WO2020073404A1 - 显示器及其显示面板、阵列基板 - Google Patents

显示器及其显示面板、阵列基板 Download PDF

Info

Publication number
WO2020073404A1
WO2020073404A1 PCT/CN2018/114610 CN2018114610W WO2020073404A1 WO 2020073404 A1 WO2020073404 A1 WO 2020073404A1 CN 2018114610 W CN2018114610 W CN 2018114610W WO 2020073404 A1 WO2020073404 A1 WO 2020073404A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
array substrate
layer
substrate
electrode
Prior art date
Application number
PCT/CN2018/114610
Other languages
English (en)
French (fr)
Inventor
杨凤云
卓恩宗
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/245,370 priority Critical patent/US20200110305A1/en
Publication of WO2020073404A1 publication Critical patent/WO2020073404A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present application relates to the technical field of displays, in particular to an array substrate, a display panel and a display.
  • liquid crystal displays generally include transmissive liquid crystal displays, reflective liquid crystal displays, and transflective liquid crystal displays.
  • the transmissive LCD uses the backlight on the back of the screen as a light source for display
  • the reflective LCD uses external light as the light source for display
  • the transflective LCD uses both external light and backlight as the display. light source.
  • Different liquid crystal displays can be selected according to the characteristics of light sources in different environments. For example, in a well-lit scene, a reflective liquid crystal display can be used; in a dark scene, a transmissive liquid crystal display can be used; LCD Monitor.
  • the surface of the reflective electrode is flat, and the reflected light can only be brighter in a specific direction, resulting in a narrower viewing angle range of the display.
  • the main purpose of the present application is to provide an array substrate, which aims to increase the viewing angle range of the display and the brightness of the display.
  • the array substrate includes:
  • a reflective electrode is provided on the substrate.
  • the reflective electrode includes a first concave portion.
  • An inner wall of the first concave portion is provided with at least two connected reflective surfaces having different inclination.
  • the first concave portion has an opening, and the inclination of the reflecting surface is reduced from being adjacent to the opening edge and away from the opening edge.
  • each of the reflective surfaces is a plane with different inclination.
  • At least one of the reflective surfaces is a flat surface, and at least one of the reflective surfaces is a curved surface.
  • a reflective surface connected to the edge of the opening is defined as a first reflective surface
  • a reflective surface connected to the first reflective surface is defined as a second reflective surface
  • the first reflective surface is a flat surface
  • the first The second reflecting surface is a curved surface.
  • the array substrate includes a light-transmissive pixel electrode layer provided on the substrate, a part of the pixel electrode layer forms a transmissive electrode, and another part of the pixel electrode layer is covered with a reflective layer to form the reflective electrode, The reflective layer is provided with the first recess.
  • the surface of the reflective layer is recessed to form the first recess.
  • a surface of the pixel electrode layer covered with the reflective layer is provided with a convex portion for forming a second concave portion, and the convex portion is convex with respect to the pixel electrode layer on the surface of the transmissive electrode
  • the reflective layer covers the second recess to form the first recess of the reflective electrode.
  • a flat portion is provided on the top of the convex portion, and the reflective layer covers the flat portion and the second concave portion.
  • the array substrate further includes:
  • the grid is provided on the substrate
  • An active layer provided on the gate insulating layer and connected to the pixel electrode layer;
  • the source electrode is provided on the active layer.
  • the present application also provides a display panel, the display panel includes an array substrate, and the array substrate includes:
  • a reflective electrode is formed on the substrate.
  • the reflective electrode includes a first concave portion, and an inner wall of the first concave portion is provided with at least two connected reflective surfaces having different inclination.
  • the display panel further includes a color filter substrate and a liquid crystal layer provided between the array substrate and the color filter substrate.
  • the first concave portion has an opening, and the inclination of the reflecting surface is reduced from being adjacent to the opening edge and away from the opening edge.
  • each of the reflective surfaces is a plane with different inclination.
  • a reflective surface connected to the edge of the opening is defined as a first reflective surface
  • a reflective surface connected to the first reflective surface is defined as a second reflective surface
  • the first reflective surface is a flat surface
  • the first The second reflecting surface is a curved surface.
  • the present application also provides a display, the display includes a display panel, the display panel includes an array substrate, and the array substrate includes:
  • a reflective electrode is formed on the substrate.
  • the reflective electrode includes a first concave portion, and an inner wall of the first concave portion is provided with at least two connected reflective surfaces having different inclination.
  • the display panel further includes a color filter substrate and a liquid crystal layer provided between the array substrate and the color filter substrate.
  • the first concave portion has an opening, and the inclination of the reflecting surface is reduced from being adjacent to the opening edge and away from the opening edge.
  • each of the reflective surfaces is a plane with different inclination.
  • a reflective surface connected to the edge of the opening is defined as a first reflective surface
  • a reflective surface connected to the first reflective surface is defined as a second reflective surface
  • the first reflective surface is a flat surface
  • the first The second reflecting surface is a curved surface.
  • a first concave portion formed by connecting at least two reflective surfaces with different inclination is provided on the reflective electrode of the array substrate of the display, and each reflective surface can change the front light source in different directions due to the different inclination Or the light from the outside natural light is reflected to increase the display brightness of the display screen, and the reflected light can be reflected in different directions, increasing the viewing angle range of the display when displaying the image, so that the user can view the display in different directions You can get a better display screen when you are in, and improve the display effect of the display.
  • FIG. 1 is a schematic cross-sectional view of a partial structure of an embodiment of an array substrate of this application;
  • FIG. 2 is a schematic cross-sectional view of a partial structure of another embodiment of the array substrate of the present application.
  • Label name Label name 100 Substrate 210 First recess 200 Reflective electrode 211 Reflective surface 300 Pixel electrode layer 400 Transmissive electrode 310 Raised part 320 Second recess 500 Reflective layer 600 Grid 700 Gate insulating layer 800 Active layer 900 Source
  • first, second, etc. in this application are for descriptive purposes only, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the technical solutions between the various embodiments can be combined with each other, but it must be based on the ability of ordinary people in the art to achieve, when the combination of technical solutions conflicts with each other or cannot be realized, it should be considered that the combination of such technical solutions does not exist , Nor within the scope of protection required by this application.
  • the main solution of the embodiment of the present invention is to provide an array substrate having the following structure: the array substrate includes a substrate 100 and a reflective electrode 200 formed on the substrate 100, wherein the reflective electrode 200 includes a first recess 210, and the first recess 210
  • the inner wall is provided with at least two reflecting surfaces 211 connected and having different inclination.
  • the surface of the reflective electrode 200 in the current display is generally flat, the brightness of the reflected light will be brighter only in a specific direction, resulting in a narrower viewing angle range of the display.
  • the present invention provides a solution by providing a first concave portion 210 formed by connecting at least two reflective surfaces 211 with different inclination on the reflective electrode 200 of the array substrate of the display, thereby increasing the display brightness of the display screen , Increasing the angle of view range of the display when displaying the image is beneficial to the user can obtain a better display screen when viewing the display in different directions, and improve the display effect of the display.
  • This application proposes an array substrate.
  • the array substrate is applied to a display panel of a display, and specifically can be applied to a display panel of a liquid crystal display.
  • the array substrate includes a substrate 100, a reflective electrode 200 provided on the substrate 100, a gate line, a source line, and a thin film transistor.
  • a plurality of gate lines and a plurality of source lines are intersected to form a pixel area of the display panel.
  • the pixel area includes a plurality of pixel units, and each pixel unit has a thin film transistor and a reflective electrode 200 formed on the substrate 100 respectively.
  • the reflective electrode 200 includes a first concave portion 210, and an inner wall of the first concave portion 210 is provided with at least two connected reflective surfaces 211 having different inclination.
  • a reflective electrode 200 made of a material with good reflective properties can be used on the substrate 100, and the reflective electrode 200 reflects the light of the front light source or external natural light to realize the screen display.
  • the inner wall of the first concave portion 210 may be specifically formed by splicing at least two reflective surfaces 211 with different inclination.
  • the inner wall of the first concave portion 210 may reflect incident light in different directions due to the reflective surface 211 with different inclination. And can make the light incident in the same direction to form reflected light in different directions.
  • the inclination is the size of the angle formed between the inner wall of the first recess 210 and the substrate 100.
  • one or more first recesses 210 on the reflective electrode 200 may be provided according to requirements.
  • the reflective electrode 200 is specifically an electrode layer formed on the substrate 100.
  • the electrode layer has two first and second surfaces opposite to each other.
  • the first surface is bonded to the substrate 100, and the second surface may be recessed toward the substrate 100 to form the first The recess 210.
  • the second surface is provided with at least two protrusions arranged at intervals, and the raised surface and the second surface surround and form the first protrusion.
  • the protrusion provided on the second surface may be an annular protrusion, and the inner surface of the annular protrusion and the second surface surround the first protrusion.
  • the second surface is a reflective surface, which can reflect the incident light.
  • the first concave portion 210 formed by connecting at least two reflective surfaces 211 with different inclination is provided on the reflective electrode 200 of the array substrate of the display.
  • Each reflective surface 211 may be different due to the different inclination
  • the light from the front light source or external natural light in the direction is reflected to increase the display brightness of the display screen, and the reflected light can be reflected in different directions, increasing the viewing angle range when the display displays the image, so that the user can be in different When viewing the monitor in the same direction, you can obtain a better display picture and improve the display effect of the monitor.
  • the first concave portion 210 has an opening, and the inclination of the reflecting surface 211 decreases from adjacent to the opening edge and away from the opening edge.
  • the side of the first concave portion 210 facing away from the substrate 100 has an opening, and the farther the reflective surface 211 is from the opening edge of the first concave portion 210, the smaller the inclination of the reflective surface 211.
  • the inclination of the reflective surface 211 connected to the opening edge or close to the opening edge is greater than the inclination of the reflective surface 211 located at or near the middle of the first recess 210, wherein the reflection surface 211 located at the middle of the first recess 210
  • the inclination can be 0 degrees.
  • the inclination of the reflecting surface 211 near the edge of the opening is smaller than the inclination of the reflecting surface 211 near the middle of the first recess 210, the junction of the adjacent reflecting surface 211 with a larger inclination and the reflecting surface 211 with a smaller inclination A protrusion that protrudes toward the opening may be formed, and the protrusion may block part of the reflected light formed by the reflective surface 211 in the middle of the first recess 210 to cause uneven brightness of the display screen.
  • the reflective surfaces 211 are arranged according to the above distribution, which is beneficial to ensure that the light can be reflected uniformly and effectively in the first concave portion 210.
  • the inclination of the inner wall of the first concave portion 210 on the same reflective surface 211 may be the same or may not be the same. When the inclination in the same reflective surface 211 is not consistent, the inclination at different positions of the reflective surface 211 gradually decreases from near the opening edge to away from the opening edge. Specifically, as shown in FIG. 1, each reflective surface 211 may be specifically a plane with different inclination. Since the forming process of the flat electrode surface has lower process requirements than the curved surface, the inner wall of the first recess 210 is formed by setting planes with different inclination to help shorten the manufacturing process of the array substrate and ensure that the reflective electrode 200 is formed the quality of.
  • the reflection surface 211 may also be configured such that at least one reflection surface 211 is a flat surface, and at least one reflection surface 211 is an arc surface.
  • the setting of the arc surface can directly form a continuous reflective surface 211 with different inclination without splicing planes with different inclination, avoiding the defect that the connection of the reflective surface 211 cannot reflect light, which is beneficial to improve the light in the first Uniform and effective reflection in the recess 210.
  • the reflective surface 211 connected to the opening edge is defined as a first reflective surface
  • the reflective surface 211 connected to the first reflective surface is defined as a second reflective surface
  • the first reflective surface is a flat surface
  • the The second reflecting surface is a curved surface.
  • the first concave portion 210 is formed by protrusions arranged at intervals
  • the first reflecting surface is specifically a surface surrounding the protrusion to form the first concave portion 210
  • the number of the first reflecting surfaces is consistent with the number of protrusions.
  • the first reflective surface is a slope connected to the edge of the opening.
  • the second reflecting surface and the first reflecting surface are spliced to form an inner wall of the first concave portion 210.
  • Different positions of the second reflecting surface have different inclination, and the inclination of the arc surface is the size of the angle between the tangent line at a certain point on the arc surface and the substrate 100.
  • the inclination of the middle of the second reflection surface is smaller than the inclination of the edge of the second reflection surface, and the inclination of the first reflection surface is larger than the inclination of the tangent line at any position of the second reflection surface.
  • the first reflective surface connected to the edge of the opening is set as a flat surface
  • the second reflective surface located in the middle of the first concave portion 210 and connected to the first reflective surface is set as an arc surface, which is beneficial to the limited pixel unit.
  • the arc surface in the middle of the first concave portion 210 can achieve a wider viewing angle range with the least reflection surface 211.
  • the first reflecting surface serves as a transition portion between the second reflecting surface and the edge of the opening, which is beneficial to the molding quality control of the second reflecting surface during molding.
  • the array substrate includes a light-transmissive pixel electrode layer 300 provided on the substrate 100, a part of the pixel electrode layer 300 forms a transmissive electrode 400, and another part of the pixel electrode layer 300 is covered with a reflective layer 500
  • the reflective electrode 200 and the reflective layer 500 are provided with the first concave portion 210.
  • the pixel electrode layer 300 has an electrode material that can transmit light, and the reflective layer 500 is made of a material having excellent reflection characteristics.
  • Part of the pixel electrode layer 300 is covered with a reflective layer 500, so that light cannot pass through the pixel electrode layer 300, but is reflected on the reflective layer 500 to realize image display.
  • Part of the pixel electrode layer 300 that does not cover the reflective layer 500 can transmit light to realize the image display.
  • the transparent pixel electrode layer 300 may be made of ITO (Indium Tin Oxides, N-type oxide semiconductor-indium tin oxide), the reflective layer 500 may be made of aluminum.
  • the surface of the pixel electrode layer 300 covered with the reflective layer 500 is provided with a convex portion 310 for molding the second concave portion 320, and the convex portion 310 is located on the transmissive electrode 400 relative to the pixel electrode layer 300
  • the surface is convex
  • the reflective layer 500 covers the second recess 320 to form the first recess 210 of the reflective electrode 200.
  • the pixel electrode layer 300 has two first planes and a second plane opposite to each other. The first plane is attached to the substrate 100.
  • the second plane may be provided with a protrusion 310 for molding the second recess 320, and are arranged at intervals on the plane.
  • the protrusion of may also be an annular protrusion, and the inner surface of the protrusion 310 surrounds the second plane to form a second recess 320.
  • the first concave portion 210 is provided in the reflective layer 500.
  • the pixel electrode layer 300 may have a flat structure as a whole, and only the first concave portion 210 may be formed by recessing the surface of the reflective layer 500.
  • the pixel electrode layer 300 may be provided with a second concave portion 320 where the emission layer is covered, the reflective layer 500 covering the second concave portion 320 to form the first concave portion 210, and the reflective layer 500 may be specifically covered A layered structure with a uniform thickness on the second recess 320.
  • the liquid crystal layer of the display panel using the array substrate corresponds to the transmissive area where the transmissive electrode 400 is located, and corresponds to the reflective area where the reflective electrode 200 is located.
  • the thickness of the liquid crystal layer in the transmission area can be greater than the thickness in the reflection area, which is advantageous for adjusting the optical path difference between the transmitted light that has passed through the liquid crystal layer in the transmission area and the reflected light that has passed through the reflection area.
  • the top of the convex portion 310 may be specifically provided with a flat portion, and the reflective layer 500 simultaneously covers the flat portion and the second concave portion 320.
  • the provision of the flat portion is beneficial to increase the adhesion between the reflective layer 500 and the pixel electrode layer 300.
  • the array substrate further includes a gate 600, a gate insulating layer 700, an active layer 800, and a source 900.
  • the gate 600 is disposed on the substrate 100
  • the gate insulating layer 700 covers the gate 600
  • the active layer 800 is disposed on the gate insulating layer 700, and is connected to the pixel electrode layer 300
  • the source 900 is disposed on the active layer 800 on.
  • the above structure of the array substrate forms a thin film transistor
  • each pixel unit on the array substrate is provided with a thin film transistor
  • the gate 600 of each thin film transistor is connected to the gate line on the array substrate
  • the source of each thin film transistor All 900 are connected to the source line on the array substrate.
  • the source electrode 900 is in contact with the active layer 800, and the active layer 800 is connected to the pixel electrode layer 300, which can avoid damage to the metal oxide semiconductor layer when forming the source-drain metal electrode.
  • the pixel electrode layer 300 and the metal are used
  • the oxide semiconductor layer is in direct contact and no drain metal is needed, which reduces the resistance between the metal oxide semiconductor layer and the pixel electrode layer 300, which greatly improves the display characteristics of the display panel.
  • a layer of unpatterned transparent electrodes can be formed on the substrate 100, and the pixel electrode layer 300 can be etched on the layer of transparent electrodes by half-tone exposure.
  • the pixel electrode layer 300 is etched using a half-tone mask with different light transmittances.
  • the half-tone mask specifically includes a light-shielding portion and a light-transmitting portion.
  • the light transmittance of the light-shielding portion is 0, and the light transmission of the light-transmitting portion The rate is greater than the transmissivity of the semi-transmissive part.
  • the distribution of the light-transmitting portion and the light-shielding portion on the halftone mask depends on the distribution position of the pixel electrode layer 300 on the substrate 100, the distribution position of the transmission electrode 400 and the reflection electrode 200 formed by the pixel electrode layer 300, and the projection electrode and reflection
  • the shape and structure of the electrode 200 are specifically provided.
  • the thickness of the transparent electrode corresponding to the light-shielding portion does not change, and the thickness of the transparent electrode corresponding to the light-transmitting portion gradually becomes thinner during exposure.
  • a plurality of light-transmitting portions having different light transmittances may be specifically provided to form the structure of the pixel electrode layer 300 described above. Specifically, the greater the etching depth of the transparent electrode, the higher the light projection rate of the light-transmitting portion at the corresponding position.
  • the halftone mask and the layered transparent electrode are arranged at intervals.
  • a part of the pixel electrode layer 300 corresponding to the first light-transmitting portion may be used as the transmissive electrode 400.
  • the thickness of the transparent electrode becomes smaller but a layered structure with a certain thickness remains to form The electrode 400; the top of the convex portion 310 is formed corresponding to the light-shielding portion connected to the first light-transmitting portion; the second concave portion 320 is formed correspondingly to the second light-transmitting portion connected to the light-shielding portion, wherein the first light-transmitting portion
  • the light transmittance of the portion is greater than that of the second light-transmitting portion.
  • the light transmittance in the second light-transmitting portion can be adapted to the reflecting surface 211 with different inclination and correspondingly changes in stages or continuously. If a thin film transistor is provided on the substrate 100 or does not need to be provided with any layered structure, it can be formed by exposing the third light-transmitting portion with the largest light transmittance after exposure. After exposure, the transparent electrode can be completely etched and will not remain on the substrate 100. After the pixel electrode layer 300 is formed, a reflective layer 500 with a uniform thickness is formed on the top of the convex portion 310 and inside the second concave portion 320, so that a part of the pixel electrode layer 300 and the reflective layer 500 are combined to form the reflective electrode 200.
  • the gate electrode 600, the gate insulating layer 700, the active layer 800, and the source electrode 900 may be sequentially formed on the substrate 100 by the halftone exposure method.
  • a half-tone mask is used to form the pixel electrode layer 300, the gate electrode 600, the gate insulating layer 700, the active layer 800, and the source electrode 900 layer of different shapes on the array substrate and distributed at different positions on the array substrate, which is beneficial to simplify the entire array
  • the manufacturing process of the substrate improves the production efficiency of the array substrate, the display panel using the array substrate, and the display provided with the array substrate.
  • the present application also provides a display panel including an array substrate, a color film substrate, and a liquid crystal layer provided between the array substrate and the color film substrate.
  • the array substrate includes a substrate 100 and a reflective electrode 200 formed on the substrate 100.
  • the reflective electrode 200 includes a first concave portion 210, and an inner wall of the first concave portion 210 is provided with at least two reflective surfaces 211 connected and having different inclination.
  • the display panel adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • the present application also proposes a display.
  • the display may be a liquid crystal display capable of reflecting light, and may specifically be a total reflection type liquid crystal display or a transflective type liquid crystal display.
  • the display includes a display panel.
  • the display panel includes an array substrate, a color filter substrate, and a liquid crystal layer disposed between the array substrate and the color filter substrate.
  • the array substrate includes a substrate 100 and a reflective electrode 200 formed on the substrate 100.
  • the reflective electrode 200 includes a first concave portion 210, and an inner wall of the first concave portion 210 is provided with at least two reflective surfaces 211 connected and having different inclination.
  • the specific structure of the array substrate refer to the above-mentioned embodiments. Since the display adopts all the technical solutions of all the above-mentioned embodiments, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板、显示面板以及显示器。其中,阵列基板包括:基板(100)和反射电极(200),反射电极(200)设于基板(100),反射电极(200)包括第一凹部(210),第一凹部(210)的内壁设有至少两个连接且具有不同倾斜度的反射面(211)。

Description

显示器及其显示面板、阵列基板
技术领域
本申请涉及显示器技术领域,特别涉及一种阵列基板、显示面板以及显示器。
背景技术
目前,液晶显示器一般有穿透式液晶显示器、反射式液晶显示器,半反半透液晶显示器。其中,穿透式液晶显示器利用画面背面的背光源作为显示用的光源,反射式液晶显示器利用外部光线作为显示用的光源,半反半透液晶显示器利用外部光线和背光源两者作为显示用的光源。可根据不同环境的光源特点不同而选取不同的液晶显示器,如光线充足的场景可采用反射式液晶显示器,光线较暗的场景可采用穿透式液晶显示器,光线变化的场景可采用半反半透液晶显示器。
然而,在传统的液晶显示器中的反射电极表面是平坦的,反射光只有在特定的方向上亮度才会较亮,导致显示器显示的视角范围较窄。
申请内容
本申请的主要目的是提供一种阵列基板,旨在增大显示器显示的视角范围以及显示的亮度。
为实现上述目的,本申请提出一种阵列基板,该阵列基板包括:
基板;以及
反射电极,所述反射电极设于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
可选地,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
可选地,各所述反射面为具有不同倾斜度的平面。
可选地,至少一个所述反射面为平面,且至少一个所述反射面为弧面。
可选地,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
可选地,所述阵列基板包括设于所述基板的可透光的像素电极层,一部分所述像素电极层形成透射电极,另一部分所述像素电极层覆盖有反射层形成所述反射电极,所述反射层设有所述第一凹部。
可选地,所述反射层的表面凹陷形成所述第一凹部。
可选地,所述像素电极层覆盖有所述反射层的表面设有用于成型第二凹部的凸起部,所述凸起部相对于所述像素电极层位于所述透射电极的表面凸出,所述反射层覆盖于所述第二凹部形成所述反射电极的第一凹部。
可选地,所述凸起部的顶部设有平坦部,所述反射层覆盖于所述平坦部和所述第二凹部。
可选地,所述阵列基板还包括:
栅极,设于所述基板上;
栅绝缘层,覆盖于所述栅极上;
有源层,设于所述栅绝缘层上,且与所述像素电极层连接;以及,
源极,设于所述有源层上。
此外,为了实现上述目的,本申请还提供一种显示面板,所述显示面板包括阵列基板,所述阵列基板包括:
基板;以及,
反射电极,形成于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
可选地,所述显示面板还包括彩膜基板和设于所述阵列基板与所述彩膜基板之间的液晶层 。
可选地,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
可选地,各所述反射面为具有不同倾斜度的平面。
可选地,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
此外,为了实现上述目的,本申请还提供一种显示器,所述显示器包括显示面板,所述显示面板包括阵列基板,所述阵列基板包括:
基板;以及,
反射电极,形成于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
可选地,所述显示面板还包括彩膜基板和设于所述阵列基板与所述彩膜基板之间的液晶层 。
可选地,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
可选地,各所述反射面为具有不同倾斜度的平面。
可选地,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
本申请技术方案通过在显示器的阵列基板的反射电极上设置由至少两个具有不同倾斜度的反射面连接而成的第一凹部,各个反射面由于具有不同的倾斜度可将不同方向上前光源或者外界自然光入射的光线进行反射,使显示画面的显示亮度增大,并且向反射光可朝不同的方向进行反射,增大显示器显示图像时的视角范围,从而使用户可在不同的方向观看显示器时均可获得较佳的显示画面,提高显示器的显示效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请阵列基板一实施例的局部结构剖视示意图;
图2为本申请阵列基板另一实施例的局部结构剖视示意图。
附图标号说明:
标号 名称 标号 名称
100 基板 210 第一凹部
200 反射电极 211 反射面
300 像素电极层 400 透射电极
310 凸起部 320 第二凹部
500 反射层 600 栅极
700 栅绝缘层 800 有源层
900 源极
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本发明实施例的主要解决方案是设置具有如下结构的阵列基板:该阵列基板包括基板100和形成于基板100上的反射电极200,其中,反射电极200包括第一凹部210,第一凹部210的内壁设有至少两个连接且具有不同倾斜度的反射面211。
由于目前显示器中的反射电极200的表面一般是平坦的,反射光只有在特定的方向上亮度才会较亮,导致显示器显示的视角范围较窄。
本发明提供一种解决方案,通过在显示器的阵列基板的反射电极200上设置由至少两个具有不同倾斜度的反射面211连接而成的第一凹部210,从而使显示画面的显示亮度增大,增大显示器显示图像时的视角范围,有利于用户可在不同的方向观看显示器时均可获得较佳的显示画面,提高显示器的显示效果。
本申请提出一种阵列基板。
在本申请实施例中,阵列基板应用于显示器的显示面板中,具体可应用于液晶显示器的显示面板。
如图1至2所示,该阵列基板包括基板100、设于基板100上的反射电极200、栅极线、源极线、薄膜晶体管。多条栅极线和多条源极线交叉设置形成显示面板的像素区域。像素区域包括多个像素单元,每个像素单元在基板100上分别形成有薄膜晶体管和反射电极200。
其中,反射电极200包括第一凹部210,第一凹部210的内壁设有至少两个连接且具有不同倾斜度的反射面211。基板100上可使用具有良好反射特性材料制作的反射电极200,通过反射电极200反射前光源或者外界自然光的光线实现画面显示。第一凹部210的内壁可具体由至少两个具有不同倾斜度的反射面211拼接而成,第一凹部210的内壁由于具有不同倾斜度的反射面211,可将不同方向的入射光线进行反射,并且可使同一方向入射的光线所形成朝不同的方向的反射光。倾斜度为第一凹部210的内壁与基板100之间所形成夹角的大小。每个像素单元中,反射电极200上的第一凹部210可根据需求设置有一个或多个。
反射电极200具体为在基板100上形成的电极层,电极层具有两相对设置的第一表面和第二表面,第一表面与基板100贴合,第二表面可朝向基板100凹陷形成上述第一凹部210。另外,第二表面设置有至少两个间隔设置的凸起,凸起的表面以及第二表面围设形成上述第一凸部。此外第二表面上设置的凸起可为环形凸起,环形凸起的内表面与第二表面围设形成上述第一凸部。其中,第二表面为反射面,可对入射光进行反射。
本申请技术方案通过在显示器的阵列基板的反射电极200上设置由至少两个具有不同倾斜度的反射面211连接而成的第一凹部210,各个反射面211由于具有不同的倾斜度可将不同方向上前光源或者外界自然光入射的光线进行反射,使显示画面的显示亮度增大,并且向反射光可朝不同的方向进行反射,增大显示器显示图像时的视角范围,从而使用户可在不同的方向观看显示器时均可获得较佳的显示画面,提高显示器的显示效果。
其中,所述第一凹部210具有开口,所述反射面211的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。第一凹部210背离所述基板100的一侧具有开口,反射面211距离第一凹部210的开口边缘越远,反射面211的倾斜度越小。与开口边缘连接或靠近开口边缘的反射面211的倾斜度大于位于第一凹部210中部或靠近第一凹部210中部的反射面211的倾斜度,其中,位于第一凹部210中部的反射面211的倾斜度可为0度。由于靠近开口边缘的反射面211的倾斜度比靠近第一凹部210中部的反射面211的倾斜度小时,相邻的倾斜度较大的反射面211与倾斜度较小的反射面211的连接处会形成朝向开口凸出的凸起,凸起可能会阻挡在第一凹部210中部的反射面211形成的部分反射光导致显示画面的亮度不均匀。而在靠近开口边缘的反射面211的倾斜度比靠近第一凹部210中部的反射面211的倾斜度大时,相邻的倾斜度较大的反射面211与倾斜度较小的反射面211的连接处会形成背离开口方向的凹陷,不会对反射光有阻挡效果。因此,反射面211按照上述分布设置,有利于保证光线可在第一凹部210中均匀有效的反射。
第一凹部210的内壁在同一个反射面211的倾斜度可为一致,也可为不一致。当同一个反射面211内的倾斜度不一致时,该反射面211不同位置的倾斜度自临近开口边缘向远离开口边缘逐渐减少。具体的,如图1所示,各反射面211可具体为具有不同倾斜度的平面。由于平坦的电极表面的成型过程对工艺的要求相较于曲面低,因此通过设置具有不同倾斜度的平面拼接形成第一凹部210的内壁,有利于缩短阵列基板的制作过程和保证反射电极200成型的质量。
此外,如图2所示,反射面211还可设置为:至少一个反射面211为平面、且至少一个反射面211为弧面。其中弧面的设置可无需不同倾斜度的平面拼接,便可直接形成连续的具有不同倾斜度的反射面211,避免了反射面211的连接处无法反射光的缺陷,有利于提高光线在第一凹部210中均匀有效的反射。
具体的,定义与所述开口边缘连接的反射面211为第一反射面,定义与所述第一反射面连接的反射面211为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。其中,当第一凹部210由间隔设置的凸起形成时,第一反射面具体为该凸起围设形成上述第一凹部210的表面,第一反射面的数量与凸起的数量一致。当第一凹部210由环形凸起或电极层的反射面凹陷形成时,第一反射面为与开口边缘连接的一斜面。第二反射面与第一反射面拼接形成第一凹部210的内壁。第二反射面不同的位置具有不同的倾斜度,弧面的倾斜度为弧面上某一点的切线与基板100之间夹角的大小。第二反射面中部的倾斜度小于第二反射面边缘的倾斜度,第一反射面的倾斜度大于第二反射面中任一个位置切线的倾斜度。通过上述方式,将与开口边缘连接的第一反射面设置为平面,将位于第一凹部210中部且与第一反射面连接的第二反射面设置为弧面,有利于在有限的像素单元的空间位置内通过第一凹部210中部的弧面可实现以最少的反射面211便可得到较广的视角范围。其中,第一反射面作为第二反射面与开口边缘的过渡部分,有利于第二反射面在成型时的成型质量控制。
具体的,所述阵列基板包括设于所述基板100的可透光的像素电极层300,一部分所述像素电极层300形成透射电极400,另一部分所述像素电极层300覆盖有反射层500形成所述反射电极200,所述反射层500设有所述第一凹部210。像素电极层300具有由可透光的电极材料形成,反射层500由具有优良的反射特性的材料制成。部分的像素电极层300覆盖有反射层500,使光线不可透过像素电极层300、而是在反射层500上进行反射后实现图像的显示。没有覆盖反射层500的部分像素电极层300则可透过光线实现图像的显示。因此,没有覆盖反射层500的部分像素电极层300在阵列基板上形成透射电极400,覆盖有反射层500的部分像素电极层300在阵列基板上形成反射电极200。具体的,可透光的像素电极层300可由ITO(Indium Tin Oxides,N型氧化物半导体-氧化铟锡)制成,反射层500可由铝制成。
所述像素电极层300覆盖有所述反射层500的表面设有用于成型第二凹部320的凸起部310,所述凸起部310相对于所述像素电极层300位于所述透射电极400的表面凸出,所述反射层500覆盖于所述第二凹部320形成所述反射电极200的第一凹部210。像素电极层300具有两相对设置的第一平面和第二平面,第一平面与基板100贴合,第二平面可设有用于成型第二凹部320的凸起部310,在平面上间隔相对设置的凸起也可为一环形的凸起,凸起部310的内表面与上述第二平面围设形成第二凹部320。反射层500中设有上述第一凹部210。具体的,像素电极层300可整体呈平坦结构,只在反射层500的表面凹陷形成第一凹部210。为了降低反射电极200的整体厚度,像素电极层300覆盖有发射层的位置可设有第二凹部320,反射层500覆盖于第二凹部320形成上述的第一凹部210,反射层500可具体覆盖于第二凹部320上厚度均匀的层状结构。应用该阵列基板的显示面板的液晶层对应透射电极400的所在位置为透射区,对应反射电极200的所在位置为反射区。通过上述方式,可使液晶层在透射区的厚度大于在反射区的厚度,有利于调节已经通过透过区的液晶层的透射光和已经通过反射区的液晶层的反射光的光程差。
其中,凸起部310的顶部可具体设置有平坦部,反射层500同时覆盖于平坦部以及第二凹部320。平坦部的设置有利于增大反射层500与像素电极层300之间的附着力。
具体的,阵列基板还包括栅极600、栅绝缘层700、有源层800以及源极900。其中栅极600设于基板100上,栅绝缘层700覆盖于栅极600上,有源层800设于栅绝缘层700上、且与像素电极层300连接,源极900设于有源层800上。阵列基板的上述结构形成薄膜晶体管,阵列基板上的每个像素单元均设有一个薄膜晶体管,每个薄膜晶体管的栅极600均与阵列基板上的栅极线连接,每个薄膜晶体管的源极900均与阵列基板上的源极线连接。其中,源极900与有源层800接触、有源层800与像素电极层300连接,能够在避免形成源漏金属电极时对金属氧化物半导体层造成破坏,同时,使用像素电极层300与金属氧化物半导体层直接接触,不需要漏极金属,降低了金属氧化物半导体层与像素电极层300之间的电阻,大大提升了显示面板的显示特性。
在成型时,可先在基板100上形成一层未进行图案化的透明电极,通过半色调曝光的方法在该层透明电极上蚀刻出上述的像素电极层300。具体的,采用具有不同光透射率的半色调掩膜进行像素电极层300的蚀刻,半色调掩膜具体包括遮光部和透光部,遮光部的光透射率为0,透光部的光透射率大于半透过部的透射率。半色调掩膜上的透光部、遮光部的分布依据像素电极层300在基板100上的分布位置以及、由像素电极层300形成的透射电极400和反射电极200的分布位置以及投射电极和反射电极200的形状结构等而进行具体设置。在曝光时,遮光部对应的透明电极的厚度不会发生改变,透光部对应的透明电极的厚度会在曝光的过程中逐渐变薄。具体的,可具体设有多个具有不同光透射率的透光部以形成上述像素电极层300的结构。具体的,透明电极蚀刻的深度越大,对应的该位置上透光部的光投射率便越高。
在曝光时,半色调掩膜与层状的透明电极间隔设置。具体的,可通过第一透光部对应形成的部分像素电极层300作为透射电极400,第一透光部的作用下透明电极的厚度变小但仍保留一定的厚度的层状结构以形成透射电极400;通过与第一透光部连接的遮光部对应形成上述凸起部310的顶部;通过与遮光部连接的第二透光部对应形成上述的第二凹部320,其中,第一透光部的光透射率大于第二透光部的光透射率。第二透光部中光透射率可适应具有不同倾斜度的反射面211而对应呈阶段性变化或连续变化。若在基板100上设置薄膜晶体管或无需设置任何层状结构的位置,可通过光透射率最大的第三透光部经过曝光后形成,第三透光部的作用下对层状的透明电极进行曝光,可使透明电极完全为蚀刻,不会在基板100上残留。像素电极层300形成后,在凸起部310的顶部以及第二凹部320的内部覆盖形成厚度均匀的反射层500,以使部分像素电极层300与反射层500结合形成反射电极200。
此外,在像素电极层300形成后,可同样通过半色调曝光方式在基板100上依次形成栅极600、栅绝缘层700、有源层800以及源极900。采用半色调掩膜形成阵列基板上不同形状、分布于阵列基板上不同位置的像素电极层300、栅极600、栅绝缘层700、有源层800以及源极900层等,有利于简化整个阵列基板的制作过程,提高阵列基板、应用该阵列基板的显示面板以及设有该阵列基板的显示器的生产效率。
本申请还提出一种显示面板,该显示面板包括阵列基板、彩膜基板以及设于阵列基板与彩膜基板之间的液晶层。其中,阵列基板包括基板100和形成于基板100上的反射电极200。该反射电极200包括第一凹部210,第一凹部210的内壁设有至少两个连接且具有不同倾斜度的反射面211。阵列基板的具体结构参照上述实施例,由于显示面板采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
此外,本申请还提出一种显示器,该显示器可为可对光线进行反射的液晶显示器,可具体为全反射型的液晶显示器或半透半反型的液晶显示器等。该显示器包括显示面板。显示面板包括阵列基板、彩膜基板以及设于阵列基板与彩膜基板之间的液晶层。其中,阵列基板包括基板100和形成于基板100上的反射电极200。该反射电极200包括第一凹部210,第一凹部210的内壁设有至少两个连接且具有不同倾斜度的反射面211。阵列基板的具体结构参照上述实施例,由于显示器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选的实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种阵列基板,其中,包括:
    基板;以及
    反射电极,所述反射电极设于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
  2. 如权利要求1所述的阵列基板,其中,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
  3. 如权利要求2所述的阵列基板,其中,各所述反射面为具有不同倾斜度的平面。
  4. 如权利要求2所述的阵列基板,其中,至少一个所述反射面为平面,且至少一个所述反射面为弧面。
  5. 如权利要求4所述的阵列基板,其中,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
  6. 如权利要求2所述的阵列基板,其中,所述阵列基板包括设于所述基板的可透光的像素电极层,一部分所述像素电极层形成透射电极,另一部分所述像素电极层覆盖有反射层形成所述反射电极,所述反射层设有所述第一凹部。
  7. 如权利要求6所述的阵列基板,其中,所述反射层的表面凹陷形成所述第一凹部。
  8. 如权利要求6所述的阵列基板,其中,所述像素电极层覆盖有所述反射层的表面设有用于成型第二凹部的凸起部,所述凸起部相对于所述像素电极层位于所述透射电极的表面凸出,所述反射层覆盖于所述第二凹部形成所述反射电极的第一凹部。
  9. 如权利要求8所述的阵列基板,其中,所述凸起部的顶部设有平坦部,所述反射层覆盖于所述平坦部和所述第二凹部。
  10. 如权利要求6所述的阵列基板,其中,所述阵列基板还包括:
    栅极,设于所述基板上;
    栅绝缘层,覆盖于所述栅极上;
    有源层,设于所述栅绝缘层上,且与所述像素电极层连接;以及,
    源极,设于所述有源层上。
  11. 一种显示面板,其中,所述显示面板包括阵列基板,所述阵列基板包括基板和反射电极,所述反射电极设于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
  12. 如权利要求11所述的显示面板,其中,所述显示面板还包括彩膜基板和设于所述阵列基板与所述彩膜基板之间的液晶层 。
  13. 如权利要求12所述的显示面板,其中,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
  14. 如权利要求13所述的显示面板 ,其中,各所述反射面为具有不同倾斜度的平面。
  15. 如权利要求13所述的显示面板 ,其中,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
  16. 一种显示器,其中,所述显示器包括显示面板,所述显示面板包括阵列基板,所述阵列基板包括基板和反射电极,所述反射电极设于所述基板,所述反射电极包括第一凹部,所述第一凹部的内壁设有至少两个连接且具有不同倾斜度的反射面。
  17. 如权利要求16所述的显示器,其中,所述显示面板还包括彩膜基板和设于所述阵列基板与所述彩膜基板之间的液晶层 。
  18. 如权利要求17所述的显示器,其中,所述第一凹部具有开口,所述反射面的倾斜度自邻近所述开口边缘向远离所述开口边缘呈减小设置。
  19. 如权利要求18所述的显示器 ,其中,各所述反射面为具有不同倾斜度的平面。
  20. 如权利要求18所述的显示器 ,其中,定义与所述开口边缘连接的反射面为第一反射面,定义与所述第一反射面连接的反射面为第二反射面,所述第一反射面为平面,所述第二反射面为弧面。
PCT/CN2018/114610 2018-10-08 2018-11-08 显示器及其显示面板、阵列基板 WO2020073404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/245,370 US20200110305A1 (en) 2018-10-08 2019-01-11 Display and display panel, array substrate thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821630183.5 2018-10-08
CN201821630183.5U CN208705629U (zh) 2018-10-08 2018-10-08 显示器及其显示面板、阵列基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,370 Continuation US20200110305A1 (en) 2018-10-08 2019-01-11 Display and display panel, array substrate thereof

Publications (1)

Publication Number Publication Date
WO2020073404A1 true WO2020073404A1 (zh) 2020-04-16

Family

ID=65947539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114610 WO2020073404A1 (zh) 2018-10-08 2018-11-08 显示器及其显示面板、阵列基板

Country Status (2)

Country Link
CN (1) CN208705629U (zh)
WO (1) WO2020073404A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395140A (zh) * 2001-07-04 2003-02-05 Lg.菲利浦Lcd株式会社 透反射(transflective)液晶显示装置的阵列面板
CN1425942A (zh) * 2001-12-11 2003-06-25 富士通显示技术株式会社 反射式液晶显示器及其制造工艺
TW200727482A (en) * 2006-01-02 2007-07-16 Au Optronics Corp Fabricating method for pixel structure
CN101158793A (zh) * 2007-11-19 2008-04-09 友达光电股份有限公司 液晶显示面板
CN102969329A (zh) * 2011-08-30 2013-03-13 三星显示有限公司 含具有反射结构的电极的有机发光显示装置及其制造方法
CN103872072A (zh) * 2012-12-14 2014-06-18 三星显示有限公司 有机发光显示装置及其制造方法
JP2015118150A (ja) * 2013-12-17 2015-06-25 株式会社ジャパンディスプレイ 液晶表示装置
CN107006096A (zh) * 2014-11-27 2017-08-01 夏普株式会社 发光元件、显示面板、显示装置、电子设备、发光元件的制造方法
CN107068891A (zh) * 2015-10-30 2017-08-18 乐金显示有限公司 有机发光二极管显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395140A (zh) * 2001-07-04 2003-02-05 Lg.菲利浦Lcd株式会社 透反射(transflective)液晶显示装置的阵列面板
CN1425942A (zh) * 2001-12-11 2003-06-25 富士通显示技术株式会社 反射式液晶显示器及其制造工艺
TW200727482A (en) * 2006-01-02 2007-07-16 Au Optronics Corp Fabricating method for pixel structure
CN101158793A (zh) * 2007-11-19 2008-04-09 友达光电股份有限公司 液晶显示面板
CN102969329A (zh) * 2011-08-30 2013-03-13 三星显示有限公司 含具有反射结构的电极的有机发光显示装置及其制造方法
CN103872072A (zh) * 2012-12-14 2014-06-18 三星显示有限公司 有机发光显示装置及其制造方法
JP2015118150A (ja) * 2013-12-17 2015-06-25 株式会社ジャパンディスプレイ 液晶表示装置
CN107006096A (zh) * 2014-11-27 2017-08-01 夏普株式会社 发光元件、显示面板、显示装置、电子设备、发光元件的制造方法
CN107068891A (zh) * 2015-10-30 2017-08-18 乐金显示有限公司 有机发光二极管显示装置

Also Published As

Publication number Publication date
CN208705629U (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
TW591270B (en) Liquid crystal display device
TWI649603B (zh) 畫素結構、顯示面板及曲面顯示裝置
WO2017101204A1 (zh) 液晶显示装置
EP4095923A1 (en) Array substrate and display device
JP2015075720A (ja) 電気光学装置および電子機器
WO2020017757A1 (ko) 표시 장치
WO2017152446A1 (zh) 一种液晶显示面板及装置
WO2020135023A1 (zh) 显示装置、阵列基板及其工艺方法
WO2021184506A1 (zh) 液晶显示面板
JPH0980485A (ja) 液晶表示装置
WO2019033593A1 (zh) 透反式液晶显示装置及其制作方法
WO2018209796A1 (zh) 液晶显示面板及其制造方法以及曲面显示设备
WO2020073438A1 (zh) 显示面板和显示装置
WO2020062491A1 (zh) 彩色滤光片和显示面板
WO2020124896A1 (zh) 液晶显示面板
WO2017181463A1 (zh) 阵列基板及其制造方法、液晶显示器
WO2020062518A1 (zh) 彩膜基板和显示面板
WO2017177537A1 (zh) 一种液晶显示面板及液晶显示器
WO2020073404A1 (zh) 显示器及其显示面板、阵列基板
WO2019075843A1 (zh) 显示面板及显示面板的制作方法
WO2020103252A1 (zh) 基板、显示面板和显示装置
WO2019161671A1 (zh) 显示基板及其制造方法和显示面板
WO2017031776A1 (zh) 一种液晶显示面板及装置
JP6508255B2 (ja) 電気光学装置および電子機器
WO2023226088A1 (zh) 显示面板及显示终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18936588

Country of ref document: EP

Kind code of ref document: A1