巻き状の溝部の側壁が固定歯部322を構成している。
 固定スクロール32および旋回スクロール34は、固定歯部322と旋回歯部344とが噛み合って複数箇所で接触することによって、三日月状の圧縮室31が複数箇所形成される。なお、図2では、図示の都合上、複数個の圧縮室31のうち1つの作動室にだけ符号を付している。
 圧縮室31は、旋回スクロール34が公転することによって外周側から中心側へ容積を減少させながら移動する。圧縮室31には、ミドルハウジング18に形成された冷媒吸入通路180、固定スクロール32の外周側に形成された吸入室320を通じて、第1収容空間120Aに吸入された冷媒が供給されるようになっている。圧縮室31内の冷媒は、圧縮室31の容積が減少することによって圧縮される。
 固定基板部321の中心部には、圧縮室31で圧縮された冷媒を吐出する吐出穴323が形成されている。固定基板部321には、圧縮室31への冷媒の逆流を防止する逆止弁をなす図示しないリード弁と、リード弁の最大開度を規制するストッパ324が設けられている。なお、リード弁およびストッパ324は、固定基板部321に対してボルト等の締結部材によって締結固定されている。
 ハウジング12の内部には、固定基板部321よりも軸方向DRaの一方側に、固定基板部321とサブハウジング部122との間に形成される空間を2つの空間に仕切る隔壁125が配置されている。
 ハウジング12の内部には、固定基板部321の上方側部位、サブハウジング部122、隔壁125によって吐出室126が区画形成されている。この吐出室126は、圧縮室Vから吐出された冷媒が流入する空間であり、吐出穴323を介して圧縮室Vと連通する。
 また、ハウジング12の内部には、吐出室126よりも軸方向DRaの一方側に筒状のパイプ部材50aを内蔵したオイル分離部50が形成されるとともに、オイル分離部50の内部空間127に連通する高圧貯油室128が形成されている。オイル分離部50には、吐出室126と内部空間127とを連通させる連通穴50bが形成されている。なお、高圧貯油室128および吐出室126は、隔壁125によって仕切られているため、吐出室126に吐出される冷媒の圧力脈動が高圧貯油室128に貯留されるオイルに殆ど影響しない。
 オイル分離部50は、圧縮機構部30で圧縮された高圧冷媒からオイルを分離するオイル分離機構である。オイル分離部50は、二重円筒構造を有する遠心分離型のオイル分離器で構成されている。
 吐出室126からオイル分離部50に流入した高圧冷媒は、オイルが分離された後、冷媒吐出部124から外部に吐出される。一方、オイル分離部50で分離されたオイルは、自重によって下方に落下して高圧貯油室128に貯留される。
 高圧貯油室128は、固定スクロール32の下方側部位、サブハウジング部122、隔壁125によって区画形成されている。高圧貯油室128は、オイル分離部50の下方側に形成され、オイル分離部50で分離されたオイルを貯留する空間である。この高圧貯油室128は、連通穴50bおよびオイル分離部50の内部空間127を介して吐出室126に連通しているので、雰囲気圧力が高圧冷媒と圧力と同等となる。
 これに対して、ハウジング12の内部の主な摺動部位14a~14cは、高圧冷媒よりも低い圧力となる低圧冷媒の雰囲気圧力となる第2収容空間120Bに位置する。このため、高圧貯油室128に貯留されたオイルは、高圧貯油室128と第2収容空間120Bとの圧力差によってオイル供給路140等を介して、ハウジング12内部の各摺動部位14a~14c、184、343に供給される。なお、本実施形態では、オイル供給路140が高圧貯油室128に貯留されたオイルを少なくとも主軸14の摺動部位14a~14cに導くための内部潤滑部を構成する。
 ここで、圧縮機10を移動体に搭載すると、電動機部20が収容される第2収容空間120Bから圧縮機構部30が収容される第1収容空間120Aへ安定的にオイルを供給することが困難となる場合がある。例えば、車両に搭載された圧縮機10では、路面の傾き状態によって圧縮機10の主軸14が傾斜する。この場合、冷媒吸入通路180の入口部180A付近の油面高さが変動することで、第2収容空間120Bから第1収容空間120Aへのオイル供給が不安定となってしまうことがある。
 第2収容空間120Bから第1収容空間120Aへのオイル供給が不安定となってしまう場合、オイル切れによって圧縮機10の各摺動部位14a~14c、184、343に異常摩耗等が生じ易くなってしまう。また、第2収容空間120Bから第1収容空間120Aへのオイル供給が不安定となってしまう場合、圧縮機構部30内部の圧縮室Vに生ずる隙間からの圧縮冷媒の漏れを抑制するのに必要なオイル量が不足する。これにより、シール性が低下することで性能が不安定になってしまう虞がある。
 特に、第2収容空間120Bには、電動機部20の各種構成の干渉回避、絶縁性確保等を図るために、軸方向DRaおよび鉛直方向DRvに一定の隙間が設定されているためオイルが溜まり得る箇所が多い。
 また、第2収容空間120Bから第1収容空間120Aへのオイル供給が不安定となってしまう場合、第2収容空間120Bにおける油面の高さが上昇することで、電動機部20がオイルに浸ることで絶縁性低下や効率低下が生ずる虞がある。
 これらを踏まえて、本実施形態の圧縮機10には、第2収容空間120Bにオイル保持部60が設けられている。オイル保持部60は、第2収容空間120Bにおける冷媒吸入通路180の入口部180A付近にオイルを保持するために設けられている。オイル保持部60は、主軸14の軸方向DRaの一方側に位置する部位が他方側に位置する部位よりも鉛直方向DRvの上方となる姿勢になっても、他方側端面部121bよりも冷媒吸入通路180の入口部180A付近にオイルが保持されるように構成されている。
 ここで、本実施形態では、主軸14における軸方向DRaの他方側に位置する部位が一方側に位置する部位よりも鉛直方向DRvの上方となる姿勢を第1姿勢とする。なお、第1姿勢は、鉛直方向DRvにおいて、圧縮機構部30側が低く、電動機部20側が高くなる姿勢である。
 また、本実施形態では、主軸14における軸方向DRaの一方側に位置する部位が他方側に位置する部位よりも鉛直方向DRvの上方となる姿勢を第2姿勢とする。なお、第2姿勢は、鉛直方向DRvにおいて、圧縮機構部30側が高く、電動機部20側が低くなる姿勢である。
 以下、オイル保持部60について説明する。オイル保持部60は、ハウジング12において第2収容空間120Bを形成する内壁面のうち鉛直方向DRvの下方側に位置する底壁部121cから上方に向けて突き出る突出壁部61を有する。
 突出壁部61は、冷媒吸入通路180の入口部180A付近にオイルを保持する堰として機能するように、ハウジング12の底壁部121cのうち他方側端面部121bよりも冷媒吸入通路180の入口部180A付近に設けられている。具体的には、突出壁部61は、ハウジング12の底壁部121cのうち、軸方向DRaにおいて電動機部20のロータ22とミドルハウジング18との間に位置する部位に設けられている。
 突出壁部61には、その厚み方向に貫通するオイル連通路610が形成されるとともに、オイル連通路610を開閉する開閉部材62が設けられている。開閉部材62は、主軸14が第1姿勢となるとオイル連通路610を開放し、主軸14が第2姿勢となるとオイル連通路610を閉鎖するように構成されている。
 具体的には、図3に示すように、突出壁部61は、軸方向DRaの一方側において軸方向DRaと交差するように拡がる第1壁面部611と、軸方向DRaの他方側において軸方向DRaと交差するように拡がる第2壁面部612とを有している。
 開閉部材62は、第1壁面部611におけるオイル連通路610の開口を閉塞可能な大きさを有する板状のドア部631、およびドア部631を回動可能に支持するドア軸632を含む開閉ドア63で構成されている。ドア軸632は、第1壁面部611におけるオイル連通路610の開口よりも上方側に位置する部位に連結されている。そして、第1壁面部611には、オイル連通路610の開口の周縁部位に、オイル連通路610を開閉する際に、ドア部631が接離する着座面611aが形成されている。
 このように構成される圧縮機10では、例えば、主軸14が第1姿勢になると、第2壁面部612側から第1壁面部611側に向かうオイルの流れによってドア部631が押圧されて着座面611aから離間する。これにより、オイル連通路610が開放される。
 一方、開閉ドア63は、例えば、主軸14が第2姿勢になると、第1壁面部611側から第2壁面部612側に向かうオイルの流れによってドア部631が押圧されて着座面611aに接する。これにより、オイル連通路610が閉鎖される。
 このように開閉ドア63は、オイル連通路610において第2壁面部612側から第1壁面部611側に向かうオイルの流れを許容し、第1壁面部611側から第2壁面部612側に向かうオイルの流れを遮断する逆止弁として機能する構造になっている。
 ところで、移動体が傾斜する場合、その方向によっては、圧縮機10の姿勢が軸方向DRaだけではなく、主軸14の周方向に傾斜することがある。このため、圧縮機10では、軸方向DRaおよび主軸14の周方向それぞれで許容される傾きとして許容傾斜角度が設定される。
 本実施形態の突出壁部61は、許容傾斜角度の範囲で圧縮機10が主軸14の周方向に傾斜しても一定量のオイルを保持可能なように構成されている。以下、圧縮機10が主軸14の周方向に許容傾斜角度に傾斜しても突出壁部61にて一定量のオイルを保持可能な構成の一例について図4を参照して説明する。なお、図4に示す圧縮機10は、メインハウジング部121の胴部121aの内壁面が略円形状に構成されているものとする。
 図4に示すように、ハウジング12の内壁面には、内壁面の最下部121dを含む一部の領域に所定の突出高さHdを有する突出壁部61が主軸14の周方向に連続して形成されている。なお、内壁面の最下部121dを含む一部の領域は、ハウジング12の底壁部121cとして解釈することができる。
 また、突出壁部61は、ハウジング12の内壁面の最下部121dから鉛直方向DRvにおいて最も高くに位置する部位までの設定高さLdが、以下の数式F1を満たすように設定されている。
 Ld≧Lα+Lβ…(F1)
 なお、上述の数式F1のうち「Lα」は、以下の数式F2で求められる。また、上述の数式F1における「Lβ」は、以下の数式F3で求められる。
 Lα=r-(r-Hd)×cosθ…(F2)
 Lβ=[r-(r-Hd)0.5×sinθ…(F3)
 なお、上述の数式F2、F3では、ハウジング12の内壁面の半径を「r」とし、突出壁部61の突出高さを「Hd」とし、主軸14の周方向における許容傾斜角度を「θ」としている。
 このように構成される突出壁部61によれば、移動体が主軸14の周方向に傾斜したとしても、油面高さが突出壁部61の突出高さHdとなるまで、オイルを保持することが可能となる。
 また、本実施形態の開閉部材62は、移動体が主軸14の周方向に傾斜することを考慮して、突出壁部61に対して設けられた複数の開閉ドア63で構成されている。具体的には、開閉ドア63は、主軸14の周方向に沿って並ぶように突出壁部61に対して3つ設けられている。なお、開閉ドア63の数は、3つに限定されず、主軸14の周方向における許容傾斜角度θ等に応じて任意の数に設定することができる。
 次に、本実施形態の圧縮機10の作動について図5を参照して説明する。圧縮機10は、インバータ25から電動機部20のステータ21に電力が供給されると、ロータ22および主軸14が回転するとともに旋回スクロール34が主軸14に対して公転運動する。これにより、圧縮機構部30が駆動されることで、図5の矢印FL1で示すように、冷媒導入部123からハウジング12内部の第2収容空間120Bにオイルを含む冷媒が導入される。
 第2収容空間120Bに導入された冷媒は、電動機部20に設けられた図示しない冷媒通路および電動機部20の各種構成の隙間を通過した後、図5の矢印FL2で示すように、冷媒吸入通路180を介して第1収容空間120Aに流れる。この際、開閉ドア63によって保持されたオイルが冷媒ととともに冷媒吸入通路180を介して第1収容空間120Aに流れる。
 第1収容空間120Aに流入した冷媒は、圧縮機構部30における外周側に位置する吸入室320を介して圧縮室31に吸入される。圧縮室31に供給された冷媒は、圧縮室31の容積の減少に伴って圧縮される。圧縮室31内の圧力がリード弁の開弁圧に達すると、圧縮室31で圧縮された冷媒が固定スクロール32の吐出穴323から吐出室126に吐出される。
 吐出室126に吐出された冷媒は、連通穴50bを介してオイル分離部50に流入し、オイル分離部50にて冷媒からオイルが分離される。オイルが分離された冷媒は、オイル分離部50のパイプ部材50aの内部通路を通り、冷媒吐出部124から圧縮機10の吐出冷媒として吐出される。
 一方、冷媒から分離されたオイルは、自重によって落下して高圧貯油室128に貯められる。高圧貯油室128に貯留されたオイルは、高圧貯油室128と第2収容空間120Bとの圧力差によってオイル供給路140等を介して、ハウジング12内部の各摺動部位14a~14c、184、343に供給される。
 ハウジング12内部の各摺動部位14a~14c、184、343に供給されたオイルは、ハウジング12の第2収容空間120Bに下方側に流れ出た後、冷媒とともに冷媒吸入通路180を介して第1収容空間120Aに流れる。
 前述したように、開閉ドア63は、オイル連通路610において第2壁面部612側から第1壁面部611側に向かうオイルの流れを許容し、第1壁面部611側から第2壁面部612側に向かうオイルの流れを遮断する逆止弁として機能する構造になっている。
 このため、移動体が傾いて主軸14が第1姿勢になると、オイル連通路610が開放されることで、第2収容空間120Bに存在するオイルが、突出壁部61とミドルハウジング18との間の空間に補充される。
 逆に、移動体が傾いて主軸14が第2姿勢になると、オイル連通路610が閉鎖されることで、突出壁部61とミドルハウジング18との間の空間に存在するオイルが、突出壁部61とミドルハウジング18との間の空間に保持される。
 以上説明した本実施形態の圧縮機10は、突出壁部61とミドルハウジング18との間の空間、すなわち、冷媒吸入通路180の入口部180A付近には、ほぼ常時、オイルが保持された状態になる。このため、冷媒吸入通路180を介して第1収容空間120Aおよび圧縮室31にオイルを安定して供給することができる。
 この結果、圧縮室31のシール性の安定化、ハウジング12内部の各摺動部位14a~14c、184、343へのオイル供給の安定化を図ることができる。さらに、高圧貯油室128のオイルの枯渇を抑制するとともに、各摺動部位14a~14c、184、343の油面を安定的に形成することができるので、異常摩耗の発生を充分に抑制することができる。
 加えて、本実施形態の圧縮機10では、第2収容空間120Bの油面の上昇が抑制されるので、電動機部20がオイルに浸ることによる絶縁性低下や、効率の低下を充分に抑制することができる。
 ここで、上述の作用効果は、圧縮機10が傾斜した場合だけでなく、例えば、圧縮機10が軸方向DRaに振れた際の慣性力によってオイルが第2収容空間120Bで移動した際にも有効に発揮される。すなわち、オイルが第2収容空間120B側から第1収容空間120A側に移動する状況では、オイルが突出壁部61とミドルハウジング18との間の空間に補充される。逆に、オイルが第1収容空間120A側から第2収容空間120B側に移動する状況では、オイルが突出壁部61とミドルハウジング18との間の空間に保持される。
 特に、圧縮機10は、移動体が主軸14の周方向に傾斜したとしても、突出壁部61によって、油面高さが突出壁部61の突出高さHdとなるまで、オイルを保持することが可能になっている。これによれば、圧縮機10が主軸14の周方向に傾斜したとしても、第2収容空間120Bから第1収容空間120Aへとオイルを安定的に供給することができる。
 また、圧縮機10は、軸受部材16、軸受部181、偏心軸受部342aがすべり軸受で構成されている。これによると、二酸化炭素を冷媒とする場合のように、低圧冷媒と吐出冷媒との圧力差が大きく、高荷重が各軸受部に作用する場合であっても、転がり軸受を用いる場合に比べて、摩耗劣化に対する信頼性を向上させて長寿命化を図ることが可能となる。
 (第2実施形態)
 次に、第2実施形態について、図6~図9を参照して説明する。本実施形態では、開閉ドア63ではなく、ボール弁64で開閉部材62が構成されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 図6に示すように、開閉部材62は、オイル連通路610に設けられたボール弁64で構成されている。ボール弁64は、球体状に構成された部材であり、オイル連通路610を移動可能な大きさになっている。
 図7に示すように、オイル連通路610には、オイル連通路610を開閉する際にボール弁64が接離する弁座613が形成されている。弁座613は、オイル連通路610において、軸方向DRaの一方側から他方側に向かって通路断面積が縮小された部位で構成されている。
 具体的には、オイル連通路610は、第1壁面部611の開口と当該開口から軸方向DRaの他方側に所定距離Lだけ離れた部位との間に位置する第1区間の通路断面積D1が、ボール弁64の直径d1よりも大きくなっている。また、オイル連通路610は、第1区間と第2壁面部612の開口との間に位置する第2区間の通路断面積が、第2壁面部612の開口に向かってテーパ状に縮小されている。第2壁面部612の開口は、その開口面積D2がボール弁64の直径d1よりも小さくなっている。すなわち、ボール弁64の直径d1は、以下の数式F4を満たすように設定されている。
 D2<d1<D1…(F4)
 また、オイル連通路610には、オイル連通路610からボール弁64が飛び出すのを防止する蓋614が第1壁面部611の開口に圧入等によって固定されている。この蓋614には、図8に示すように、オイルを流通させるための小穴615が複数形成されている。なお、小穴615は、ボール弁64が通過できないように、その直径d2がボール弁64の直径d1よりも小さくなっている。
 このように構成されるボール弁64は、例えば、主軸14が第1姿勢になると、第2壁面部612側から第1壁面部611側に向かうオイルの流れによって押圧されて弁座613から離間する。これにより、オイル連通路610が開放される。
 一方、ボール弁64は、例えば、主軸14が第2姿勢になると、重力の影響で生ずる第1壁面部611側から第2壁面部612側に向かうオイルの流れによって押圧されて弁座613に接する。これにより、オイル連通路610が閉鎖される。
 このようにボール弁64は、オイル連通路610において第2壁面部612側から第1壁面部611側に向かうオイルの流れを許容し、第1壁面部611側から第2壁面部612側に向かうオイルの流れを遮断する逆止弁として機能する構造になっている。
 本実施形態の圧縮機10は、移動体が傾いて主軸14が第1姿勢になると、ボール弁64がオイル連通路610の第1区間を移動自在な状態となる。これにより、オイル連通路610が開放されるので、第2収容空間120Bに存在するオイルは、図9の矢印FL3で示すように、突出壁部61とミドルハウジング18との間の空間に補充される。
 逆に、移動体が傾いて主軸14が第2姿勢になると、ボール弁64が重力の影響によって軸方向DRaの一方側から他方側に転動して、オイル連通路610の第2区間に移動する。この際、ボール弁64が弁座613に接触することで、オイル連通路610が閉鎖される。これにより、突出壁部61とミドルハウジング18との間の空間に存在するオイルが、突出壁部61とミドルハウジング18との間の空間に保持される。
 その他の構成は、第1実施形態と同様である。本実施形態の圧縮機10は、開閉ドア63ではなく、ボール弁64で開閉部材62を構成しているが、ボール弁64が開閉ドア63と同様の機能を発揮する。このため、本実施形態の圧縮機10は、第1実施形態で説明した作用効果を第1実施形態と同様に得ることができる。
 ここで、図示しないが、本実施形態の開閉部材62は、第1実施形態と同様に、突出壁部61に対して複数のボール弁64が設けられた構造になっていることが望ましい。すなわち、ボール弁64は、主軸14の周方向に沿って並ぶように突出壁部61に対して複数設けられていることが望ましい。なお、ボール弁64の数は、主軸14の周方向における許容傾斜角度等に応じて任意の数に設定することができる。
 (第1、第2実施形態の変形例)
 上述の第1、第2実施形態の圧縮機10は、突出壁部61とミドルハウジング18との間の空間に、例えば、ミドルハウジング18をハウジング12に対して固定するための固定部が設けられていてもよい。この場合、固定部には、冷媒吸入通路180の入口部180Aに連通する連通穴または切り欠きが形成されていることが望ましい。
 (第3実施形態)
 次に、第3実施形態について、図10~図12を参照して説明する。本実施形態では、オイル保持部70の構造が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
 図10に示すように、オイル保持部70は、第2収容空間120Bにおいて、他方側端面部121b側に存在するオイルを冷媒吸入通路180の入口部180Aに導く連絡通路710を形成する通路形成部71を有している。
 通路形成部71は、ハウジング12の底壁部121cに沿って配置されている。具体的には、通路形成部71は、電動機部20のステータ21のうち、ハウジング12の底壁部121cと対向する部位に形成された切欠き溝を貫通するように配置されている。
 通路形成部71は、軸方向DRaの他方側に位置する部位に冷媒の導入口711が形成されている。導入口711は、軸方向DRaにおいて、ステータ21よりも他方側端面部121bに近い位置に開口している。
 また、通路形成部71は、軸方向DRaの一方側に位置する部位が冷媒吸入通路180の入口部180Aに接続されている。具体的には、通路形成部71は、軸方向DRaの一方側に、冷媒吸入通路180の入口部180Aに接続される接続部712が設けられている。接続部712は、通路形成部71のうち導入口711よりも冷媒吸入通路180の入口部180Aとの当接面に近い部位として解釈することができる。
 通路形成部71の接続部712には、オイルを貯留するための低圧貯油室713が形成されている。具体的には、低圧貯油室713は、通路形成部71のうち、冷媒吸入通路180の入口部180Aとの当接面からステータ21までの区間に形成されている。
 低圧貯油室713は、連絡通路710の一部を構成するものである。低圧貯油室713は、オイルを貯留可能なように、断面積が連絡通路710のうち低圧貯油室713以外の部位の通路断面積よりも大きくなっている。
 また、通路形成部71の接続部712には、冷媒引込穴714が形成されている。この冷媒引込穴714は、第2収容空間120Bに存在する冷媒およびオイルを連絡通路710に引き込む貫通穴である。具体的には、冷媒引込穴714は、通路形成部71のうち低圧貯油室713を構成する部位に近接して形成されている。冷媒引込穴714は、導入口711よりも断面積が小さい貫通穴で構成されている。
 また、通路形成部71には、低圧貯油室713を構成する部位の内側に、連絡通路710を開閉する開閉部材72が設けられている。開閉部材72は、圧縮機構部30が駆動されている状態で連絡通路710を開放するように構成されている。また、開閉部材72は、圧縮機構部30が停止している状態で主軸14が第1姿勢となると連絡通路710を開放し、圧縮機構部30が停止している状態で主軸14が第2姿勢となると連絡通路710を閉鎖するように構成されている。
 開閉部材72は、第1実施形態で説明した開閉ドア63と同様に構成される開閉ドア73を有している。すなわち、開閉ドア73は、連絡通路710を閉塞可能な大きさを有する板状のドア部731、およびドア部731を回動可能に支持するドア軸732を含んで構成されている。なお、ドア軸732は、連絡通路710を構成する内壁部のうち上方側に位置する部位に連結されている。また、連絡通路710を構成する内壁部には、連絡通路710を開閉する際に、ドア部731が接離する着座面711aが形成されている。
 このように構成される開閉ドア73は、例えば、圧縮機10が駆動されている状態で、軸方向DRaの他方側から一方側に向かうオイルの流れによってドア部731が押圧されて着座面711aから離間する。また、開閉ドア73は、圧縮機10が停止した状態で主軸14が第1姿勢になると、軸方向DRaの他方側から一方側に向かうオイルの流れによってドア部731が押圧されて着座面711aから離間する。これらにより、連絡通路710が開放される。
 一方、開閉ドア73は、例えば、圧縮機10が停止した状態で主軸14が第2姿勢になると、軸方向DRaの一方側から他方側に向かうオイルの流れによってドア部731が押圧されて着座面に接する。これにより、連絡通路710が閉鎖される。
 このように開閉ドア73は、連絡通路710において軸方向DRaの他方側から一方側に向かうオイルの流れを許容し、軸方向DRaの一方側から他方側に向かうオイルの流れを遮断する逆止弁として機能するように構成されている。
 次に、本実施形態の圧縮機10の作動について図11および図12を参照して説明する。圧縮機10の主軸14の軸心CLが水平に保たれている状態、または、図11に示すように主軸14が第2姿勢になっている状態では、第2収容空間120Bのうち底壁部121c側にオイルが貯留される。この状態では、通路形成部71の導入口711がオイルに浸った状態となる。
 この状態で圧縮機構部30が駆動されると、冷媒とともにオイルが連絡通路710に流入する。連絡通路710に流入した冷媒およびオイルは、図11の矢印FL4で示すように、開放された開閉ドア73付近を通過して低圧貯油室713に貯留される。低圧貯油室713に貯留されたオイルは、冷媒とともに冷媒吸入通路180を介して第1収容空間120Aに流れる。第1収容空間120Aに流入した冷媒は、圧縮機構部30における外周側に位置する吸入室320を介して圧縮室31に吸入された後、圧縮室31にて圧縮される。
 ここで、主軸14が第2姿勢で圧縮機構部30が停止された状態、または、第2収容空間120Bにオイルが貯留されていない状態では、オイルが連絡通路710の導入口711からオイルを吸入できなくなる。この場合でも、開閉ドア73によって、連絡通路710における軸方向DRaの一方側から他方側に向かうオイルの流れが遮断されるので、低圧貯油室713にオイルが保持される。このため、圧縮機10が再び駆動される際には、低圧貯油室713に保持されたオイルが冷媒吸入通路180を通過した後、第1収容空間120Aを通じて圧縮室31に供給される。
 また、圧縮機10が駆動されている状態では、冷媒およびオイルが冷媒引込穴714からも吸い込まれる。但し、冷媒引込穴714の断面積が連絡通路710の導入口711の断面積よりも小さくなっているので、吸い込まれる際に差圧が生じ、第2収容空間120Bに対して連絡通路710の内部が低圧となる。このため、連絡通路710の導入口711からオイルを安定して吸い込むことができる。
 一方、図12に示すように、主軸14が第1姿勢となっている状態では、第2収容空間120Bのうちミドルハウジング18側にオイルが貯留される。この状態では、通路形成部71の導入口711付近にオイルがない状態となる。このため、連絡通路710の導入口711には、主に冷媒が流れ込む。また、第2収容空間120Bのうちミドルハウジング18側にオイルが貯留されたオイルは、冷媒引込穴714から連絡通路710に吸いこまれる。連絡通路710に吸い込まれたオイルは、開閉ドア73が開放されているので、冷媒とともに低圧貯油室713に流入する。低圧貯油室713に流入したオイルは、冷媒とともに第1収容空間120Aおよび圧縮室31に供給される。
 その他の構成および作動は第1実施形態と同様である。本実施形態の圧縮機10は、主軸14が第1姿勢になると、第2収容空間120Bに存在するオイルが冷媒引込穴714を介して冷媒吸入通路180に導かれる。また、主軸14が第2姿勢になると、第2収容空間120Bにおける他方側端面部121b側に存在するオイルが連絡通路710を介して冷媒吸入通路180に導かれる。この際、冷媒引込穴714からも冷媒が導入され得るが、冷媒引込穴714が連絡通路710の導入口711よりも断面積が小さく絞られている。このため、オイルを含む冷媒は、冷媒引込穴714よりも導入口711から連絡通路710を介して冷媒吸入通路180に導入され易くなる。
 以上の如く、本実施形態の圧縮機10は、オイル保持部70によって冷媒吸入通路180の入口部180A付近に一定の油面が確保される。このため、主軸14が傾斜したとしても第2収容空間120Bから冷媒吸入通路180を介して第1収容空間120Aへオイルを安定的に供給することができる。
 また、圧縮機10は、例えば、圧縮機構部30が駆動されている場合や、圧縮機構部30が停止した状態で第1姿勢となる場合に、連絡通路710が開放される構成になっている。このため、第2収容空間120Bに貯留されたオイルを連絡通路710および冷媒吸入通路180を介して第1収容空間120Aに流すことができる。
 一方、圧縮機10は、圧縮機構部30が停止した状態で第2姿勢となる場合、連絡通路710が閉鎖される構成になっているので、オイルが開閉部材72によって冷媒吸入通路180の入口部180A付近に保持される。これにより、開閉部材72によって保持されたオイルを、冷媒吸入通路180を介して第1収容空間120Aに流すことができる。
 このように、本実施形態の圧縮機10は、主軸14が傾斜したとしても第2収容空間120Bから冷媒吸入通路180を介して第1収容空間120Aへオイルを安定的に供給することが可能となる。
 また、圧縮機10には、通路形成部71のうち冷媒吸入通路180の接続部712に、オイルを貯留するための低圧貯油室713が形成されている。これによると、冷媒吸入通路180を介して低圧貯油室713に貯留されたオイルを第1収容空間120Aへ導入することが可能となるので、主軸14が傾斜したとしても第1収容空間120Aへオイルを安定的に供給することが可能となる。
 (第3実施形態の変形例)
 上述の第3実施形態では、冷媒引込穴714が、通路形成部71のうち低圧貯油室713を構成する部位に近接して形成されているものを例示したが、これに限定されない。通路形成部71には、例えば、冷媒引込穴714とは別に、通路形成部71のうち低圧貯油室713を構成する部位に直接冷媒を引き込むための引込穴が形成されていてもよい。このような引込穴は、連絡通路710、開閉ドア73、冷媒引込穴714における冷媒の圧力損失が大きくなる場合に、それを低減する面において有効である。なお、引込穴を追加するか否かは、圧縮機10の効率目標を考慮して決定することが望ましい。
 (第4実施形態)
 次に、第4実施形態について、図13~図15を参照して説明する。本実施形態では、開閉ドア73ではなく、ボール弁74で開閉部材72が構成されている点が第3実施形態と相違している。本実施形態では、第3実施形態と異なる部分について主に説明し、第3実施形態と同様の部分について説明を省略することがある。
 図13に示すように、開閉部材72は、連絡通路710に設けられたボール弁74で構成されている。ボール弁74は、球体状に構成された部材であり、連絡通路710を移動可能な大きさになっている。
 また、連絡通路710を構成する内壁部には、連絡通路710を開閉する際にボール弁74が接離する弁座715が形成されている。弁座715は、連絡通路710において、軸方向DRaの一方側から他方側に向かって通路断面積が縮小された部位で構成されている。具体的には、弁座715は、連絡通路710を構成する内壁部のうち低圧貯油室713を挟んで接続部712と反対側の部位に形成されている。
 すなわち、弁座715は、連絡通路710のうち軸方向DRaの一方側から他方側に向かって通路断面積がテーパ状に縮小された部位で構成されている。なお、弁座715は、最小となる開口面積がボール弁74の直径よりも小さくなっている。
 また、連絡通路710には、低圧貯油室713と弁座715との間に、低圧貯油室713側にボール弁74が飛び出すのを防止する蓋が圧入等によって固定されている。この蓋には、オイルを流通させるための小穴が複数形成されている。なお、小穴は、ボール弁74が通過できないように、その直径がボール弁74の直径よりも小さくなっている。
 さらに、接続部712には、導入口711よりも断面積が小さい冷媒引込穴718が形成されている。具体的には、冷媒引込穴718は、接続部712のうち低圧貯油室713を構成する部位と弁座715を構成する部位との間に形成されている。
 このように構成される圧縮機10は、例えば、圧縮機10が駆動されている状態で、軸方向DRaの他方側から一方側に向かうオイルの流れによってボール弁74が押圧されて弁座715から離間する。また、ボール弁74は、圧縮機10が停止した状態で主軸14が第1姿勢になると、軸方向DRaの他方側から一方側に向かうオイルの流れによって押圧されて弁座715から離間する。これらにより、連絡通路710が開放される。
 一方、ボール弁74は、例えば、圧縮機10が停止した状態で主軸14が第2姿勢になると、重力の影響で生ずる軸方向DRaの一方側から他方側に向かうオイルの流れによって押圧されて弁座715に接する。これにより、連絡通路710が閉鎖される。
 このようにボール弁74は、連絡通路710において軸方向DRaの他方側から一方側に向かうオイルの流れを許容し、軸方向DRaの一方側から他方側に向かうオイルの流れを遮断する逆止弁として機能するように構成されている。
 次に、本実施形態の圧縮機10の作動について図14および図15を参照して説明する。圧縮機10の主軸14の軸心CLが水平に保たれている状態、または、図14に示すように主軸14が第2姿勢になっている状態では、第2収容空間120Bのうち底壁部121c側にオイルが貯留される。この状態では、通路形成部71の導入口711がオイルに浸った状態となる。
 この状態で圧縮機構部30が駆動されると、冷媒とともにオイルが連絡通路710に流入する。この際、連絡通路710に流入した冷媒およびオイルによってボール弁74が押圧されることで弁座715から離間する。このため、連絡通路710に流入した冷媒およびオイルは、低圧貯油室713に貯留される。低圧貯油室713に貯留されたオイルは、冷媒とともに冷媒吸入通路180を介して第1収容空間120Aに流れる。第1収容空間120Aに流入した冷媒は、圧縮機構部30における外周側に位置する吸入室320を通じて圧縮室31に吸入された後、圧縮室31にて圧縮される。
 ここで、主軸14が第2姿勢で圧縮機構部30が停止された状態、または、第2収容空間120Bにオイルが貯留されていない状態では、オイルが連絡通路710の導入口711からオイルを吸入できなくなる。この場合、ボール弁74によって、連絡通路710における軸方向DRaの一方側から他方側に向かうオイルの流れが遮断されるので、低圧貯油室713にオイルが保持される。このため、圧縮機10が再び駆動される際には、低圧貯油室713に保持されたオイルが冷媒吸入通路180を通過した後、第1収容空間120Aを通じて圧縮室31に供給される。
 一方、図15に示すように、主軸14が第1姿勢となっている状態では、第2収容空間120Bのうちミドルハウジング18側にオイルが貯留される。この状態では、通路形成部71の導入口711付近にオイルがない状態となる。このため、連絡通路710の導入口711には、主に冷媒が流れ込む。また、第2収容空間120Bのうちミドルハウジング18側にオイルが貯留されたオイルは、冷媒引込穴718から連絡通路710に吸いこまれる。連絡通路710に吸い込まれたオイルは、ボール弁74が開放されているので、冷媒とともに低圧貯油室713に流入する。低圧貯油室713に流入したオイルは、冷媒とともに第1収容空間120Aおよび圧縮室31に供給される。
 その他の構成および作動は、第3実施形態と同様である。本実施形態の圧縮機10は、開閉ドア73ではなく、ボール弁74で開閉部材72を構成しているが、ボール弁74が開閉ドア73と同様の機能を発揮する。このため、本実施形態の圧縮機10は、第3実施形態で説明した作用効果を第3実施形態と同様に得ることができる。
 (第4実施形態の変形例)
 上述の第4実施形態では、冷媒引込穴718が、通路形成部71のうち低圧貯油室713を構成する部位に近接して形成されているものを例示したが、これに限定されない。通路形成部71には、例えば、図16に示すように、冷媒引込穴718とは別に、通路形成部71のうち低圧貯油室713を構成する部位に直接冷媒を引き込むための引込穴719が形成されていてもよい。このような引込穴719は、連絡通路710、ボール弁74、冷媒引込穴718における冷媒の圧力損失が大きくなる場合に、それを低減する面において有効である。なお、引込穴719を追加するか否かは、圧縮機10の効率目標を考慮して決定することが望ましい。
 (第3、第4実施形態の変形例)
 上述の第3、第4実施形態では、接続部712とミドルハウジング18とが直接接続されるものを例示したが、これに限定されない。圧縮機10は、例えば、ミドルハウジング18をハウジング12に対して固定するための固定部が介在して接続され、固定部に対して冷媒吸入通路180の入口部180Aに連通する連通穴または切り欠きが開口しているような構成になっていてもよい。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の第3、第4実施形態の如く、オイル保持部70は、通路形成部71の内側に開閉部材72が配置される構成になっていることが望ましいが、これに限定されない。オイル保持部70は、例えば、通路形成部71の内側に開閉部材72が配置されていない構成になっていてもよい。
 上述の第3、第4実施形態の如く、オイル保持部70は、通路形成部71の内側に低圧貯油室713が形成されていることが望ましいが、これに限定されない。オイル保持部70は、通路形成部71の内側に低圧貯油室713が形成されていない構成になっていてもよい。
 上述の実施形態では、ハウジング12の第1収容空間120Aにオイル分離部50および高圧貯油室128が形成された圧縮機10を例示したが、これに限定されない。圧縮機10は、例えば、オイル分離部50および高圧貯油室128がハウジング12の外部に設けられたオイルタンクに形成されていてもよい。
 上述の実施形態では、ハウジング12として、メインハウジング部121およびサブハウジング部122が図示しないボルト等の締結手段によって気密に締結されるものを例示したが、これに限定されない。ハウジング12は、例えば、メインハウジング部121およびサブハウジング部122が溶接等の接合手段によって気密に接合された構成になっていてもよい。また、ハウジング12は、メインハウジング部121およびサブハウジング部122といった2つの分割体を組み合せて構成されているものに限らず、例えば、3つ以上の分割体を組み合せて構成されていてもよい。
 上述の実施形態では、圧縮機10として、インバータ25がハウジング12に対して一体に取り付けられたインバータ一体型の圧縮機を例示したが、これに限定されない。圧縮機10は、例えば、インバータ25が別体で構成されたもので構成されていてもよい。
 上述の実施形態では、電動機部20がインナーロータモータで構成されるものを例示したが、電動機部20はこれに限定されない。電動機部20は、例えば、他構造のモータで構成されていてもよい。
 上述の実施形態では、圧縮機構部30がスクロール型の圧縮機構部を例示したが、これに限定されない。圧縮機構部30は、例えば、ベーン型等のスクロール型以外の圧縮機構部で構成されていてもよい。
 上述の実施形態では、軸受部材16、軸受部181、偏心軸受部342aがすべり軸受で構成されたものを例示したが、これに限定されない。軸受部材16、軸受部181、偏心軸受部342aは、例えば、転がり軸受で構成されていてもよい。
 上述の実施形態では、移動体の室内を空調する空調装置に圧縮機10を適用したものを例示したが、これに限定されない。圧縮機10の適用対象は、圧縮機10の主軸14が傾斜したり、圧縮機10の主軸14の軸方向DRaに振れたりする機器であれば適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、圧縮機は、圧縮機構と、電動機部と、ハウジングと、主軸と、を備える。ハウジングは、その内部空間を圧縮機構部が収容される第1収容空間および電動機部が収容される第2収容空間に区画する区画部と、第2収容空間に冷媒を導入する冷媒導入部と、が設けられている。区画部には、支持部位よりも鉛直方向の下方側に位置する部位に冷媒導入部から第2収容空間に導入される冷媒を第1収容空間に導く冷媒吸入通路が形成されている。第2収容空間には、軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢になっても、冷媒吸入通路の入口部にオイルを保持するオイル保持部が設けられている。
 第2の観点によれば、圧縮機のオイル保持部は、ハウジングにおいて第2収容空間を形成する内壁面のうち鉛直方向の下方側に位置する底壁部から上方に向けて突き出る突出壁部を有する。突出壁部には、突出壁部の厚み方向に貫通するオイル連通路が形成されるとともに、オイル連通路を開閉する開閉部材が設けられている。そして、開閉部材は、主軸が第1姿勢となるとオイル連通路を開放し、主軸が第2姿勢となるとオイル連通路を閉鎖するように構成されている。なお、第1姿勢は、主軸における軸方向の他方側に位置する部位が一方側に位置する部位よりも鉛直方向の上方となる姿勢である。また、第2姿勢は、主軸における軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢である。このことは、後述する第6の観点においても同様である。
 これによると、例えば、主軸の圧縮機構部側が低く、電動機部側が高くなる第1姿勢となる場合、オイル連通路が開放されることで、第2収容空間に貯留されたオイルがオイル連通路および冷媒吸入通路を介して第1収容空間へ導入される。
 また、例えば、主軸の圧縮機構部側が高く、電動機部側が低くなる第2姿勢となる場合、オイル連通路が閉鎖されることで、オイルが突出壁部によって冷媒吸入通路の入口に近い位置に保持される。このため、突出壁部によって保持されたオイルが冷媒吸入通路を介して第1収容空間へ導入される。
 このように、主軸が傾斜したとしても電動機部が収容される第2収容空間から冷媒吸入通路を介して圧縮機構部が収容される第1収容空間へオイルを安定的に供給することが可能となる。
 第3の観点によれば、圧縮機の突出壁部は、軸方向の一方側において軸方向に交差するように拡がる第1壁面部、軸方向の他方側において主軸の軸方向に交差するように拡がる第2壁面部を有している。開閉部材は、第1壁面部におけるオイル連通路の開口を閉塞可能な大きさを有するドア部、および第1壁面部のうちオイル連通路の開口よりも上方側に位置する部位に連結されてドア部を回動可能に支持するドア軸を含む開閉ドアで構成されている。そして、第1壁面部には、オイル連通路の開口の周縁部位に、オイル連通路を開閉する際にドア部が接離する着座面が形成されている。
 これによると、開閉ドアがオイル連通路の第2壁面部側から第1壁面部側に向かうオイルの流れを許容し、オイル連通路の第1壁面部側から第2壁面部側に向かうオイルの流れを遮断する逆止弁として機能する。このため、突出壁部における第1壁面部側にオイルが溜まり易くなる。すなわち、オイルは、開閉ドアによって冷媒吸入通路の入口に近い位置に保持される。
 第4の観点によれば、圧縮機の開閉部材は、オイル連通路に設けられたボール弁で構成されている。オイル連通路には、オイル連通路を開閉する際にボール弁が接離する弁座が形成されている。そして、弁座は、オイル連通路のうち軸方向の一方側から他方側に向かって通路断面積が縮小された部位で構成されている。
 これによると、ボール弁がオイル連通路の第2壁面部側から第1壁面部側に向かうオイルの流れを許容し、オイル連通路の第1壁面部側から第2壁面部側に向かうオイルの流れを遮断する逆止弁として機能する。このため、突出壁部における第1壁面部側にオイルが溜まり易くなる。すなわち、オイルは、ボール弁によって冷媒吸入通路の入口に近い位置に保持される。
 第5の観点によれば、圧縮機のオイル保持部は、第2収容空間において軸方向の他方側に存在するオイルを冷媒吸入通路に導く連絡通路を形成する通路形成部を有する。通路形成部は、軸方向の一方側に位置する部位が冷媒吸入通路の入口部に接続され、軸方向の他方側に位置する部位に冷媒の導入口が設けられている。通路形成部における冷媒吸入通路との接続部には、導入口よりも断面積が小さい冷媒引込穴が少なくとも1つ形成されている。
 これによると、例えば、主軸における軸方向の他方側に位置する部位が一方側に位置する部位よりも鉛直方向の上方となる姿勢になると、第2収容空間に存在するオイルが冷媒引込穴を介して冷媒吸入通路に導かれる。
 また、例えば、主軸における軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢になると、第2収容空間における他方側端部側に存在するオイルが連絡通路を介して冷媒吸入通路に導かれる。この際、冷媒引込穴からも冷媒が導入され得るが、冷媒引込穴が連絡通路よりも通路断面積が小さいので、オイルを含む冷媒が、冷媒引込穴よりも連絡通路を介して冷媒吸入通路に導入され易くなる。
 本構成によれば、冷媒吸入通路の入口に近い位置にオイルが集まり易い構成になっており、冷媒吸入通路の入口に近い位置で一定の油面が確保される。このため、主軸が傾斜したとしても電動機部が収容される第2収容空間から冷媒吸入通路を介して圧縮機構部が収容される第1収容空間へオイルを安定的に供給することが可能となる。
 第6の観点によれば、圧縮機の通路形成部には、連絡通路を開閉する開閉部材が設けられている。そして、開閉部材は、圧縮機構部が駆動されている状態で連絡通路を開放し、圧縮機構部が停止している状態で主軸が第1姿勢となると連絡通路を開放し、圧縮機構部が停止している状態で主軸が第2姿勢となると連絡通路を閉鎖するように構成されている。
 これによると、例えば、圧縮機構部が駆動されている場合や、圧縮機構部が停止した状で第1姿勢となる場合、連絡通路が開放されることで、第2収容空間に貯留されたオイルが連絡通路および冷媒吸入通路を介して第1収容空間に流れる。
 また、例えば、圧縮機構部が停止した状態で第2姿勢となる場合、連絡通路が閉鎖されることで、オイルが開閉部材によって冷媒吸入通路の入口に近い位置に保持される。このため、圧縮機構部が駆動されると、開閉部材によって保持されたオイルが冷媒吸入通路を介して第1収容空間に流れる。このため、主軸が傾斜したとしても電動機部が収容される第2収容空間から冷媒吸入通路を介して圧縮機構部が収容される第1収容空間へオイルを安定的に供給することが可能となる。
 第7の観点によれば、圧縮機の開閉部材は、連絡通路を閉塞可能な大きさを有するドア部、および連絡通路を構成する内壁部のうち上方側に位置する部位に連結されてドア部を回動可能に支持するドア軸を含む開閉ドアで構成されている。そして、連絡通路を構成する内壁部には、連絡通路を開閉する際にドア部が接離する着座面が形成されている。
 これによると、開閉ドアが連絡通路の導入口側から接続部側に向かうオイルの流れを許容し、連絡通路の接続部側から導入口側に向かうオイルの流れを遮断する逆止弁として機能する。このため、主軸が傾斜したとしても連絡通路の接続部側に対してオイルが溜まり易くなる。すなわち、オイルは、開閉ドアによって冷媒吸入通路の入口部に保持される。
 第8の観点によれば、圧縮機の開閉部材は、連絡通路に設けられたボール弁で構成されている。連絡通路を構成する内壁部には、連絡通路を開閉する際にボール弁が接離する弁座が形成されている。そして、弁座は、連絡通路において軸方向の一方側から他方側に向かって通路断面積が縮小された部位で構成されている。
 これによると、ボール弁が連絡通路の導入口側から接続部側に向かうオイルの流れを許容し、連絡通路の導入口側から接続部側に向かうオイルの流れを遮断する逆止弁として機能する。このため、主軸が傾斜したとしても連絡通路の接続部側に対してオイルが溜まり易くなる。すなわち、オイルは、ボール弁によって冷媒吸入通路の入口部に保持される。
 第9の観点によれば、圧縮機は、通路形成部のうち冷媒吸入通路の入口部との接続部に、オイルを貯留するための低圧貯油室が形成されている。これによると、冷媒吸入通路を介して低圧貯留室に貯留されたオイルを第1収容空間へ導入することが可能となるので、主軸が傾斜したとしても第2収容空間から第1収容空間へオイルを安定的に供給することが可能となる。
 第10の観点によれば、圧縮機のハウジングの内部には、圧縮機構部で圧縮された冷媒に含まれるオイルを分離するオイル分離部が設けられるとともに、オイル分離部で分離されたオイルを貯留するための高圧貯油室が形成されている。そして、ハウジングの内部には、高圧貯油室に貯留されたオイルを少なくとも主軸の摺動部位に導くための内部潤滑機構が設けられている。
 このように、オイル分離部、高圧貯油室、内部潤滑機構が設けられた圧縮機では、例えば、第2収容空間にオイルが溜まり込み、第2収容空間におけるオイル量が増加すると、高圧貯油室のオイルが枯渇してしまう虞がある。
 これに対して、本開示の圧縮機は、主軸が傾斜したとしても第2収容空間に存在するオイルが第1収容空間へ安定的に供給される構成になっているので、高圧貯油室のオイル量を充分に確保することができる。この結果、高圧貯油室に貯留されたオイルを主軸の摺動部位等に供給することができるので、圧縮機の各摺動部位の異常摩耗を抑制することが可能となる。

Claims (10)

  1.  圧縮機であって、
     オイルが混入された冷媒を圧縮して吐出する圧縮機構部(30)と、
     前記圧縮機構部を駆動する駆動力を出力する電動機部(20)と、
     前記圧縮機構部および前記電動機部が収容されるハウジング(12)と、
     前記ハウジングの内部において鉛直方向に対して交差する姿勢で配置され、前記電動機部の駆動力を前記圧縮機構部に伝達する主軸(14)と、を備え、
     前記圧縮機構部は、前記ハウジングの内部において前記主軸の軸方向の一方側に配置され、
     前記電動機部は、前記ハウジングの内部において前記軸方向の他方側に配置され、
     前記ハウジングは、
     前記主軸を支持する支持部位(181)を有するとともに、前記ハウジングの内部空間(120)を前記圧縮機構部が収容される第1収容空間(120A)および前記電動機部が収容される第2収容空間(120B)に区画する区画部(18)と、
     前記第2収容空間に冷媒を導入する冷媒導入部(123)と、が設けられており、
     前記区画部には、前記支持部位よりも鉛直方向の下方側に位置する部位に前記冷媒導入部から前記第2収容空間に導入される冷媒を前記第1収容空間に導く冷媒吸入通路(180)が形成されており、
     前記第2収容空間には、前記軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢になっても、前記冷媒吸入通路の入口部(180A)にオイルを保持するオイル保持部(60、70)が設けられている圧縮機。
  2.  前記オイル保持部(60)は、前記ハウジングにおいて前記第2収容空間を形成する内壁面のうち鉛直方向の下方側に位置する底壁部(121c)から上方に向けて突き出る突出壁部(61)を有し、
     前記突出壁部には、前記突出壁部の厚み方向に貫通するオイル連通路(610)が形成されるとともに、前記オイル連通路を開閉する開閉部材(62)が設けられており、
     前記主軸における前記軸方向の他方側に位置する部位が一方側に位置する部位よりも鉛直方向の上方となる姿勢を第1姿勢とし、前記主軸における前記軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢を第2姿勢としたとき、
     前記開閉部材は、前記主軸が前記第1姿勢となると前記オイル連通路を開放し、前記主軸が前記第2姿勢となると前記オイル連通路を閉鎖するように構成されている請求項1に記載の圧縮機。
  3.  前記突出壁部は、前記軸方向の一方側において前記軸方向に交差するように拡がる第1壁面部(611)、前記軸方向の他方側において前記軸方向に交差するように拡がる第2壁面部(612)を有しており、
     前記開閉部材は、前記第1壁面部における前記オイル連通路の開口を閉塞可能な大きさを有するドア部(631)、および前記第1壁面部のうち前記オイル連通路の開口よりも上方側に位置する部位に連結されて前記ドア部を回動可能に支持するドア軸(632)を含む開閉ドア(63)で構成されており、
     前記第1壁面部には、前記オイル連通路の開口の周縁部位に、前記オイル連通路を開閉する際に前記ドア部が接離する着座面(611a)が形成されている請求項2に記載の圧縮機。
  4.  前記開閉部材は、前記オイル連通路に設けられたボール弁(64)で構成されており、
     前記オイル連通路には、前記オイル連通路を開閉する際に前記ボール弁が接離する弁座(614)が形成されており、
     前記弁座は、前記オイル連通路のうち前記軸方向の一方側から他方側に向かって通路断面積が縮小された部位で構成されている請求項2に記載の圧縮機。
  5.  前記オイル保持部(70)は、前記第2収容空間において前記軸方向の他方側に存在するオイルを前記冷媒吸入通路に導く連絡通路(710)を形成する通路形成部(71)を有し、
     前記通路形成部は、前記軸方向の一方側に位置する部位が前記冷媒吸入通路の入口部に接続され、前記軸方向の他方側に位置する部位に冷媒の導入口(711)が設けられており、
     前記通路形成部における前記冷媒吸入通路の入口部との接続部(712)には、前記導入口よりも断面積が小さい冷媒引込穴(714、718、719)が少なくとも1つ形成されている請求項1に記載の圧縮機。
  6.  前記通路形成部には、前記連絡通路を開閉する開閉部材(72)が設けられており、
     前記主軸における前記軸方向の他方側に位置する部位が一方側に位置する部位よりも鉛直方向の上方となる姿勢を第1姿勢とし、前記主軸における前記軸方向の一方側に位置する部位が他方側に位置する部位よりも鉛直方向の上方となる姿勢を第2姿勢としたとき、
     前記開閉部材は、前記圧縮機構部が駆動されている状態で前記連絡通路を開放し、前記圧縮機構部が停止している状態で前記主軸が前記第1姿勢となると前記連絡通路を開放し、前記圧縮機構部が停止している状態で前記主軸が前記第2姿勢となると前記連絡通路を閉鎖するように構成されている請求項5に記載の圧縮機。
  7.  前記開閉部材は、前記連絡通路を閉塞可能な大きさを有するドア部(731)、および前記連絡通路を構成する内壁部のうち上方側に位置する部位に連結されて前記ドア部を回動可能に支持するドア軸(732)を含む開閉ドア(73)で構成されており、
     前記連絡通路を構成する内壁部には、前記連絡通路を開閉する際に前記ドア部が接離する着座面(711a)が形成されている請求項6に記載の圧縮機。
  8.  前記開閉部材は、前記連絡通路に設けられたボール弁(74)で構成されており、
     前記連絡通路を構成する内壁部には、前記連絡通路を開閉する際に前記ボール弁が接離する弁座(715)が形成されており、
     前記弁座は、前記連絡通路において前記軸方向の一方側から他方側に向かって通路断面積が縮小された部位で構成されている請求項6に記載の圧縮機。
  9.  前記通路形成部における前記冷媒吸入通路の入口部との接続部(712)には、オイルを貯留するための低圧貯油室(713)が形成されている請求項5ないし8のいずれか1つに記載の圧縮機。
  10.  前記ハウジングの内部には、前記圧縮機構部で圧縮された冷媒に含まれるオイルを分離するオイル分離部(50)が設けられるとともに、前記オイル分離部で分離されたオイルを貯留するための高圧貯油室(128)が形成されており、
     さらに、前記ハウジングの内部には、前記高圧貯油室に貯留されたオイルを少なくとも前記主軸の摺動部位に導くための内部潤滑部(140)が設けられている請求項1ないし9のいずれか1つに記載の圧縮機。
PCT/JP2019/036775 2018-10-09 2019-09-19 圧縮機 WO2020075474A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018191139A JP7135694B2 (ja) 2018-10-09 2018-10-09 圧縮機
JP2018-191139 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075474A1 true WO2020075474A1 (ja) 2020-04-16

Family

ID=70164690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036775 WO2020075474A1 (ja) 2018-10-09 2019-09-19 圧縮機

Country Status (2)

Country Link
JP (1) JP7135694B2 (ja)
WO (1) WO2020075474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085065A1 (ja) * 2022-10-21 2024-04-25 株式会社デンソー 電動圧縮機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159032A (ja) * 1994-11-30 1996-06-18 Matsushita Electric Ind Co Ltd 電動圧縮機
JP2002242834A (ja) * 2001-02-14 2002-08-28 Sanyo Electric Co Ltd 車載用横置型密閉式圧縮機
JP2018150847A (ja) * 2017-03-10 2018-09-27 サンデンホールディングス株式会社 スクロール型圧縮機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213472A (ja) 1999-01-21 2000-08-02 Matsushita Electric Ind Co Ltd 自動車用横型スクロ―ル圧縮機
JP4003680B2 (ja) 2003-03-31 2007-11-07 株式会社豊田自動織機 電動圧縮機
JP2008267345A (ja) 2007-04-24 2008-11-06 Denso Corp 電動圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159032A (ja) * 1994-11-30 1996-06-18 Matsushita Electric Ind Co Ltd 電動圧縮機
JP2002242834A (ja) * 2001-02-14 2002-08-28 Sanyo Electric Co Ltd 車載用横置型密閉式圧縮機
JP2018150847A (ja) * 2017-03-10 2018-09-27 サンデンホールディングス株式会社 スクロール型圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085065A1 (ja) * 2022-10-21 2024-04-25 株式会社デンソー 電動圧縮機

Also Published As

Publication number Publication date
JP2020060124A (ja) 2020-04-16
JP7135694B2 (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
EP1464841B1 (en) Hermetic compressor
JP4273807B2 (ja) 電動圧縮機
KR100862198B1 (ko) 오일 주입 피팅부를 가진 수평 스크롤 압축기
US9920762B2 (en) Scroll compressor with tilting slider block
EP1464840A1 (en) Scroll compressor
WO2019044867A1 (ja) スクロール型圧縮機
JPS6352237B2 (ja)
US20200300245A1 (en) Motor-operated compressor
WO2020075474A1 (ja) 圧縮機
JP7119812B2 (ja) 圧縮機
US11053941B2 (en) Motor-operated compressor
JP4149947B2 (ja) 圧縮機
JP2006348928A (ja) 圧縮機
CN109196227B (zh) 涡旋压缩机
WO2021049273A1 (ja) 横置型電動圧縮機
JP2000337256A (ja) 流体機械
JP5209279B2 (ja) スクロール圧縮機
JP2004301090A (ja) 電動圧縮機
JP5288941B2 (ja) スクロール型圧縮機
JP2005201171A (ja) 圧縮機の潤滑機構
JPH01382A (ja) 密閉形スクロール圧縮機
JP5493958B2 (ja) 圧縮機
JPH0559278B2 (ja)
JP4003680B2 (ja) 電動圧縮機
JP4301122B2 (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871630

Country of ref document: EP

Kind code of ref document: A1