WO2020071334A1 - ポンプおよび冷却基板 - Google Patents

ポンプおよび冷却基板

Info

Publication number
WO2020071334A1
WO2020071334A1 PCT/JP2019/038613 JP2019038613W WO2020071334A1 WO 2020071334 A1 WO2020071334 A1 WO 2020071334A1 JP 2019038613 W JP2019038613 W JP 2019038613W WO 2020071334 A1 WO2020071334 A1 WO 2020071334A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
pump
flow direction
electrodes
dielectrics
Prior art date
Application number
PCT/JP2019/038613
Other languages
English (en)
French (fr)
Inventor
崇文 森朝
秋一 川田
雅彦 志柿
雄一 草野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020550433A priority Critical patent/JP6966007B2/ja
Publication of WO2020071334A1 publication Critical patent/WO2020071334A1/ja
Priority to US17/187,921 priority patent/US11703040B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to a pump using an electroosmotic flow and a cooling substrate provided with the pump.
  • Patent Document 1 discloses a dielectric porous film, a first water-permeable electrode disposed on one side of the dielectric porous film, and a second water-permeable electrode disposed on the other side of the dielectric porous film.
  • An electroosmotic pump comprising an electrode and an electroosmotic flow is disclosed.
  • the flow rate of the pump is proportional to the cross-sectional area of the dielectric porous membrane in the fluid flow direction, and is inversely proportional to the thickness of the dielectric porous membrane (that is, the dimension in the fluid flow direction). For this reason, as a method of increasing the flow rate of the pump, it is conceivable to increase the cross-sectional area of the dielectric porous membrane or reduce the thickness of the dielectric porous membrane.
  • the size of the pump is increased, so that it is difficult to incorporate the pump into a substrate or the like. If the thickness of the dielectric porous membrane is reduced, the mechanical strength of the pump is reduced. Is difficult to secure. For this reason, it may be difficult for the pump to increase the flow rate while securing mechanical strength.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, Wherein each of the first dielectric and the second dielectric is The zeta potentials in the flow direction are made of materials having mutually opposite signs.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, Wherein each of the first dielectric and the second dielectric is The zeta potentials in the flow direction have the same sign as each other, and the absolute value of the zeta potential in the flow direction of the first dielectric is greater than the absolute value of the zeta potential in the flow
  • the pump of one embodiment of the present invention A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid,
  • the plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes,
  • the plurality of electrodes have different polarities between adjacent electrodes,
  • the plurality of dielectrics An odd-numbered first dielectric member counted from the uppermost stream in the flow direction;
  • a second dielectric which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction,
  • the porosity of the second dielectric in the flow direction is larger than the porosity of the first dielectric in the flow direction.
  • the pump of one embodiment of the present invention A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid,
  • the plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes,
  • the plurality of electrodes have different polarities between adjacent electrodes,
  • the plurality of dielectrics An odd-numbered first dielectric member counted from the uppermost stream in the flow direction;
  • a second dielectric which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction,
  • the pore diameter of the second dielectric in the flow direction is larger than the pore diameter of the first dielectric in the flow direction.
  • the pump of one embodiment of the present invention A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid,
  • the plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes,
  • the plurality of electrodes have different polarities between adjacent electrodes,
  • the plurality of dielectrics An odd-numbered first dielectric member counted from the uppermost stream in the flow direction;
  • a second dielectric which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, The degree of bending of the second dielectric in the flowing direction is smaller than the degree of bending of the first dielectric in the flowing direction.
  • the cooling substrate of one embodiment of the present invention includes: A substrate flow path filled with the fluid and a pump according to the above aspect, wherein the pump is disposed in the substrate flow path and the pump flow path is connected to the substrate flow path.
  • the first dielectric and the second dielectric are made of materials whose zeta potentials in the flow direction A have opposite signs.
  • the first dielectric and the second dielectric have the same sign of the zeta potential in the flow direction A and the absolute value of the zeta potential in the flow direction of the first dielectric. It is made of a material whose value is larger than the absolute value of the zeta potential in the flow direction of the second dielectric.
  • the porosity of the second dielectric in the flowing direction is larger than the porosity of the first dielectric in the flowing direction, or the porosity of the second dielectric in the flowing direction is larger.
  • the pore diameter is larger than the pore diameter of the first dielectric in the flow direction, or the degree of bending of the second dielectric in the direction of flow is smaller than the degree of bending of the first dielectric in the direction of flow.
  • the cooling board having high heat radiation efficiency can be realized by the pump.
  • FIG. 2 is a perspective view showing a cooling board according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • Sectional drawing of FIG. 2 which expanded the pump periphery.
  • FIG. 1 is a schematic diagram showing a pump according to a first embodiment of the present invention. 6 is a graph showing a relationship between the number of stacked pumps in FIG. 5 and a relative value of driving force. The figure for explaining the pump of a 2nd embodiment of the present invention.
  • FIG. 6 is a perspective view for explaining the pump of FIG. 5.
  • FIG. 1 is a schematic diagram illustrating a configuration of a cooling system according to an embodiment.
  • FIG. 17 is a graph showing the relationship between the maximum temperature of an IC when a conventional cooling substrate is used and the maximum temperature of an IC when the cooling substrate of the present invention using the pump of FIG. 16 is used.
  • FIG. 13 is a schematic diagram illustrating a first modification of the cooling system of FIG. 12.
  • FIG. 13 is a schematic diagram illustrating a second modification of the cooling system in FIG. 12.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, Wherein each of the first dielectric and the second dielectric is The zeta potentials in the flow direction are made of materials having mutually opposite signs.
  • the first dielectric and the second dielectric are made of materials whose zeta potentials in the flow direction have opposite signs.
  • the driving force in the flowing direction is larger than the driving force in the direction opposite to the flowing direction, so that the flow rate of the pump can be increased.
  • a pump using an electroosmotic flow that can increase the flow rate while ensuring mechanical strength can be realized.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, Wherein each of the first dielectric and the second dielectric is The zeta potentials in the flow direction have the same sign as each other, and the absolute value of the zeta potential in the flow direction of the first dielectric is greater than the absolute value of the zeta potential in the flow
  • the first dielectric and the second dielectric have the same zeta potential in the flow direction and the absolute value of the zeta potential in the flow direction of the first dielectric is the same.
  • the second dielectric is made of a material that is larger than the absolute value of the zeta potential in the flow direction.
  • the fluid is water.
  • the pump since water having a larger heat capacity than a solvent such as oil is used as a fluid, for example, when used for cooling, a greater cooling effect can be obtained than a pump using a solvent such as oil.
  • the fluid is water to which additives have been added.
  • water to which an additive is added is used as a fluid, various characteristics such as conductivity or zeta potential of the fluid can be adjusted, and a greater flow driving force can be obtained.
  • the fluid is any of a buffer, an antifreeze or an anti-corrosion agent.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, The porosity of the second dielectric in the flow direction is larger than the porosity of the first dielectric in the flow direction.
  • the porosity of the second dielectric in the flow direction is larger than the porosity of the first dielectric in the flow direction.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, The pore diameter of the second dielectric in the flow direction is larger than the pore diameter of the first dielectric in the flow direction.
  • the pore diameter of the second dielectric in the flow direction is configured to be larger than the pore diameter of the first dielectric in the flow direction.
  • the pump of one embodiment of the present invention includes: A pump flow path through which the fluid flows, A plurality of electrodes and a plurality of dielectrics, each of which is disposed in the pump flow path and through which the fluid can pass in the flow direction of the fluid, The plurality of electrodes and the plurality of dielectrics are alternately contacted and laminated along the flow direction such that one of the plurality of dielectrics is located between adjacent electrodes of the plurality of electrodes, The plurality of electrodes have different polarities between adjacent electrodes, The plurality of dielectrics, An odd-numbered first dielectric member counted from the uppermost stream in the flow direction; A second dielectric, which is arranged in an even-numbered manner counting from the uppermost stream in the flow direction, The degree of bending of the second dielectric in the flowing direction is smaller than the degree of bending of the first dielectric in the flowing direction.
  • the degree of bending of the second dielectric in the direction of flow is smaller than the degree of bending of the first dielectric in the direction of flow.
  • Each of the plurality of electrodes may have a greater thickness in the flow direction than each of the plurality of dielectrics.
  • the first dielectric is composed of SiO 2 and the second dielectric is composed of Al 2 O 3 , or the first dielectric is composed of TiO 2 and the second dielectric is or it is composed of al 2 O 3, or the first dielectric or said is composed of SiO 2 the second dielectric is composed of TiO 2, or the first dielectric SiO 2 And the second dielectric is made of ZrO 2 , or the first dielectric is made of ZrO 2 and the second dielectric is made of Al 2 O 3 , or The first dielectric is made of polytetrafluoroethylene, and the second dielectric is made of polyethylene terephthalate.
  • each of the first dielectric and the second dielectric is composed of a combination of different oxide ceramics, a general method of manufacturing an electronic ceramic can be developed. As a result, a pump that can be mass-produced at low cost can be realized.
  • the cooling substrate of one embodiment of the present invention includes: A substrate flow path filled with the fluid and a pump according to the above aspect, wherein the pump is disposed in the substrate flow path and the pump flow path is connected to the substrate flow path.
  • a cooling board having high heat radiation efficiency can be realized by the pump.
  • the cooling board, The pump has a rectangular parallelepiped shape composed of three sides having different lengths from each other,
  • the substrate flow path may have a positioning recess for receiving and positioning the pump.
  • the pump can be easily arranged in the substrate flow path.
  • the cooling substrate 1 according to the first embodiment of the present invention is, for example, a substantially rectangular plate-shaped member made of Si (silicon). As shown in FIGS. 1 to 3, the cooling substrate 1 includes a substrate flow path 2 through which a fluid flows, and a pump 10 using an electroosmotic flow disposed in the substrate flow path 2.
  • the dimensions of the cooling substrate 1 are, for example, 0.1 to 0.8 mm in thickness, and the length of each side of the plate surface is about 20 mm. Further, the material forming the cooling substrate 1 is not limited to Si, and ceramics can also be used.
  • water, buffer, a mixture of water and an antifreeze, and a mixture of water and an anticorrosive can be used.
  • the buffer is an aqueous solution containing a weak acid or a weak base and a salt thereof, and is a phosphate buffer, a citrate buffer, a Tris buffer, an acetate buffer, a Mcllvaine buffer, a HEPES buffer, a borate buffer. Liquid, MOPS buffer, Good buffer and the like.
  • the zeta potential may fluctuate depending on the pH of the fluid. When the pH fluctuates due to electrolysis at the electrode 12 and the zeta potential fluctuates, the flow rate Q of the pump 10 fluctuates as shown in the above-described formula 1, and for example, the liquid sending efficiency of the pump 10 may decrease. There is. For this reason, by using a buffer having a small fluctuation in pH as the fluid, it is possible to prevent the efficiency of the pump 10 from lowering.
  • the antifreeze contains glycols such as ethylene glycol and propylene glycol, and alcohols such as methanol and ethanol.
  • glycols such as ethylene glycol and propylene glycol
  • alcohols such as methanol and ethanol.
  • Corrosion resistant agents include phosphates, borates, silicates, organic acids, nitrites and the like.
  • the pump flow path 11 or the electrode 12 may be corroded by being in contact with water for a long time.
  • corrosion of the pump flow path 11 or the electrode 12 made of a metal material can be prevented by adding a corrosion resistant agent to the water.
  • the substrate flow path 2 is provided inside the cooling substrate 1 and is arranged so as to be able to cool substantially the entire plate surface of the cooling substrate 1 by circulating a fluid. As shown in FIG. 4, the substrate flow path 2 has a positioning portion 3 that accommodates and positions the pump 10.
  • the dimensions of the substrate channel 2 are, for example, about 500 ⁇ m in width and about 340 ⁇ m in height.
  • a fluid supply path 4 connected to the substrate flow path 2 and the outside of the cooling substrate 1 is provided inside the cooling substrate 1.
  • the liquid is supplied to and filled in the flow path 2.
  • the fluid supply channel 4 is sealed so that the fluid in the substrate channel 2 does not leak out of the cooling substrate 1 after the substrate channel 2 is filled with the fluid.
  • a pair of extraction electrodes 5 connected to the pump 10 is provided on each plate surface of the cooling substrate 1.
  • the pump 10 and the power supply 100 (see FIG. 5) are connected via the pair of extraction electrodes 5.
  • the pump 10 has, for example, a rectangular parallelepiped shape including three sides having different lengths. As shown in FIG. 5, the pump 10 is disposed in the pump flow channel 11 through which the fluid flows, and the fluid flows in the fluid flow direction (in other words, the extending direction of the pump flow channel 11). It has a plurality of electrodes 12 and a plurality of dielectrics 13 that can pass therethrough.
  • the dimensions of the pump 10 are determined, for example, in such a manner that one of the three sides has a length of 0.1 to 0.8 mm (for example, 320 ⁇ m) and the other two sides have a length of 0.1 to 1 mm. It is determined in a range of 0.0 mm (for example, 700 ⁇ m, 860 ⁇ m).
  • the pump flow path 11 has a substantially linear shape extending in the direction indicated by the arrow A as shown in FIG. 5, and both ends in the extending direction are connected to the substrate flow path 2. That is, the pump channel 11 is configured such that the fluid filled in the substrate channel 2 flows along the extending direction.
  • the pump flow path 11 is not limited to a substantially straight shape, and may be a curved shape, or an intermediate portion may be bent.
  • the plurality of electrodes 12 and the plurality of dielectrics 13 are alternately stacked along the flow direction of the fluid such that one dielectric 13 is located between the electrodes 12 adjacent to each other.
  • the electrode 12 is made of, for example, a porous conductive material having a thickness (that is, a dimension in the direction of arrow A) of 1 ⁇ m
  • the dielectric is made of, for example, porous ceramics having a thickness of 20 ⁇ m.
  • a metal material such as Pt, Cu, Ag, Au, and Ni can be used.
  • the porous ceramics SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , BaTiO 3 and the like can be used.
  • the electrodes 12 and the dielectrics 13 are not limited to porous materials, but may be made of non-porous materials. In this case, for example, a plurality of through-holes extending in the flow direction of the fluid may be provided in each electrode 12 and each dielectric 13.
  • the pump 10 includes four electrodes 121, 122, 123, and 124 (hereinafter, the first electrode 121, the second electrode 122, the third electrode 123, and the fourth An electrode 124) and three dielectrics 131, 132, and 133 (hereinafter, referred to as a first dielectric 131, a second dielectric 132, and a third dielectric 133 in order from the most upstream in the flow direction of the fluid). ), And the electrodes 121, 122, 123, and 124 are arranged at equal intervals in the direction of arrow A.
  • the first electrode 121 and the third electrode 123 are connected to the input terminal of the DC or AC power supply 100, and the second electrode 122 and the fourth electrode 124 are connected to the output terminal of the power supply 100.
  • the polarities between adjacent electrodes of the plurality of electrodes 121, 122, 123, and 124 are different from each other. For example, an electric field E1 in the direction of arrow A is generated between the first electrode 121 and the second electrode 122, An electric field E2 in the direction opposite to the arrow A is generated between the electrode 122 and the third electrode 123, and an electric field E3 in the direction of the arrow A is generated between the third electrode 123 and the fourth electrode 124. I have.
  • the pump 10 includes the plurality of electrodes 12 and the plurality of dielectrics 13 which are disposed in the pump flow path 11 and through which the fluid can pass in the fluid flow direction.
  • the electrodes 12 and the plurality of dielectrics 13 are alternately stacked along the flow direction of the fluid such that one of the plurality of dielectrics 13 is located between adjacent electrodes of the plurality of electrodes 12.
  • the mechanical strength of the pump 10 can be further increased by configuring each of the electrodes 121, 122, 123, and 124 to have a thickness in the flow direction A that is larger than each of the dielectrics 131, 132, and 133. it can.
  • the flow rate Q of the pump using the electroosmotic flow is calculated by, for example, the following Expression 1.
  • A is the area [m 2 ] of a cross section perpendicular to the flow direction of the dielectric
  • L is the average pore diameter [m] of the porous dielectric
  • is the dielectric constant of the solution [C / V ⁇ m].
  • is the viscosity [Pa ⁇ s] of the solution
  • is the zeta potential [V]
  • is the Debye length [m]
  • I 1 is the first-order modified Bessel function
  • I 0 is the zero-order modified Bessel function
  • ⁇ P is the pressure gradient.
  • [Pa] and V represent the applied voltage [V].
  • n is a natural number
  • dielectrics of the same thickness are stacked (the thickness of the electrodes is ignored here).
  • F1 and F2 are proportional to n, as shown in FIG. 6, as the number n of stacked layers increases, the driving force F increases. As described above, by alternately laminating the dielectrics formed of the materials having the opposite signs of the zeta potential, the driving force F obtained in proportion to the lamination number n increases, and the flow rate Q of the pump 10 decreases. Can be increased.
  • the electric double layer of each of the first dielectric 131 and the third dielectric 133 is positive, the electric double layer of the second dielectric 132 is negative. Becomes Therefore, in the second dielectric 132, the electric field E2 in the direction opposite to the flow direction A exerts a force on the negative charge of the electric double layer, so that the driving force F2 generated in the second dielectric 132 is 5, it works in the same positive direction as the flow direction A.
  • the first dielectric 131, the third dielectric 133, and the second dielectric 132 are made of a material having a zeta potential in the flow direction A having a sign opposite to that of the first dielectric 131, the second dielectric 132, and the second dielectric 132.
  • the driving force F in the same direction as the flow direction A can be obtained in all the layers of the dielectric 132 and the third dielectric 133, and the flow rate of the pump 10 can be increased.
  • the pump 10 using the electroosmotic flow that can increase the flow rate while securing the mechanical strength can be realized.
  • the zeta potential of the first dielectric and the zeta potential of the second dielectric have the same sign, and the absolute value of the first zeta potential is larger than the absolute value of the zeta potential of the second dielectric.
  • a similar effect can be obtained by configuring each dielectric with a material made of such a material.
  • the cooling board 1 can be realized by the pump 10 with a high heat dissipation efficiency.
  • the pump 10 has a rectangular parallelepiped shape composed of three sides having different lengths from each other, and the substrate flow path 2 has a positioning portion 3 that accommodates and positions the pump 10. ing. With such a configuration, the pump 10 can be positioned with respect to the cooling substrate 1 while determining the attitude of the pump 10 with respect to the substrate flow path 2.
  • the potentials of the first electrode 121 and the third electrode 123 are each a positive potential, and the potential of the second electrode 122 is a negative potential.
  • the first dielectric 131 and the third dielectric 133 (that is, the first dielectric) and the second dielectric 132 (that is, the second dielectric) are made of, for example, the following materials. Is done.
  • SiO 2 has a zeta potential of about ⁇ 50 mV
  • Al 2 O 3 has a zeta potential of about ⁇ 50 mV.
  • the zeta potential is about +40 mV.
  • the first dielectric 131 and the third dielectric 133 and the material forming the second dielectric 132 may be exchanged (for example, the first dielectric 131 and the third dielectric 133 are made of Al 2 O 3 , and the second dielectric 132 is made of SiO 2). 2 ).
  • ⁇ Zeta potential ⁇ is defined, for example, as follows. That is, a flat plate sample is prepared with the same material composition and the same conditions as those of the target dielectric material 13, and immersed in the fluid to be used (that is, the fluid flowing through the pump flow channel 11). Then, the zeta potential of the flat plate sample immersed in the fluid is measured using a zeta potential measuring device, and the measured result is defined as zeta potential ⁇ .
  • first dielectric 131 and the third dielectric 133 are made of SiO 2
  • the second dielectric 132 is made of Al 2 O 3
  • first, SiO 2 and Al 2 O 3 are subjected to a dispersion treatment for 8 hours by a ball mill together with a tolene / ethanol mixed solvent, a dispersant, and a binder, and thereafter, the first dielectric material 131 and the third dielectric material are treated by a doctor blade method.
  • a ceramic green sheet of SiO 2 serving as the dielectric 133 and a ceramic green sheet of Al 2 O 3 serving as the second dielectric 132 are formed.
  • the same sintering aid is added to SiO 2 or Al 2 O 3 , respectively.
  • the sintering aid is, for example, glass such as Ca—B 2 O 3 —SiO 2 , ZnO—B 2 O 3 —SiO 2 , CaO—Al 2 O 3 —SiO 2 , or forms a liquid phase during firing. It is an oxide.
  • a mask is put on the formed ceramic green sheet, and Pt is vapor-deposited (or Pt paste is printed), so that the ceramic green sheet of SiO 2 and the ceramic green sheet of Al 2 O 3 are respectively formed.
  • a plurality of electrodes 12 are formed. Each of the formed electrodes 12 has a plurality of holes through which a fluid can pass.
  • the thickness of the electrode 12 formed on the ceramic green sheet is considerably small (for example, 1 ⁇ m), the pores of the ceramic green sheet are not blocked. For this reason, a plurality of through-holes extending in the laminating direction forming the pump flow path 11 are formed in the laminate.
  • the formed laminate is cut by dicing, it is fired at 800 to 1000 degrees Celsius. Then, a mask is put on the fired laminated body, and Pt is vapor-deposited to form the external electrodes 21 and 22, thereby completing the manufacture of the pump 10.
  • the pump 10 of the second embodiment of the present invention differs from the pump 10 of the first embodiment in at least one of the following three points.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Only different points from the first embodiment will be described.
  • the porosity of the second dielectric 132 (an example of a second dielectric) is larger than the porosity of the first dielectric 131 and the third dielectric 133 (an example of the first dielectric).
  • the pore diameter of the second dielectric 132 is larger than the pore diameter of the first dielectric 131 and the third dielectric 133.
  • the degree of bending of the second dielectric 132 is smaller than the degrees of bending of the first dielectric 131 and the third dielectric 133.
  • a work W single layer performed by a pump (hereinafter, referred to as a conventional pump) constituted by one dielectric having a radius r and a length L and a pair of electrodes at both ends of the dielectric is considered.
  • the dielectric of the conventional pump is a porous body having a pore diameter a, a porosity ⁇ , and a degree of curvature ⁇ .
  • the number N of pores of the dielectric is N
  • the number of pores of the dielectric is represented by the following Equation 3 from the following Equation 2 (ignoring the thickness of the electrode).
  • Equation 4 ⁇ r is the relative permittivity of the fluid, ⁇ 0 is the vacuum permittivity, ⁇ is the viscosity of the fluid, E e is the electric field strength, and ⁇ is the zeta potential.
  • the speed u ⁇ is determined from the balance of the viscosity of the zeta potential and fluid.
  • the speed u ⁇ converges the work by the electrostatic attraction acting on the wall surface 310 near the capillary 300, the speed such as to balance the energy loss due to fluid friction.
  • the distance corresponds to the moving distance of the fluid particles per short time and corresponds to the flow velocity u. Therefore, if the electrostatic attraction is Fa and the frictional force is Fb, the work W is represented by the following Expression 5.
  • the electrostatic attractive force Fa is proportional to the electric field E, and the electric field E is inversely proportional to the effective interelectrode distance L ⁇ . Note that k is a proportional constant.
  • Friction force F b is proportional to the flow velocity u, to work in the opposite direction of the flow direction, represented by the following formula 7. Note that b is a proportional constant.
  • the work W single layer performed by the conventional pump is expressed by the following expression 10 in consideration of the above expressions 5 to 9.
  • the first term on the right side corresponds to work due to electrostatic attraction
  • the second term on the right side corresponds to work (energy loss) due to frictional force.
  • the pore diameter of the first dielectric 131 and the third dielectric 133 as the first dielectric is a 1
  • the porosity is ⁇ 1
  • the degree of bending ⁇ 1 is the second dielectric
  • the second dielectric is the second dielectric 131.
  • the pore diameter of the body 132 is a 2
  • the porosity is ⁇ 2
  • the degree of bending ⁇ 2 is the degree of bending ⁇ 2 .
  • the flow velocity of the first dielectric is u 1
  • the electrostatic attraction is F a1
  • the frictional force is F b1
  • the surface area of the pore is S 1
  • the flow velocity of the second dielectric is u 2
  • the electrostatic attraction is F 1 a2
  • the frictional force F b2 the surface area of pores and S 2.
  • the work W lamination performed by the pump 10 is represented by the following equation 11. Also in Equation 11, the first term on the right side corresponds to work by electrostatic attraction, and the second term on the right side corresponds to work by frictional force.
  • the porosity [psi 2 of the second dielectric is greater than the porosity [psi 1 of the first dielectric, or pore diameter a of the pore diameter a 2 of the second dielectric first dielectric
  • W laminated > W single layer the pump is more pumped than the conventional pump. 10 can be increased.
  • the pump 10 using the electroosmotic flow that can increase the flow rate while securing the mechanical strength can be realized.
  • the porosity is defined, for example, as follows. That is, a cross section of the target dielectric 13 passing through the center of the flow direction A and orthogonal to the flow direction A (a cross section taken along the line (i)-(i) in FIG. 8) is observed by an SEM (scanning electron microscope). I do. The magnification is such that about 50 pores exist in the observation visual field. The observation field of view is imaged with the contrast set high. While changing the observation visual field, images of 10 arbitrary regions in the target dielectric 13 are acquired, and the porosity is measured from each of the acquired images. The average of the porosity obtained from each image is defined as the porosity ⁇ of the target dielectric 13.
  • the pore diameter a is defined, for example, as follows. That is, a cross section of the target dielectric 13 passing through the center of the flow direction A and orthogonal to the flow direction A (a cross section taken along the line (i)-(i) in FIG. 8) is observed by an SEM (scanning electron microscope). I do. The magnification is such that about 50 pores exist in the observation visual field. The observation field of view is imaged with the contrast set high. While changing the observation visual field, images of 10 arbitrary regions in the target dielectric 13 are acquired, and the pore diameter (Ferre diameter) is measured from each of the acquired images. The average of the pore diameters obtained from each image is defined as the pore diameter a of the target dielectric 13.
  • the bending degree ⁇ is defined, for example, as follows. That is, a flat plate sample is manufactured with the same material composition and the same conditions as those of the target dielectric 13, and electrodes that cover the entire surface are provided on both surfaces of the manufactured flat plate sample. The electric resistance R between the electrodes is measured in a state where water is sufficiently penetrated into the flat plate sample. Further, an electrode pair having the same electrode area and the same inter-electrode distance as the flat plate sample is immersed in water, and the electric resistance R ref between the electrodes is measured. At this time, water having the same electric resistance is used, and when measuring the electric resistance R ref , care should be taken not to cause a measurement error due to the electric field wraparound. Using the measured electrical resistances R and R ref , the result obtained by the following equation 12 is defined as the degree of flexure ⁇ .
  • Equation 12 ⁇ represents the open porosity, which is obtained by the Archimedes method (JIS R 1634: 1998).
  • the weight (dry mass) of the sample in the dry state was w1
  • the weight (mass in water) of the sample submerged and saturated in water was w2
  • the saturated sample was taken out of the water and removed by wiping water droplets on the surface.
  • the open porosity ⁇ is obtained by the following Expression 13.
  • the method of manufacturing the pump 10 of the second embodiment is different from the first method in that the first dielectric material 131, the third dielectric material 133, and the second dielectric material 132 form ceramic green sheets using different materials or different manufacturing methods. This is different from the method of manufacturing the pump 10 of the embodiment.
  • the following material is used. That is, as a material of the first dielectric 131 and the third dielectric 133, SiO 2 powder having a particle diameter (D50) of 1 ⁇ m is used, and as a material of the second dielectric 132, a SiO 2 powder having a particle diameter (D50) of 2 ⁇ m is used. A material obtained by mixing powder 2 and SiO 2 powder having a particle size (D50) of 0.2 ⁇ m in a weight ratio of 1: 1 is used.
  • the following material is used. That is, SiO 2 powder having a particle size (D50) of 1 ⁇ m is used as the material of the first dielectric 131 and the third dielectric 133, and SiO 2 powder having a particle size (D50) of 10 ⁇ m is used as the material of the second dielectric 132.
  • Use 2 powder The pore diameter a is preferably 10 nm or more, more preferably 0.1 ⁇ m to 10 ⁇ m. When the pore diameter a is less than 10 nm, the electric double layer formed on the wall surface 310 (see FIG. 7) may be overlapped due to the pore diameter a being too small, and the liquid transfer efficiency may be reduced.
  • the degree of bending of the second dielectric 132 is smaller than the degrees of bending of the first dielectric 131 and the third dielectric 133
  • the following manufacturing material is used. That is, in the first dielectric material 131 and the third dielectric material 133, the SiO 2 is subjected to a dispersion treatment for 8 hours by a ball mill together with a tornene / ethanol mixed solvent, a dispersant, and a binder, and thereafter, by a doctor blade method, to various thicknesses. Is formed. Micropores are formed on the formed ceramic green sheet by laser light irradiation or tracked etching.
  • the resin beads for example, 1 ⁇ m in diameter
  • SiO 2 are subjected to a dispersion treatment for 8 hours by a ball mill together with a mixed solvent of tornene / ethanol, a dispersant, and a binder. Is formed. Straight pores are formed in the first dielectric 131 and the third dielectric 133, and bent pores are formed in the second dielectric 132. Note that a homogeneous sintering aid is added to SiO 2 .
  • the sintering aid is, for example, a glass such as CaO—B 2 O 3 —SiO 2 , ZnO—B 2 O 3 —SiO 2 , CaO—Al 2 O 3 —SiO 2 , or an oxide that forms a liquid phase during firing. Things.
  • a cooling system 200 shown in FIG. 9 in which a heat radiation grease 50, a cooling substrate 60, a heat radiation grease 50, a heat sink 70, and a cooling fan 80 are stacked in this order on an IC (integrated circuit) 40 mounted on the substrate 30, The maximum temperature T of the IC 40 was measured.
  • the number of the dielectrics 13 of the pump 10 according to the first embodiment of the present invention being different in the range of 2 to 30.
  • the maximum temperature T of the IC 40 and the maximum temperature T0 of the IC 40 using a conventional cooling substrate ie, a pump composed of one dielectric and a pair of electrodes at both ends of the dielectric
  • all the pumps 10 were configured to have the same shape and size.
  • FIG. 10 shows the relationship between the maximum temperature T0 of the IC 40 when the conventional cooling substrate is used and the maximum temperature T of the IC 40 when the cooling substrate 1 of the present invention is used.
  • the vertical axis represents the ratio of the maximum temperature T of the IC 40 using the cooling substrate 1 of the present invention to the maximum temperature T0 of the IC 40 using the conventional cooling substrate (ie, the relative temperature).
  • the horizontal axis indicates the number of the dielectrics 13 of the pump 10.
  • the maximum temperature T of the IC 40 when the cooling substrate 1 of the first embodiment is used is lower than the maximum temperature T0 of the IC 40 when the conventional cooling substrate is used. It turned out to be. Also, when the cooling substrate 1 of the first embodiment was used, it was found that the maximum temperature T of the IC 40 became lower as the number of the dielectrics 13 increased as long as the number of the dielectrics 13 was 30 or less. . In particular, it was found that when the number of the dielectrics 13 was 10 or less, using the cooling substrate 1 of the first embodiment provided a greater cooling effect than using the conventional cooling substrate 1.
  • the cooling system 200 may be configured such that the cooling board 60 and the heat sink 70 are integrated, and the cooling board 60 also serves as the heat sink 70. With such a configuration, a small-sized cooling system 200 can be realized.
  • the cooling system 200 includes a heat exchanger 90 disposed apart from the IC 40 in place of the heat sink 70 and the cooling fan 80, and the fluid in the cooling board 60 is It may be configured to cool at 90.
  • the heat exchanger 90 By arranging the heat exchanger 90 away from the IC 40 in this way, restrictions on the shape, size and arrangement of the heat exchanger 90 are unlikely to occur. For this reason, compared with the cooling system 200 of FIGS. 9 and 11, the heat exchanger 90 having a higher cooling capacity can be used, and the cooling capacity of the cooling board 60 can be greatly increased. Application to a large heat source becomes possible.
  • the pump 10 of the present invention can be applied to, for example, an IC cooling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Thermal Sciences (AREA)

Abstract

ポンプが、流体が流れるポンプ流路と、ポンプ流路に配置されて、流体の流動方向に流体がそれぞれ通過可能な複数の電極および複数の誘電体とを備える。複数の電極および複数の誘電体は、複数の電極の隣接する電極間に複数の誘電体の1つが位置するように、流動方向に沿って交互に接触して積層されている。また、複数の電極は、隣接する電極間の極性が相互に異なり、複数の誘電体が、流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、流動方向の最上流から数えて偶数番目に配置されている第2の誘電体とを有する。第1の誘電体および第2の誘電体の各々が、流動方向のゼータ電位が相互に逆符号となる材料で構成されている。

Description

ポンプおよび冷却基板
 本発明は、電気浸透流を用いたポンプ、および、このポンプを備えた冷却基板に関する。
 特許文献1には、誘電体多孔質膜と、誘電体多孔質膜の一方側に配された第1の透水性電極と、誘電体多孔質膜の他方側に配された第2の透水性電極とを備える電気浸透流を用いたポンプが開示されている。
特許第6166268号
 前記ポンプの流量は、誘電体多孔質膜の流体の流動方向における断面積に比例し、誘電体多孔質膜の厚さ(すなわち、流体の流動方向における寸法)に反比例する。このため、前記ポンプの流量を大きくする方法としては、誘電体多孔質膜の断面積を大きくするか、または、誘電体多孔質膜の厚さを小さくすることが考えられる。
 しかし、誘電体多孔質膜の断面積を大きくすると、前記ポンプのサイズが大きくなることから基板などへの組み込みが難しくなり、誘電体多孔質膜の厚さを小さくすると、前記ポンプの機械的強度を確保するのが難しくなる。このため、前記ポンプでは、機械的強度を確保しつつ、流量を高めることが難しい場合がある。
 本発明は、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプ、および、このポンプを備えた冷却基板を提供することを課題とする。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第1の誘電体および前記第2の誘電体の各々が、
 前記流動方向のゼータ電位が相互に逆符号となる材料で構成されている。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第1の誘電体および前記第2の誘電体の各々が、
 前記流動方向のゼータ電位が相互に同じ符号となり、かつ、前記第1の誘電体の前記流動方向のゼータ電位の絶対値が前記第2の誘電体の前記流動方向のゼータ電位の絶対値よりも大きくなる材料で構成されている。
 また、本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の気孔率が、前記第1の誘電体の前記流動方向の気孔率よりも大きい。
 また、本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の気孔径が、前記第1の誘電体の前記流動方向の気孔径よりも大きい。
 また、本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の屈曲度が、前記第1の誘電体の前記流動方向の屈曲度よりも小さい。
 また、本発明の一態様の冷却基板は、
 前記流体が充填されて流れる基板流路と
 前記基板流路に配置され、前記ポンプ流路が前記基板流路に接続されている前記態様のポンプと
を備える。
 前記態様のポンプによれば、第1の誘電体と第2の誘電体とが、流動方向Aのゼータ電位が相互に逆符号となる材料で構成されている。このような構成により、複数の誘電体の全ての層において流動方向と同じ向きの駆動力を得ることができるので、ポンプの流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 前記態様のポンプによれば、第1の誘電体と第2の誘電体とが、流動方向Aのゼータ電位が相互に同じ符号となり、かつ、第1の誘電体の流動方向のゼータ電位の絶対値が第2の誘電体の流動方向のゼータ電位の絶対値よりも大きくなる材料で構成されている。このような構成により、流動方向の駆動力が、流動方向と逆向きの駆動力よりも大きくなるので、ポンプの流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 また、前記態様のポンプによれば、第2の誘電体の流動方向の気孔率が、第1の誘電体の流動方向の気孔率よりも大きくなる、または、第2の誘電体の流動方向の気孔径が、第1の誘電体の流動方向の気孔径よりも大きくなる、または、第2の誘電体の流動方向の屈曲度が、第1の誘電体の流動方向の屈曲度よりも小さくなるように構成されている。このような構成により、1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプよりも流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 前記態様の冷却基板によれば、前記ポンプにより、放熱効率の高い冷却基板を実現できる。
本発明の第1実施形態の冷却基板を示す斜視図。 図1のII-II線に沿った断面図。 図2のIII-III線に沿った断面図。 ポンプ周辺を拡大した図2の断面図。 本発明の第1実施形態のポンプを示す模式図。 図5のポンプの積層数と駆動力の相対値との関係を示すグラフ。 本発明の第2実施形態のポンプを説明するための図。 図5のポンプの説明するための斜視図。 実施例の冷却システムの構成を示す模式図。 従来の冷却基板を用いたときのICの最高温度と、図16のポンプを用いた本発明の冷却基板を用いたときのICの最高温度との関係を示すグラフ。 図12の冷却システムの第1の変形例を示す模式図。 図12の冷却システムの第2の変形例を示す模式図。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第1の誘電体および前記第2の誘電体の各々が、
 前記流動方向のゼータ電位が相互に逆符号となる材料で構成されている。
 前記ポンプによれば、第1の誘電体と第2の誘電体とが、流動方向のゼータ電位が相互に逆符号となる材料で構成されている。このような構成により、流動方向の駆動力が、流動方向と逆向きの駆動力よりも大きくなるので、ポンプの流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第1の誘電体および前記第2の誘電体の各々が、
 前記流動方向のゼータ電位が相互に同じ符号となり、かつ、前記第1の誘電体の前記流動方向のゼータ電位の絶対値が前記第2の誘電体の前記流動方向のゼータ電位の絶対値よりも大きくなる材料で構成されている。
 前記ポンプによれば、第1の誘電体と第2の誘電体とが、流動方向のゼータ電位が相互に同じ符号となり、かつ、第1の誘電体の流動方向のゼータ電位の絶対値が第2の誘電体の流動方向のゼータ電位の絶対値よりも大きくなる材料で構成されている。このような構成により、流動方向の駆動力が、流動方向と逆向きの駆動力よりも大きくなるので、ポンプの流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 また、本発明の一態様のポンプは、
 前記流体が、水である。
 前記ポンプによれば、流体として、熱容量がオイルなど溶媒よりも大きい水を用いているので、例えば、冷却に用いる場合、オイルなどの溶媒を用いたポンプよりも大きな冷却効果を得ることができる。
 また、本発明の一態様のポンプは、
 前記流体が、添加物が添加された水である。
 前記ポンプによれば、流体として添加物が添加された水を用いているので、流体の導電率あるいはゼータ電位といった諸特性を調整でき、より大きな流動の駆動力を得ることができる。
 また、本発明の一態様のポンプは、
 前記流体が、緩衝液、不凍液または耐腐食剤のいずれかである。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の気孔率が、前記第1の誘電体の前記流動方向の気孔率よりも大きい。
 前記ポンプによれば、第2の誘電体の流動方向の気孔率が、第1の誘電体の流動方向の気孔率よりも大きくなるように構成されている。このような構成により、1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプよりも流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の気孔径が、前記第1の誘電体の前記流動方向の気孔径よりも大きい。
 前記ポンプによれば、第2の誘電体の流動方向の気孔径が、第1の誘電体の流動方向の気孔径よりも大きくなるように構成されている。このような構成により、1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプよりも流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 本発明の一態様のポンプは、
 流体が流れるポンプ流路と、
 前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
を備え、
 前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
 前記複数の電極は、隣接する電極間の極性が相互に異なり、
 前記複数の誘電体が、
 前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
 前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
を有し、
 前記第2の誘電体の前記流動方向の屈曲度が、前記第1の誘電体の前記流動方向の屈曲度よりも小さい。
 前記ポンプによれば、第2の誘電体の流動方向の屈曲度が、第1の誘電体の流動方向の屈曲度よりも小さくなるように構成されている。このような構成により、1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプよりも流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 前記ポンプは、
 前記複数の電極の各々が、前記複数の誘電体の各々よりも大きい前記流動方向の厚さを有していてもよい。
 このような構成により、ポンプの機械的強度をさらに高めることができる。
 また、本発明の一態様のポンプは、
 前記第1の誘電体がSiOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がTiOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がSiOで構成され前記第2の誘電体がTiOで構成されているか、または、前記第1の誘電体がSiOで構成され前記第2の誘電体がZrOで構成されているか、または、前記第1の誘電体がZrOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がポリテトラフルオロエチレンで構成され前記第2の誘電体がポリエチレンテレフタレートで構成されている。
 前記ポンプによれば、第1誘電体および第2誘電体の各々が異なる酸化セラミクスの組み合わせで構成されているので、一般的な電子セラミックの製法を展開することができる。その結果、低コストで大量生産可能なポンプを実現できる。
 本発明の一態様の冷却基板は、
 前記流体が充填されて流れる基板流路と
 前記基板流路に配置され、前記ポンプ流路が前記基板流路に接続されている前記態様のポンプと
を備える。
 前記冷却基板によれば、前記ポンプにより、放熱効率の高い冷却基板を実現できる。
 前記冷却基板は、
 前記ポンプが、相互に長さの異なる3つの辺で構成された直方体状を有し、
 前記基板流路が、前記ポンプを収容して位置決めする位置決め凹部を有していてもよい。
 このような構成により、ポンプを基板流路に容易に配置することができる。
 以下、本発明の一実施形態を添付図面に従って説明する。なお、以下の説明では、必要に応じて特定の方向あるいは位置を示す用語(例えば、「上」、「下」、「右」、「左」を含む用語)を用いるが、それらの用語の使用は図面を参照した本開示の理解を容易にするためであって、それらの用語の意味によって本開示の技術的範囲が限定されるものではない。また、以下の説明は、本質的に例示に過ぎず、本開示、その適用物、あるいは、その用途を制限することを意図するものではない。さらに、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。
 (第1実施形態)
 本発明の第1実施形態の冷却基板1は、例えば、略四角形の板状で、Si(シリコン)で構成されている。この冷却基板1は、図1~図3に示すように、流体が流れる基板流路2と、この基板流路2に配置された電気浸透流を用いたポンプ10とを備えている。
 冷却基板1の寸法は、例えば、厚さが0.1~0.8mmで、板面の各辺の長さがそれぞれ約20mmである。また、冷却基板1を構成する材料としては、Siに限らず、セラミクスを用いることもできる。
 流体としては、水、緩衝液、水および不凍液の混合液、水および耐腐食剤の混合液を用いることができる。
 水は、好ましくは、H4~9であり、より好ましくは、pH7(=純水)である。また、水は、例えば、KClなどの電解質を含んでいてもよい。
 緩衝液は、弱酸または弱塩基とその塩とを含む水溶液であり、リン酸緩衝液、クエン酸緩衝液、トリス緩衝液、酢酸緩衝液、マッキルベイン(Mcllvaine)緩衝液、HEPES緩衝液、ホウ酸緩衝液、MOPS緩衝液、グッド緩衝液などを含む。ゼータ電位は流体のpHによって変動する場合がある。電極12での電気分解などによりpHが変動してゼータ電位が変動すると、前述の数式1に示すように、ポンプ10の流量Qが変動し、例えば、ポンプ10の送液効率が低下する可能性がある。このため、流体として、pHの変動が小さい緩衝液を用いることで、ポンプ10の送液効率の低下を防ぐことができる。
 不凍液は、エチレングリコール、プロピレングリコールなどのグリコール類、メタノール、エタノールなどのアルコール類などを含む。流体として水を用いる場合、水に不凍液を添加することで、流体の凝固点を低下させることができる。なお、不凍液の添加量が多いほど、水の凝固点を低下させることができる。
 耐腐食剤は、リン酸塩、ホウ酸塩、ケイ酸塩、有機酸、亜硝酸塩などを含む。例えば、ポンプ流路11または電極12が金属材料で構成されている場合、水に長時間触れることで、ポンプ流路11または電極12が腐食される恐れがある。流体として水を用いる場合、水に耐腐食剤を添加することで、金属材料で構成されたポンプ流路11または電極12の腐食を防止できる。
 基板流路2は、冷却基板1の内部に設けられ、流体を循環させることで冷却基板1の板面の略全体を冷却可能に配置されている。この基板流路2は、図4に示すように、ポンプ10を収容して位置決めする位置決め部3を有している。なお、基板流路2の寸法は、例えば、幅が約500μmであり、高さが約340μmである。
 図2に示すように、冷却基板1の内部には、基板流路2と冷却基板1の外部とに接続された流体供給路4が設けられている、この流体供給路4を介して、基板流路2に液体が供給され充填されている。なお、この流体供給路4は、基板流路2に流体が充填された後、基板流路2の流体が冷却基板1の外部に漏出しないように封止されている。
 図3に示すように、冷却基板1の各板面には、ポンプ10に接続された一対の取り出し電極5が設けられている。この一対の取り出し電極5を介して、ポンプ10と電源100(図5参照)とが接続される。
 ポンプ10は、例えば、相互に長さの異なる3つの辺を含む直方体状を有している。このポンプ10は、図5に示すように、流体が流れるポンプ流路11と、ポンプ流路11に配置されて、流体の流動方向(言い換えると、ポンプ流路11の延在方向)に流体がそれぞれ通過可能な複数の電極12および複数の誘電体13とを備えている。
 ポンプ10の寸法は、例えば、3つの辺の1つの辺の長さが0.1~0.8mmの範囲で決定され(例えば、320μm)、残り2つの辺の長さが0.1~1.0mmの範囲で決定される(例えば、700μm、860μm)。
 ポンプ流路11は、図5に示すように、矢印Aで示す方向に延びる略直線状を有し、その延在方向の両端が基板流路2に接続されている。すなわち、ポンプ流路11は、その延在方向に沿って基板流路2に充填された流体が流れるように構成されている。なお、ポンプ流路11は略直線状に限らず、湾曲状であってもよいし、中間部が屈曲していてもよい。
 複数の電極12および複数の誘電体13は、相互に隣接する電極12間に1つの誘電体13が位置するように、流体の流動方向に沿って交互に接触して積層されている。電極12は、例えば、厚さ(すなわち、矢印A方向の寸法)が1μmの多孔質の導電性材料で構成され、誘電体は、例えば、厚さが20μmの多孔質のセラミクスで構成されている。多孔質の導電性材料としては、Pt、Cu、Ag、Au、Niなどの金属材料を用いることができる。また、多孔質のセラミクスとしては、SiO、Al、ZrO、TiO、BaTiOなどを用いることができる。
 なお、各電極12および各誘電体13は、多孔性材料に限らず、非多孔性材料で構成してもよい。この場合、例えば、各電極12および各誘電体13に、流体の流動方向に延びる複数の貫通孔を設ければよい。
 第1実施形態では、ポンプ10は、4つの電極121、122、123、124(以下、流体の流動方向の最上流から順に、第1電極121、第2電極122、第3電極123、第4電極124とする。)と、3つの誘電体131、132、133(以下、流体の流動方向の最上流から順に、第1誘電体131、第2誘電体132、第3誘電体133とする。)と備え、各電極121、122、123、124間が、矢印A方向において等間隔に配置されている。
 第1電極121および第3電極123は、直流または交流の電源100の入力側端子に接続され、第2電極122および第4電極124は、電源100の出力側端子に接続されている。複数の電極121、122、123、124の隣接する電極間の極性は、相互に異なっており、例えば、第1電極121および第2電極122間に矢印A方向の電界E1が発生し、第2電極122と第3電極123との間に矢印Aに対して反対方向の電界E2が発生し、第3電極123および第4電極124間に矢印A方向の電界E3が発生するように構成されている。
 このように、第1実施形態のポンプ10によれば、ポンプ流路11に配置されて、流体の流動方向に流体がそれぞれ通過可能な複数の電極12および複数の誘電体13を備え、複数の電極12および複数の誘電体13が、複数の電極12の隣接する電極間に複数の誘電体13の1つが位置するように、流体の流動方向に沿って交互に接触して積層されている。このような構成により、例えば、各誘電体13の厚さを小さくしても、ポンプ10の機械的強度を確保することができるので、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプを実現できる。
 なお、各電極121、122、123、124が、各誘電体131、132、133よりも大きい流動方向Aの厚さを有するように構成することで、ポンプ10の機械的強度をさらに高めることができる。
 ところで、電気浸透流を用いたポンプの流量Qは、例えば、次の数式1により算出される。
Figure JPOXMLDOC01-appb-M000001
 上記数式1において、Aは誘電体の流動方向に垂直な断面の面積[m]、Lは孔質誘電体の平均気孔径[m]、εは溶液の誘電率[C/V・m]、μは溶液の粘度[Pa・s]、ζはゼータ電位[V]、λはデバイ長[m]、Iは1次修正ベッセリ関数、Iは0次修正ベッセリ関数、ΔPは圧力勾配[Pa]、Vは印加電圧[V]を表す 。
 圧力勾配ΔP=0の場合、流量Qは電界強度E(=V/L)とゼータ電位ζの積に比例する。したがって、ポンプ10では、電界強度Eとゼータ電位ζの積に比例した駆動力Fが発生すると考え、この駆動力FをF=kEζと定義する(kは比例係数)。
 ここで、流動方向Aに対する全長がLで、同じ厚さの誘電体をn(nは自然数)個積層したポンプ10を考える(なお、ここでは電極の厚さは無視する)。ポンプ流路11に流体が流れている状態における奇数番目の誘電体(この実施形態では、第1誘電体131および第3誘電体133。以下、第1の誘電体という。)の流動方向Aのゼータ電位をζ1とし、偶数番目の誘電体(この実施形態では、第2誘電体132。以下、第2の誘電体という。)の流動方向Aのゼータ電位をζ2としたときに、各誘電体は、ζ2=-ζ1となる材料で、言い換えると、第1の誘電体のゼータ電位と第2の誘電体のゼータ電位とが相互に逆符号となる材料で構成されている。
 流動方向Aの上流から数えて奇数番目の誘電体への印加電圧をVとすると、流動方向Aの上流から数えて偶数番目の誘電体への印加電圧は-Vとなる。従って、第1の誘電体に生じる電界E1はE1=V/(L/n)=nV/Lとなり、第2の誘電体に生じる電界E2はE2=-V/(L/n)=-nV/Lとなる。この時、F=kEζの定義に従うと、第1の誘電体に発生する駆動力F1はF1=knVζ/Lであり、第2の誘電体に発生する駆動力F2はF2=knVζ/Lであるので、F1=F2となる。加えて、F1およびF2はnに比例するので、図6に示すように、積層数nが大きくなればなるほど、駆動力Fは大きくなる。このように、ゼータ電位が相互に逆符号となる材料で形成された誘電体を交互に積層することで、積層数nに比例して得られる駆動力Fが増大し、ポンプ10の流量Qを増大させることができる。なお、図6おいて、Fは、積層数n=1の場合におけるポンプ10全域における平均値を1としたときの相対値である。
 すなわち、第1実施形態のポンプ10では、第1誘電体131および第3誘電体133の各々の電気二重層の電荷が正であるとすると、第2誘電体132の電気二重層の電荷は負となる。このため、第2誘電体132では、流動方向Aと逆向きの電界E2が、電気二重層の負の電荷に対して力を及ぼすので、第2誘電体132に発生する駆動力F2は、図5に示すように、流動方向Aと同じ正方向に働く。よって、第1誘電体131および第3誘電体133と、第2誘電体132とを流動方向Aのゼータ電位が相互に逆符号となる材料で構成することで、第1誘電体131、第2誘電体132および第3誘電体133の全ての層において流動方向Aと同じ向きの駆動力Fを得ることができ、ポンプ10の流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプ10を実現できる。
 また、第1の誘電体のゼータ電位と第2の誘電体のゼータ電位とが同じ符号となり、かつ、第1のゼータ電位の絶対値が第2の誘電体のゼータ電位の絶対値よりも大きくなる材料で、各誘電体を構成することでも、同様の効果を得ることができる。
 また、冷却基板1は、ポンプ10により、放熱効率の高い冷却基板を実現できる。
 また、冷却基板1は、ポンプ10が、相互に長さの異なる3つの辺で構成された直方体状を有し、基板流路2が、ポンプ10を収容して位置決めする位置決め部3を有している。このような構成により、ポンプ10の基板流路2に対する姿勢を決めつつ、ポンプ10を冷却基板1に対して位置決めすることができる。
 なお、図5において、第1電極121および第3電極123の電位がそれぞれ正の電位であり、第2電極122の電位が負の電位であるとする。この場合、第1誘電体131および第3誘電体133(すなわち、第1の誘電体)と、第2誘電体132(すなわち、第2の誘電体)とは、例えば、次に示す材料で構成される。
  ・第1の誘電体:SiO、第2の誘電体:Al
  ・第1の誘電体:TiO、第2の誘電体:Al
  ・第1の誘電体:SiO、第2の誘電体:TiO
  ・第1の誘電体:SiO、第2の誘電体:ZrO
  ・第1の誘電体:ZrO、第2の誘電体:Al
  ・第1の誘電体:ポリテトラフルオロエチレン、第2の誘電体:ポリエチレンテレフタレート
 例えば、流体がpH7の純水である場合、SiOは、ゼータ電位が約-50mVであり、Alは、ゼータ電位が約+40mVである。
 第1電極121および第3電極123の電位がそれぞれ負の電位であり、第2電極122の電位が正の電位である場合、上記材料の各組み合わせにおいて、第1誘電体131および第3誘電体133を構成する材料と、第2誘電体132を構成する材料を入れ替えればよい(例えば、第1誘電体131および第3誘電体133をAlで構成し、第2誘電体132をSiOで構成すればよい)。
 ゼータ電位ζは、例えば、次のように定義する。すなわち、対象の誘電体13と同じ材料組成および同じ条件で平板試料を作製し、使用する流体(すなわち、ポンプ流路11を流れる流体)に浸ける。そして、ゼータ電位測定装置を用いて、流体に浸けられた状態の平板試料のゼータ電位を測定し、測定された結果をゼータ電位ζとして定義する。
 続いて、ポンプ10の製造方法の一例を説明する。ここでは、電極12および外部電極21、22をPtで構成し、誘電体13をSiO2で構成した図6のポンプ10の製造方法を説明する。
 例えば、第1誘電体131および第3誘電体133をSiOで構成し、第2誘電体132をAlで構成するとする。この場合、まず、SiOおよびAlに対してトルネン/エタノール混合溶媒、分散剤およびバインダーと共にボールミルで8hr分散処理が行われ、その後、ドクターブレード法により、第1誘電体131および第3誘電体133となるSiOのセラミックグリーンシートと、第2誘電体132となるAlのセラミックグリーンシートとが形成される。このとき、SiOまたはAlには、それぞれ同質の焼結助剤を添加する。焼結助剤は、例えば、Ca-B-SiO、ZnO-B-SiO、CaO-Al-SiOなどのガラス、または、焼成時に液相を形成する酸化物である。
 次に、形成したセラミックグリーンシート上にマスクを被せて、Ptを蒸着させる(または、Ptペーストを印刷する)ことにより、SiOのセラミックグリーンシート上およびAlのセラミックグリーンシート上にそれぞれ電極12を複数形成する。形成された各電極12には、流体が通過可能な複数の孔が形成される。そして、電極12が形成されたSiOのセラミックグリーンシートおよびAlのセラミックグリーンシートを積層機で積層した後、圧着機で圧着して、電極12とSiOのセラミックグリーンシートおよびAlのセラミックグリーンシートとが交互に積層され積層体が形成される。
 セラミックグリーンシート上に形成される電極12の厚さはかなり小さいため(例えば、1μm)、セラミックグリーンシートの気孔を塞ぐことがない。このため、積層体には、ポンプ流路11を構成する積層方向に延びる複数の貫通孔が形成される。
 続いて、形成された積層体をダイシングでカットした後、摂氏800度~摂氏1000度で焼成する。そして、焼成された積層体にマスクを被せて、Ptを蒸着させることにより、外部電極21、22を形成して、ポンプ10の製造が終了する。
 (第2実施形態)
 本発明の第2実施形態のポンプ10は、次に示す3点の少なくともいずれかの点で第1実施形態のポンプ10とは異なっている。なお、第2実施形態では、第1実施形態と同一部分に同一参照番号を付して説明を省略し、第1実施形態と異なる点について説明する。
  ・第2誘電体132(第2の誘電体の一例)の気孔率が、第1誘電体131および第3誘電体133(第1の誘電体の一例)の気孔率よりも大きい。
  ・第2誘電体132の気孔径が、第1誘電体131および第3誘電体133の気孔径よりも大きい。
  ・第2誘電体132の屈曲度が、第1誘電体131および第3誘電体133の屈曲度よりも小さい。
 第1の誘電体および第2の誘電体の気孔率、気孔径および屈曲度の関係がポンプ10の流量に与える影響について説明する。
 半径r、長さLを有する1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプ(以下、従来のポンプという。)がする仕事W単層を考える。従来のポンプの誘電体は、気孔径a、気孔率ψ、屈曲度τの多孔体であるとする。このとき、誘電体の気孔数Nとすると、下記数式2より、下記数式3で表される(電極の厚さは無視する)。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、気孔径aがデバイ長λよりも十分に大きい場合(気孔径aがデバイ長λの50倍以上の場合)を考える。図7に示すように、気孔径aがデバイ長λよりも十分に大きい細管300内における電気浸透流は栓流となり、その速度uは、下記数式4で表される。数式4において、εrは流体の比誘電率、ε0は真空誘電率、μは流体の粘度、Eは電界強度、ζはゼータ電位を表す。
Figure JPOXMLDOC01-appb-M000004
 数式4によれば、速度uは、ゼータ電位および流体の粘度の釣り合いから決定される。言い換えると、速度uは、細管300の壁面310近傍ではたらく静電引力による仕事と、流体摩擦力によるエネルギー損失とが釣り合うような速度に収束する。
 従って、ポンプがする仕事Wは、誘電体の気孔の表面積Sを用いて、W=(静電引力による仕事)+(摩擦力による仕事)=(静電引力)×(距離)×S+(摩擦力)×(距離)×Sで表される。
 距離は、短時間あたりの流体粒子の移動距離に相当し、流速uに一致するので、静電引力をFa、摩擦力をFbとすると、仕事Wは、下記数式5で表される。
Figure JPOXMLDOC01-appb-M000005
 静電引力Faは電界Eに比例し、電界Eは実効電極間距離L√τに反比例するため、印加電圧をVとすると、下記数式6で表される。なお、kは比例定数とする。
Figure JPOXMLDOC01-appb-M000006
 摩擦力Fは流速uに比例し、流動方向の反対方向に働くため、下記数式7で表される。なお、bは比例定数とする。
Figure JPOXMLDOC01-appb-M000007
 流速uと流量Qの関係は、下記数式8で表され、気孔表面積Sは、下記数式9で表される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 従来のポンプがする仕事W単層は、上記数式5~9を踏まえると下記数式10で表される。数式10において、右辺の第1項が静電引力による仕事に相当し、右辺の第2項が摩擦力による仕事(エネルギー損失)に相当する。
Figure JPOXMLDOC01-appb-M000010
 次に、図5のポンプ10がする仕事W積層を考える。ここでは、第1の誘電体である第1誘電体131および第3誘電体133の気孔径をa、気孔率をψ1、屈曲度τ1とし、第2の誘電体である第2誘電体132の気孔径をa、気孔率をψ、屈曲度τとする。また、第1の誘電体の流速をu、静電引力をFa1、摩擦力をFb1、気孔の表面積をSとし、第2の誘電体の流速をu、静電引力をFa2、摩擦力をFb2、気孔の表面積をSとする。各誘電体の長さは、L/3であるとすると、ポンプ10がする仕事W積層は、下記式11で表される。数式11においても、右辺の第1項が静電引力による仕事に相当し、右辺の第2項が摩擦力による仕事に相当する。
Figure JPOXMLDOC01-appb-M000011
 上記数式10および上記数式11によれば、a=aかつψかつτの時、W積層=W単層となる。a>aの場合、W積層における静電引力による仕事が、W単層における静電引力による仕事よりも大きくなり、W積層における摩擦力による仕事の絶対値が、W単層における摩擦力による仕事の絶対値よりも小さくなる。ψ>ψの場合、または、τ<τの場合、W積層における静電引力による仕事は、W単層における静電引力による仕事と同じであるが、W積層における摩擦力による仕事の絶対値は、W単層における摩擦力による仕事の絶対値よりも小さくなる。従って、第2の誘電体の気孔率ψを第1の誘電体の気孔率ψよりも大きくする、または、第2の誘電体の気孔径aを第1の誘電体の気孔径aよりも大きくする、または、第2の誘電体の屈曲度τを第1の誘電体の屈曲度τよりも小さくすることで、W積層>W単層となり、従来のポンプよりもポンプ10の流量を増大させることができる。その結果、機械的強度を確保しつつ、流量を高めることができる電気浸透流を用いたポンプ10を実現できる。
 なお、気孔率ψは、例えば、次のように定義する。すなわち、対象の誘電体13における流動方向Aの中心を通りかつ流動方向Aに直交する断面(図8の(i)-(i)線に沿った断面)をSEM(走査型電子顕微鏡)で観察する。倍率は、気孔が観察視野内に50個程度存在するような倍率とする。コントラストを大きく設定して観察視野を撮像する。観察視野を変えながら、対象の誘電体13内の任意の領域10ヶ所の画像を取得し、取得された各画像から気孔率をそれぞれ計測する。各画像から得られた気孔率の平均を対象の誘電体13の気孔率ψと定義する。
 気孔径aは、例えば、次のように定義する。すなわち、対象の誘電体13における流動方向Aの中心を通りかつ流動方向Aに直交する断面(図8の(i)-(i)線に沿った断面)をSEM(走査型電子顕微鏡)で観察する。倍率は、気孔が観察視野内に50個程度存在するような倍率とする。コントラストを大きく設定して観察視野を撮像する。観察視野を変えながら、対象の誘電体13内の任意の領域10ヶ所の画像を取得し、取得された各画像から気孔径(フェレ径)をそれぞれ計測する。各画像から得られた気孔径の平均を対象の誘電体13の気孔径aと定義する。
 屈曲度τは、例えば、次のように定義する。すなわち、対象の誘電体13と同じ材料組成および同じ条件で平板試料を作製し、作製した平板試料の両面に、面全体を覆う電極を設ける。この平板試料に対して十分に水を浸透させた状態で、電極間の電気抵抗Rを測定する。また、平板試料と同じ電極面積および電極間距離を有する電極対を浸水させて、電極間の電気抵抗Rrefを測定する。このとき、同じ電気抵抗を持つ水を使用し、電気抵抗Rrefの測定の際、電界の回りこみによる測定誤差が出ないよう注意する。測定した電気抵抗RおよびRrefを用いて、次の数式12で求められた結果を屈曲度τと定義する。
Figure JPOXMLDOC01-appb-M000012
 なお、数式12において、ψは開気孔率を表し、アルキメデス法(JIS R 1634:1998)によって求められる。乾燥状態の試料の重量(乾燥質量)をw1とし、水中に沈めて飽水させた状態の試料の重量(水中質量)をw2とし、飽水試料を水中から取り出し表面の水滴を拭って除去したときの重量(飽水質量)をw3とすると、開気孔率ψは次の数式13で求められる。
Figure JPOXMLDOC01-appb-M000013
 第2実施形態のポンプ10の製造方法は、第1誘電体131および第3誘電体133と第2誘電体132とで異なる材料または異なる製法を用いてセラミックグリーンシートを形成する点で、第1実施形態のポンプ10の製造方法と異なっている。
 第2誘電体132の気孔率を第1誘電体131および第3誘電体133の気孔率よりも大きくする場合、例えば、次の材料を用いる。すなわち、第1誘電体131および第3誘電体133の材料として、粒径(D50)が1μmのSiO紛を使用し、第2誘電体132の材料として、粒径(D50)が2μmのSiO粉と粒径(D50)が0.2μmのSiO粉とを重量比1:1で混合した材料を使用する。
 第2誘電体132の気孔径を第1誘電体131および第3誘電体133の気孔径よりも大きくする場合、例えば、次の材料を用いる。すなわち、第1誘電体131および第3誘電体133の材料として、粒径(D50)が1μmのSiO粉を使用し、第2誘電体132の材料として、粒径(D50)が10μmのSiO紛を使用する。なお、気孔径aは、10nm以上であるのが好ましく、0.1μm~10μmであるのがより好ましい。気孔径aが10nm未満である場合、気孔径aが小さすぎて壁面310(図7参照)に形成される電気二重層が重なって送液効率が低下するおそれがある。
 第2誘電体132の屈曲度を第1誘電体131および第3誘電体133の屈曲度よりも小さくする場合、例えば、次の製法材料を用いる。すなわち、第1誘電体131および第3誘電体133では、SiOに対してトルネン/エタノール混合溶媒、分散剤およびバインダーと共にボールミルで8hr分散処理が行われ、その後、ドクターブレード法により、種々の厚みのセラミックグリーンシートが形成される。形成されたセラミックグリーンシートに対して、レーザー光の照射またはトラックドエッチングにより、細孔が形成される。第2誘電体132では、樹脂ビーズ(例えば直径1μm)およびSiOに対してトルネン/エタノール混合溶媒、分散剤およびバインダーと共にボールミルで8hr分散処理が行われ、その後、ドクターブレード法により、種々の厚みのセラミックグリーンシートが形成される。第1誘電体131および第3誘電体133では、ストレートポアが形成され、第2誘電体132では、屈曲したポアが形成される。なお、SiOには、同質の焼結助剤が添加される。焼結助剤は例えば、CaO-B-SiO、ZnO-B-SiO、CaO-Al-SiOなどのガラス、または、焼成時に液相を形成する酸化物である。
 基板30に実装されたIC(集積回路)40上に、放熱グリース50、冷却基板60、放熱グリース50、ヒートシンク70、および、クーリングファン80の順に積層した図9に示す冷却システム200を用いて、IC40の最高温度Tを測定した。
 具体的には、冷却基板60として、本発明の第1実施形態のポンプ10の誘電体13の数が2から30の範囲でそれぞれ異なる複数の本発明の冷却基板1の1つを用いた場合のIC40の最高温度Tと、従来の冷却基板(すなわち、1つの誘電体と、この誘電体の両端の一対の電極とで構成されたポンプ)を用いた場合のIC40の最高温度T0とを測定した。本発明の冷却基板1において、各ポンプ10は、全て同じ形状および大きさになるように構成した。
 従来の冷却基板を用いたときのIC40の最高温度T0と、本発明の冷却基板1を用いたときのIC40の最高温度Tとの関係を図10に示す。なお、図10において、縦軸は、従来の冷却基板を用いたときのIC40の最高温度T0に対する本発明の冷却基板1を用いたときのIC40の最高温度Tの比(すなわち、相対温度)を示しており、横軸は、ポンプ10の誘電体13の数を示している。
 図10に示されているように、測定の結果、第1実施形態の冷却基板1を用いた場合のIC40の最高温度Tは、従来の冷却基板を用いた場合のIC40最高温度T0よりも低くなることが分かった。また、第1実施形態の冷却基板1を用いた場合、誘電体13の数が30以下であれば、誘電体13の数が多くなればなるほど、IC40の最高温度Tが低くなることが分かった。特に、誘電体13の数が10以下の場合、第1実施形態の冷却基板1を用いることで、従来の冷却基板1を用いた場合よりも大きな冷却効果が得られることが分かった。
 また、冷却システム200は、例えば、図11に示すように、冷却基板60とヒートシンク70とを一体化して、冷却基板60がヒートシンク70を兼ねるように構成してもよい。このような構成により、小型の冷却システム200を実現できる。
 また、冷却システム200は、例えば、図12に示すように、ヒートシンク70およびクーリングファン80に代えて、IC40から離れて配置された熱交換器90を設け、冷却基板60内の流体を熱交換器90で冷却するように構成してもよい。このように、IC40から離れて熱交換器90を配置することで、熱交換器90の形状、大きさおよび配置などの制約が生じ難い。このため、図9および図11の冷却システム200と比較して、冷却能力の高い熱交換器90を用いることができて、冷却基板60の冷却能力を大幅に高めることができるので、より発熱が大きな熱源への適用が可能になる。
 なお、前記様々な実施形態または変形例のうちの任意の実施形態または変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせまたは実施例同士の組み合わせまたは実施形態と実施例との組み合わせが可能であると共に、異なる実施形態または実施例の中の特徴同士の組み合わせも可能である。
 本発明のポンプ10は、例えば、ICの冷却システムに適用できる。
1 冷却基板
2 基板流路
3 位置決め部
4 流体供給路
5 取り出し電極
10 ポンプ
11 ポンプ流路
12 電極
13 誘電体
21、22 外部電極
30 基板
40 IC
50 放熱グリース
60 冷却基板
70 ヒートシンク
80 クーリングファン
90 熱交換器
100 電源

Claims (12)

  1.  流体が流れるポンプ流路と、
     前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
    を備え、
     前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
     前記複数の電極は、隣接する電極間の極性が相互に異なり、
     前記複数の誘電体が、
     前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
     前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
    を有し、
     前記第1の誘電体および前記第2の誘電体の各々が、
     前記流動方向のゼータ電位が相互に逆符号となる材料で構成されている、ポンプ。
  2.  流体が流れるポンプ流路と、
     前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
    を備え、
     前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
     前記複数の電極は、隣接する電極間の極性が相互に異なり、
     前記複数の誘電体が、
     前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
     前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
    を有し、
     前記第1の誘電体および前記第2の誘電体の各々が、
     前記流動方向のゼータ電位が相互に同じ符号となり、かつ、前記第1の誘電体の前記流動方向のゼータ電位の絶対値が前記第2の誘電体の前記流動方向のゼータ電位の絶対値よりも大きくなる材料で構成されている、ポンプ。
  3.  前記流体が、水である、請求項1または2のポンプ。
  4.  前記流体が、添加物が添加された水である、請求項1または2のポンプ。
  5.  前記添加物が、緩衝液、不凍液または耐腐食剤のいずれかである、請求項4のポンプ。
  6.  流体が流れるポンプ流路と、
     前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
    を備え、
     前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
     前記複数の電極は、隣接する電極間の極性が相互に異なり、
     前記複数の誘電体が、
     前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
     前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
    を有し、
     前記第2の誘電体の前記流動方向の気孔率が、前記第1の誘電体の前記流動方向の気孔率よりも大きい、ポンプ。
  7.  流体が流れるポンプ流路と、
     前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
    を備え、
     前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
     前記複数の電極は、隣接する電極間の極性が相互に異なり、
     前記複数の誘電体が、
     前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
     前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
    を有し、
     前記第2の誘電体の前記流動方向の気孔径が、前記第1の誘電体の前記流動方向の気孔径よりも大きい、ポンプ。
  8.  流体が流れるポンプ流路と、
     前記ポンプ流路に配置されて、前記流体の流動方向に前記流体がそれぞれ通過可能な複数の電極および複数の誘電体と
    を備え、
     前記複数の電極および前記複数の誘電体は、前記複数の電極の隣接する電極間に前記複数の誘電体の1つが位置するように、前記流動方向に沿って交互に接触して積層され、
     前記複数の電極は、隣接する電極間の極性が相互に異なり、
     前記複数の誘電体が、
     前記流動方向の最上流から数えて奇数番目に配置されている第1の誘電体と、
     前記流動方向の最上流から数えて偶数番目に配置されている第2の誘電体と
    を有し、
     前記第2の誘電体の前記流動方向の屈曲度が、前記第1の誘電体の前記流動方向の屈曲度よりも小さい、ポンプ。
  9.  前記複数の電極の各々が、前記複数の誘電体の各々よりも大きい前記流動方向の厚さを有している、請求項1から7のいずれか1つのポンプ。
  10.  前記第1の誘電体がSiOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がTiOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がSiOで構成され前記第2の誘電体がTiOで構成されているか、または、前記第1の誘電体がSiOで構成され前記第2の誘電体がZrOで構成されているか、または、前記第1の誘電体がZrOで構成され前記第2の誘電体がAlで構成されているか、または、前記第1の誘電体がポリテトラフルオロエチレンで構成され前記第2の誘電体がポリエチレンテレフタレートで構成されている、請求項1から9のいずれか1つのポンプ。
  11.  前記流体が充填されて流れる基板流路と
     前記基板流路に配置され、前記ポンプ流路が前記基板流路に接続されている、請求項1から10のいずれか1つのポンプと
    を備える、冷却基板。
  12.  前記ポンプが、相互に長さの異なる3つの辺で構成された直方体状を有し、
     前記基板流路が、前記ポンプを収容して位置決めする位置決め部を有している、請求項11の冷却基板。
PCT/JP2019/038613 2018-10-03 2019-09-30 ポンプおよび冷却基板 WO2020071334A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020550433A JP6966007B2 (ja) 2018-10-03 2019-09-30 ポンプおよび冷却基板
US17/187,921 US11703040B2 (en) 2018-10-03 2021-03-01 Pump and cooling substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188012 2018-10-03
JP2018188012 2018-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/187,921 Continuation US11703040B2 (en) 2018-10-03 2021-03-01 Pump and cooling substrate

Publications (1)

Publication Number Publication Date
WO2020071334A1 true WO2020071334A1 (ja) 2020-04-09

Family

ID=70054652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038613 WO2020071334A1 (ja) 2018-10-03 2019-09-30 ポンプおよび冷却基板

Country Status (3)

Country Link
US (1) US11703040B2 (ja)
JP (1) JP6966007B2 (ja)
WO (1) WO2020071334A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065048A1 (ja) * 2018-10-03 2021-04-08 株式会社村田製作所 ポンプおよび冷却基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533170A (ja) * 2004-04-19 2007-11-15 エクシジェント テクノロジーズ, エルエルシー 動電式ポンプによって駆動される熱伝導システム
JP2014523499A (ja) * 2011-05-05 2014-09-11 エクシジェント テクノロジーズ, エルエルシー 往復動界面動電ポンプの差動圧力制御のシステムおよび方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719535B2 (en) * 2002-01-31 2004-04-13 Eksigent Technologies, Llc Variable potential electrokinetic device
US8603834B2 (en) * 2011-12-15 2013-12-10 General Electric Company Actuation of valves using electroosmotic pump
US20160252082A1 (en) 2013-10-22 2016-09-01 Sekisui Chemical Co., Ltd. Electroosmotic pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533170A (ja) * 2004-04-19 2007-11-15 エクシジェント テクノロジーズ, エルエルシー 動電式ポンプによって駆動される熱伝導システム
JP2014523499A (ja) * 2011-05-05 2014-09-11 エクシジェント テクノロジーズ, エルエルシー 往復動界面動電ポンプの差動圧力制御のシステムおよび方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065048A1 (ja) * 2018-10-03 2021-04-08 株式会社村田製作所 ポンプおよび冷却基板

Also Published As

Publication number Publication date
US20210180882A1 (en) 2021-06-17
JPWO2020071334A1 (ja) 2021-09-02
JP6966007B2 (ja) 2021-11-10
US11703040B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
Yan et al. Nanofluidic diodes based on nanotube heterojunctions
Li et al. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications
JP2014041817A5 (ja)
KR101766712B1 (ko) 멤브레인 전극 복합체를 이용한 유체 이동용 전기 삼투압 펌프
JP5969488B2 (ja) 試料保持具
JP6166268B2 (ja) 電気浸透流ポンプ
US10315961B2 (en) Porous material and heat insulating film
US10627173B2 (en) Flow path member, and heat exchanger and semiconductor manufacturing apparatus using same
Lee et al. Graphene quantum dots/graphene fiber nanochannels for osmotic power generation
WO2020071334A1 (ja) ポンプおよび冷却基板
EP2833402A1 (en) Flow path member, and heat exchanger and semiconductor device using same
JP2008074677A (ja) 電気浸透材及びその製造方法と電気浸透流ポンプ
EP3100994A1 (en) Porous plate-shaped filler
WO2021065048A1 (ja) ポンプおよび冷却基板
Cao et al. Microchannel plate electro-osmotic pump
JP6175437B2 (ja) 流路部材およびこれを用いた熱交換器ならびに半導体製造装置
US20210328124A1 (en) Manufacturing method of thermoelectric conversion element
JP5473403B2 (ja) 液体駆動装置
KR102057914B1 (ko) 적층 세라믹 커패시터
JP2020186658A (ja) 冷却モジュール及び回路基板
JPWO2015019811A1 (ja) 積層型熱電変換素子
JP2015005596A (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
JP5649761B1 (ja) 熱発電素子および熱発電素子の製造方法
Khan et al. Laser printed graphene on polyimide electrodes for magnetohydrodynamic pumping of saline fluids
EP3291294A1 (en) Heat dissipation structure using graphene quantum dots and method of manufacturing the heat dissipation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869019

Country of ref document: EP

Kind code of ref document: A1