WO2020071486A1 - 光学センサー用組成物 - Google Patents

光学センサー用組成物

Info

Publication number
WO2020071486A1
WO2020071486A1 PCT/JP2019/039121 JP2019039121W WO2020071486A1 WO 2020071486 A1 WO2020071486 A1 WO 2020071486A1 JP 2019039121 W JP2019039121 W JP 2019039121W WO 2020071486 A1 WO2020071486 A1 WO 2020071486A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
mass
meth
atom
Prior art date
Application number
PCT/JP2019/039121
Other languages
English (en)
French (fr)
Inventor
耕治 畠山
裕亮 村田
泰典 川部
浩平 和田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201980064495.5A priority Critical patent/CN112789526B/zh
Priority to KR1020217009341A priority patent/KR20210071971A/ko
Priority to CN202310508376.2A priority patent/CN116520638A/zh
Priority to CN202310508371.XA priority patent/CN116520637A/zh
Priority to JP2020550546A priority patent/JP7424300B2/ja
Publication of WO2020071486A1 publication Critical patent/WO2020071486A1/ja
Priority to JP2023196021A priority patent/JP2024020454A/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten

Definitions

  • the present invention relates to a composition for an optical sensor.
  • Video cameras, digital cameras, mobile phones with camera functions, etc. are equipped with a solid-state image sensor as an optical sensor.
  • a solid-state imaging device specifically, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary MOS) image sensor, and the like are known.
  • the sensitivities of the photodiodes provided in these solid-state imaging devices range from a visible light region to an infrared region. For this reason, a filter for blocking infrared rays is provided in the solid-state imaging device. With this optical filter (infrared cutoff filter), the sensitivity of the solid-state imaging device can be corrected so as to approach human visibility.
  • a filter for blocking infrared rays may be provided in an optical sensor other than the solid-state imaging device.
  • the optical filter contains a dye or pigment as an infrared shielding agent.
  • the infrared shielding agent is required to have a property of absorbing infrared rays while sufficiently transmitting visible light.
  • use of a phthalocyanine compound as a favorable shielding agent for near-infrared rays has been studied (see JP-A-2008-201952).
  • optical filters are not sufficiently satisfactory in terms of visible light transmission and infrared shielding properties.
  • an optical filter is used as an infrared cutoff filter of an optical sensor such as a solid-state imaging device, not only the visible light transmittance is high and the infrared transmittance is low, but also the wavelength region where the visible light transmittance is high. It is required that the wavelength region where the infrared light transmittance is low is wide, and that the wavelength region where the visible light transmittance is high and the wavelength region where the infrared light transmittance is low are close to each other.
  • an optical filter having such characteristics is used for an optical sensor such as a solid-state imaging device, sensitivity, a noise shielding function, color reproducibility, and the like can be improved.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide an optical filter for an optical sensor having few defects such as foreign substances and having favorable characteristics regarding visible light transmission and infrared shielding properties.
  • An object of the present invention is to provide a composition for an optical sensor that can be formed.
  • the invention made to solve the above-mentioned problem is a composition for an optical sensor containing a phthalocyanine compound represented by the following formula (1) and a binder resin.
  • a plurality of Rs are each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • a plurality of Xs are each independently A plurality of Xs may be bonded to each other to form an aromatic ring together with a carbon chain to which they are bonded, and M is a hydrogen atom, a divalent divalent A metal atom or a derivative of a trivalent or tetravalent metal atom.
  • a plurality of n's are each independently an integer of 3 to 6.
  • a composition for optical sensors containing a phthalocyanine compound represented by the following formula (2) is a composition for optical sensors containing a phthalocyanine compound represented by the following formula (2).
  • a plurality of Rs are each independently an alkyl group having a substituent or an aryl group having a substituent.
  • a plurality of Xs are each independently a hydrogen atom, a halogen atom or A plurality of Xs may be bonded to each other to form an aromatic ring together with the carbon chain to which they are bonded, and M is two hydrogen atoms, a divalent metal atom, or a trivalent or tetravalent atom
  • a plurality of n are each independently an integer of 3 to 6.
  • composition (I) for an optical sensor contains [A1] a phthalocyanine compound and [B] a binder resin.
  • the composition preferably further contains [C] an infrared shielding agent which is a metal oxide, a copper compound (excluding the [A] phthalocyanine compound), or a combination thereof.
  • the phthalocyanine compound is a compound represented by the following formula (1).
  • the phthalocyanine compound has a high transmittance in a visible light region (for example, a wavelength region of 430 nm to 580 nm), and a high shielding property in a near infrared region (for example, a wavelength region of 700 nm to 800 nm).
  • the phthalocyanine compound is excellent in compatibility with other components. Since the composition (I) contains such a [A1] phthalocyanine compound, it can form an optical filter having few defects such as foreign substances and having favorable characteristics regarding visible light transmittance and infrared shielding property. .
  • a plurality of Rs are each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • a plurality of Xs are each independently a hydrogen atom, a halogen atom or an alkyl group. A plurality of Xs may be bonded to each other to form an aromatic ring together with the carbon chain to which they are bonded.
  • M is a derivative of two hydrogen atoms, a divalent metal atom, or a trivalent or tetravalent metal atom.
  • a plurality of n are each independently an integer of 3 to 6.
  • alkyl group represented by R examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, 2-methylpropyl, 1-methylpropyl, t-butyl and the like.
  • examples thereof include a linear or branched alkyl group having 1 to 30 carbon atoms. As a maximum of carbon number of this alkyl group, 12 is preferred, 8 is more preferred, and 4 is still more preferred.
  • aryl group represented by R examples include a monovalent group composed of only an aromatic ring and a monovalent group formed by bonding an alkyl group to an aromatic ring.
  • Specific examples of the aryl group represented by R include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthracenyl group.
  • a group composed of only an aromatic ring is preferable, a phenyl group and a naphthyl group are more preferable, and a phenyl group is more preferable from the viewpoint of visible light transmittance.
  • R is preferably a substituted or unsubstituted aryl group from the viewpoint of the heat resistance of the obtained optical filter.
  • the alkyl group and the aryl group represented by the plurality of Rs may or may not have a substituent, but preferably have a substituent. That is, the plurality of Rs are preferably each independently an alkyl group having a substituent or an aryl group having a substituent.
  • the compatibility of the [A1] phthalocyanine compound is further increased, defects such as foreign matters of the obtained optical filter are further suppressed, and visible light transmittance and infrared light shielding properties are obtained. The properties with respect to are also better. Further, when the plurality of Rs have a substituent, the heat resistance of the obtained optical filter is also improved.
  • the substituent which the alkyl group and the aryl group represented by each of the plurality of R may have may be a hydrocarbon group such as an alkenyl group and an alkynyl group, but may be a group having a hetero atom.
  • a hetero atom refers to an atom other than a hydrogen atom and a carbon atom.
  • the heat resistance of the obtained optical filter is also improved.
  • a halogen atom, an oxygen atom and a sulfur atom are preferable, and a halogen atom and an oxygen atom are more preferable.
  • Examples of the substituent having a hetero atom include a halogen atom, an alkoxy group, an alkylthio group, a cyano group, a nitro group, a carboxy group, a hydroxy group, a thiol group, and an amino group.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom, and a fluorine atom is preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, and a propoxy group.
  • a methoxy group and an ethoxy group are preferred, and a methoxy group is more preferred.
  • alkylthio group examples include a methylthio group (CH 3 —S—), an ethylthio group (C 2 H 5 —S—), a propylthio group (C 3 H 7 —S—), and the like. Is more preferred.
  • a halogen atom, an alkoxy group and an alkylthio group are preferable, and a halogen atom and an alkoxy group are more preferable. Further, a halogen atom, a methoxy group, an ethoxy group, a methylthio group, an ethylthio group or a combination thereof is also preferable.
  • the plurality of Rs may be the same or different, but are preferably the same.
  • halogen atom represented by X examples include those exemplified as the halogen atom as the substituent.
  • alkyl group represented by X those exemplified as the alkyl group represented by R can be exemplified.
  • the plurality of Xs may be bonded to each other.
  • two Xs bonded to the same benzene ring are bonded to each other and form an aromatic ring together with the carbon chain to which they are bonded.
  • the aromatic ring formed include a benzene ring, a naphthalene ring, and an anthracene ring.
  • the hydrogen atom of these aromatic rings may be substituted with a hydrocarbon group or another substituent.
  • X a hydrogen atom is preferable.
  • a plurality of Xs may be the same or different, but are preferably the same.
  • divalent metal atom represented by M examples include Pd, Cu, Zn, Pt, Ni, Co, Fe, Mn, Sn, In, Ru, Rh, and Pb.
  • a divalent metal atom refers to a metal atom that can become a divalent cation.
  • a derivative of a metal atom refers to an atomic group including a metal atom.
  • a trivalent metal atom refers to a metal atom that can become a trivalent cation. Examples of the trivalent metal atom include Al and In.
  • a tetravalent metal atom refers to a metal atom that can become a tetravalent cation. Examples of the tetravalent metal atom include Si, Ge, and Sn. Note that the metal atom includes a metalloid atom.
  • Examples of the derivative of the trivalent or tetravalent metal atom represented by M include AlCl, AlBr, AlI, AlOH, InCl, InBr, InI, InOH, SiCl 2 , SiBr 2 , SiI 2 , Si (OH) 2 , GeCl 2 , GeBr 2 , GeI 2 , SnCl 2 , SnBr 2 , SnI 2 , Sn (OH) 2 , VO, TiO, and the like.
  • M is preferably H 2 (two hydrogen atoms), Pd, Cu, Zn, Pt, Ni, Co, Fe, Mn, Sn, In, SnCl 2 , AlCl, VO and TiO, more preferably VO.
  • the lower limit of n is preferably 4.
  • the upper limit of n is preferably 5, and more preferably 4.
  • a plurality of n may be the same or different, but are preferably the same.
  • the lower limit of the maximum absorption wavelength of the phthalocyanine compound is preferably 680 nm, more preferably 700 nm, and even more preferably 720 nm.
  • the upper limit of the maximum absorption wavelength is preferably 1,000 nm, more preferably 900 nm, further preferably 800 nm, and still more preferably 750 nm.
  • the maximum absorption wavelength of the phthalocyanine compound is in the above range, it is possible to form an optical filter having better characteristics with respect to visible light transmittance and infrared shielding property.
  • the method for synthesizing [A1] phthalocyanine compound is not particularly limited, and can be synthesized by combining known methods. For example, it can be synthesized by reacting a phthalonitrile-based compound represented by the following formula (i) or a 1,3-diiminoisone indoline-based compound represented by the formula (ii) with a metal or a metal derivative. it can.
  • R, X and n have the same meanings as in the formula (1).
  • metal or metal derivative examples include Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, Pb, and halides and carboxylate thereof. , Sulfate, nitrate, carbonyl compound, oxide, complex and the like.
  • metal halides and carboxylate salts are particularly preferably used.
  • the reaction temperature is, for example, 60 to 300 ° C, preferably 100 to 220 ° C.
  • the reaction time is, for example, 30 minutes to 72 hours, preferably 1 hour to 48 hours.
  • a solvent As a solvent used for the reaction, an organic solvent having a boiling point of 60 ° C. or higher is preferable, and an organic solvent having a boiling point of 80 ° C. or higher is more preferable.
  • organic solvent used examples include methanol, ethanol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, n-hexanol, 1-heptanol, 1-octanol, 1-dodecanol, benzyl alcohol, and ethylene.
  • Alcohols such as glycol, propylene glycol, ethoxyethanol, propoxyethanol, butoxyethanol, dimethylethanol and diethylethanol, dichlorobenzene, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, DMI (1,3-dimethyl-2-imidazo) High-boiling solvents such as lydinone) and urea.
  • the reaction is carried out in the presence or absence of a catalyst, but preferably in the presence of a catalyst.
  • a catalyst include inorganic catalysts such as ammonium molybdate, DBU (1,8-diazabicyclo [5.4.0] undec-7-ene), DBN (1,5-diazabicyclo [4.3.0] nona-).
  • Basic organic catalysts such as 5-ene can be used.
  • a phthalocyanine compound in which M in the formula (1) is two hydrogen atoms a phthalonitrile-based compound represented by the formula (i) or a 1,3-diiminoisone indoline-based compound represented by the formula (ii)
  • the compound can be produced by reacting a compound with metallic sodium or metallic potassium under the above reaction conditions, and then subjecting the central metal sodium or potassium to elimination treatment with hydrochloric acid, sulfuric acid or the like.
  • the solvent is distilled off, or the reaction solution is discharged into a poor solvent for the phthalocyanine compound to precipitate the desired product, and the precipitate is filtered to obtain a phthalocyanine compound represented by the formula (1).
  • the target product with higher purity can be obtained by further purifying by a known purification method such as recrystallization or column chromatography.
  • the phthalonitrile compound represented by the formula (i) and the 1,3-diiminoisone indoline compound represented by the formula (ii) can be synthesized with reference to a known method. For example, it can be synthesized with reference to the method described in JP-T-2003-516421.
  • the lower limit of the content of the [A1] phthalocyanine compound in the total solid content (all components other than the solvent) in the composition (I) is preferably 0.1% by mass, more preferably 0.5% by mass, and 1% by mass. % By mass is more preferred, and 2% by mass is even more preferred. On the other hand, the upper limit of this content is preferably 30% by mass, more preferably 15% by mass, still more preferably 10% by mass, and even more preferably 8% by mass. [A1] When the content of the phthalocyanine compound is within the above range, the properties of the obtained optical filter with respect to the visible light transmittance and the infrared ray shielding property are further improved.
  • one type may be used alone, or two or more types may be used in combination.
  • the binder resin is a component that holds the [A1] phthalocyanine compound and the like in the obtained optical filter and serves as a matrix.
  • the binder resin preferably has a polymerizable group, and more preferably has a structural unit containing a polymerizable group, in order to improve strength, sensitivity, heat resistance and the like.
  • the polymerizable group include an oxiranyl group, an oxetanyl group, a (meth) acryloyl group, a vinyl group, an alkoxysilyl group, and the like, and an oxiranyl group, an oxetanyl group, a (meth) acryloyl group, an alkoxysilyl group, or a combination thereof. Is preferable, and a (meth) acryloyl group is more preferable.
  • Monomers that give structural units containing a polymerizable group include glycidyl (meth) acrylate, 3- (meth) acryloyloxymethyl-3-ethyloxetane, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-epoxytricyclo [5.2.1.0 2.6 ] decyl (meth) acrylate, 3-methacryloxypropyltriethoxysilane and the like can be mentioned.
  • a resin having a structural unit having a carboxy group by reacting a resin having a structural unit having a carboxy group with a compound having a group that reacts with a carboxy group (oxiranyl group, oxetanyl group, etc.) and a polymerizable group such as a (meth) acryloyl group. Also, a structural unit containing a polymerizable group can be introduced.
  • the lower limit of the content of the structural unit having a polymerizable group in the binder resin is preferably 5% by mass, more preferably 10% by mass, and preferably 15% by mass, based on 100% by mass of the [B] binder resin. Even more preferred is 30% by weight, 50% by weight or 75% by weight may be even more preferred.
  • the upper limit of the content is preferably 95% by mass, more preferably 90% by mass, and still more preferably 85% by mass.
  • the binder resin preferably has a ring structure in the main chain in order to improve heat resistance.
  • the number of ring members of this ring structure may be, for example, 3 to 12, but is preferably 5 to 8.
  • Examples of the monomer that provides a structural unit having a ring structure in the main chain include an N-substituted maleimide-based monomer and a cycloolefin.
  • the N-substituted maleimide-based monomer is a compound in which a hydrogen atom bonded to a nitrogen atom in maleimide is substituted with a substituent.
  • a hydrocarbon group is preferable, a hydrocarbon group having a ring structure is more preferable, and an aromatic hydrocarbon group is more preferable.
  • Examples of the N-substituted maleimide-based monomer include N-phenylmaleimide, N-naphthylmaleimide, N-cyclohexylmaleimide, N-cyclooctylmaleimide, N-methylmaleimide and the like.
  • cycloolefin examples include norbornene-based olefin, tetracyclododecene-based olefin, dicyclopentadiene-based olefin, and the like.
  • a phenol resin or the like can be used as the binder resin having a ring structure in the main chain.
  • the content of the structural unit containing a ring structure in the main chain of the binder resin is preferably from 1% by mass to 50% by mass, more preferably from 5% by mass to 100% by mass of the [B] binder resin. 30% by mass.
  • the binder resin preferably contains an acidic group.
  • the acidic group include a carboxy group, an acid anhydride group, a phenolic hydroxyl group, and a sulfo group. Among the above, a carboxy group is preferable as the acidic group.
  • the binder resin is preferably a resin containing a structural unit having one or more acidic groups.
  • good alkali solubility can be exhibited.
  • alkali development can be performed, and an optical filter having a desired pattern shape can be formed.
  • Examples of the monomer that provides a structural unit containing an acidic group include monomers having a carboxy group, for example, unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid, ⁇ -chloroacrylic acid, and cinnamic acid; Unsaturated dicarboxylic acids such as acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, and mesaconic acid or anhydrides thereof; monosuccinic acid [2- (meth) acryloyloxyethyl] Mono [(meth) acryloyloxyalkyl] esters of divalent or higher polycarboxylic acids such as mono [2- (meth) acryloyloxyethyl phthalate]; ⁇ -carboxypolycaprolactone mono (meth) acrylate Mono (meth) acrylate of a polymer having a carboxy group and
  • Examples of the monomer having a phenolic hydroxyl group include 4-vinylphenol, 4-isopropenylphenol, and 4-hydroxyphenyl (meth) acrylate.
  • the content of the structural unit containing an acidic group in the binder resin is preferably from 1% by mass to 50% by mass, more preferably from 5% by mass to 30% by mass based on 100% by mass of the [B] binder resin. It is.
  • the binder resin may further contain other structural units.
  • the monomer that provides another structural unit include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, p-hydroxystyrene, p-hydroxy- ⁇ -methylstyrene, p-vinylbenzyl glycidyl ether, and acenaphthylene; Methyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, allyl (meth) acrylate, benzyl (meth) acrylate, polyethylene glycol (polymerization degree 2 to 10) Methyl ether (meth) acrylate, polypropylene glycol (degree of polymerization 2-10) methyl ether (meth) acrylate, polyethylene glycol (degree of polymerization 2-10) mono (meth) acrylate,
  • the binder resin can be obtained by polymerizing each of the above-mentioned monomers and the like by a known method.
  • the binder resin may be used alone or in combination of two or more.
  • the polystyrene-equivalent weight average molecular weight (Mw) of the binder resin is preferably from 2,000 to 500,000, more preferably from 3,000 to 100, as measured by gel permeation chromatography (GPC). 4,000, more preferably 4,000 to 30,000.
  • Mw is in the above range, it is possible to obtain a binder resin [B] having excellent solubility in a solvent or a developing solution and having sufficient mechanical properties.
  • the lower limit of the content of the binder resin [B] in the total solid content in the composition (I) is preferably 5% by mass, more preferably 10% by mass, and still more preferably 20% by mass.
  • the upper limit of this content is preferably 70% by mass, more preferably 60% by mass, and still more preferably 50% by mass.
  • the infrared shielding agent is a metal oxide, a copper compound (excluding [A1] phthalocyanine compound), or a combination thereof.
  • a compound having a maximum absorption wavelength in the range of 800 nm or more and 2000 nm or less is preferable.
  • Examples of the metal oxide as an infrared shielding agent include, for example, a tungsten oxide compound, quartz (SiO 2 ), magnetite (Fe 3 O 4 ), alumina (Al 2 O 3 ), titania (TiO 2 ), and zirconia ( ZrO 2 ), spinel (MgAl 2 O 4 ) and the like.
  • Examples of the copper compound as the infrared shielding agent include a copper phthalocyanine compound and other copper complexes.
  • Examples of the copper phthalocyanine-based compound include copper phthalocyanine, chlorinated copper phthalocyanine, chlorinated brominated copper phthalocyanine, and brominated copper phthalocyanine.
  • the infrared shielding agent a metal oxide is preferable, and a tungsten oxide compound is more preferable.
  • Tungsten oxide-based compounds are infrared shielding agents that have a high absorption for infrared rays (especially, an infrared ray having a wavelength of about 800 nm or more and 1200 nm or less) (that is, a high shielding property against infrared rays) and a low absorption for visible light. is there. Therefore, when the composition (I) contains a tungsten oxide-based compound, it is possible to enhance infrared shielding properties while maintaining good visible light transmittance of the obtained optical filter.
  • the infrared shielding agent one type may be used alone, or two or more types may be used in combination.
  • the tungsten oxide compound is more preferably a tungsten oxide compound represented by the following formula (3).
  • A is a metal element. 0.001 ⁇ x ⁇ 1.1. 2.2 ⁇ y ⁇ 3.0.
  • Examples of the metal element represented by A in the above formula (3) include alkali metals, alkaline earth metals, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, and Cu. , Ag, Au, Zn, Cd, Al, Ga, In, Tl, Sn, Pb, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and the like.
  • the metal element represented by A may be one kind or two or more kinds.
  • AA is preferably an alkali metal, more preferably Rb and Cs, and further preferably Cs. That is, the metal oxide is more preferably cesium tungsten oxide.
  • x in the above formula (3) is 0.001 or more, infrared rays can be sufficiently shielded.
  • the lower limit of x is preferably 0.01, and more preferably 0.1.
  • the upper limit of x is preferably 1, and more preferably 0.5.
  • y in the above formula (3) is 2.2 or more, the chemical stability as a material can be further improved.
  • the lower limit of y is preferably 2.5.
  • infrared rays can be sufficiently shielded.
  • tungsten oxide-based compound represented by the formula (3) examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , and Ba 0.33 WO 3.
  • Cs 0.33 WO 3 and Rb 0.33 WO 3 are preferred, and Cs 0.33 WO 3 is more preferred.
  • the infrared shielding agent is preferably fine particles.
  • the upper limit of the average particle diameter (D50) of the infrared shielding agent is preferably 500 nm, more preferably 200 nm, further preferably 50 nm, and still more preferably 30 nm. When the average particle diameter is equal to or less than the upper limit, the visible light transmittance can be further increased.
  • the average particle diameter of the infrared ray shielding agent [C] is usually 1 nm or more, and may be 10 nm or more, for reasons such as easy handling during production.
  • the infrared shielding agent can be synthesized by a known method, but is available as a commercial product.
  • the metal oxide is, for example, a tungsten oxide-based compound
  • the tungsten oxide-based compound can be obtained by, for example, a method of heat-treating a tungsten compound in an inert gas atmosphere or a reducing gas atmosphere.
  • the tungsten oxide-based compound is also available as a dispersion of tungsten fine particles such as “YMF-02” manufactured by Sumitomo Metal Mining Co., Ltd.
  • the lower limit of the content of the infrared shielding agent [C] in the total solid content in the composition (I) is preferably 1% by mass, more preferably 5% by mass, still more preferably 10% by mass, and preferably 15% by mass. Even more preferred.
  • the upper limit of the content is preferably 70% by mass, more preferably 50% by mass, still more preferably 40% by mass, and even more preferably 30% by mass.
  • the lower limit of the mass ratio of the content of the infrared shielding agent [C] to the content of the [A1] phthalocyanine compound ([C] / [A1]) is preferably 1, preferably 2, and more preferably 3.
  • the upper limit of the mass ratio ([C] / [A1]) is preferably 40, more preferably 20, and still more preferably 10.
  • composition (I) preferably further contains [D] a dispersant.
  • the dispersing agent enhances the uniform dispersibility of the [C] infrared shielding agent (particularly, metal oxide), and improves the properties of the obtained optical filter with respect to the visible light transmittance and the infrared shielding property.
  • dispersant examples include urethane dispersants, polyethyleneimine dispersants, polyoxyethylene alkyl ether dispersants, polyoxyethylene alkylphenyl ether dispersants, polyethylene glycol diester dispersants, and sorbitan fatty acid ester dispersants.
  • Dispersants, polyester dispersants, (meth) acrylic dispersants and the like can be mentioned. Among these, (meth) acrylic dispersants are preferred.
  • the dispersant is preferably a block copolymer.
  • Dispersants can be obtained commercially, for example, as (meth) acrylic dispersants, Disperbyk-2000, Disperbyk-2001, BYK-LPN6919, BYK-LPN21116, BYK-LPN22102 (above, BYK-Chemie (BYK ), And Disperbyk-161, Disperbyk-162, Disperbyk-165, Disperbyk-167, Disperbyk-170, Disperbyk-182, Disperbyk-2164 (manufactured by BYK SKYS) 76500 (manufactured by Lubrizol Co., Ltd.), as a polyethyleneimine-based dispersant, Solsperse 24000 (manufactured by Lubrizol Co., Ltd.), polyester-based component As agents, Ajisper PB821, Ajisper PB822, Ajisper PB880, Ajisper PB881 (or, Ajinomoto Fine-Techno Co., Ltd.
  • the lower limit of the amine value of the dispersant is preferably 10 mgKOH / g, more preferably 40 mgKOH / g, and still more preferably 80 mgKOH / g.
  • the upper limit of the amine value is preferably 300 mgKOH / g, more preferably 200 mgKOH / g, and still more preferably 160 mgKOH / g.
  • the lower limit of the content of the dispersant is preferably 5 parts by mass, more preferably 10 parts by mass, and still more preferably 20 parts by mass, based on 100 parts by mass of the infrared shielding agent [C].
  • the upper limit of the content is preferably 200 parts by mass, more preferably 100 parts by mass, and still more preferably 60 parts by mass.
  • the composition (I) preferably further contains [E] a polymerizable compound.
  • the polymerizable compound refers to a compound having two or more polymerizable groups.
  • the binder resin [B] having two or more polymerizable groups is not included in the polymerizable compound [E]. Examples of the polymerizable group include an ethylenically unsaturated group, an oxiranyl group, an oxetanyl group, and an N-alkoxymethylamino group.
  • polymerizable compound a compound having two or more (meth) acryloyl groups and a compound having two or more N-alkoxymethylamino groups are preferable, and having two or more (meth) acryloyl groups. Compounds are more preferred.
  • the polymerizable compound can be used alone or in combination of two or more.
  • Examples of the compound having two or more (meth) acryloyl groups include a polyfunctional (meth) acrylate which is a reaction product of an aliphatic polyhydroxy compound and (meth) acrylic acid, and a polyfunctional (meth) acrylate modified with caprolactone.
  • a polyfunctional (meth) acrylate having a carboxyl group which is a reaction product with the above.
  • examples of the aliphatic polyhydroxy compound include divalent aliphatic polyhydroxy compounds such as ethylene glycol, propylene glycol, polyethylene glycol and polypropylene glycol, and glycerin, trimethylolpropane, pentaerythritol, and dipentaerythritol. Trivalent or higher aliphatic polyhydroxy compounds can be exemplified.
  • Examples of the (meth) acrylate having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and glycerol dimethacrylate. And the like.
  • Examples of the polyfunctional isocyanate include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethylene diisocyanate, and isophorone diisocyanate.
  • the acid anhydride examples include succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, dibasic acid anhydrides such as hexahydrophthalic anhydride, pyromellitic anhydride, and biphenyltetracarboxylic acid.
  • examples thereof include tetrabasic dianhydrides such as acid dianhydride and benzophenonetetracarboxylic dianhydride.
  • the compound having two or more (meth) acryloyl groups include, for example, ⁇ -carboxypolycaprolactone mono (meth) acrylate, ethylene glycol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, , 9-Nonanediol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, bisphenoxyethanol full orange (meth) acrylate, dimethylol tricyclode Candi (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, 2- (2'-vinyloxyethoxy) ethyl (meth) acrylate, trimethylolpropane Li (meth) acrylate, pentaerythritol tri (meth) acrylate,
  • polyfunctional (meth) acrylates are preferable, and polyfunctional (meth) acrylates having three to ten (meth) acryloyl groups are more preferable.
  • trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate are preferred.
  • Compounds having two or more N-alkoxymethylamino groups include, for example, compounds having a melamine structure, a benzoguanamine structure, and a urea structure.
  • Specific examples of the compound having two or more N-alkoxymethylamino groups include N, N, N ′, N ′, N ′′, N ′′ -hexa (alkoxymethyl) melamine, N, N, N ′ , N'-tetra (alkoxymethyl) benzoguanamine, N, N, N ', N'-tetra (alkoxymethyl) glycoluril and the like.
  • the lower limit of the content of the polymerizable compound [E] in the total solid content in the composition (I) is preferably 5% by mass, more preferably 10% by mass, and still more preferably 20% by mass.
  • the upper limit of the content is preferably 60% by mass, more preferably 50% by mass, and still more preferably 40% by mass.
  • the composition (I) preferably contains [F] a polymerization initiator.
  • the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator, and a photopolymerization initiator is preferable. Thereby, photosensitivity (radiation sensitivity) can be imparted to the composition (I).
  • the photopolymerization initiator refers to a compound which generates an active species capable of initiating polymerization such as a polymerizable compound [E] upon exposure to radiation such as visible light, ultraviolet light, far ultraviolet light, an electron beam, and X-ray.
  • the polymerization initiator may be used alone or in combination of two or more.
  • Examples of the polymerization initiator include thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds, O-acyl oxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketones Compounds, polynuclear quinone compounds, diazo compounds, imidosulfonate compounds, onium salt compounds, and the like.
  • thioxanthone compounds, acetophenone compounds, biimidazole compounds, triazine compounds and O-acyl oxime compounds are preferred, and O-acyl oxime compounds are more preferred.
  • thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, And 4-diisopropylthioxanthone.
  • acetophenone-based compounds examples include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butane -1-one, 2- (4-methylbenzyl) -2- (dimethylamino) -1- (4-morpholinophenyl) butan-1-one and the like.
  • biimidazole compound examples include 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole and 2,2'-bis (2,4 -Dichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5 '-Tetraphenyl-1,2'-biimidazole and the like can be mentioned.
  • hydrogen donor means a compound capable of donating a hydrogen atom to a radical generated from a biimidazole compound upon exposure.
  • examples of the hydrogen donor include mercaptan-based hydrogen donors such as 2-mercaptobenzothiazole and 2-mercaptobenzoxazole; and 4,4'-bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone.
  • Amine-based hydrogen donors can be mentioned.
  • triazine-based compound examples include compounds described in paragraphs [0063] to [0065] of JP-B-57-6096 and JP-A-2003-238898.
  • O-acyloxime-based compound examples include 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime) and ethanone-1- [9-ethyl-6- (2- Methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazole- 3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- ⁇ 2-methyl-4- (2,2-dimethyl-1,3-dioxolanyl) methoxybenzoyl ⁇ -9H -Carbazol-3-yl] -1- (O-acetyloxime) and the like.
  • Commercially available O-acyl oxime compounds include NCI
  • a sensitizer may be used in combination.
  • examples of such a sensitizer include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, and 4-dimethylamino Ethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,5-bis (4-diethylaminobenzal) cyclohexanone, 7-diethylamino-3- (4-diethylaminobenzoyl) coumarin, 4- (diethylamino) chalcone, etc. Can be mentioned.
  • the lower limit of the content of the [F] polymerization initiator in the total solid content in the composition (I) is preferably 1% by mass, and more preferably 3% by mass.
  • the upper limit of the content is preferably 30% by mass, and more preferably 10% by mass.
  • the composition (I) may contain a known organic dye other than [A1] a phthalocyanine compound and [B] an organic dye as a copper compound which is an infrared shielding agent.
  • organic dyes include diiminium compounds, squarylium compounds, cyanine compounds, naphthalocyanine compounds, quaterylene compounds, aminium compounds, iminium compounds, azo compounds, anthraquinone compounds, porphyrin compounds, pyrrolopyrrole compounds, oxonol compounds, croconium compounds, hexaphyllin And the like (excluding those containing a copper atom).
  • phthalocyanine compounds other than [A1] phthalocyanine compounds and [B] phthalocyanine compounds as infrared shielding agents can be used.
  • the lower limit of the maximum absorption wavelength of the phthalocyanine compound is preferably 600 nm, more preferably 650 nm.
  • the upper limit of the maximum absorption wavelength of the [a] phthalocyanine compound is preferably 900 nm, more preferably 850 nm, more preferably 800 nm, or even more preferably 750 nm.
  • the lower limit of the difference between the maximum absorption wavelength of [A1] phthalocyanine compound and the maximum absorption wavelength of [a] phthalocyanine compound is preferably 10 nm, more preferably 30 nm.
  • the upper limit of this difference is preferably 100 nm, more preferably 80 nm, and still more preferably 60 nm.
  • Examples of the phthalocyanine compound include various conventionally known phthalocyanine compounds.
  • the lower limit of the content of the [A1] phthalocyanine compound in all the organic dyes in the composition (I) is preferably 50% by mass, more preferably 70% by mass, more preferably 80% by mass, and sometimes 90% by mass. % May be more preferable, and 99% by mass may be more preferable. It may be preferable that the organic dye substantially contains only the [A1] phthalocyanine compound.
  • the composition (I) can improve productivity by reducing the content of other organic dyes in this manner.
  • composition (I) may contain various additives as necessary in addition to the components [A1] to [F] and other organic dyes.
  • additives examples include a surfactant, an adhesion promoter, an antioxidant, an ultraviolet absorber, a coagulation inhibitor, a residue improver, a developability improver, and a reaction regulator.
  • surfactant examples include a fluorine surfactant and a silicone surfactant.
  • adhesion promoter examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy
  • Examples thereof include silane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • Antioxidants include 2,2-thiobis (4-methyl-6-t-butylphenol), 2,6-di-t-butylphenol, pentaerythritol tetrakis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2, 4,8,10-tetraoxa-spiro [5.5] undecane, thiodiethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and the like can be mentioned.
  • the content of the antioxidant can be usually 0.01 part by mass or more and 10 parts by mass or less based on 100 parts by mass of the phthalocyanine compound [A].
  • UV absorber examples include 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, alkoxybenzophenones and the like.
  • anti-agglomeration agent examples include sodium polyacrylate.
  • Residue improvers include malonic acid, adipic acid, itaconic acid, citraconic acid, fumaric acid, mesaconic acid, 2-aminoethanol, 3-amino-1-propanol, 5-amino-1-pentanol, 3-amino- Examples thereof include 1,2-propanediol, 2-amino-1,3-propanediol, and 4-amino-1,2-butanediol.
  • Examples of the developability improver include mono [2- (meth) acryloyloxyethyl succinate], mono [2- (meth) acryloyloxyethyl phthalate], ⁇ -carboxypolycaprolactone mono (meth) acrylate and the like. Can be mentioned.
  • reaction regulator examples include polyfunctional thiols.
  • the lower limit of the content of the above-mentioned components [A1] to [F] and other components other than the organic dye in the total solid content in the composition (I) is preferably 0.1% by mass, and more preferably 1% by mass. % Is more preferred.
  • the upper limit of this content is preferably 10% by mass, more preferably 5% by mass.
  • composition (I) is usually prepared as a liquid composition containing a solvent (dispersion medium).
  • the solvent can be appropriately selected and used as long as it disperses or dissolves other components, does not react with these components, and has appropriate volatility.
  • Examples of such a solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol mono-n-ether.
  • the content of the solvent in the composition (I) is not particularly limited.
  • the lower limit of the solid content concentration (total concentration of each component excluding the solvent) in the composition (I) is preferably 5% by mass, and more preferably 10% by mass.
  • the upper limit of the solid content concentration is preferably 50% by mass, and more preferably 40% by mass.
  • the method for preparing the composition (I) is not particularly limited, and the composition (I) can be prepared by mixing the components.
  • the composition contains [C] a metal oxide as an infrared shielding agent and [D] a dispersing agent
  • a method of preparing a liquid, adding the [A1] phthalocyanine compound, the [B] binder resin, and other components as necessary to the dispersion, and mixing the dispersion can be employed.
  • the dispersion or the composition (I) can be subjected to a filtration treatment as needed to remove aggregates.
  • composition (II) for an optical sensor contains [A2] a phthalocyanine compound.
  • the phthalocyanine compound is a compound represented by the following formula (2). Since the composition (II) contains such a [A2] phthalocyanine compound, it is possible to form an optical filter having few defects such as foreign substances and having favorable characteristics regarding visible light transmittance and infrared shielding property. .
  • a plurality of Rs are each independently an alkyl group having a substituent or an aryl group having a substituent.
  • a plurality of Xs are each independently a hydrogen atom, a halogen atom or an alkyl group. A plurality of Xs may be bonded to each other to form an aromatic ring together with the carbon chain to which they are bonded.
  • M is a derivative of two hydrogen atoms, a divalent metal atom, or a trivalent or tetravalent metal atom.
  • a plurality of n are each independently an integer of 3 to 6.
  • [A2] phthalocyanine compound is the same as [A1] phthalocyanine compound described above, except that the plurality of Rs are each independently an alkyl group having a substituent or an aryl group having a substituent.
  • the preferred form of the [A2] phthalocyanine compound is also the same as the above-mentioned [A1] phthalocyanine compound.
  • composition (II) is the same as the composition (I) described above except that it contains [A2] phthalocyanine compound instead of [A1] phthalocyanine compound, and does not include [B] a binder resin as an essential component. .
  • the composition (II) preferably contains [B] a binder resin.
  • the specific form and preferred form of the composition (II) are the same as those of the composition (I) described above.
  • composition ⁇ Infrared shielding film> From the composition (I) and the composition (II) according to one embodiment of the present invention (hereinafter, the composition (I) and the composition (II) are collectively simply referred to as “composition”), an optical filter is provided. Infrared shielding film can be formed. This infrared shielding film has few defects such as foreign substances, and has good characteristics regarding visible light transmittance and infrared shielding property.
  • the infrared shielding film can be formed, for example, by the following method. First, after coating the composition on a support, prebaking is performed to evaporate the solvent to form a coating film. Next, after exposing this coating film, it develops using a developing solution and the non-exposed part of a coating film is dissolved and removed. Thereafter, by post-baking, an infrared shielding film (I) patterned into a predetermined shape is obtained.
  • the composition does not contain the polymerizable compound [E] and the polymerization initiator [F]
  • a curing treatment such as exposure may not be performed. Further, it is not necessary to perform the developing treatment. In this case, an unshielded infrared shielding film can be formed.
  • the above-mentioned substrate to which the composition is applied corresponds to the above-mentioned transparent substrate, microlens, color filter and the like.
  • an appropriate coating method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method (slit coating method), and a bar coating method can be adopted.
  • the conditions for heating and drying in the prebaking are, for example, about 70 ° C. or more and 110 ° C. or less, and about 1 minute or more and 10 minutes or less.
  • a light source of radiation used for exposure of the coating film for example, a lamp light source such as a xenon lamp, a halogen lamp, a tungsten lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, an argon ion laser, a YAG laser, A laser light source such as a XeCl excimer laser and a nitrogen laser can be used.
  • an ultraviolet LED can be used as the exposure light source. Radiation having a wavelength in the range of 190 nm to 450 nm is preferred. Exposure of radiation, typically on the order 10J / m 2 or more 50,000J / m 2 or less.
  • an alkali developer is generally used.
  • the alkali developer include sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, Aqueous solutions such as 5-diazabicyclo- [4.3.0] -5-nonene are preferred.
  • An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkali developer. After the development, it is usually washed with water.
  • a developing treatment method As a developing treatment method, a shower developing method, a spray developing method, a dip (immersion) developing method, a paddle (liquid puddle) developing method, or the like can be applied.
  • the development conditions are about 5 seconds to 300 seconds at room temperature.
  • the post-baking condition is usually from 180 ° C. to 280 ° C. and from about 1 minute to about 60 minutes.
  • the lower limit of the average thickness of the infrared shielding film thus formed is usually 0.5 ⁇ m, preferably 1 ⁇ m.
  • the upper limit of the average film thickness is usually 10 ⁇ m, preferably 5 ⁇ m.
  • the infrared shielding film formed from the composition according to one embodiment of the present invention can be used for an optical filter.
  • the optical filter having the above-mentioned infrared shielding film has few defects such as foreign substances, and has good characteristics regarding visible light transmittance and infrared shielding property.
  • the optical filter is used as an optical filter of an optical sensor such as a solid-state imaging device.
  • the optical filter may be composed of only the infrared shielding film, or may be composed of the infrared shielding film and another constituent member.
  • the optical filter may be a laminate having the infrared shielding film and another layer.
  • the infrared shielding film is incorporated as a constituent member in an optical sensor such as a solid-state imaging device.
  • the infrared shielding film functions alone as an optical filter (infrared cut filter).
  • the infrared shielding film may be, for example, an outer surface side of a micro lens of the solid-state imaging device, between the micro lens and the color filter, and between the color filter and the photodiode.
  • the infrared shielding film is preferably laminated between the microlens and the color filter or between the color filter and the photodiode.
  • the optical filter may be one in which the infrared shielding film is laminated on the surface of a transparent substrate.
  • Glass, transparent resin, or the like is used as the transparent substrate.
  • the transparent resin include polycarbonate, polyester, aromatic polyamide, polyamide imide, and polyimide.
  • Such an optical filter is also suitably used as an infrared cut filter in a solid-state imaging device.
  • Optical sensors such as solid-state imaging devices provided with the above-described optical filters are used in digital still cameras, mobile phone cameras, digital video cameras, PC cameras, surveillance cameras, automobile cameras, personal digital assistants, personal computers, video games, medical equipment, and the like. Useful.
  • the optical filter is used for an optical sensor such as a solid-state imaging device.
  • the optical filter has few defects such as foreign substances, and has good characteristics regarding visible light transmittance and infrared ray shielding properties.
  • an optical sensor such as a solid-state imaging device having the optical filter has high sensitivity, high color reproducibility, and the like. Excellent practicality.
  • the solid-state imaging device generally has a structure in which a layer on which a plurality of photodiodes are arranged, a color filter, and a microlens are stacked in this order. Further, a flattening layer may be provided between these layers.
  • light enters from the microlens side. The incident light passes through the microlens and the color filter and reaches the photodiode.
  • the color filters are configured such that, for example, only light in a specific wavelength range is transmitted through each of the R (red), G (green), and B (blue) filters.
  • the optical filter infrared shielding film
  • the optical filter is formed on the outer surface side of the microlens, between the microlens and the color filter, and between the color filter and the layer on which the plurality of photodiodes are arranged. It can be provided in a space or the like.
  • the optical filter is preferably laminated between the micro lens and the color filter or between the color filter and the photodiode. Note that another layer (a flattening layer or the like) may be provided between the optical filter and the microlens, color filter, photodiode, or the like.
  • the solid-state imaging device include a CCD or a CMOS as a camera module.
  • the solid-state imaging device is useful for digital still cameras, mobile phone cameras, digital video cameras, PC cameras, surveillance cameras, automobile cameras, portable information terminals, personal computers, video games, medical equipment, and the like.
  • the obtained compound was confirmed to be the target compound (a-1) represented by the following formula (a-1) from the following analysis results.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 734.5 nm, and the gram extinction coefficient was 6.75 ⁇ 10 4 mL / g ⁇ cm.
  • Synthesis of phthalocyanine compound (a-2) Instead of 3,7-bis (4- (2,6-dimethoxyphenoxy) butyl) -1,3-diiminoisoindoline 32.9 g in Synthesis Example 1 14.5 g of green powder was obtained in the same manner as in Synthesis Example 1, except that 18.6 g of 4,7-bis (4-methoxybutyl) -1,3-diiminoisoindoline was used. From the following analysis results, the obtained compound was confirmed to be the desired compound (a-2) represented by the following formula (a-2).
  • Synthesis of phthalocyanine compound (a-4) instead of 3,2.9 g of 4,7-bis (4- (2,6-dimethoxyphenoxy) butyl) -1,3-diiminoisoindoline in Synthesis Example 1 11.2 g of a green powder was obtained in the same manner as in Synthesis Example 1 except that 28.0 g of 4,7-bis (4- (2-fluorophenoxy) butyl) -1,3-diiminoisoindoline was used. The obtained compound was confirmed to be the desired compound (a-4) represented by the following formula (a-4) from the following analysis results.
  • Synthesis Example 5 Synthesis of Phthalocyanine Compound (a-5) Instead of 3,2.9 g of 4,7-bis (4- (2,6-dimethoxyphenoxy) butyl) -1,3-diiminoisoindoline in Synthesis Example 1
  • 3,8 g of 4,7-bis (4-((1,6-dimethoxynaphthalen-2-yl) oxy) butyl) -1,3-diiminoisoindoline was used. 31.0 g of a green powder was obtained. From the following analysis results, the obtained compound was confirmed to be the desired compound (a-5) represented by the following formula (a-5).
  • the obtained compound was confirmed by LC-MS to be the desired compound (a-6) represented by the following formula (a-6) from the agreement of m / z of each component.
  • the toluene solution of the compound thus obtained showed a maximum absorption at 735.5 nm, and the gram extinction coefficient was 6.30 ⁇ 10 4 mL / g ⁇ cm.
  • the phthalocyanine compounds (a-1) to (a-6) are all phthalocyanine compounds represented by the above formula (1).
  • binder resin solution (B-1) solid content concentration 35% by mass. Obtained.
  • a gel permeation chromatography (GPC) apparatus GPC-104, column: Showa Denko LF-604 manufactured by Showa Denko KK
  • KF-602 KF-602
  • the weight average molecular weight (Mw) was 9,700
  • the number average molecular weight (Mn) was 5,700
  • Mw / Mn was 1.70.
  • the charging ratio (mass ratio) of each monomer and the content ratio (mass ratio) of the structural unit derived from each monomer in the obtained binder resin are substantially the same. (The same applies to Synthesis Example 14 below).
  • Binder Resin (b-2) 200 parts by mass of propylene glycol monomethyl ether was charged into a flask equipped with a cooling pipe and a stirrer, and the temperature was raised to 80 ° C. At the same temperature, a mixed solution of propylene glycol monomethyl ether (100 parts by mass), methacrylic acid (100 parts by mass), and 2,2′-azoisobutyronitrile (5 parts by mass) was added dropwise over 3 hours. Polymerization was performed for 3 hours. Thereafter, the temperature of the reaction solution was raised to 100 to 120 ° C., and the reaction was further performed for 2 hours.
  • Binder resin solution (B-2) solid content concentration: 40% by mass
  • a binder resin (b-2) represented by the formula:
  • composition ratio is a mass ratio.
  • Binder resin solution (B-3) solid content concentration: 40% by mass
  • a binder resin (b-3) represented by the following formula:
  • composition ratio is a mass ratio.
  • a solution containing the binder resin (b-4) (hereinafter, a binder resin solution (B-4) solid content concentration of 35% by mass) was obtained.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn 1.64.
  • Dispersant (d-2) Using the method described in the literature (Macromolecules 1992, 25, p5907-5913), 45 parts by mass of dimethylaminoethyl methacrylate, 20 parts by mass of 2-ethylhexyl methacrylate, 5 parts by mass of n-butyl methacrylate, PME-200 (methoxypolyethylene glycol) Monomethacrylate and 30 parts by mass of CH 2 CC (CH 3 ) COO (C 2 H 4 O) n —CH 3 (n ⁇ 4) (monomer polymer) are polymerized in a lump and randomly copolymerized. A reaction solution containing the coalescence was obtained.
  • reaction solution was quenched with methanol, and the obtained reaction solution was washed with a 7% by mass aqueous solution of sodium hydrogen carbonate and then with water.
  • propylene glycol monomethyl ether acetate (PGMEA) was subjected to solvent replacement to obtain a dispersant solution (D-2) containing the dispersant (d-2) at a yield of 80% by mass.
  • the amine value of the obtained dispersant (d-2) was 160 mgKOH / g, Mw was 9,500, Mw / Mn was 1.21, and the solid content of the dispersant solution (D-2) was 39.6% by mass. .
  • Dispersion (C-1) 25.00 parts by mass of the above cesium tungsten oxide, "BYK-LPN6919" from BYK-Chemie as a dispersant (d-1) (solids concentration 60% by mass, amine 13.120 parts by mass of a solvent (dispersion medium) and 61.70 parts by mass of cyclopentanone (CPN) as a solvent (dispersion medium).
  • d-1 solids concentration 60% by mass, amine 13.120 parts by mass of a solvent (dispersion medium) and 61.70 parts by mass of cyclopentanone (CPN) as a solvent (dispersion medium).
  • CPN cyclopentanone
  • These were filled into a container together with 2,000 parts by mass of zirconia beads having a diameter of 0.1 mm, and dispersed with a paint shaker to obtain a dispersion (C-1) having an average particle diameter (D50) of 19 nm.
  • the average particle diameter was measured by a DLS method
  • Example 1 20.00 parts by mass of the dispersion (C-1), 23.15 parts by mass of the dye solution (A-1), 21.01 parts by mass of the binder resin solution (B-1), and a polymerizable compound of Nippon Kayaku Co., Ltd.
  • Examples 2 to 13, Comparative Examples 1 to 3 The types and amounts (parts by mass) of the dispersion liquid, the dye solution and the binder resin solution, and the amounts (parts by mass) of the polymerizable compound, the polymerization initiator, the surfactant, the reaction regulator, the antioxidant, and the solvent are shown.
  • Table 1 shows the types of the [A] phthalocyanine compound, [B] binder resin, [C] infrared ray shielding agent, [D] dispersant and other pigments, and the content in the solid content in each of the obtained compositions. Also shown.
  • “CsWO” in Table 1 represents the cesium tungsten oxide (Cs 0.33 WO 3 ) obtained in Synthesis Example 10.
  • Each composition was applied on a glass substrate by a spin coating method so as to have a predetermined thickness. Thereafter, the coating film was heated at 100 ° C. for 120 seconds, and was exposed to 500 mJ / cm 2 using an i-line stepper. Next, by heating at 220 ° C. for 300 seconds, an infrared shielding film having an average film thickness of 2.0 to 4.0 ⁇ m was formed on the glass substrate. Table 1 shows the average film thickness. The film thickness was measured with a stylus type step meter (“Alpha Step IQ” of Yamato Scientific Co., Ltd.).
  • the transmittance in each wavelength region of the infrared shielding film formed on the glass substrate was measured using a spectrophotometer (“V-7300” manufactured by JASCO Corporation) in comparison with the glass substrate.
  • V-7300 manufactured by JASCO Corporation
  • the average transmittance at 430-580 nm was calculated. When the average transmittance is less than 70%, the sensitivity when used as an infrared shielding film decreases.
  • the average transmittance was evaluated according to the following criteria. A: 80% or more B: 70% or more and less than 80% C: less than 70%
  • (Visible transmission window range) A range in which the transmittance in the range of 430 to 580 nm was continuously 70% or more was determined. When the range of 70% or more in a continuous manner is 175 nm or more, it is presumed that when used as an infrared shielding film, it has high sensitivity and is highly practical.
  • the visible transmission window range was evaluated according to the following criteria. A: 200 nm or more B: 175 nm or more and less than 200 nm C: less than 175 nm
  • Infrared shielding range The range where the transmittance in the range of 700 to 800 nm was continuously 20% or less was determined. When the range of 20% or less in a continuous manner is 20 nm or more, it is presumed that when used as an infrared shielding film, it has a high noise shielding function and is therefore highly practical.
  • the infrared shielding range was evaluated according to the following criteria. A: 30 nm or more B: 20 nm or more and less than 30 nm C: less than 20 nm
  • the infrared shielding film formed on the glass substrate was heated at 260 ° C. for 300 seconds using a hot plate, and the transmittance in each wavelength region before and after the heating was measured with a spectrophotometer (“V-7300” manufactured by JASCO Corporation). Was measured in comparison with a glass substrate.
  • V-7300 the absorbance at the wavelength where the transmittance is lowest in the range of 700 to 800 nm of the produced infrared shielding film is (A1)
  • the absorbance after heating at 260 ° C. at the same wavelength is (A2)
  • the absorbance retention is 100 ⁇ (A1) / (A2)
  • the heat resistance at 260 ° C. was evaluated based on the following criteria.
  • the retention When the retention is 30% or more, it is presumed that when used as an infrared shielding film, high heat resistance can be maintained by using it together with a protective film or the like, and the practicability is high. Further, the above-mentioned retention was evaluated according to the following criteria. AA: 90% or more A: 60% or more and less than 90% B: 30% or more and less than 60% C: less than 30%
  • defect suppression Each composition was applied on a silicon substrate by a spin coating method, and this coating film was cured to form a cured film having a thickness of about 1 ⁇ m.
  • the defect density of the cured film (Defective Density) was measured using a defect / foreign matter inspection device (“KLA 2351” manufactured by KLA-Tencor). It can be determined that the smaller the value of the defect density is, the higher the defect suppression property is. Note that a defect refers to a detection point whose size is 1 ⁇ m or more. Based on the defect density, the following criteria evaluated the defect suppression. A: 10 / cm 2 or less B: More than 10 / cm 2 50 / cm 2 or less C: More than 50 / cm 2
  • PCD stability Each composition was applied on a silicon substrate by a spin coating method, and a coating film having a thickness of about 1 ⁇ m was formed without curing the coating film.
  • the defect density of the coating film was measured using a defect / foreign matter inspection apparatus (“KLA 2351” manufactured by KLA-Tencor). Subsequently, the defect density of the coating film was measured at regular intervals, the time during which the number of defects increased by 20% or more from the initial value was measured, and the post-coating after coating (PCD: Post) was performed according to the following criteria.
  • Coating Delay Coating Delay Stability was evaluated. It is estimated that the greater the value of the PCD stability, the higher the practicality.
  • Examples 1, 3 and 4 also show that visible light transmittance is good.
  • composition for an optical sensor of the present invention can be suitably used as a material for forming an optical filter of an optical sensor such as a solid-state imaging device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

可視光透過性及び赤外線遮蔽性に関する良好な特性を有する光学センサー用の光学フィルターを形成することができる光学センサー用組成物を提供する。本発明は、下記式(1)で表されるフタロシアニン化合物、及びバインダー樹脂を含有する光学センサー用組成物である。式(1)中、複数のRは、それぞれ独立して、置換基を有する若しくは非置換のアルキル基、又は置換基を有する若しくは非置換のアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。

Description

光学センサー用組成物
 本発明は、光学センサー用組成物に関する。
 ビデオカメラ、デジタルカメラ、カメラ機能付き携帯電話等には、光学センサーである固体撮像素子が搭載されている。固体撮像素子としては、具体的にはCCD(Charge-Coupled Device)イメージセンサーやCMOS(Complementary MOS)イメージセンサー等が知られている。これらの固体撮像素子に備わるフォトダイオードの感度は、可視光領域から赤外線領域にわたる。このため、固体撮像素子においては、赤外線を遮断するためのフィルターが設けられている。この光学フィルター(赤外線遮断フィルター)により、固体撮像素子の感度を人間の視感度に近づくように補正することができる。固体撮像素子以外の光学センサーにおいても、同様に、赤外線を遮断するためのフィルターが設けられることがある。
 上記光学フィルターには、赤外線遮蔽剤としての色素や顔料が含有されている。上記赤外線遮蔽剤には、可視光を十分に透過させつつ、赤外線を吸収する特性が求められる。このような赤外線遮蔽剤の一つとして、特に、近赤外線の良好な遮蔽剤として、フタロシアニン化合物を用いることが検討されている(特開2008-201952号公報参照)。
特開2008-201952号公報
 しかし、フタロシアニン化合物を用いた従来の光学フィルターにおいては、相溶性等の影響からか、異物等の欠陥が生じることがある。このような欠陥は、光学フィルターの可視光透過性や赤外線遮蔽性等に影響を与える場合がある。また、フタロシアニン化合物等の色素を含む組成物の塗工により光学フィルターの赤外線遮蔽膜を形成する際、塗工後の放置時間が長いと、得られる赤外線遮蔽膜に異物等の欠陥が発生しやすい。生産工程上、塗工後しばらく放置した後に硬化させても、異物等の欠陥が少ない赤外線遮蔽膜が得られることが望まれる。
 さらに、従来の光学フィルターにおいては、可視光透過性や赤外線遮蔽性についても、十分に満足されるものではない。具体的には、固体撮像素子等の光学センサーの赤外線遮断フィルターとして光学フィルターが用いられる場合、単に可視光透過率が高く、かつ赤外線透過率が低いのみでは無く、可視光透過率が高い波長領域や赤外線透過率が低い波長領域が広いことや、可視光透過率が高い波長領域と赤外線透過率が低い波長領域とが近接していることが求められる。このような特性を有する光学フィルターを固体撮像素子等の光学センサーに用いると、感度、ノイズ遮蔽機能、色再現性等を高めることができる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する光学センサー用の光学フィルターを形成することができる光学センサー用組成物を提供することである。
 上記課題を解決するためになされた発明は、下記式(1)で表されるフタロシアニン化合物、及びバインダー樹脂を含有する光学センサー用組成物である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、複数のRは、それぞれ独立して、置換基を有する若しくは非置換のアルキル基、又は置換基を有する若しくは非置換のアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。)
 上記課題を解決するためになされた別の発明は、下記式(2)で表されるフタロシアニン化合物を含有する光学センサー用組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、複数のRは、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。)
 本発明によれば、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する光学センサー用の光学フィルターを形成することができる光学センサー用組成物を提供することができる。
 以下、本発明の一実施形態に係る光学センサー用組成物について詳説する。
<光学センサー用組成物(I)>
 本発明の一実施形態に係る光学センサー用組成物(I)(以下、単に「組成物(I)」とも称する。)は、[A1]フタロシアニン化合物及び[B]バインダー樹脂を含有する。当該組成物は、金属酸化物、銅化合物([A]フタロシアニン化合物を除く)又はこれらの組み合わせである[C]赤外線遮蔽剤をさらに含有することが好ましい。
([A1]フタロシアニン化合物)
 [A1]フタロシアニン化合物は、下記式(1)で表される化合物である。[A1]フタロシアニン化合物は、可視光領域(例えば430nm以上580nm以下の波長領域)の透過性が高く、一方、近赤外線領域(例えば700nm以上800nm以下の波長領域)の遮蔽性が高い。また、[A1]フタロシアニン化合物は、他の成分との相溶性に優れる。当該組成物(I)は、このような[A1]フタロシアニン化合物を含有するため、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する光学フィルターを形成することができる。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、複数のRは、それぞれ独立して、置換基を有する若しくは非置換のアルキル基、又は置換基を有する若しくは非置換のアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。
 上記Rで表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~30の直鎖状又は分岐状のアルキル基を挙げることができる。このアルキル基の炭素数の上限としては、12が好ましく、8がより好ましく、4がさらに好ましい。
 上記Rで表されるアリール基としては、芳香環のみから構成される1価の基、及び芳香環にアルキル基が結合してなる1価の基が挙げられる。上記Rで表されるアリール基の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基等を挙げることができる。このアリール基としては、芳香環のみから構成される基が好ましく、フェニル基及びナフチル基がより好ましく、可視光透過性等の点からフェニル基がさらに好ましい。
 上記Rとしては、得られる光学フィルターの耐熱性等の点から、置換基を有する又は非置換のアリール基であることが好ましい。
 上記複数のRでそれぞれ表されるアルキル基及びアリール基は、置換基を有していても、有していなくてもよいが、置換基を有していることが好ましい。すなわち、上記複数のRは、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基であることが好ましい。このように、上記複数のRが置換基を有することで、[A1]フタロシアニン化合物の相溶性がより高まり、得られる光学フィルターの異物等の欠陥がより抑制され、可視光透過性及び赤外線遮蔽性に関する特性もより良好になる。さらに、上記複数のRが置換基を有することで、得られる光学フィルターの耐熱性も向上する。
 上記複数のRでそれぞれ表されるアルキル基及びアリール基が有することができる置換基としては、アルケニル基、アルキニル基等の炭化水素基であってもよいが、ヘテロ原子を有する基であることが好ましい。ヘテロ原子とは、水素原子及び炭素原子以外の原子をいう。上記複数のRでそれぞれ表されるアルキル基及びアリール基が、ヘテロ原子を有する置換基を有することで、相溶性等がより高まり、得られる光学フィルターの異物等の欠陥がより抑制され、可視光透過性及び赤外線遮蔽性に関する特性もより良好になる。さらに、上記複数のRが、ヘテロ原子を有する置換基を有することで、得られる光学フィルターの耐熱性も向上する。上記ヘテロ原子としては、ハロゲン原子、酸素原子及び硫黄原子が好ましく、ハロゲン原子及び酸素原子がより好ましい。
 ヘテロ原子を有する置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、シアノ基、ニトロ基、カルボキシ基、ヒドロキシ基、チオール基、アミノ基等を挙げることができる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等を挙げることができ、フッ素原子が好ましい。
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等を挙げることができ、メトキシ基及びエトキシ基が好ましく、メトキシ基がより好ましい。
 アルキルチオ基としては、メチルチオ基(CH-S-)、エチルチオ基(C-S-)、プロピルチオ基(C-S-)等を挙げることができ、メチルチオ基及びエチルチオ基がより好ましい。
 ヘテロ原子を有する置換基の中でも、ハロゲン原子、アルコキシ基及びアルキルチオ基が好ましく、ハロゲン原子及びアルコキシ基がより好ましい。また、ハロゲン原子、メトキシ基、エトキシ基、メチルチオ基、エチルチオ基又はこれらの組み合わせであることも好ましい。
 上記複数のRは、同一でも異なってもよいが、同一であることが好ましい。
 上記Xで表されるハロゲン原子としては、上記置換基としてのハロゲン原子として例示したものを挙げることができる。
 上記Xで表されるアルキル基としては、上記Rで表されるアルキル基として例示したものを挙げることができる。
 上記複数のXは、互いに結合していてよい。通常、複数のXのうち、同一のベンゼン環に結合している2つのXが互いに結合し、これらが結合する炭素鎖と共に芳香環を形成する。形成される芳香環としては、ベンゼン環、ナフタレン環、アントラセン環等を挙げることができる。これらの芳香環の水素原子は、炭化水素基やその他の置換基で置換されていてもよい。
 上記Xとしては、水素原子が好ましい。また、複数のXは、同一でも異なってもよいが、同一であることが好ましい。
 上記Mで表される2価の金属原子としては、Pd、Cu、Zn、Pt、Ni、Co、Fe、Mn、Sn、In、Ru、Rh、Pb等を挙げることができる。なお、2価の金属原子とは、2価のカチオンになることができる金属原子をいう。
 ここで、金属原子の誘導体とは、金属原子を含む原子群をいう。3価の金属原子とは、3価のカチオンになることができる金属原子をいう。3価の金属原子としては、Al、In等が挙げられる。4価の金属原子とは、4価のカチオンになることができる金属原子をいう。4価の金属原子としては、Si、Ge、Sn等を挙げることができる。なお、金属原子には、半金属原子も含まれる。上記Mで表される3又は4価の金属原子の誘導体としては、AlCl、AlBr、AlI、AlOH、InCl、InBr、InI、InOH、SiCl、SiBr、SiI、Si(OH)、GeCl、GeBr、GeI、SnCl、SnBr、SnI、Sn(OH)、VO、TiO等を挙げることができる。
 上記Mとしては、H(2つの水素原子)、Pd、Cu、Zn、Pt、Ni、Co、Fe、Mn、Sn、In、SnCl、AlCl、VO及びTiOが好ましく、VOがより好ましい。
 上記nの下限としては、4が好ましい。上記nの上限としては、5が好ましく、4がより好ましい。複数のnは、同一でも異なってもよいが、同一であることが好ましい。
 [A1]フタロシアニン化合物の極大吸収波長の下限は、680nmが好ましく、700nmがより好ましく、720nmがさらに好ましい。一方、この極大吸収波長の上限は、1,000nmが好ましく、900nmがより好ましく、800nmがさらに好ましく、750nmがよりさらに好ましい。[A1]フタロシアニン化合物の極大吸収波長が上記範囲であることにより、可視光透過性及び赤外線遮蔽性に関するより良好な特性を有する光学フィルターを形成することができる。
 [A1]フタロシアニン化合物の合成方法は特に限定されず、公知の方法を組み合わせて合成することができる。例えば、下記式(i)で表されるフタロニトリル系化合物又は式(ii)で表される1,3-ジイミノイソンインドリン系化合物と、金属又は金属誘導体とを反応させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000006
 式(i)及び(ii)中、R、X及びnは式(1)におけるものと同義である。
 金属又は金属誘導体としてはAl、Si、Ti,V、Mn、Fe、Co、Ni、Cu、Zn、Ge、Ru、Rh、Pd、In、Sn、Pt、Pb及びこれらのハロゲン化物、カルボン酸塩、硫酸塩、硝酸塩、カルボニル化合物、酸化物、錯体等が挙げられる。これらの中でも、特に金属のハロゲン化物及びカルボン酸塩が好ましく用いられる。これらの例としては塩化銅、臭化銅、沃化銅、塩化ニッケル、臭化ニッケル、酢酸ニッケル、塩化コバルト、塩化鉄、塩化亜鉛、臭化亜鉛、沃化亜鉛、酢酸亜鉛、塩化バナジウム、オキシ塩化バナジウム、塩化パラジウム、酢酸パラジウム、塩化アルミニウム、塩化マンガン、塩化鉛、酢酸鉛、塩化インジウム、塩化チタン、塩化スズ等が挙げられる。
 反応温度は、例えば60~300℃であり、好ましくは100~220℃である。反応時間は、例えば30分~72時間であり、好ましくは1時間~48時間である。反応においては、溶媒を使用することが好ましい。反応に使用される溶媒としては、沸点60℃以上の有機溶媒が好ましく、80℃以上の有機溶媒がより好ましい。
 用いる有機溶媒の例としては、メタノール、エタノール、n-プロピルアルコール、n-ブチルアルコール、イソブチルアルコール、n-アミルアルコール、n-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ドデカノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、ジメチルエタノール、ジエチルエタノール等のアルコール溶媒、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、スルフォラン、ニトロベンゼン、キノリン、DMI(1,3-ジメチル-2-イミダゾリジノン)、尿素等の高沸点溶媒が挙げられる。
 反応は、触媒の存在下又は非存在下に行われるが、触媒存在下の方が好ましい。触媒としては、モリブデン酸アンモニウム等の無機触媒、又はDBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)、DBN(1,5-ジアザビシクロ[4.3.0]ノナ-5-エン)等の塩基性有機触媒が使用できる。
 式(1)中のMが2つの水素原子であるフタロシアニン化合物の場合は、式(i)で表されるフタロニトリル系化合物又は式(ii)で表される1,3-ジイミノイソンインドリン系化合物と、金属ナトリウム又は金属カリウムとを上記反応条件にて反応させた後、中心金属であるナトリウム又はカリウムを塩酸、硫酸等で脱離処理することにより製造できる。
 反応終了後、溶媒を留去するか、又は反応液をフタロシアニン化合物に対する貧溶媒に排出して目的物を析出させ、析出物をろ過することにより、式(1)で表されるフタロシアニン化合物を得ることができる。必要に応じて、更に再結晶又はカラムクロマトグラフィー等公知の精製方法で精製することにより、より高純度の目的物を得ることができる。
 なお、式(i)で表されるフタロニトリル系化合物及び式(ii)で表される1,3-ジイミノイソンインドリン系化合物は、公知の方法を参考にして合成することができる。例えば、特表2003-516421号に記載の方法を参考にして合成することができる。
 当該組成物(I)における全固形分(溶媒以外の全成分)に占める[A1]フタロシアニン化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、2質量%がよりさらに好ましい。一方、この含有量の上限としては、30質量%が好ましく、15質量%がより好ましく、10質量%がさらに好ましく、8質量%がよりさらに好ましい。[A1]フタロシアニン化合物の含有量を上記範囲とすることで、得られる光学フィルターの可視光透過性及び赤外線遮蔽性に関する特性がより良好になる。
 [A1]フタロシアニン化合物は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
([B]バインダー樹脂)
 [B]バインダー樹脂は、得られる光学フィルターにおいて[A1]フタロシアニン化合物等を保持し、マトリクスとなる成分である。
 [B]バインダー樹脂は、強度、感度、耐熱性等の向上のため、重合性基を有することが好ましく、重合性基を含む構造単位を有していることがより好ましい。重合性基としては、オキシラニル基、オキセタニル基、(メタ)アクリロイル基、ビニル基、アルコキシシリル基等を挙げることができ、オキシラニル基、オキセタニル基、(メタ)アクリロイル基、アルコキシシリル基又はこれらの組み合わせが好ましく、(メタ)アクリロイル基がより好ましい。
 重合性基を含む構造単位を与える単量体としては、(メタ)アクリル酸グリシジル、3-(メタ)アクリロイルオキシメチル-3-エチルオキセタン、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシトリシクロ[5.2.1.02.6]デシル(メタ)アクリレート、3-メタクリロキシプロピルトリエトキシシラン等を挙げることができる。
 また、例えば、カルボキシ基を有する構造単位を有する樹脂に、カルボキシ基と反応する基(オキシラニル基、オキセタニル基等)と、(メタ)アクリロイル基等の重合性基とを有する化合物を反応させることによっても、重合性基を含む構造単位を導入することができる。
 [B]バインダー樹脂における重合性基を有する構造単位の含有量の下限としては、[B]バインダー樹脂100質量%に対して、5質量%が好ましく、10質量%がより好ましく、15質量%がさらに好ましく、30質量%、50質量%又は75質量%がよりさらに好ましいこともある。一方、この含有量の上限としては、95質量%が好ましく、90質量%がより好ましく、85質量%がさらに好ましい。
 [B]バインダー樹脂は、耐熱性向上のため、主鎖に環構造を有することが好ましい。この環構造の環員数としては、例えば3~12であってもよいが、5~8が好ましい。
 主鎖に環構造を含む構造単位を与える単量体としては、N置換マレイミド系単量体、シクロオレフィン等を挙げることができる。
 N置換マレイミド系単量体とは、マレイミドにおける窒素原子に結合する水素原子が置換基により置換された化合物である。上記置換基としては、炭化水素基が好ましく、環構造を有する炭化水素基がより好ましく、芳香族炭化水素基がより好ましい。N置換マレイミド系単量体としては、N-フェニルマレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド、N-シクロオクチルマレイミド、N-メチルマレイミド等を挙げることができる。
 シクロオレフィンとしては、ノルボルネン系オレフィン、テトラシクロドデセン系オレフィン、ジシクロペンタジエン系オレフィン等を挙げることができる。
 その他、主鎖に環構造を有するバインダー樹脂として、フェノール樹脂等を用いることもできる。
 [B]バインダー樹脂における主鎖に環構造を含む構造単位の含有量としては、[B]バインダー樹脂100質量%に対して、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。
 [B]バインダー樹脂は、酸性基が含まれることが好ましい。酸性基としては、例えばカルボキシ基、酸無水物基、フェノール性水酸基、スルホ基等が挙げられる。上記の中でも、酸性基としては、カルボキシ基が好ましい。[B]バインダー樹脂は、1個以上の酸性基を有する構造単位を含む樹脂であることが好ましい。[B]バインダー樹脂が、酸性基を有する場合、良好なアルカリ可溶性を示すことができる。[B]バインダー樹脂がアルカリ可溶性を有する場合、アルカリ現像を可能とし、所望のパターン形状を有する光学フィルターを形成することができる。
 酸性基を含む構造単位を与える単量体としては、カルボキシ基を有する単量体として、例えば(メタ)アクリル酸、クロトン酸、α-クロルアクリル酸、桂皮酸の如き不飽和モノカルボン酸;マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸の如き不飽和ジカルボン酸またはその無水物;こはく酸モノ〔2-(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイロキシエチル〕の如き2価以上の多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル;ω-カルボキシポリカプロラクトンモノ(メタ)アクリレートの如き両末端にカルボキシ基と水酸基とを有するポリマーのモノ(メタ)アクリレート等を挙げることができる。
 フェノール性水酸基を有する単量体としては、4-ビニルフェノール、4-イソプロペニルフェノール、4-ヒドロキシフェニル(メタ)アクリレート等を挙げることができる。
 [B]バインダー樹脂における酸性基を含む構造単位の含有量としては、[B]バインダー樹脂100質量%に対して、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。
 [B]バインダー樹脂は、さらにその他の構造単位を含むことができる。その他の構造単位を与える単量体としては、例えば
スチレン、α-メチルスチレン、p-ヒドロキシスチレン、p-ヒドロキシ-α-メチルスチレン、p-ビニルベンジルグリシジルエーテル、アセナフチレン等の芳香族ビニル化合物、
メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリエチレングリコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリプロピレングリコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリエチレングリコール(重合度2~10)モノ(メタ)アクリレート、ポリプロピレングリコール(重合度2~10)モノ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、パラクミルフェノールのエチレンオキサイド変性(メタ)アクリレート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3-〔(メタ)アクリロイルオキシメチル〕オキセタン、3-〔(メタ)アクリロイルオキシメチル〕-3-エチルオキセタン等の(メタ)アクリル酸エステル、
シクロヘキシルビニルエーテル、イソボルニルビニルエーテル、トリシクロ[5.2.1.02,6]デカン-8-イルビニルエーテル、ペンタシクロペンタデカニルビニルエーテル、3-(ビニルオキシメチル)-3-エチルオキセタン等のビニルエーテル、
ポリスチレン、ポリメチル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリシロキサン等の重合体分子鎖の末端にモノ(メタ)アクリロイル基を有するマクロモノマー等を挙げることができる。
 [B]バインダー樹脂は、上述した各単量体等を用いて公知の方法により重合することで得ることができる。また、[B]バインダー樹脂は、1種単独で用いても、2種以上を用いてもよい。
 [B]バインダー樹脂のポリスチレン換算の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した値において、好ましくは2,000~500,000、より好ましくは3,000~100,000、さらに好ましくは4,000~30,000である。Mwが上記範囲にあると、溶媒や現像液に対する溶解性に優れ、十分な機械的特性を有する[B]バインダー樹脂を得ることができる。
 当該組成物(I)における全固形分に占める[B]バインダー樹脂の含有量の下限としては、5質量%が好ましく、10質量%がより好ましく、20質量%がさらに好ましい。一方、この含有量の上限としては、70質量%が好ましく、60質量%がより好ましく、50質量%がさらに好ましい。[B]バインダー樹脂の含有量を上記範囲とすることで、得られる光学フィルターの可視光透過性及び赤外線遮蔽性に関する特性を十分に発揮しつつ、耐熱性等も高めることができる。
([C]赤外線遮蔽剤)
 [C]赤外線遮蔽剤は、金属酸化物、銅化合物([A1]フタロシアニン化合物を除く)又はこれらの組み合わせである。[C]赤外線遮蔽剤としては、800nm以上2000nm以下の範囲に極大吸収波長を有する化合物が好ましい。このような[C]赤外線遮蔽剤を[A1]フタロシアニン化合物と併用することにより、得られる光学フィルターの赤外線遮蔽性能がより向上する。
 [C]赤外線遮蔽剤としての金属酸化物としては、例えば酸化タングステン系化合物、石英(SiO)、磁鉄鉱(Fe)、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)、スピネル(MgAl)等を挙げることができる。
 [C]赤外線遮蔽剤としての銅化合物としては、銅フタロシアニン系化合物やその他の銅錯体などを挙げることができる。銅フタロシアニン系化合物としては、銅フタロシアニン、塩素化銅フタロシアニン、塩素化臭素化銅フタロシアニン、臭素化銅フタロシアニン等を挙げることができる。
 [C]赤外線遮蔽剤としては、金属酸化物が好ましく、酸化タングステン系化合物がより好ましい。酸化タングステン系化合物は、赤外線(特に波長が約800nm以上1200nm以下の赤外線)に対しては吸収が高く(すなわち、赤外線に対する遮蔽性が高く)、可視光に対しては吸収が低い赤外線遮蔽剤である。よって、当該組成物(I)が、酸化タングステン系化合物を含有することにより、得られる光学フィルターの良好な可視光透過性を維持しつつ、赤外線遮蔽性を高めることができる。[C]赤外線遮蔽剤は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 酸化タングステン系化合物としては、下記式(3)で表される酸化タングステン系化合物であることがより好ましい。
 AWO ・・・(3)
 式(3)中、Aは金属元素である。0.001≦x≦1.1である。2.2≦y≦3.0である。
 上記式(3)中のAで表される金属元素としては、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi等が挙げられる。Aで表される金属元素は1種でも2種以上でも良い。
 上記Aとしては、アルカリ金属が好ましく、Rb及びCsがより好ましく、Csがさらに好ましい。すなわち、金属酸化物は、セシウム酸化タングステンであることがより好ましい。
 上記式(3)中のxが0.001以上であることにより、赤外線を十分に遮蔽することができる。xの下限は、0.01が好ましく、0.1がより好ましい。一方、xが1.1以下であることにより、酸化タングステン系化合物中に不純物相が生成されることをより確実に回避することできる。xの上限は、1が好ましく、0.5がより好ましい。
 上記式(3)中のyが2.2以上であることにより、材料としての化学的安定性をより向上させることができる。yの下限は、2.5が好ましい。一方、yが3.0以下であることにより赤外線を十分に遮蔽することができる。
 上記式(3)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WOなどを挙げることができ、Cs0.33WO及びRb0.33WOが好ましく、Cs0.33WOがさらに好ましい。
 [C]赤外線遮蔽剤は微粒子であることが好ましい。[C]赤外線遮蔽剤の平均粒子径(D50)の上限としては、500nmが好ましく、200nmがより好ましく、50nmがさらに好ましく、30nmがよりさらに好ましい。平均粒子径が上記上限以下であることによって、可視光透過性をより高めることができる。一方、製造時における取り扱い容易性などの理由から、[C]赤外線遮蔽剤の平均粒子径は、通常、1nm以上であり、10nm以上であってもよい。
 [C]赤外線遮蔽剤は、公知の方法によって合成することもできるが、市販品として入手可能である。金属酸化物が、例えば酸化タングステン系化合物である場合、酸化タングステン系化合物は、例えばタングステン化合物を不活性ガス雰囲気又は還元性ガス雰囲気中で熱処理する方法により得ることができる。また、酸化タングステン系化合物は、例えば住友金属鉱山社の「YMF-02」等のタングステン微粒子の分散物としても、入手可能である。
 当該組成物(I)における全固形分に占める[C]赤外線遮蔽剤の含有量の下限としては、1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましく、15質量%がよりさらに好ましい。一方、この含有量の上限としては、70質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましく、30質量%がよりさらに好ましい。[C]赤外線遮蔽剤の含有量を上記範囲とすることで、得られる光学フィルターの可視光透過性及び赤外線遮蔽性に関する特性がより良好になる。
 [A1]フタロシアニン化合物の含有量に対する[C]赤外線遮蔽剤の含有量の質量比([C]/[A1])の下限としては、1が好ましく、2が好ましく、3がさらに好ましい。一方、この質量比([C]/[A1])の上限としては、40が好ましく、20がより好ましく、10がさらに好ましい。[A1]フタロシアニン化合物と[C]赤外線遮蔽剤との含有量比を上記範囲とすることで、得られる光学フィルターの可視光透過性及び赤外線遮蔽性に関する特性がより良好になる。
([D]分散剤)
 当該組成物(I)は、[D]分散剤をさらに含むことが好ましい。[D]分散剤により[C]赤外線遮蔽剤(特に、金属酸化物)の均一分散性を高め、得られる光学フィルターの可視光透過性及び赤外線遮蔽性に関する特性がより良好になる。
 [D]分散剤としては、例えばウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレンアルキルフェニルエーテル系分散剤、ポリエチレングリコールジエステル系分散剤、ソルビタン脂肪酸エステル系分散剤、ポリエステル系分散剤、(メタ)アクリル系分散剤等を挙げることができる。これらの中でも、(メタ)アクリル系分散剤が好ましい。[D]分散剤は、ブロック共重合体であることが好ましい。
 [D]分散剤は商業的に入手することができ、例えば(メタ)アクリル系分散剤として、Disperbyk-2000、Disperbyk-2001、BYK-LPN6919、BYK-LPN21116、BYK-LPN22102(以上、ビックケミー(BYK)社製)、ウレタン系分散剤として、Disperbyk-161、Disperbyk-162、Disperbyk-165、Disperbyk-167、Disperbyk-170、Disperbyk-182、Disperbyk-2164(以上、ビックケミー(BYK)社製)、ソルスパース76500(ルーブリゾール(株)社製)、ポリエチレンイミン系分散剤として、ソルスパース24000(ルーブリゾール(株)社製)、ポリエステル系分散剤として、アジスパーPB821、アジスパーPB822、アジスパーPB880、アジスパーPB881(以上、味の素ファインテクノ(株)社製)の他、BYK-LPN21324(ビックケミー(BYK)社製)等を挙げることができる。
 [D]分散剤のアミン価の下限としては、10mgKOH/gが好ましく、40mgKOH/gがより好ましく、80mgKOH/gがさらに好ましい。一方、このアミン価の上限としては、300mgKOH/gが好ましく、200mgKOH/gがより好ましく、160mgKOH/gがさらに好ましい。このようなアミン価を有する分散剤を用いることで、[C]赤外線遮蔽剤の分散性が向上し、得られる光学フィルターの特性をより高めることができる。なお、「アミン価」とは、分散剤固形分1gを中和するのに必要なHClと当量のKOHのmg数である。
 [D]分散剤の含有量の下限は、[C]赤外線遮蔽剤100質量部に対して、5質量部が好ましく、10質量部がより好ましく、20質量部がさらに好ましい。一方、この含有量の上限は、200質量部が好ましく、100質量部がより好ましく、60質量部がさらに好ましい。
([E]重合性化合物)
 当該組成物(I)は、[E]重合性化合物をさらに含むことが好ましい。当該組成物(I)が[E]重合性化合物を含有する場合、良好な硬化性や得られる光学フィルターの良好な耐熱性等を発揮することができる。[E]重合性化合物とは、2個以上の重合可能な基を有する化合物をいう。なお、2個以上の重合可能な基を有する[B]バインダー樹脂は、[E]重合性化合物には含まれない。重合可能な基としては、例えばエチレン性不飽和基、オキシラニル基、オキセタニル基、N-アルコキシメチルアミノ基等を挙げることができる。[E]重合性化合物としては、2個以上の(メタ)アクリロイル基を有する化合物、及び2個以上のN-アルコキシメチルアミノ基を有する化合物が好ましく、2個以上の(メタ)アクリロイル基を有する化合物がより好ましい。[E]重合性化合物は、1種又は2種以上を混合して使用することができる。
 2個以上の(メタ)アクリロイル基を有する化合物としては、脂肪族ポリヒドロキシ化合物と(メタ)アクリル酸との反応物等である多官能(メタ)アクリレート、カプロラクトン変性された多官能(メタ)アクリレート、アルキレンオキサイド変性された多官能(メタ)アクリレート、水酸基を有する(メタ)アクリレートと多官能イソシアネートとの反応物等である多官能ウレタン(メタ)アクリレート、水酸基を有する(メタ)アクリレートと酸無水物との反応物等であるカルボキシル基を有する多官能(メタ)アクリレート等を挙げることができる。
 ここで、上記脂肪族ポリヒドロキシ化合物としては、例えばエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の2価の脂肪族ポリヒドロキシ化合物や、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の3価以上の脂肪族ポリヒドロキシ化合物を挙げることができる。上記水酸基を有する(メタ)アクリレートとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジメタクリレート等を挙げることができる。上記多官能イソシアネートとしては、例えばトリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート、イソホロンジイソシアネート等を挙げることができる。上記酸無水物としては、例えば無水こはく酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の二塩基酸の無水物や、無水ピロメリット酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等の四塩基酸二無水物を挙げることができる。
 2個以上の(メタ)アクリロイル基を有する化合物の具体例としては、例えばω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、エチレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピルメタクリレート、2-(2’-ビニロキシエトキシ)エチル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-(メタ)アクリロイロキシエチル)フォスフェート、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、こはく酸変性ペンタエリスリトールトリアクリレート、ウレタン(メタ)アクリレート化合物等を挙げることができる。
 2個以上の(メタ)アクリロイル基を有する化合物の中でも、多官能(メタ)アクリレートが好ましく、3個以上10個以下の(メタ)アクリロイル基を有する多官能(メタ)アクリレートがより好ましい。具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、及びジペンタエリスリトールヘキサアクリレートが好ましい。
 2個以上のN-アルコキシメチルアミノ基を有する化合物としては、例えばメラミン構造、ベンゾグアナミン構造、ウレア構造を有する化合物等を挙げることができる。2個以上のN-アルコキシメチルアミノ基を有する化合物の具体例としては、N,N,N’,N’,N’’,N’’-ヘキサ(アルコキシメチル)メラミン、N,N,N’,N’-テトラ(アルコキシメチル)ベンゾグアナミン、N,N,N’,N’-テトラ(アルコキシメチル)グリコールウリル等を挙げることができる。
 当該組成物(I)における全固形分に占める[E]重合性化合物の含有量の下限としては、5質量%が好ましく、10質量%がより好ましく、20質量%がさらに好ましい。一方、この含有量の上限としては、60質量%が好ましく、50質量%がより好ましく、40%がさらに好ましい。
([F]重合開始剤)
 当該組成物(I)は、[F]重合開始剤を含有することが好ましい。[F]重合開始剤としては、光重合開始剤、熱重合開始剤等を挙げることができるが、光重合開始剤が好ましい。これにより、当該組成物(I)に感光性(感放射線性)を付与することができる。光重合開始剤とは、可視光線、紫外線、遠紫外線、電子線、X線等の放射線の露光により、[E]重合性化合物等の重合を開始しうる活性種を発生する化合物をいう。[F]重合開始剤は、1種又は2種以上を混合して使用することができる。
 [F]重合開始剤としては、例えばチオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、ジアゾ系化合物、イミドスルホナート系化合物、オニウム塩系化合物等を挙げることができる。これらの中でも、チオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物及びO-アシルオキシム系化合物が好ましく、O-アシルオキシム系化合物がより好ましい。
 チオキサントン系化合物としては、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等を挙げることができる。
 アセトフェノン系化合物としては、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-(4-メチルベンジル)-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)ブタン-1-オン等を挙げることができる。
 ビイミダゾール系化合物としては、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール等を挙げることができる。
 なお、ビイミダゾール系化合物を用いる場合、水素供与体を併用することが、感度を改良することができる点で好ましい。ここでいう「水素供与体」とは、露光によりビイミダゾール系化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味する。水素供与体としては、例えば2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール等のメルカプタン系水素供与体;4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のアミン系水素供与体を挙げることができる。
 トリアジン系化合物としては、例えば特公昭57-6096号公報、特開2003-238898号公報の段落[0063]~[0065]に記載の化合物を挙げることができる。
 O-アシルオキシム系化合物としては、1,2-オクタンジオン-1-〔4-(フェニルチオ)フェニル〕-2-(O-ベンゾイルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等を挙げることができる。O-アシルオキシム系化合物の市販品としては、NCI-831、NCI-930(以上、株式会社ADEKA社製))、OXE-03、OXE-04(以上、BASF社製)等を使用することもできる。
 光重合開始剤を用いる場合には、増感剤を併用することもできる。このような増感剤としては、例えば4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等を挙げることができる。
 当該組成物(I)における全固形分に占める[F]重合開始剤の含有量の下限としては、1質量%が好ましく、3質量%がより好ましい。一方、この含有量の上限としては、30質量%が好ましく、10質量%がより好ましい。
(その他の有機色素)
 当該組成物(I)は、[A1]フタロシアニン化合物及び[B]赤外線遮蔽剤である銅化合物としての有機色素以外の公知の有機色素を含有していてもよい。その他の有機色素としては、ジイミニウム化合物、スクアリリウム化合物、シアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、アミニウム化合物、イミニウム化合物、アゾ化合物、アントラキノン化合物、ポルフィリン化合物、ピロロピロール化合物、オキソノール化合物、クロコニウム化合物、ヘキサフィリン化合物等(銅原子を含むものを除く)を挙げることができる。また、[A1]フタロシアニン化合物、及び[B]赤外線遮蔽剤としてのフタロシアニン化合物以外のフタロシアニン化合物を用いることもできる。
 なお、[A1]フタロシアニン化合物と、[A1]フタロシアニン化合物以外のフタロシアニン化合物(以下、「[a]フタロシアニン化合物」とも称する)とを併用することが好ましい。[a]フタロシアニン化合物の極大吸収波長の下限としては、600nmが好ましく、650nmがより好ましい。一方、[a]フタロシアニン化合物の極大吸収波長の上限としては、900nmが好ましく、850nmがより好ましく、800nmがさらに好ましいこともあり、750nmがさらに好ましいこともある。[A1]フタロシアニン化合物の極大吸収波長と[a]フタロシアニン化合物の極大吸収波長の差の下限としては、10nmが好ましく、30nmがより好ましい。一方、この差の上限としては、100nmが好ましく、80nmがより好ましく、60nmがさらに好ましい。[a]フタロシアニン化合物は、従来公知の各種フタロシアニン化合物を挙げることができる。
 当該組成物(I)における全有機色素に占める[A1]フタロシアニン化合物の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がより好ましいこともあり、90質量%がより好ましいこともあり、99質量%がより好ましいこともある。有機色素として、[A1]フタロシアニン化合物のみを実質的に含有することが好ましいこともある。当該組成物(I)は、このようにその他の有機色素の含有量を少なくすることで、生産性を高めることができる。
(添加剤)
 当該組成物(I)は、上述した[A1]~[F]成分及びその他の有機色素以外に、必要に応じて種々の添加剤を含有することもできる。
 添加剤としては、例えば界面活性剤、密着促進剤、酸化防止剤、紫外線吸収剤、凝集防止剤、残渣改善剤、現像性改善剤、反応調整剤等を挙げることができる。
 界面活性剤としては、フッ素界面活性剤、シリコーン界面活性剤等を挙げることができる。
 密着促進剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができる。
 酸化防止剤としては、2,2-チオビス(4-メチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチルフェノール、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサ-スピロ[5.5]ウンデカン、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等を挙げることができる。酸化防止剤の含有量としては、[A]フタロシアニン化合物100質量部に対して、通常0.01質量部以上10質量部以下とすることができる。
 紫外線吸収剤としては、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、アルコキシベンゾフェノン類等を挙げることができる。
 凝集防止剤としては、ポリアクリル酸ナトリウム等を挙げることができる。
 残渣改善剤としては、マロン酸、アジピン酸、イタコン酸、シトラコン酸、フマル酸、メサコン酸、2-アミノエタノール、3-アミノ-1-プロパノール、5-アミノ-1-ペンタノール、3-アミノ-1,2-プロパンジオール、2-アミノ-1,3-プロパンジオール、4-アミノ-1,2-ブタンジオール等を挙げることができる。
 現像性改善剤としては、こはく酸モノ〔2-(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイロキシエチル〕、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等剤等を挙げることができる。
 反応調整剤としては、多官能チオール等を挙げることができる。
 当該組成物(I)における全固形分に占める、上述した[A1]~[F]成分及びその他の有機色素以外の成分剤の含有量の下限としては、0.1質量%が好ましく、1質量%がより好ましい。一方、この含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。
(溶媒)
 当該組成物(I)は、通常溶媒(分散媒)を含有する液状組成物として調製される。溶媒としては、他の成分を分散又は溶解し、かつこれらの成分と反応せず、適度の揮発性を有するものである限り、適宜に選択して使用することができる。
 このような溶媒としては、例えば
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類、
乳酸メチル、乳酸エチル等の乳酸アルキルエステル類、
メタノール、エタノール、プロパノール、ブタノール、イソプロパノール、イソブタノール、t-ブタノール、オクタノール、2-エチルヘキサノール、シクロヘキサノール等の(シクロ)アルキルアルコール類、
ジアセトンアルコール等のケトアルコール類、
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類、
ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等の他のエーテル類、
メチルエチルケトン、2-ヘプタノン、3-ヘプタノン等の鎖状ケトン、シクロペンタノン、シクロヘキサノン等の環状ケトン等のケトン類、
プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート等のジアセテート類、
3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、3-メチル-3-メトキシブチルプロピオネート等のアルコキシカルボン酸エステル類、
酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-アミル、酢酸i-アミル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等の他のエステル類、
トルエン、キシレン等の芳香族炭化水素類、
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド又はラクタム類
等を挙げることができる。
 当該組成物(I)における溶媒の含有量は、特に限定されるものではない。当該組成物(I)における固形分濃度(溶媒を除いた各成分の合計濃度)の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、この固形分濃度の上限としては、50質量%が好ましく、40質量%がより好ましい。固形分濃度を上記範囲とすることにより、分散性、安定性、塗布性等がより良好なものとなる。
(調製方法)
 当該組成物(I)の調製方法としては、特に限定されず、各成分を混合することによって調製することができる。例えば、当該組成物が、[C]赤外線遮蔽剤としての金属酸化物、及び[D]分散剤を含むものである場合、まず、[C]赤外線遮蔽剤、[D]分散剤及び溶媒を含有する分散液を調製し、この分散液に[A1]フタロシアニン化合物、[B]バインダー樹脂、及び必要に応じその他の成分を添加し、混合する方法を採用することができる。分散液又は当該組成物(I)は、必要に応じろ過処理を施し、凝集物を除去することができる。
<光学センサー用組成物(II)>
 本発明の一実施形態に係る光学センサー用組成物(II)(以下、単に「組成物(II)」とも称する。)は、[A2]フタロシアニン化合物を含有する。[A2]フタロシアニン化合物は、下記式(2)で表される化合物である。当該組成物(II)は、このような[A2]フタロシアニン化合物を含有するため、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する光学フィルターを形成することができる。
Figure JPOXMLDOC01-appb-C000007
 式(2)中、複数のRは、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。
 [A2]フタロシアニン化合物は、上記複数のRが、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基であること以外は、上述した[A1]フタロシアニン化合物と同様である。[A2]フタロシアニン化合物の好ましい形態も、上述した[A1]フタロシアニン化合物と同様である。
 当該組成物(II)は、[A1]フタロシアニン化合物の代わりに[A2]フタロシアニン化合物を含有し、[B]バインダー樹脂を必須成分としないこと以外は、上述した組成物(I)と同様である。当該組成物(II)は、[B]バインダー樹脂を含有することが好ましい。その他、当該組成物(II)の具体的形態及び好適形態は、上述した組成物(I)と同様である。
<赤外線遮蔽膜>
 本発明の一実施形態に係る組成物(I)及び組成物(II)(以下、組成物(I)及び組成物(II)をまとめて単に「組成物」とも称する。)からは、光学フィルター用の赤外線遮蔽膜を形成することができる。この赤外線遮蔽膜は、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する。
 当該赤外線遮蔽膜は、例えば以下の方法によって形成することができる。まず、支持体上に、当該組成物を塗布した後、プレベークを行って溶媒を蒸発させ、塗膜を形成する。次いで、この塗膜を露光したのち、現像液を用いて現像して、塗膜の非露光部を溶解除去する。その後、ポストベークすることにより、所定形状にパターニングされた赤外線遮蔽膜(I)が得られる。なお、当該組成物が、[E]重合性化合物及び[F]重合開始剤を含有しない場合は、露光等の硬化処理を行わなくてもよい。また、現像処理を行わなくてもよく、この場合、パターニングされていない赤外線遮蔽膜を形成することができる。
 当該組成物を塗布する上記支持体としては、上記透明基板、マイクロレンズ、カラーフィルター等が相当する。上記塗布は、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法(スリット塗布法)、バー塗布法等の適宜の塗布法を採用することができる。
 上記プレベークにおける加熱乾燥の条件としては、例えば70℃以上110℃以下、1分以上10分以下程度である。
 塗膜の露光に用いる放射線の光源としては、例えばキセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯等のランプ光源やアルゴンイオンレーザー、YAGレーザー、XeClエキシマーレーザー、窒素レーザー等のレーザー光源等を挙げることができる。露光光源として、紫外線LEDを使用することもできる。波長は、190nm以上450nm以下の範囲にある放射線が好ましい。放射線の露光量は、一般的には10J/m以上50,000J/m以下程度である。
 上記現像液としては、アルカリ現像液が一般的である。アルカリ現像液としては、例えば炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等の水溶液が好ましい。アルカリ現像液には、例えばメタノール、エタノール等の水溶性有機溶媒や界面活性剤等を適量添加することもできる。なお、現像後は、通常、水洗する。
 現像処理法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。現像条件は、常温で5秒以上300秒以下程度である。
 ポストベークの条件としては、通常180℃以上280℃以下、1分以上60分以下程度である。
 このようにして形成された赤外線遮蔽膜の平均膜厚の下限としては、通常0.5μmであり、1μmが好ましい。一方、この平均膜厚の上限としては、通常10μmであり、5μmが好ましい。赤外線遮蔽の平均膜厚が上記範囲であることによって、可視光透過性と赤外線遮蔽性とのバランスがより良好なものとなる。
<光学フィルター>
 本発明の一実施形態に係る組成物から形成される赤外線遮蔽膜は、光学フィルターに用いることができる。上記赤外線遮蔽膜を有する光学フィルターは、異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有する。当該光学フィルターは、固体撮像素子等の光学センサーの光学フィルターとして用いられる。
 当該光学フィルターは、上記赤外線遮蔽膜のみからなるものであってもよいし、上記赤外線遮蔽膜と他の構成部材とからなるものであってもよい。例えば、当該光学フィルターは、上記赤外線遮蔽膜と他の層とを有する積層体であってもよい。
 当該赤外線遮蔽膜は、一構成部材として、固体撮像素子等の光学センサーに組み込まれているものであることが好ましい。この場合、当該赤外線遮蔽膜が、単体で光学フィルター(赤外線カットフィルター)として機能する。光学センサーに当該赤外線遮蔽膜が組み込まれていることで、大きなプロセスマージンを獲得することなどができ好ましい。当該赤外線遮蔽膜(が固体撮像素子に組み込まれている場合、当該赤外線遮蔽膜は、例えば固体撮像素子のマイクロレンズの外面側、マイクロレンズとカラーフィルターとの間、カラーフィルターとフォトダイオードとの間などに配することができる。当該赤外線遮蔽膜は、マイクロレンズとカラーフィルターとの間又はカラーフィルターとフォトダイオードとの間に積層されることが好ましい。
 上記光学フィルターとしては、透明基板の表面に当該赤外線遮蔽膜が積層されてなるものであってもよい。上記透明基板としては、ガラスや透明樹脂等が採用される。上記透明樹脂としては、ポリカーボネート、ポリエステル、芳香族ポリアミド、ポリアミドイミド、ポリイミド等を挙げることができる。このような光学フィルターも、固体撮像素子における赤外線カットフィルターなどとして好適に用いられる。
 上記光学フィルターを備える固体撮像素子等の光学センサーは、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、PCカメラ、監視カメラ、自動車用カメラ、携帯情報端末、パソコン、ビデオゲーム、医療機器等に有用である。
<光学センサー>
 上記光学フィルターは、固体撮像素子等の光学センサーに用いられる。上記光学フィルターは異物等の欠陥が少なく、可視光透過性及び赤外線遮蔽性に関する良好な特性を有するため、当該光学フィルターを有する固体撮像素子等の光学センサーは、感度、色再現性等が高く、実用性に優れる。
 以下、光学センサーの一例として固体撮像素子について説明する。当該固体撮像素子は、一般的に、複数のフォトダイオードが配置される層、カラーフィルター、及びマイクロレンズがこの順に積層されてなる構造を有する。また、これらの層間には、平坦化層が設けられていてもよい。当該固体撮像素子においては、マイクロレンズ側から光が入射する。入射光は、マイクロレンズ及びカラーフィルターを透過し、フォトダイオードに到達する。なお、カラーフィルターについては、例えばR(赤)、G(緑)及びB(青)のフィルターのそれぞれにおいて、特定の波長範囲の光のみが透過するよう構成されている。
 当該固体撮像素子において、上記光学フィルター(赤外線遮蔽膜)は、上記マイクロレンズの外面側、上記マイクロレンズと上記カラーフィルターとの間、上記カラーフィルターと上記複数のフォトダイオードが配置される層との間などに設けられることができる。当該光学フィルターは、マイクロレンズとカラーフィルターとの間又はカラーフィルターとフォトダイオードとの間に積層されることが好ましい。なお、当該光学フィルターと、マイクロレンズ、カラーフィルター、フォトダイオード等との間には、さらに別の層(平坦化層等)が設けられていてもよい。
 当該固体撮像素子の具体例としては、カメラモジュールとしてのCCDやCMOSなどが挙げられる。当該固体撮像素子は、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、PCカメラ、監視カメラ、自動車用カメラ、携帯情報端末、パソコン、ビデオゲーム、医療機器等に有用である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<合成例1>フタロシアニン化合物(a-1)の合成
 4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9g、三塩化バナジウム4.76g、及びDBU13.74gを1-ペンタノール100mL中、内温125℃にて24時間撹拌した。その後、メタノール600mLを添加し、析出物をろ取し、乾燥した。カラムクロマトグラフィー(シリカゲル/トルエン)で精製して緑色粉末11.2gを得た。得られた化合物は、下記の分析結果より目的の下記式(a-1)で表される化合物(a-1)であることを確認した。
・MS:(EI)m/z 2245M+)
・元素分析値:実測値(C:68.44%、H:6.44%、N:4.99%);
 理論値(C:68.47%、H:6.46%、N:4.99%)
 このようにして得られた化合物のトルエン溶液は734.5nmに極大吸収を示し、グラム吸光係数は6.75×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000008
 なお、上記式中、「*」は、結合手を示す(以下の化学式においても同様)。
<合成例2>フタロシアニン化合物(a-2)の合成
 合成例1における4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9gの代わりに4,7-ビス(4-メトキシブチル)-1,3-ジイミノイソインドリン18.6gを使用した以外は合成例1と同様にして緑色粉末14.5gを得た。得られた化合物は、下記の分析結果より目的の下記式(a-2)で表される化合物(a-2)であることを確認した。
・MS:(EI)m/z 1267M+)
・元素分析値:実測値(C:68.20%、H:7.66%、N:8.82%);
 理論値(C:68.17%、H:7.63%、N:8.83%)
 このようにして得られた化合物のトルエン溶液は734.0nmに極大吸収を示し、グラム吸光係数は1.21×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000009
<合成例3>フタロシアニン化合物(a-3)の合成
 合成例1における4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9gの代わりに4,7-ビス(4-(3-メトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン29.4gを使用した以外は合成例1と同様にして緑色粉末5.9gを得た。得られた化合物は、下記の分析結果より目的の下記式(a―3)で表される化合物(a-3)であることを確認した。
・MS:(EI)m/z 2003M+)
・元素分析値:実測値(C:71.85%、H:6.44%、N:5.57%);
 理論値(C:71.87%、H:6.43%、N:5.59%)
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は7.40×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000010
<合成例4>フタロシアニン化合物(a-4)の合成
 合成例1における4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9gの代わりに4,7-ビス(4-(2-フルオロフェノキシ)ブチル)-1,3-ジイミノイソインドリン28.0gを使用した以外は合成例1と同様にして緑色粉末11.2gを得た。得られた化合物は、下記の分析結果より目的の下記式(a―4)で表される化合物(a-4)であることを確認した。
・MS:(EI)m/z 1908M+)
・元素分析値:実測値(C:70.49%、H:5.51%、N:5.85%);
 理論値(C:70.47%、H:5.49%、N:5.87%)
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は7.89×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000011
<合成例5>フタロシアニン化合物(a-5)の合成
 合成例1における4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9gの代わりに4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン38.8gを使用した以外は合成例1と同様にして緑色粉末31.0gを得た。得られた化合物は、下記の分析結果より目的の下記式(a-5)で表される化合物(a-5)であることを確認した。
・MS:(EI)m/z 2645M+)
・元素分析値:実測値(C:72.62%、H:6.05%、N:4.30%);
 理論値(C:72.63%、H:6.10%、N:4.23%)
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は5.85×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000012
<合成例6>フタロシアニン化合物(a-6)の合成
 合成例1における4,7-ビス(4-(2、6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン32.9gの代わりに4,7-ビス(4-((1,6-ジメトキシナフタレン-2-イル)オキシ)ブチル)-1,3-ジイミノイソインドリン19.4gおよび4,7-ビス(4-(2,6-ジメトキシフェノキシ)ブチル)-1,3-ジイミノイソインドリン16.5gを使用した以外は合成例1と同様にして緑色粉末28.1gを得た。得られた化合物は、LC-MSにて各成分のm/zの一致より目的の下記式(a-6)で表される化合物(a-6)であることを確認した。
 このようにして得られた化合物のトルエン溶液は735.5nmに極大吸収を示し、グラム吸光係数は6.30×10mL/g・cmであった。
Figure JPOXMLDOC01-appb-C000013
 なお、上記フタロシアニン化合物(a-1)~(a-6)は、いずれも上記式(1)で表されるフタロシアニン化合物である。
<合成例7>フタロシアニン化合物(a’-1)の合成
 特開平02-138382の実施例(65)の記載に沿って、下記式で表される比較例用のフタロシアニン(a’-1)(極大吸収波長725nm)を合成した。
Figure JPOXMLDOC01-appb-C000014
<合成例8>フタロシアニン化合物(a’-2)の合成
 特開2016-204536号公報の段落[0075](実施例4)に記載の方法を用いて、下記式で表される比較例用のフタロシアニン化合物(a’-2)(極大吸収波長728nm)を合成した。
Figure JPOXMLDOC01-appb-C000015
<合成例9>フタロシアニン化合物(a’-3)の合成
 特開平05-25177の段落[0020]~[0025](実施例1)に記載の方法を用いて、下記式で表されるその他色素用のフタロシアニン化合物(a’-3)(極大吸収波長692nm)を合成した。
Figure JPOXMLDOC01-appb-C000016
<合成例10>セシウム酸化タングステン粉末の合成
 特許第4096205号公報の段落[0113]に記載の方法を用いて、セシウム酸化タングステン(Cs0.33WO)粉末を合成した。
<合成例11>バインダー樹脂(b-1)の合成
 反応容器に、ベンジルメタクリレート14質量部、スチレン10質量部、N-フェニルマレイミド12質量部、2-ヒドロキシエチルメタクリレート15質量部、2-エチルヘキシルメタクリレート29質量部及びメタクリル酸20質量部をプロピレングリコールモノメチルエーテルアセテート200質量部に溶解し、更に2,2’-アゾイソブチロニトリル3質量部及びα-メチルスチレンダイマー5質量部を投入した。反応容器内を窒素パージ後、攪拌及び窒素バブリングしながら80℃で5時間加熱し、バインダー樹脂(b-1)を含む溶液(バインダー樹脂溶液(B-1):固形分濃度35質量%)を得た。得られたバインダー樹脂(b-1)について、昭和電工社ゲルパーミエ-ションクロマトグラフィー(GPC)装置(GPC-104型、カラム:昭和電工社製LF-604を3本とKF-602を結合したもの、展開溶剤:テトラヒドロフラン)を用いて、ポリスチレン換算の分子量を測定したところ、重量平均分子量(Mw)が9700、数平均分子量(Mn)が5700であり、Mw/Mnが1.70であった。なお、本合成例において、各単量体の仕込比(質量比)と、得られたバインダー樹脂における各単量体に由来する構造単位の含有量比(質量比)とは、実質的に同じとみなすことができる(以下の合成例14においても同様である)。
<合成例12>バインダー樹脂(b-2)の合成
 冷却管及び攪拌機を備えたフラスコに、プロピレングリコールモノメチルエーテル200質量部を仕込み、温度を80℃に上昇した。同温度で、プロピレングリコールモノメチルエーテル100質量部、メタクリル酸100質量部、及び2,2’-アゾイソブチロニトリル5質量部の混合溶液を3時間かけて滴下し、滴下後に温度を保持して3時間重合した。その後、反応溶液の温度を100~120℃に昇温させ、さらに2時間反応を行った。冷却後、プロピレングリコールモノメチルエーテル25質量部、3,4-エポキシシクロヘキシルメチルアクリレート116質量部、及び触媒量のジメチルベンジルアミンを投入し、110℃に昇温させて9時間反応することで、下記式で表されるバインダー樹脂(b-2)を含む溶液(バインダー樹脂溶液(B-2):固形分濃度40質量%)を得た。得られたバインダー樹脂について合成例11と同様に分子量を測定したところ、重量平均分子量(Mw)が15100、数平均分子量(Mn)が7000であり、Mw/Mnが2.16であった。
Figure JPOXMLDOC01-appb-C000017
(上記式において、組成比は質量比である。)
<合成例13>バインダー樹脂(b-3)の合成
 冷却管及び攪拌機を備えたフラスコに、プロピレングリコールモノメチルエーテル200質量部を仕込み、温度を80℃に上昇した。同温度で、プロピレングリコールモノメチルエーテル200質量部、メタクリル酸67質量部、N-シクロヘキシルマレイミド33質量部、及び2,2’-アゾイソブチロニトリル5質量部の混合溶液を3時間かけて滴下し、滴下後に温度を保持して3時間重合した。その後、反応溶液の温度を100~120℃に昇温させ、さらに3時間反応を行った。冷却後、プロピレングリコールモノメチルエーテル28質量部、3,4-エポキシシクロヘキシルメチルアクリレート119質量部、及び触媒量のジメチルベンジルアミンを投入し、110℃に昇温させて30時間反応することで、下記式で表されるバインダー樹脂(b-3)を含む溶液(バインダー樹脂溶液(B-3):固形分濃度40質量%)を得た。得られたバインダー樹脂について合成例11と同様に分子量を測定したところ、重量平均分子量(Mw)が17000、数平均分子量(Mn)が7700であり、Mw/Mnが2.21であった。
Figure JPOXMLDOC01-appb-C000018
(上記式において、組成比は質量比である。)
<合成例14>バインダー樹脂(b-4)の合成
 冷却管及び攪拌機を備えたフラスコに、2,2-アゾビスイソブチロニトリル5質量部、3-メトキシプロピオン酸メチル140質量部、及びプロピレングリコールモノメチルエーテル60質量部を仕込み、さらにメタクリル酸グリシジル32質量部、3-メタクリロキシプロピルトリエトキシシラン40質量部、ベンジルメタクリレート11質量部、n-ブチルメタクリレート3質量部及びメタクリル酸14質量部を仕込んで窒素置換した後、緩やかに撹拌しつつ、溶液の温度を80℃に上昇した。この温度で5時間保持して重合することにより、バインダー樹脂(b-4)を含む溶液(以下バインダー樹脂溶液(B-4)固形分濃度35質量%)を得た。得られたバインダー樹脂について、合成例11と同様に分子量を測定したところ、重量平均分子量(Mw)が9500、数平均分子量(Mn)が5800であり、Mw/Mnが1.64であった。
<合成例15>分散剤(d-2)
 文献(Macromolecules 1992,25,p5907-5913)に記載の方法を用いて、ジメチルアミノエチルメタクリレート45質量部、2-エチルヘキシルメタクリレート20質量部、n-ブチルメタクリレート5質量部、PME-200(メトキシポリエチレングリコールモノメタクリレート、及びCH=C(CH)COO(CO)-CH(n≒4)で表されるモノマーの重合体)30質量部を一括で重合し、ランダム共重合体を含む反応溶液を得た。続いて、反応溶液をメタノールを用いてクエンチを行い、得られた反応溶液を7質量%の炭酸水素ナトリウム水溶液、次いで水にて洗浄した。この後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶媒置換を行うことで、分散剤(d-2)を含む分散剤溶液(D-2)を収率80質量%で得た。得られた分散剤(d-2)のアミン価は160mgKOH/g、Mwは9500、Mw/Mnは1.21、分散剤溶液(D-2)の固形分量は39.6質量%であった。
[調製例1]分散液(C-1)の調製
 上記セシウム酸化タングステン25.00質量部、分散剤(d-1)としてのビックケミー社の「BYK-LPN6919」(固形分濃度60質量%、アミン価120mgKOH/g)13.30質量部、及び溶媒(分散媒)としてのシクロペンタノン(CPN)61.70質量部を用意した。これらを0.1mm径のジルコニアビーズ2000質量部と共に容器に充填し、ペイントシェーカーで分散を行うことで、平均粒子径(D50)が19nmの分散液(C-1)を得た。なお、平均粒子径は、光散乱測定装置(ドイツALV社の「ALV-5000」)を用いて、DLS法により測定した。
[調製例2]分散液(C-2)の調製
 分散剤溶液(D-2)を20.20質量部、溶媒をCPN54.80質量部に変更したこと以外は調製例1と同様にして、平均粒子径が19nmの分散液(C-2)を得た。
[調製例3]色素溶液(A-1)~(A-9)の調製
 フタロシアニン化合物(a-1)5.00質量部、及び溶媒としてCPN95.00質量部を容器に量り取り、攪拌機で混合した。得られた溶液を0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを用いて0.05MPaの一定加圧条件で加圧ろ過することで、色素溶液(A-1)を得た。また、フタロシアニン化合物としてフタロシアニン化合物(a-2)~(a-6)、(a-8)及び(a-9)をそれぞれ用いたこと以外は上記と同様の方法で表1に記載の各色素溶液(A-2)~(A-6)、(A-8)及び(A-9)を得た。
 色素溶液(A-7)に関しては、フタロシアニン化合物(a-1)4.50質量部、フタロシアニン化合物(a’-3)1.20質量部及び溶媒としてCPN94.30質量部を用いたこと以外は同様にして調製した。
[実施例1]
 上記分散液(C-1)20.00質量部、色素溶液(A-1)23.15質量部、バインダー樹脂溶液(B-1)21.01質量部、重合性化合物として日本化薬社の「KAYARAD DPHA」(ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物)8.14質量部、重合開始剤としてADEKA社の「NCI-930」(O-アシルオキシム系化合物)1.53質量部、界面活性剤としてネオス社の「FTX-218D」(フッ素系界面活性剤)0.05質量部、反応調整剤として昭和電工社の「カレンズMT PE1」(多官能チオール)0.31質量部、酸化防止剤としてBASF社の「Irganox1010」(フェノール系酸化防止剤)0.10質量部、及び溶媒としてシクロペンタノン(CNP)25.71質量部を容器に量り取り、攪拌機で混合した。この混合物約100mLを0.5μmのPTFE製フィルターを用いて0.05MPaの一定加圧条件で加圧ろ過することにより、実施例1の組成物を得た。
[実施例2~13、比較例1~3]
 分散液、色素溶液及びバインダー樹脂溶液の種類及び配合量(質量部)、並びに重合性化合物、重合開始剤、界面活性剤、反応調整剤、酸化防止剤及び溶媒の配合量(質量部)を表1に示すとおりとしたこと以外は、実施例1と同様にして、実施例2~13及び比較例1~3の各組成物を得た。なお、表1には、得られた各組成物における[A]フタロシアニン化合物、[B]バインダー樹脂、[C]赤外線遮蔽剤、[D]分散剤及びその他色素の種類及び固形分中の含有量も示す。表1中の「CsWO」は、合成例10で得られたセシウム酸化タングステン(Cs0.33WO)を表す。
[評価]
 得られた各組成物を用い、以下の評価を行った。評価結果を表1に示す。
 各組成物をガラス基板上に所定の膜厚になるようにスピンコート法にて塗布した。その後、塗膜を100℃で120秒間加熱し、i線ステッパにて500mJ/cmとなるように露光を行った。次いで220℃で300秒間加熱することで、ガラス基板上に平均膜厚2.0~4.0μmの赤外線遮蔽膜を作製した。各平均膜厚は表1に示す。なお、膜厚は触針式段差計(ヤマト科学社の「アルファステップIQ」)にて測定した。次に、上記ガラス基板上に作製した赤外線遮蔽膜の各波長領域における透過率を、分光光度計(日本分光社の「V-7300」)を用いて、ガラス基板対比で測定した。得られたスペクトルより、以下のような評価基準により評価を行った。
(可視光透過性)
 430-580nmの平均透過率を算出した。平均透過率が70%未満の場合は赤外線遮蔽膜として使用した際の感度が低下する。また、上記平均透過率について、以下の基準で評価した。
 A:80%以上
 B:70%以上80%未満
 C:70%未満
(可視透過窓範囲)
 430-580nmの範囲における透過率が、連続で70%以上となる範囲を求めた。連続で70%以上となる範囲が175nm以上の場合は赤外線遮蔽膜として使用した際に、高い感度を有するため実用性が高いと推定される。また、上記可視透過窓範囲については、以下の基準で評価した。
 A:200nm以上
 B:175nm以上200nm未満
 C:175nm未満
(赤外線遮蔽範囲)
 700-800nmの範囲における透過率が、連続で20%以下となる範囲を求めた。連続で20%以下となる範囲が20nm以上の場合は赤外線遮蔽膜として使用した際に、高いノイズ遮蔽機能を有するため実用性が高いと推定される。また、上記赤外線遮蔽範囲について、以下の基準で評価した。
 A:30nm以上
 B:20nm以上30nm未満
 C:20nm未満
(平均Off-Slope)
 500-750nmの範囲で、透過率が80%以上になる最も長い波長を(X)、透過率が20%以下になる最も短い波長を(Y)とし、平均Off-Slope(Z)を以下の式で算出した。平均Off-Slopeは0.45以上の場合は赤外線遮蔽膜として使用した際に、得られる画像の色再現性、ノイズ遮蔽機能を高めることが可能となり、実用性が高いと推定される。また、上記平均Off-Slopeについて、以下の基準で評価した。
(Z)=60/((Y)-(X))
 AA:0.60以上
 A:0.50以上0.60未満
 B:0.45以上0.50未満
 C:0.45未満
(耐熱性)
 上記ガラス基板上に作製した赤外線遮蔽膜について、ホットプレートを用いて260℃で300秒間加熱し、加熱前後の各波長領域における透過率を、分光光度計(日本分光社の「V-7300」)を用いて、ガラス基板対比で測定した。この時、作製した赤外線遮蔽膜の700-800nmの範囲で透過率が最も低くなる波長での吸光度を(A1)、同波長における260℃の加熱後の吸光度を(A2)、吸光度保持率=100×(A1)/(A2)として、以下の基準で260℃の耐熱性を評価した。保持率が30%以上の場合は、赤外線遮蔽膜として使用した際に、保護膜等と併用することで高い耐熱性を維持することが可能となり、実用性が高いと推定される。また、上記保持率について、以下の基準で評価した。
 AA:90%以上
 A:60%以上90%未満
 B:30%以上60%未満
 C:30%未満
(欠陥抑制性)
 各組成物をシリコン基板上にスピンコート法により塗布し、この塗膜を硬化させ、膜厚が約1μmの硬化膜を形成した。欠陥/異物検査装置(KLA-Tencor社の「KLA 2351」)を用いて、硬化膜の欠陥密度(Defect density)を測定した。この欠陥密度の値が小さいほど、欠陥抑制性が高いと判断できる。なお、欠陥とは、サイズが1μm以上となる検出点をさす。上記欠陥密度に基づき、以下の基準で欠陥抑制性を評価した。
 A:10/cm以下
 B:10/cm超50/cm以下
 C:50/cm
(PCD安定性)
 各組成物をシリコン基板上にスピンコート法により塗布し、この塗膜を硬化させない状態で、膜厚が約1μmの塗布膜を形成した。欠陥/異物検査装置(KLA-Tencor社の「KLA 2351」)を用いて、塗布膜の欠陥密度(Defect density)を測定した。続いて、一定時間置きに塗布膜の欠陥密度を測定し、初期値に対して欠陥数が20%以上増加した時間を計測し、以下の基準で塗膜後の塗布後引き置き(PCD:Post Coating Delay)安定性を評価した。PCD安定性は、値が大きいほど実用性が高いと推定される。
 A:24時間以上
 B:12時間以上24時間未満
 C:12時間未満
Figure JPOXMLDOC01-appb-T000019
 上記表1に示されるように、実施例1~13のいずれも、可視光透過性、可視光透過窓範囲、赤外線遮蔽範囲、平均Off-Slope、耐熱性、欠陥抑制性、及びPCD安定性の評価が良好であった。なお、上記式(1)で表されるフタロシアニン化合物を用いた各実施例のうち、Rが置換基を有するフタロシアニン化合物(a-1、a-3~a-6)を用いた実施例1、3~6は、Rが置換基を有さないフタロシアニン化合物(a-2)を用いた実施例2と比較して高い耐熱性を有することが分かる。また、Rが置換基を有するフタロシアニン化合物を用いた上記実施例のうち、実施例1、3及び4は可視光透過性も良好であることもわかる。
 本発明の光学センサー用組成物は、固体撮像素子等の光学センサーの光学フィルターの形成材料として好適に用いることができる。
 

Claims (9)

  1.  下記式(1)で表されるフタロシアニン化合物、及び
     バインダー樹脂
     を含有する光学センサー用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数のRは、それぞれ独立して、置換基を有する若しくは非置換のアルキル基、又は置換基を有する若しくは非置換のアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。)
  2.  上記複数のRが、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基である請求項1に記載の光学センサー用組成物。
  3.  上記バインダー樹脂が、オキシラニル基、オキセタニル基、(メタ)アクリロイル基、アルコキシシリル基又はこれらの組み合わせを有する請求項1又は請求項2に記載の光学センサー用組成物。
  4.  上記バインダー樹脂が、主鎖に環構造を有する請求項1から請求項3のいずれか1項に記載の光学センサー用組成物。
  5.  下記式(2)で表されるフタロシアニン化合物
     を含有する光学センサー用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、複数のRは、それぞれ独立して、置換基を有するアルキル基、又は置換基を有するアリール基である。複数のXは、それぞれ独立して、水素原子、ハロゲン原子又はアルキル基である。複数のXは、互いに結合してこれらが結合する炭素鎖と共に芳香環を形成していてもよい。Mは、2つの水素原子、2価の金属原子、又は3若しくは4価の金属原子の誘導体である。複数のnは、それぞれ独立して、3~6の整数である。)
  6.  上記複数のRでそれぞれ表されるアルキル基及びアリール基が有する置換基が、ヘテロ原子を有する基である請求項1から請求項5のいずれか1項に記載の光学センサー用組成物。
  7.  上記置換基が、ハロゲン原子、メトキシ基、エトキシ基、メチルチオ基、エチルチオ基又はこれらの組み合わせである請求項6に記載の光学センサー用組成物。
  8.  金属酸化物、銅化合物(上記フタロシアニン化合物を除く)又はこれらの組み合わせである赤外線遮蔽剤
     をさらに含有する請求項1から請求項7のいずれか1項に記載の光学センサー用組成物。
  9.  上記金属酸化物が、セシウム酸化タングステンである請求項8に記載の光学センサー用組成物。
     
PCT/JP2019/039121 2018-10-05 2019-10-03 光学センサー用組成物 WO2020071486A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980064495.5A CN112789526B (zh) 2018-10-05 2019-10-03 光学传感器用组合物
KR1020217009341A KR20210071971A (ko) 2018-10-05 2019-10-03 광학 센서용 조성물
CN202310508376.2A CN116520638A (zh) 2018-10-05 2019-10-03 光学传感器用组合物
CN202310508371.XA CN116520637A (zh) 2018-10-05 2019-10-03 光学传感器用组合物
JP2020550546A JP7424300B2 (ja) 2018-10-05 2019-10-03 光学センサー用組成物
JP2023196021A JP2024020454A (ja) 2018-10-05 2023-11-17 光学センサー用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-189759 2018-10-05
JP2018189759 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071486A1 true WO2020071486A1 (ja) 2020-04-09

Family

ID=70055447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039121 WO2020071486A1 (ja) 2018-10-05 2019-10-03 光学センサー用組成物

Country Status (5)

Country Link
JP (2) JP7424300B2 (ja)
KR (1) KR20210071971A (ja)
CN (3) CN116520637A (ja)
TW (1) TWI803701B (ja)
WO (1) WO2020071486A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108265A (ja) * 1987-10-20 1989-04-25 Mitsui Toatsu Chem Inc 近赤外線吸収剤およびそれを用いた光記録媒体
JPH02138382A (ja) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc アルキルフタロシアニン近赤外線吸収剤及びそれを用いた表示・記録材料
WO2018186489A1 (ja) * 2017-04-07 2018-10-11 山本化成株式会社 フタロシアニン系化合物、及びその用途
JP2018180167A (ja) * 2017-04-07 2018-11-15 Jsr株式会社 固体撮像素子用組成物、赤外線遮蔽膜及び固体撮像素子
JP2019159120A (ja) * 2018-03-13 2019-09-19 Jsr株式会社 赤外線吸収組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257364B2 (en) * 1986-08-06 1997-10-15 Konica Corporation Developing method for electrostatic latent image
ATE79644T1 (de) * 1987-02-13 1992-09-15 Secr Defence Brit Substituierte phthalocyanine.
CA2047477C (en) * 1990-08-08 1998-04-21 Xavier Jose Quinones Colored cellulosic casing with clear corridor
JPH08248715A (ja) * 1995-03-06 1996-09-27 Sharp Corp 画像形成装置及びそれに用いる感光体
JP3780388B2 (ja) * 1996-07-19 2006-05-31 リコープリンティングシステムズ株式会社 カラー画像形成装置及びカラー画像形成方法
US6767677B2 (en) * 2002-11-20 2004-07-27 Eastman Kodak Company Display element with a backprint comprising a squarine dye
CN1735973A (zh) * 2003-01-20 2006-02-15 夏普株式会社 用于光学传感器滤波器的透明树脂组合物、光学传感器及其制造方法
JP2008201952A (ja) 2007-02-21 2008-09-04 Nippon Shokubai Co Ltd フタロシアニン化合物
US20140124710A1 (en) * 2011-03-31 2014-05-08 Kuraray Co., Ltd. Block copolymer and photoelectric conversion element
TW201245268A (en) * 2011-03-31 2012-11-16 Kuraray Co Block copolymer and photoelectric conversion element
CN103608704B (zh) * 2011-09-14 2016-03-16 富士胶片株式会社 着色放射线敏感性组合物、图案形成方法、彩色滤光片及其制备方法以及固态图像传感器
WO2015163349A1 (ja) * 2014-04-25 2015-10-29 日本化薬株式会社 撮像素子用光電変換素子用材料及びそれを含む光電変換素子
KR20170036694A (ko) * 2014-07-28 2017-04-03 다우 글로벌 테크놀로지스 엘엘씨 Lcd의 컬러 필터용으로 사용된 프탈로시아닌 화합물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108265A (ja) * 1987-10-20 1989-04-25 Mitsui Toatsu Chem Inc 近赤外線吸収剤およびそれを用いた光記録媒体
JPH02138382A (ja) * 1988-04-01 1990-05-28 Mitsui Toatsu Chem Inc アルキルフタロシアニン近赤外線吸収剤及びそれを用いた表示・記録材料
WO2018186489A1 (ja) * 2017-04-07 2018-10-11 山本化成株式会社 フタロシアニン系化合物、及びその用途
JP2018180167A (ja) * 2017-04-07 2018-11-15 Jsr株式会社 固体撮像素子用組成物、赤外線遮蔽膜及び固体撮像素子
JP2019159120A (ja) * 2018-03-13 2019-09-19 Jsr株式会社 赤外線吸収組成物

Also Published As

Publication number Publication date
JPWO2020071486A1 (ja) 2021-09-30
KR20210071971A (ko) 2021-06-16
CN116520637A (zh) 2023-08-01
TWI803701B (zh) 2023-06-01
JP7424300B2 (ja) 2024-01-30
JP2024020454A (ja) 2024-02-14
CN112789526B (zh) 2023-05-30
CN116520638A (zh) 2023-08-01
CN112789526A (zh) 2021-05-11
TW202022050A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6752202B2 (ja) 有機着色顔料と赤外線吸収色素を含む顔料分散液、着色樹脂組成物および光学フィルター
JP7200985B2 (ja) 光学フィルター、カメラモジュールおよび電子機器
JP5585696B2 (ja) 緑色画素形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
WO2018221424A1 (ja) 環境光センサー用光学フィルター
TWI735603B (zh) 含有萘酞菁之藍色著色樹脂組成物、彩色濾光片、固體攝像元件
KR102558721B1 (ko) 고체 촬상 소자용 조성물, 적외선 차폐막 및 고체 촬상 소자
JP6064598B2 (ja) 着色組成物、カラーフィルタ及び表示素子
CN106019845B (zh) 着色感光树脂组合物、彩色滤光片和图像显示装置
JP6954194B2 (ja) 赤外線吸収組成物
WO2012023474A1 (ja) 着色剤、着色組成物、カラーフィルタ及び表示素子
JP7424300B2 (ja) 光学センサー用組成物
JP2022067588A (ja) 近赤外線吸収性色素、近赤外線吸収性組成物、および近赤外線カットフィルタ
JP6852571B2 (ja) 固体撮像素子用分散液、その製造方法、固体撮像素子用硬化性組成物、赤外線遮蔽膜及び固体撮像素子
CN112526821A (zh) 硬化性组合物
JP7326152B2 (ja) 固体撮像素子用組成物及び固体撮像素子用赤外線遮蔽膜の形成方法
JP2010237461A (ja) 着色組成物、カラーフィルタおよびカラー液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868815

Country of ref document: EP

Kind code of ref document: A1