WO2020070932A1 - Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery

Info

Publication number
WO2020070932A1
WO2020070932A1 PCT/JP2019/026267 JP2019026267W WO2020070932A1 WO 2020070932 A1 WO2020070932 A1 WO 2020070932A1 JP 2019026267 W JP2019026267 W JP 2019026267W WO 2020070932 A1 WO2020070932 A1 WO 2020070932A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
solid electrolyte
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2019/026267
Other languages
French (fr)
Japanese (ja)
Inventor
安田 剛規
坂脇 彰
恭成 渡邉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020070932A1 publication Critical patent/WO2020070932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • a lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
  • Patent Document 1 discloses that a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are provided on a substrate made of glass, semiconductor silicon, ceramic, stainless steel, resin, or the like. It is described that a lithium ion secondary battery is formed by stacking layers.
  • the capacity of a lithium ion secondary battery gradually decreases with time after charging, even if the battery is not used.
  • the ratio of the capacity of the lithium ion secondary battery at the time when a predetermined period has elapsed to the initial capacity after the completion of charging is referred to as a capacity retention rate.
  • the capacity retention ratio is likely to decrease, and after charging, even if not particularly used, the lithium ion secondary battery will not function as a power source The time until was sometimes shorter.
  • An object of the present invention is to suppress a decrease in capacity retention in a thin-film laminated lithium ion secondary battery including an inorganic solid electrolyte.
  • the lithium ion secondary battery of the present invention comprises: a substrate having a front surface and a back surface; a first polar layer provided on the front surface side of the substrate, for absorbing and releasing lithium ions at a first polarity; A solid electrolyte layer containing an inorganic solid electrolyte having a property, and a second polar layer that occludes and releases lithium ions at a second polarity opposite to the first polarity, wherein Is characterized in that a maximum / minimum height difference which is a height difference between a maximum height and a minimum height obtained by measuring unevenness in a range of 20 ⁇ m ⁇ 20 ⁇ m with an AFM (Atomic Force Microscope) is 78 nm or less. .
  • the substrate may be made of SUS316L, and the solid electrolyte layer may contain LiPON in which a part of oxygen in Li 3 PO 4 is replaced with nitrogen.
  • the substrate is made of a metal material whose surface is subjected to Ni-P plating, and the solid electrolyte layer contains LiPON in which part of oxygen in Li 3 PO 4 is replaced by nitrogen. be able to.
  • the first polarity is positive
  • the second polarity is negative
  • the solid electrolyte layer is provided to face the first polar layer, and includes Li 3 PO 4 and includes LiNiO 2 .
  • the first polar layer may include LiNiO 2 and Li 3 PO 4 .
  • the semiconductor device may further include a base layer provided between the surface of the substrate and the first polar layer, the base layer including LiNiO 2 and not including Li 3 PO 4 .
  • a metal layer provided opposite to the solid electrolyte layer and made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof is used.
  • the second polar layer may include lithium alloyed with a metal constituting the metal layer.
  • the semiconductor device may further include an amorphous layer which is provided to face the metal layer and has an amorphous structure and is made of a metal or an alloy.
  • the maximum and minimum height difference of the surface of the substrate may be 2.7 nm or less.
  • the arithmetic mean roughness Ra of the surface of the substrate may be 1.1 nm or less.
  • the method for manufacturing a lithium ion secondary battery of the present invention has a maximum height and a minimum height obtained by measuring unevenness in a range of 20 ⁇ m ⁇ 20 ⁇ m with an AFM (Atomic Force Microscope).
  • the substrate preparing step may include preparing the substrate made of SUS316L. Further, in the substrate preparing step, the substrate made of a metal material plated with Ni-P may be prepared.
  • the first polarity is positive, and a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), or aluminum (Al) is formed on the solid electrolyte layer provided on the substrate.
  • the metal layer may further include an amorphous layer forming step of forming an amorphous layer made of a metal or an alloy having an amorphous structure. May be included.
  • the first polarity is positive, and in the first polar layer forming step, a composite cathode including LiNiO 2 and Li 3 PO 4 is formed, and in the solid electrolyte layer forming step, Li 3 PO 4 is formed.
  • a second solid electrolyte layer containing LiPON in which part of oxygen in Li 3 PO 4 is replaced by nitrogen can be formed.
  • the method may further include, between the substrate preparing step and the first polar layer forming step, an underlayer forming step of forming an underlayer containing LiNiO 2 and not Li 3 PO 4 on the surface of the substrate.
  • an underlayer forming step of forming an underlayer containing LiNiO 2 and not Li 3 PO 4 on the surface of the substrate.
  • the substrate preparing step the substrate having the maximum and minimum height difference of the surface set to 2.7 nm or less may be prepared.
  • the substrate may be prepared such that an arithmetic average roughness Ra of the surface is set to 1.1 nm or less.
  • the present invention it is possible to suppress a reduction in the capacity retention ratio in a thin-film laminated lithium ion secondary battery including an inorganic solid electrolyte.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to an embodiment.
  • (A), (b) is a figure which shows the cross-sectional structural example of the board
  • (A)-(c) is a figure for demonstrating the procedure of making a holding
  • (A), (b) is a cross-sectional STEM photograph of the lithium ion secondary battery of the comparative example before the first charge and discharge and after seven charge and discharge.
  • (A), (b) is an enlarged cross-sectional STEM photograph before and after the first charge and discharge of the lithium ion secondary battery of the comparative example seven times.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of the present embodiment.
  • the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers are stacked. After forming a basic structure by a so-called film forming process, the first charge / discharge operation is performed. Completes the structure.
  • the lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, an underlayer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the underlayer 20, and a solid layer laminated on the positive electrode layer 30. And an electrolyte layer 40.
  • the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the ends thereof are directly laminated on the substrate 10, so that the solid electrolyte layer 40 covers the base layer 20 and the positive electrode layer 30 together with the substrate 10. I have.
  • this lithium ion secondary battery 1 has a holding layer 50 stacked on the solid electrolyte layer 40, a diffusion prevention layer 60 stacked on the holding layer 50, and a negative electrode collection layer stacked on the diffusion prevention layer 60. And an electric conductor layer 70.
  • the substrate 10 serves as a base on which the base layer 20 to the negative electrode current collector layer 70 are stacked by a film forming process.
  • the substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a. The details of the substrate 10 will be described later.
  • the underlayer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, as well as a material (particularly a metal material) forming the substrate 10 and a Li 3 PO 4 (phosphorus) forming the positive electrode layer 30.
  • Li 3 PO 4 phosphorus
  • Li 3 PO 4 and Li + unlikely to occur corrosion by (Li-ion) or PO 4 3- (phosphate ions) constituting formed of a metal or metal compound such as Can be used.
  • the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 1.
  • the thickness of the underlayer 20 can be, for example, not less than 5 nm and not more than 50 ⁇ m. If the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is reduced, which is not practical. On the other hand, if the thickness of the underlayer 20 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • any known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method or a vacuum method is used. It is desirable to use an evaporation method.
  • the positive electrode layer 30 as an example of the first polar layer is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging.
  • the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). Materials composed of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals can be used.
  • the positive electrode layer 30 may be a composite positive electrode further containing a solid electrolyte. In this embodiment, the positive polarity corresponds to the first polarity.
  • the positive electrode layer 30 is formed of a mixed positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material. Then, in the positive electrode layer 30, the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed while maintaining each. As a result, in the positive electrode layer 30, one is a matrix (base material) and the other is a filler (particles). Here, in the positive electrode layer 30, it is desirable that the solid electrolyte region be a matrix and the positive electrode region be a filler.
  • the same LiNiO 2 as the underlayer 20 is used as the positive electrode active material forming the positive electrode layer 30.
  • Li 3 PO 4 lithium phosphate
  • the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected.
  • the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
  • the thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small, which is not practical.
  • the thickness of the positive electrode layer 30 exceeds 40 ⁇ m, it takes too much time to form the layer, and the productivity is reduced.
  • the thickness of the positive electrode layer 30 may be more than 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
  • the solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field. Then, the solid electrolyte layer 40 of the present embodiment is stacked on the first solid electrolyte layer 41 and the first solid electrolyte layer 41 stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. A second solid electrolyte layer.
  • the first solid electrolyte layer 41 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30.
  • the thickness of the first solid electrolyte layer 41 can be, for example, not less than 5 nm and not more than 50 nm. When the thickness of the first solid electrolyte layer 41 is less than 5 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1. On the other hand, if the thickness of the first solid electrolyte layer 41 exceeds 50 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the second solid electrolyte layer 42 of the present embodiment is composed of LiPON (Li 3 PO 4-x N x (0 ⁇ x) in which a part of oxygen in Li 3 PO 4 constituting the first solid electrolyte layer 41 is replaced with nitrogen. ⁇ 1)).
  • the thickness of the second solid electrolyte layer 42 can be, for example, 10 nm or more and 10 ⁇ m or less.
  • the thickness of the second solid electrolyte layer 42 is less than 10 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1.
  • the thickness of the second solid electrolyte layer 42 exceeds 10 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the first solid electrolyte layer 41 is made of Li 3 PO 4 and the second solid electrolyte layer 42 is made of LiPON. That is, both the first solid electrolyte layer 41 and the second solid electrolyte layer 42 contain lithium, phosphorus, and oxygen, respectively.
  • Li 3 PO 4 constituting the first solid electrolyte layer 41 has a higher volume resistivity than LiPON constituting the second solid electrolyte layer 42.
  • the side provided with the first solid electrolyte layer 41 in contact with the positive electrode layer 30 is closer to the side provided with the second solid electrolyte layer 42 in contact with the holding layer 50. Also, the resistance value per unit thickness is high.
  • the thickness of the first solid electrolyte layer 41 is smaller than the thickness of the second solid electrolyte layer 42, and is in the order of two digits or more. More preferably, it is reduced.
  • the holding layer 50 as an example of a metal layer is a solid thin film and has a function of holding lithium ions during charging and releasing lithium ions during discharging.
  • the point that the holding layer 50 of the present embodiment does not itself include a negative electrode active material and is configured to hold lithium functioning as a negative electrode active material therein is different from a general negative electrode layer. Is different.
  • the holding layer 50 of the present embodiment also functions as an example of the second polar layer when lithium is held inside. In this embodiment, the second polarity corresponds to the negative polarity.
  • the holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed.
  • the porousization of the holding layer 50 that is, the formation of the porous portion, is performed in the first charge / discharge operation after the film formation, and the details will be described later.
  • a platinum group element Ru, Rh, Pd, Os, Ir, Pt
  • gold Au
  • aluminum Al
  • an alloy thereof it is desirable that the holding layer 50 be made of platinum or gold, which is less likely to be oxidized.
  • the holding layer 50 of the present embodiment can be made of the above-mentioned noble metal and metal or a polycrystal of an alloy thereof.
  • the holding layer 50 is made of platinum.
  • the thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient.
  • the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the thickness of the holding layer 50 may be more than 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a method for manufacturing the porous holding layer 50 it is desirable to employ a method of performing charging and discharging, as described later.
  • the diffusion prevention layer 60 as an example of the amorphous layer is a solid thin film, and is for suppressing diffusion of lithium ions held in the holding layer 50 to the outside of the lithium ion secondary battery 1. .
  • a material having an amorphous structure and made of a metal or an alloy can be used.
  • the diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among these, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferred. Is preferred.
  • the diffusion prevention layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer).
  • the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
  • the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi).
  • the metal (alloy) that can be used for the diffusion prevention layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB. , AuSi and the like.
  • the thickness of the diffusion preventing layer 60 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the diffusion preventing layer 60 is less than 10 nm, it is difficult for the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side to be blocked by the diffusion preventing layer 60.
  • the thickness of the diffusion prevention layer 60 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the diffusion preventing layer 60 As a method for manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a sputtering method when the diffusion prevention layer 60 is made of the above-described chromium-titanium alloy, the chromium-titanium alloy tends to be amorphous when the sputtering method is adopted.
  • the negative electrode current collector layer 70 is a solid thin film having electron conductivity, and has a function of collecting current to the holding layer 50.
  • the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can.
  • a chemically stable material for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold ( Au) or an alloy thereof is preferable.
  • the negative electrode current collector layer 70 is made of the same platinum as the holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
  • the thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 ⁇ m. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, and it will not be practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the negative electrode current collector layer 70 As a method of manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the material forming the substrate 10 is not particularly limited, and various materials such as metal, glass, ceramics, and resin can be adopted.
  • the substrate 10 is made of a metal plate having electron conductivity. Thereby, the substrate 10 is caused to function as a positive electrode current collector layer that collects electric current to the positive electrode layer 30 via the base layer 20.
  • the thickness of the substrate 10 can be, for example, not less than 20 ⁇ m and not more than 2000 ⁇ m. If the thickness of the substrate 10 is less than 20 ⁇ m, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, if the thickness of the substrate 10 exceeds 2000 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery.
  • FIG. 2 is a diagram showing a cross-sectional configuration example of a substrate 10 constituting the lithium ion secondary battery 1 of the embodiment.
  • the substrate 10 shown in FIG. 2A will be referred to as a first configuration example
  • the substrate 10 shown in FIG. 2B will be referred to as a second configuration example.
  • the substrate 10 includes a base material 11 made of a single-layer metal plate.
  • various metals and alloys thereof can be used as the metal material forming the base material 11.
  • stainless steel having a coefficient of thermal expansion close to that of LiNiO 2 is used as the metal material forming the base material 11. Is preferred.
  • the base material 11 is also used as a positive electrode current collector layer as in the present embodiment, the metal material constituting the base material 11 is hardly corroded even in a high voltage environment and resistant to overdischarge. It is preferable to use stainless steel.
  • the base material 11 forming the substrate 10 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
  • the substrate 10 includes a base material 11 made of a single-layer metal plate, and a coating layer 12 that covers the entire surface of the base material 11.
  • the metal material forming the base material 11 various metals, their alloys, metal compounds, and the like can be used.
  • the base material 11 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
  • the coating layer 12 As a material forming the coating layer 12, various metals, their alloys, metal compounds, or the like can be used.
  • the substrate 10 formed by forming the coating layer 12 on the base material 11 is adopted, from the viewpoint of suppressing corrosion caused by lithium, CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, It is preferable to use NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi, or the like.
  • NiP nickel-phosphorous
  • the method for forming the coating layer 12 is not limited to the plating method, and various film forming methods may be employed.
  • the substrate 10 is formed by covering the entire surface of the base material 11 with the coating layer 12, but the present invention is not limited to this.
  • the coating layer 12 may be provided on at least the side of the substrate 10 that becomes the surface 10 a on the substrate 10.
  • the maximum and minimum height difference Rmm of the substrate 10 of the present embodiment is a measure for defining the smoothness of the laminated surface of the battery structure on the substrate 10 (the surface 10a of the substrate 10 in the present embodiment).
  • the maximum-to-minimum height difference Rmm in the present embodiment is the height between the maximum height and the minimum height obtained by measuring irregularities in a range of 20 ⁇ m ⁇ 20 ⁇ m (square region) with an AFM (Atomic Force Microscope). Defined by the difference. Therefore, the definition of the maximum and minimum height difference Rmm is different from the maximum height Rz defined in, for example, JIS B0601.
  • the maximum / minimum height difference Rmm in the present embodiment is obtained, for example, by using a D3100 manufactured by Bruker, which is an AFM apparatus (atomic force microscope system), and acquiring data in an area of 20 ⁇ m ⁇ 20 ⁇ m. Is prepared by using a cubic expression as an approximate polynomial, preparing an image (which has been subjected to “smoothing” processing) converted to a displacement from the reference plane (a positive displacement and a negative displacement may exist), and It can be obtained from the “maximum value ⁇ minimum value” of the direction (z displacement).
  • the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is set to 78 nm or less.
  • the maximum and minimum height difference Rmm of the base material 11 located on the front surface 10a side is set to 78 nm or less.
  • the maximum and minimum height difference Rmm of the coating layer 12 located on the surface 10a side is set to 78 nm or less.
  • the arithmetic average roughness Ra is specified, for example, in JIS B0601.
  • the arithmetic mean roughness Ra of the surface 10a of the substrate 10 is preferably 1.1 nm or less.
  • FIG. 3 is a flowchart for explaining the method for manufacturing the lithium ion secondary battery of the present embodiment.
  • a substrate preparation step of preparing a substrate 10 which has been subjected to a surface treatment so that the maximum / minimum height difference Rmm of the surface 10a is 78 (nm) or less is executed (step 10).
  • the substrate 10 according to the first configuration example shown in FIG. 2A is manufactured by, for example, the following procedure.
  • a metal plate is manufactured by a rolling method or the like, and the surface 10a side of the base material 11 obtained by cutting the metal plate is subjected to a general mechanical polishing treatment, and then further subjected to CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • the substrate 10 according to the second configuration example shown in FIG. 2B is manufactured by, for example, the following procedure. First, a metal plate is manufactured by a rolling method or the like, and a coating layer 12 made of Ni—P is formed on the entire surface of a base material 11 obtained by cutting the metal plate by an electroless nickel plating method or the like. A laminate of the material 11 and the coating layer 12 is obtained. Then, after performing a general mechanical polishing process on the coating layer 12 positioned on the surface 10a side of the thus obtained laminated body, a polishing process using a CMP method or the like is performed, so that the surface 10a The substrate 10 having the maximum and minimum height difference Rmm set to 78 nm or less is obtained.
  • Step 20 the substrate 10 is mounted on a sputtering device (not shown), and a base layer forming step of forming the base layer 20 on the surface 10a of the substrate 10 is performed (Step 20).
  • a positive electrode layer forming step of forming the positive electrode layer 30 on the underlayer 20 is performed by the sputtering apparatus (step 30).
  • sputtering using a sputtering target containing a positive electrode active material and an inorganic solid electrolyte may be performed, or a sputtering target containing a positive electrode active material and an inorganic solid electrolyte may be used. Co-sputtering using the above sputtering target.
  • Solid electrolyte layer forming step a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is performed by the sputtering device (step 40).
  • a first solid electrolyte layer forming step of forming the first solid electrolyte layer 41 on the positive electrode layer 30 is performed (Step 41), and the first solid electrolyte layer 41 is formed on the first solid electrolyte layer 41.
  • a second solid electrolyte layer forming step of forming the second solid electrolyte layer 42 is performed (Step 42).
  • Li 3 PO 4 is used for the first solid electrolyte layer 41 and LiPON is used for the second solid electrolyte layer 42
  • a sputtering target containing lithium, phosphorus and oxygen is used, and the first solid electrolyte layer is formed under an atmosphere containing no nitrogen. It is preferable that the first solid electrolyte layer 41 is formed, and then the second solid electrolyte layer 42 is formed in an atmosphere containing nitrogen.
  • a holding layer forming step (an example of a metal layer forming step) for forming the holding layer 50 on the second solid electrolyte layer 42 of the solid electrolyte layer 40 is performed by the sputtering apparatus (step 50).
  • a diffusion preventing layer forming step (an example of an amorphous layer forming step) for forming the diffusion preventing layer 60 on the holding layer 50 is performed by the sputtering apparatus (step 60).
  • a negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the diffusion prevention layer 60 is performed by the sputtering device (step 70).
  • the basic structure of the lithium ion secondary battery 1 is obtained.
  • the basic structure of the lithium ion secondary battery 1 is removed from the sputtering device.
  • an initial charging step (an example of a charging step) for performing a first charging is performed on the basic structure of the lithium ion secondary battery 1 removed from the sputtering apparatus (step 80).
  • an initial discharge step (an example of a discharge step) for performing a first discharge is performed on the charged basic structure of the lithium ion secondary battery 1 (step 90).
  • the holding layer 50 is made porous, that is, a porous portion and a large number of pores are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained.
  • FIG. 4 is a diagram for explaining a procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and the periphery thereof.
  • FIG. 4A shows the state after the film formation and before the first charge (between Step 70 and Step 80)
  • FIG. 4B shows the state after the first charge and before the first discharge (Step 80 and Step 90).
  • 4C shows a state after the first discharge (after step 90).
  • the holding layer 50 is dense.
  • the thickness of the holding layer 50 is the thickness of the holding layer t50
  • the thickness of the diffusion prevention layer 60 is the thickness of the diffusion prevention layer t60
  • the thickness of the negative electrode current collector layer 70 is the thickness of the negative electrode current collector layer. It is t70.
  • the positive electrode of the DC power supply is provided on the substrate 10 (see FIG. 1), and the DC power supply is provided on the negative electrode current collector layer 70. Negative electrodes are respectively connected.
  • FIG. 4B lithium ions (Li + ) constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 4B).
  • the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the metal constituting the holding layer 50.
  • the holding layer 50 is made of platinum (Pt)
  • platinum and platinum are alloyed (solid solution, formation of an intermetallic compound, or eutectic).
  • the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly smaller than that of the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
  • the lithium ions that have moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50.
  • the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum.
  • the holding layer thickness t50 is changed from the film formation shown in FIG. More than the state. That is, the volume of the holding layer 50 increases by the first charging. This is considered to be due to the fact that lithium and platinum are alloyed in the holding layer 50.
  • the thickness t60 of the diffusion prevention layer does not substantially change before and after the first charge. That is, the volume of the diffusion prevention layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium hardly enters the diffusion preventing layer 60.
  • the thickness t70 of the negative electrode current collector layer does not substantially change before and after the first charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the first charge (negative electrode current collector). It is considered that the platinum constituting the electric conductor layer 70 is not made porous and remains dense like the platinum constituting the holding layer 50).
  • a positive electrode of a load is provided on the substrate 10 (see FIG. 1), and a negative electrode of the load is provided on the negative electrode current collector layer 70.
  • the electrodes are respectively connected.
  • the lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 via the solid electrolyte layer 40. That is, in the discharging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (downward in FIG. 4C) and are held by the positive electrode layer 30. Accordingly, a DC current is supplied to the load.
  • the alloy of lithium and platinum is dealloyed (dissolution of the metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion 51 in which a large number of holes 52 are formed.
  • the porous portion 51 obtained in this way is substantially made of metal (for example, platinum).
  • metal for example, platinum
  • the holding layer thickness t50 is larger than the state after the first charge and before the first discharge shown in FIG. 4B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the holding layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the first discharge is flattened so that the thickness direction is smaller than the plane direction. Further, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the initial discharge, the holding layer thickness t50 is larger than the state after the film formation and before the first charge shown in FIG. I do.
  • the holding layer 50 is made porous by the first charging and the first discharging, that is, a large number of holes 52 are formed in the holding layer 50.
  • the thickness t60 of the diffusion prevention layer and the thickness t70 of the negative electrode current collector layer are not substantially changed before and after the first discharge.
  • the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70 are sequentially stacked on the surface 10a of the substrate 10.
  • the basic structure of the lithium ion secondary battery 1 was formed. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10.
  • the configuration is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted.
  • the order of lamination of each layer on the substrate 10 is opposite to that described above.
  • the basic structure of the lithium ion secondary battery 1 is formed on one surface of the substrate 10, that is, on the surface 10a.
  • the present invention is not limited to this.
  • another lithium The basic structure of the ion secondary battery 1 may be formed. In this case, it is necessary to set the maximum / minimum height difference Rmm on the back surface 10b of the substrate 10 to 78 nm or less, similarly to the front surface 10a.
  • the inventor manufactured three types of lithium ion secondary batteries 1 (Examples 1 and 2 and Comparative Example), and evaluated the respective structures and various electrical characteristics.
  • Example 1 First, in Example 1, among the lithium ion secondary batteries 1 described in the above embodiment, those using the substrate 10 of the first configuration example shown in FIG. 2A were used. That is, in Example 1, the lithium ion secondary battery 1 including the substrate 10 formed of the base material 11 and having its surface 10a polished to the maximum and minimum height difference Rmm ⁇ 78 nm was used.
  • Example 2 Further, in Example 2, among the lithium ion secondary batteries 1 described in the above embodiment, those using the substrate 10 of the second configuration example shown in FIG. 2B were used. In No. 2, a lithium ion secondary battery 1 including a substrate 10 composed of a base material 11 and a coating layer 12 and having its surface 10a polished to a maximum and minimum height difference Rmm ⁇ 78 nm was used.
  • Table 1 shows the configuration of the substrate 10 in the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example.
  • Table 1 shows the constituent materials of the base material 11 constituting the substrate 10, the presence or absence of the coating layer 12 on the substrate 10 (if any), the presence or absence of the CMP process on the substrate 10, The relationship between the thickness, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10, and the arithmetic average roughness Ra is shown.
  • Example 1 the substrate 10 had a single-layer structure of the base material 11. That is, the configuration was such that the substrate 10 did not include the coating layer 12.
  • SUS316L was used as the base material 11 and the thickness thereof was 0.1 (mm).
  • a CMP process was further performed.
  • the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 was 78 (nm), and the arithmetic average roughness Ra was 1.19 (nm).
  • Example 2 the substrate 10 had a laminated structure of the base material 11 and the coating layer 12.
  • Al aluminum
  • the thickness was set to 0.1 (mm), which is the same as that in Example 1.
  • Ni—P was used as the coating layer 12.
  • the coating layer 12 was attached to the substrate 11 by using an electroless nickel plating method. Further, in the second embodiment, as in the first embodiment, the surface 10a of the substrate 10 is subjected to a general mechanical polishing process, and further subjected to a CMP process.
  • the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is 2.7 (nm) smaller than that of the first embodiment, and the arithmetic average roughness Ra is 0.499 (nm) smaller than that of the first embodiment. It became.
  • the substrate 10 had the same single-layer structure of the base material 11 as in Example 1. That is, the configuration was such that the substrate 10 did not include the coating layer 12.
  • SUS316L was used as the base material 11 and the thickness was set to 0.1 (mm), as in Example 1.
  • the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is 438 (nm), which is larger than that of the first and second embodiments, and the arithmetic average roughness Ra is 61.2 (greater than that of the first and second embodiments). nm).
  • Table 2 shows a configuration other than the substrate 10 in the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example.
  • Table 2 shows the relationship between the name of each layer excluding the substrate 10 and the material constituting each layer and its thickness.
  • Example 1 First, a first embodiment will be described.
  • the underlayer 20 LiNiO 2 formed by a sputtering method was used. The thickness of the underlayer 20 was 200 nm.
  • the positive electrode layer 30 LiNiO 2 and Li 3 PO 4 formed by a sputtering method were used. The thickness of the positive electrode layer 30 was 1000 nm. The ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
  • Li 3 PO 4 formed by a sputtering method was used for the first solid electrolyte layer 41 constituting the solid electrolyte layer 40. The thickness of the first solid electrolyte layer 41 was 20 nm.
  • the second solid electrolyte layer 42 constituting the solid electrolyte layer 40 LiPON formed by a sputtering method was used.
  • the thickness of the second solid electrolyte layer 42 was 980 nm. Therefore, the entire thickness of the solid electrolyte layer 40 is set to 1000 nm.
  • Pt formed by a sputtering method was used.
  • the thickness of the holding layer 50 was 410 nm.
  • CrTi formed by a sputtering method was used.
  • the thickness of the diffusion prevention layer 60 was 50 nm.
  • the negative electrode current collector layer 70 Pt formed by a sputtering method was used.
  • the thickness of the negative electrode current collector layer 70 was 100 nm.
  • Example 2 Next, a second embodiment will be described.
  • the underlayer 20 LiNiO 2 formed by a sputtering method was used. The thickness of the underlayer 20 was 200 nm.
  • the positive electrode layer 30 LiNiO 2 and Li 3 PO 4 formed by a sputtering method were used. The thickness of the positive electrode layer 30 was 800 nm. The ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
  • the first solid electrolyte layer 41 constituting the solid electrolyte layer 40 Li 3 PO 4 formed by a sputtering method was used. The thickness of the first solid electrolyte layer 41 was 20 nm.
  • the second solid electrolyte layer 42 constituting the solid electrolyte layer 40 LiPON formed by a sputtering method was used.
  • the thickness of the second solid electrolyte layer 42 was 980 nm. Therefore, the entire thickness of the solid electrolyte layer 40 is set to 1000 nm.
  • Pt formed by a sputtering method was used.
  • the thickness of the holding layer 50 was 60 nm.
  • CrTi formed by a sputtering method was used.
  • the thickness of the diffusion prevention layer 60 was 200 nm.
  • the negative electrode current collector layer 70 Pt formed by a sputtering method was used.
  • the thickness of the negative electrode current collector layer 70 was 60 nm.
  • Example 1 Comparative example
  • Example 1 and Comparative Example differ only in the flatness of the surface 10a of the substrate 10 (base material 11).
  • each lithium ion secondary battery 1 thus obtained was initially charged and discharged, whereby a lithium ion secondary battery 1 was obtained.
  • the thickness of the holding layer 50 was increased from the respective initial values by performing the initial charge / discharge.
  • Crystal structure First, the crystal structure will be described.
  • the inventor measured the electron diffraction pattern of each of the lithium ion secondary batteries 1 of Examples 1 and 2 and the comparative example, and thereby determined the crystal structure (crystallization) of each layer constituting the lithium ion secondary battery 1. , Amorphization).
  • the substrate 10, the holding layer 50, and the negative electrode current collector layer 70 were each crystallized.
  • the underlayer 20, the first solid electrolyte layer 41, the second solid electrolyte layer 42, and the diffusion prevention layer 60 were amorphous.
  • the positive electrode layer 30 a crystallized region and an amorphous region were mixed, and a crystallized region was scattered with respect to the amorphous region.
  • the lithium ion secondary battery 1 of the comparative example also exhibited the same crystal structure as the layers constituting the lithium ion secondary batteries 1 of Examples 1 and 2.
  • FIG. 5A is a cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example before the first charge / discharge.
  • FIG. 5B is a cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example after seven times of charge and discharge.
  • FIG. 6A is an enlarged cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example before the first charge / discharge.
  • FIG. 6B is an enlarged cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example after seven times of charge and discharge.
  • FIG. 5 (a) corresponds to FIG. 6 (a)
  • FIG. 5 (b) corresponds to FIG. 6 (b).
  • the photographing positions are different between the STEM photograph shown in FIG. 5A and FIG. 6A and the STEM photograph shown in FIG. 5B and FIG. Not.
  • the state before the first charge and discharge may be simply referred to as “before charge and discharge”
  • the state after seven times charge and discharge may be simply referred to as “after charge and discharge”.
  • the cross-sectional structure of the lithium-ion secondary battery 1 of the comparative example will be described with reference to FIGS.
  • the base layer 20 to the negative electrode current collector layer 70 Before the charge and discharge, the base layer 20 to the negative electrode current collector layer 70 have irregularities (undulations) due to the flatness of the surface 10a of the substrate 10 to be laminated. You can see that.
  • the base layer 20 to the negative electrode current collector layer 70 after the charge and discharge, in addition to the above-described flatness of the surface 10a of the substrate 10, the base layer 20 to the negative electrode current collector layer 70 have the positive electrode layer 30 to the holding layer 50 due to the movement of lithium ions. It can be seen that the unevenness caused by the influence of the expansion and contraction in the thickness direction is further increased.
  • Capacity maintenance rate For each of the lithium ion secondary batteries 1 of Examples 1 and 2 and Comparative Example, the charge / discharge characteristics were measured, and the capacity retention was evaluated using the measurement results of the charge / discharge characteristics.
  • a charge / discharge device HJ1020mSD8 manufactured by Hokuto Denko KK was used as a device for measuring charge / discharge characteristics.
  • the capacity retention ratio is a percentage of the capacity of the lithium ion secondary battery 1 at the time when a predetermined period has elapsed with respect to the initial capacity after the completion of charging. In this case, the higher the value of the capacity retention ratio, the better, and the maximum is 100%. Here, the capacity retention rate after full charge and after 3 hours was evaluated.
  • Table 3 shows the capacity retention of the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example.
  • Table 3 is expressed as a ratio of the configuration of the substrate 10, the maximum and minimum height difference Rmm and the arithmetic average roughness Ra on each surface 10a, and the discharge capacity immediately after full charge and after 3 hours after full charge. It shows the relationship with the capacity retention rate.
  • the current value during charging was 20 mA
  • Example 2 the current value during charging was 2.7 mA. This is because the area (footprint) of the lithium ion secondary battery 1 was the same in Example 1 and the comparative example, whereas the area of the lithium ion secondary battery 1 was This is due to the fact that it was smaller than the comparative example.
  • Example 1 The capacity retention rate in Example 1 was 98.8%. Further, the capacity retention ratio in Example 2 was 99.9%, which was higher than that in Example 1. On the other hand, the capacity retention ratio in the comparative example was 77.6%, which was lower than that in Examples 1 and 2.
  • the capacity retention ratio is higher than in the first embodiment in which the maximum and minimum height difference Rmm is set to 78 (nm). it was high. This is also considered to be due to the fact that the flatness of the surface 10a of the substrate 10 is higher in the second embodiment than in the first embodiment.
  • SYMBOLS 1 lithium ion secondary battery, 10 ... board

Abstract

A lithium-ion secondary battery (1) consists of layers in the following order: a substrate (10) that serves as a positive electrode current collector layer; an underlayer (20); a positive electrode layer (30) containing a positive electrode active material; a solid electrolyte layer (40) containing an inorganic solid electrolyte; a retaining layer 50 composed of a noble metal or the like; a diffusion prevention layer (60) composed of an amorphous alloy; and a negative electrode current collector layer (70) composed of a noble metal. A surface (10a) of the substrate (10) for laminating the underlayer (20) through to the negative electrode current collector layer (70) has a maximum-minimum height difference, which is the height difference between the maximum height and the minimum height obtained by measuring unevenness in a range of 20 μm × 20 μm by Atomic Force Microscope (AFM), that is established at 78 nm or less. Thus, in a thin-film laminated lithium-ion secondary battery equipped with an inorganic solid electrolyte, a reduction in the capacity retention rate is suppressed.

Description

リチウムイオン二次電池、リチウムイオン二次電池の製造方法Lithium ion secondary battery, method of manufacturing lithium ion secondary battery
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池の製造方法に関する。 The present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
 携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を示し且つ正極および負極の間に配置される電解質とを有している。 携 帯 With the spread of portable electronic devices such as mobile phones and notebook computers, there is a strong demand for the development of small and lightweight secondary batteries with high energy density. As a secondary battery satisfying such requirements, a lithium ion secondary battery is known. A lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
 従来のリチウムイオン二次電池では、電解質として有機電解液等が用いられてきた。これに対し、電解質として無機材料からなる固体電解質(無機固体電解質)を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成した、全固体型且つ薄膜積層型のリチウムイオン二次電池が提案されている(特許文献1参照)。
 また、特許文献1には、ガラス、半導体シリコン、セラミック、ステンレス、樹脂等からなる基板の上に、正極集電体層、正極活物質層、固体電解質層、負極活物質層および負極集電体層を積層することで、リチウムイオン二次電池を形成することが記載されている。
In a conventional lithium ion secondary battery, an organic electrolyte or the like has been used as an electrolyte. On the other hand, an all-solid-state and thin-film laminated lithium-ion secondary battery in which a solid electrolyte made of an inorganic material (inorganic solid electrolyte) is used as an electrolyte and the negative electrode, the solid electrolyte, and the positive electrode are all formed of thin films has been proposed. (See Patent Document 1).
Patent Document 1 discloses that a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector are provided on a substrate made of glass, semiconductor silicon, ceramic, stainless steel, resin, or the like. It is described that a lithium ion secondary battery is formed by stacking layers.
特開2008-226728号公報JP 2008-226728 A
 一般に、リチウムイオン二次電池の容量は、充電後、特に使用しなくても、時間の経過とともに漸次減少していく。ここで、リチウムイオン二次電池の、充電完了後の初期の容量に対する、予め定められた期間が経過した時点における容量の比を百分率で表したものを、容量維持率と称する。
 そして、無機固体電解質を含む薄膜積層型のリチウムイオン二次電池の場合、上記容量維持率が低下しやすくなり、充電後、特に使用しなくても、リチウムイオン二次電池が電源として機能しなくなるまでの時間が短くなることがあった。
 本発明は、無機固体電解質を備えた薄膜積層型のリチウムイオン二次電池において、容量維持率の低下を抑制することを目的とする。
In general, the capacity of a lithium ion secondary battery gradually decreases with time after charging, even if the battery is not used. Here, the ratio of the capacity of the lithium ion secondary battery at the time when a predetermined period has elapsed to the initial capacity after the completion of charging, expressed as a percentage, is referred to as a capacity retention rate.
In the case of a thin-film laminated lithium ion secondary battery containing an inorganic solid electrolyte, the capacity retention ratio is likely to decrease, and after charging, even if not particularly used, the lithium ion secondary battery will not function as a power source The time until was sometimes shorter.
An object of the present invention is to suppress a decrease in capacity retention in a thin-film laminated lithium ion secondary battery including an inorganic solid electrolyte.
 本発明のリチウムイオン二次電池は、表面および裏面を有する基板と、前記基板における前記表面側に設けられ、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、リチウムイオン伝導性を有する無機固体電解質を含む固体電解質層と、前記第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層とを順に有し、前記基板における前記表面は、AFM(Atomic Force Microscope)にて20μm×20μmの範囲の凹凸を測定して得られた最大高さと最小高さとの高低差である最大最小高低差が、78nm以下であることを特徴としている。
 このようなリチウムイオン二次電池において、前記基板がSUS316Lで構成され、前記固体電解質層がLi3PO4における酸素の一部を窒素で置換したLiPONを含んでいることを特徴とすることができる。
 また、前記基板が前記表面にNi-Pめっきを施した金属材料で構成され、前記固体電解質層がLi3PO4における酸素の一部を窒素で置換したLiPONを含んでいることを特徴とすることができる。
 また、前記第1の極性が正であり、前記第2の極性が負であり、前記固体電解質層は、前記第1極性層と対峙して設けられ、Li3PO4を含みLiNiO2を含まない第1固体電解質層と、前記第2極性層と対峙して設けられ、Li3PO4における酸素の一部を窒素で置換したLiPONを含む第2固体電解質層とを順に有することを特徴とすることができる。
 また、前記第1極性層は、LiNiO2およびLi3PO4を含んでいることを特徴とすることができる。
 また、前記基板の前記表面と前記第1極性層との間に設けられ、LiNiO2を含みLi3PO4を含まない下地層をさらに有することを特徴とすることができる。
 また、前記固体電解質層と対峙して設けられ、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層をさらに有し、前記第2極性層は、前記金属層を構成する金属と合金化したリチウムを含んでいることを特徴とすることができる。
 また、前記金属層と対峙して設けられ、非晶質構造を有する、金属または合金で構成される非晶質層をさらに有することを特徴とすることができる。
 また、前記基板における前記表面の前記最大最小高低差が、2.7nm以下であることを特徴とすることができる。
 また、前記基板における前記表面の算術平均粗さRaが1.1nm以下であることを特徴とすることができる。
 また、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、AFM(Atomic Force Microscope)にて20μm×20μmの範囲の凹凸を測定して得られた最大高さと最小高さとの高低差である最大最小高低差が、78nm以下となる表面が設けられた基板を準備する基板準備工程と、前記基板における前記表面側に、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層を形成する第1極性層形成工程と、前記基板上に設けられた前記第1極性層側に、リチウムイオン伝導性を有する無機固体電解質を含む固体電解質層を形成する固体電解質層形成工程とを有している。
 このようなリチウムイオン二次電池の製造方法において、前記基板準備工程では、SUS316Lで構成された前記基板を準備することを特徴とすることができる。
 また、前記基板準備工程では、Ni-Pめっきを施した金属材料で構成された前記基板を準備することを特徴とすることができる。
 また、前記第1の極性が正であり、前記基板上に設けられた前記固体電解質層に、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層を形成する金属層形成工程と、前記基板、前記第1極性層、前記固体電解質層および前記金属層を含む積層体に対し、当該第1極性層から当該固体電解質層を介して当該金属層にリチウムイオンを移動させることで充電を行う充電工程と、充電された前記積層体に対し、前記金属層から前記固体電解質層を介して前記第1極性層にリチウムイオンを移動させることで放電を行う放電工程とをさらに有することを特徴とすることができる。
 また、前記金属層形成工程と前記充電工程との間において、前記金属層に、非晶質構造を有する、金属または合金で構成される非晶質層を形成する非晶質層形成工程をさらに含むことを特徴とすることができる。
 また、前記第1の極性が正であり、前記第1極性層形成工程では、LiNiO2およびLi3PO4を含む合材正極を形成し、前記固体電解質層形成工程では、Li3PO4を含みLiNiO2を含まない第1固体電解質層を形成した後、Li3PO4における酸素の一部を窒素で置換したLiPONを含む第2固体電解質層を形成することを特徴とすることができる。
 また、前記基板準備工程と前記第1極性層形成工程との間において、前記基板における前記表面に、LiNiO2を含みLi3PO4を含まない下地層を形成する下地層形成工程をさらに含むことを特徴とすることができる。
 また、前記基板準備工程では、前記表面の前記最大最小高低差が2.7nm以下に設定された前記基板を準備することを特徴とすることができる。
 また、前記基板準備工程では、前記表面の算術平均粗さRaが1.1nm以下に設定された前記基板を準備することを特徴とすることができる。
The lithium ion secondary battery of the present invention comprises: a substrate having a front surface and a back surface; a first polar layer provided on the front surface side of the substrate, for absorbing and releasing lithium ions at a first polarity; A solid electrolyte layer containing an inorganic solid electrolyte having a property, and a second polar layer that occludes and releases lithium ions at a second polarity opposite to the first polarity, wherein Is characterized in that a maximum / minimum height difference which is a height difference between a maximum height and a minimum height obtained by measuring unevenness in a range of 20 μm × 20 μm with an AFM (Atomic Force Microscope) is 78 nm or less. .
In such a lithium ion secondary battery, the substrate may be made of SUS316L, and the solid electrolyte layer may contain LiPON in which a part of oxygen in Li 3 PO 4 is replaced with nitrogen. .
Further, the substrate is made of a metal material whose surface is subjected to Ni-P plating, and the solid electrolyte layer contains LiPON in which part of oxygen in Li 3 PO 4 is replaced by nitrogen. be able to.
In addition, the first polarity is positive, the second polarity is negative, and the solid electrolyte layer is provided to face the first polar layer, and includes Li 3 PO 4 and includes LiNiO 2 . And a second solid electrolyte layer including LiPON in which a part of oxygen in Li 3 PO 4 is replaced by nitrogen and provided in opposition to the second polar layer. can do.
The first polar layer may include LiNiO 2 and Li 3 PO 4 .
In addition, the semiconductor device may further include a base layer provided between the surface of the substrate and the first polar layer, the base layer including LiNiO 2 and not including Li 3 PO 4 .
Further, a metal layer provided opposite to the solid electrolyte layer and made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof is used. Furthermore, the second polar layer may include lithium alloyed with a metal constituting the metal layer.
In addition, the semiconductor device may further include an amorphous layer which is provided to face the metal layer and has an amorphous structure and is made of a metal or an alloy.
The maximum and minimum height difference of the surface of the substrate may be 2.7 nm or less.
The arithmetic mean roughness Ra of the surface of the substrate may be 1.1 nm or less.
From another viewpoint, the method for manufacturing a lithium ion secondary battery of the present invention has a maximum height and a minimum height obtained by measuring unevenness in a range of 20 μm × 20 μm with an AFM (Atomic Force Microscope). A substrate preparation step of preparing a substrate provided with a surface having a maximum / minimum height difference of 78 nm or less, and occluding and releasing lithium ions at a first polarity on the surface side of the substrate. A first polar layer forming step of forming a first polar layer, and a solid electrolyte layer forming a solid electrolyte layer containing an inorganic solid electrolyte having lithium ion conductivity on the first polar layer side provided on the substrate Forming step.
In such a method for manufacturing a lithium ion secondary battery, the substrate preparing step may include preparing the substrate made of SUS316L.
Further, in the substrate preparing step, the substrate made of a metal material plated with Ni-P may be prepared.
In addition, the first polarity is positive, and a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), or aluminum (Al) is formed on the solid electrolyte layer provided on the substrate. Or a metal layer forming step of forming a metal layer made of an alloy thereof, and a step of forming a metal layer comprising the substrate, the first polar layer, the solid electrolyte layer, and the metal layer from the first polar layer. A charging step of performing charging by moving lithium ions to the metal layer via the solid electrolyte layer; and, for the charged laminate, the first polar layer from the metal layer via the solid electrolyte layer. A discharge step of performing discharge by moving lithium ions to the substrate.
In addition, between the metal layer forming step and the charging step, the metal layer may further include an amorphous layer forming step of forming an amorphous layer made of a metal or an alloy having an amorphous structure. May be included.
Further, the first polarity is positive, and in the first polar layer forming step, a composite cathode including LiNiO 2 and Li 3 PO 4 is formed, and in the solid electrolyte layer forming step, Li 3 PO 4 is formed. After forming the first solid electrolyte layer containing no LiNiO 2 , a second solid electrolyte layer containing LiPON in which part of oxygen in Li 3 PO 4 is replaced by nitrogen can be formed.
The method may further include, between the substrate preparing step and the first polar layer forming step, an underlayer forming step of forming an underlayer containing LiNiO 2 and not Li 3 PO 4 on the surface of the substrate. Can be characterized.
Further, in the substrate preparing step, the substrate having the maximum and minimum height difference of the surface set to 2.7 nm or less may be prepared.
Further, in the substrate preparing step, the substrate may be prepared such that an arithmetic average roughness Ra of the surface is set to 1.1 nm or less.
 本発明によれば、無機固体電解質を備えた薄膜積層型のリチウムイオン二次電池において、容量維持率の低下を抑制することができる。 According to the present invention, it is possible to suppress a reduction in the capacity retention ratio in a thin-film laminated lithium ion secondary battery including an inorganic solid electrolyte.
実施の形態のリチウムイオン二次電池の断面構成を示す図である。FIG. 2 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to an embodiment. (a)、(b)は、実施の形態のリチウムイオン二次電池を構成する基板の断面構成例を示す図である。(A), (b) is a figure which shows the cross-sectional structural example of the board | substrate which comprises the lithium ion secondary battery of embodiment. 実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。4 is a flowchart for explaining a method of manufacturing a lithium ion secondary battery according to an embodiment. (a)~(c)は、保持層を多孔質化する手順を説明するための図である。(A)-(c) is a figure for demonstrating the procedure of making a holding | maintenance layer porous. (a)、(b)は、比較例のリチウムイオン二次電池の初回充放電前および7回充放電後における断面STEM写真である。(A), (b) is a cross-sectional STEM photograph of the lithium ion secondary battery of the comparative example before the first charge and discharge and after seven charge and discharge. (a)、(b)は、比較例のリチウムイオン二次電池の初回充放電前および7回充放電後における拡大断面STEM写真である。(A), (b) is an enlarged cross-sectional STEM photograph before and after the first charge and discharge of the lithium ion secondary battery of the comparative example seven times.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the size, thickness, and the like of each part in the drawings referred to in the following description may be different from actual dimensions.
[リチウムイオン二次電池の構成]
 図1は、本実施の形態のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、後述するように、複数の層を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている。
[Configuration of lithium ion secondary battery]
FIG. 1 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of the present embodiment. As described later, the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers are stacked. After forming a basic structure by a so-called film forming process, the first charge / discharge operation is performed. Completes the structure.
 図1に示すリチウムイオン二次電池1は、基板10と、基板10上に積層される下地層20と、下地層20上に積層される正極層30と、正極層30上に積層される固体電解質層40とを備えている。ここで、固体電解質層40は、下地層20および正極層30の両者の周縁を覆うとともにその端部が基板10に直接積層されることで、基板10とともに下地層20および正極層30を覆っている。また、このリチウムイオン二次電池1は、固体電解質層40上に積層される保持層50と、保持層50上に積層される拡散防止層60と、拡散防止層60上に積層される負極集電体層70とをさらに備えている。 The lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, an underlayer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the underlayer 20, and a solid layer laminated on the positive electrode layer 30. And an electrolyte layer 40. Here, the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the ends thereof are directly laminated on the substrate 10, so that the solid electrolyte layer 40 covers the base layer 20 and the positive electrode layer 30 together with the substrate 10. I have. Further, this lithium ion secondary battery 1 has a holding layer 50 stacked on the solid electrolyte layer 40, a diffusion prevention layer 60 stacked on the holding layer 50, and a negative electrode collection layer stacked on the diffusion prevention layer 60. And an electric conductor layer 70.
(基板)
 基板10は、下地層20乃至負極集電体層70を、成膜プロセスによって積層するための土台となるものである。そして、この基板10は、表面10aと裏面10bとを有しており、表面10a側に、下地層20乃至負極集電体層70が積層されるようになっている。なお、基板10の詳細については後述する。
(substrate)
The substrate 10 serves as a base on which the base layer 20 to the negative electrode current collector layer 70 are stacked by a film forming process. The substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a. The details of the substrate 10 will be described later.
(下地層)
 下地層20は、固体薄膜であって、基板10と正極層30との密着性を高めるとともに、基板10を構成する材料(特に金属材料)と、正極層30を構成するLi3PO4(リン酸リチウム:詳細は後述する)とが、直接に接触するのを抑制するための障壁となるものである。
 下地層20としては、電子伝導性を有するとともに、Li3PO4を構成するLi+(リチウムイオン)やPO4 3-(リン酸イオン)による腐食が生じ難い、金属または金属化合物等で構成されたものを用いることができる。
(Underlayer)
The underlayer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, as well as a material (particularly a metal material) forming the substrate 10 and a Li 3 PO 4 (phosphorus) forming the positive electrode layer 30. (A lithium oxide: described later in detail) is a barrier for suppressing direct contact.
As the base layer 20, which has electron conductivity, Li 3 PO 4 and Li + unlikely to occur corrosion by (Li-ion) or PO 4 3- (phosphate ions) constituting, formed of a metal or metal compound such as Can be used.
 ここで、本実施の形態では、下地層20を、LiNiO2(リン酸ニッケル)で構成している。LiNiO2は、リチウムイオン二次電池1の正極材料として用いられることがあるものである。 Here, in the present embodiment, the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 1.
 下地層20の厚さは、例えば5nm以上50μm以下とすることができる。下地層20の厚さが5nm未満であると、障壁としての機能が低下し、実用的ではなくなる。一方、下地層20の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the underlayer 20 can be, for example, not less than 5 nm and not more than 50 μm. If the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is reduced, which is not practical. On the other hand, if the thickness of the underlayer 20 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、下地層20の製造方法としては、各種PVD(物理蒸着)や各種CVD(化学蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法もしくは真空蒸着法を用いることが望ましい。 As a method for manufacturing the underlayer 20, any known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method or a vacuum method is used. It is desirable to use an evaporation method.
(正極層)
 第1極性層の一例としての正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含むものである。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、さらに固体電解質を含んだ合材正極であってもよい。なお、本実施の形態では、第1の極性に正極性が対応している。
(Positive electrode layer)
The positive electrode layer 30 as an example of the first polar layer is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging. Here, the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). Materials composed of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals can be used. Further, the positive electrode layer 30 may be a composite positive electrode further containing a solid electrolyte. In this embodiment, the positive polarity corresponds to the first polarity.
 ここで、本実施の形態では、正極層30を、正極活物質と、無機材料からなる固体電解質(無機固体電解質)とを含む合材正極で構成している。より具体的に説明すると、本実施の形態の正極層30は、主として無機固体電解質を含む固体電解質領域と、主として正極活物質を含む正極領域とを有している。そして、正極層30内では、固体電解質領域を構成する無機固体電解質と、正極領域を構成する正極活物質とが、それぞれを維持した状態で混在している。その結果、正極層30では、一方がマトリックス(母材)となっており、他方がフィラー(粒子)となっている。ここで、正極層30においては、固体電解質領域をマトリックスとし、正極領域をフィラーとすることが望ましい。 Here, in the present embodiment, the positive electrode layer 30 is formed of a mixed positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material. Then, in the positive electrode layer 30, the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed while maintaining each. As a result, in the positive electrode layer 30, one is a matrix (base material) and the other is a filler (particles). Here, in the positive electrode layer 30, it is desirable that the solid electrolyte region be a matrix and the positive electrode region be a filler.
 そして、本実施の形態では、正極層30を構成する正極活物質として、上記下地層20と同じLiNiO2を用いている。また、正極層30を構成する無機固体電解質として、Li3PO4(リン酸リチウム)を用いている。ここで、正極層30における正極活物質と無機固体電解質との比率については、適宜選択して差し支えない。ただし、容量および導電性の両者を確保するという観点からすれば、正極活物質と無機固体電解質との比率を、モル比で9:1(90%:10%)乃至3:2(60%:40%)の範囲とすることが好ましい。 In the present embodiment, the same LiNiO 2 as the underlayer 20 is used as the positive electrode active material forming the positive electrode layer 30. Li 3 PO 4 (lithium phosphate) is used as the inorganic solid electrolyte constituting the positive electrode layer 30. Here, the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected. However, from the viewpoint of securing both capacity and conductivity, the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
 正極層30の厚さは、例えば10nm以上40μm以下とすることができる。正極層30の厚さが10nm未満であると、得られるリチウムイオン二次電池1の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層30の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、正極層30の厚さを40μm超としてもかまわない。 (4) The thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small, which is not practical. On the other hand, if the thickness of the positive electrode layer 30 exceeds 40 μm, it takes too much time to form the layer, and the productivity is reduced. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the positive electrode layer 30 may be more than 40 μm.
 さらに、正極層30の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for forming the positive electrode layer 30, a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
(固体電解質層)
 固体電解質層40は、無機材料からなる固体薄膜であって、外部から加えられた電場によってリチウムイオンを移動させることのできる無機固体電解質を含むものである。
 そして、本実施の形態の固体電解質層40は、正極層30上に積層される第1固体電解質層41と、第1固体電解質層41上に積層されるとともに、保持層50の積層対象となる第2固体電解質層42とを備えている。
(Solid electrolyte layer)
The solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field.
Then, the solid electrolyte layer 40 of the present embodiment is stacked on the first solid electrolyte layer 41 and the first solid electrolyte layer 41 stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. A second solid electrolyte layer.
〔第1固体電解質層〕
 本実施の形態の第1固体電解質層41は、正極層30における無機固体電解質と同じLi3PO4で構成されている。
[First solid electrolyte layer]
The first solid electrolyte layer 41 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30.
 第1固体電解質層41の厚さは、例えば5nm以上50nm以下とすることができる。第1固体電解質層41の厚さが5nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での電流の漏れ(リーク)が生じやすくなる。一方、第1固体電解質層41の厚さが50nmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the first solid electrolyte layer 41 can be, for example, not less than 5 nm and not more than 50 nm. When the thickness of the first solid electrolyte layer 41 is less than 5 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1. On the other hand, if the thickness of the first solid electrolyte layer 41 exceeds 50 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、第1固体電解質層41の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for manufacturing the first solid electrolyte layer 41, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
〔第2固体電解質層〕
 本実施の形態の第2固体電解質層42は、第1固体電解質層41を構成するLi3PO4における酸素の一部を窒素で置換したLiPON(Li3PO4-xx(0<x<1))で構成されている。
[Second solid electrolyte layer]
The second solid electrolyte layer 42 of the present embodiment is composed of LiPON (Li 3 PO 4-x N x (0 <x) in which a part of oxygen in Li 3 PO 4 constituting the first solid electrolyte layer 41 is replaced with nitrogen. <1)).
 第2固体電解質層42の厚さは、例えば10nm以上10μm以下とすることができる。第2固体電解質層42の厚さが10nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での電流の漏れ(リーク)が生じやすくなる。一方、第2固体電解質層42の厚さが10μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the second solid electrolyte layer 42 can be, for example, 10 nm or more and 10 μm or less. When the thickness of the second solid electrolyte layer 42 is less than 10 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the second solid electrolyte layer 42 exceeds 10 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、第2固体電解質層42の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for manufacturing the second solid electrolyte layer 42, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
〔第1固体電解質層と第2固体電解質層との関係〕
 このように、本実施の形態では、第1固体電解質層41がLi3PO4で構成され、第2固体電解質層42がLiPONで構成される。すなわち、第1固体電解質層41および第2固体電解質層42の両者が、それぞれ、リチウム、リンおよび酸素を含んでいる。
 ここで、第1固体電解質層41を構成するLi3PO4は、第2固体電解質層42を構成するLiPONよりも体積抵抗率が高い。このため、本実施の形態の固体電解質層40では、正極層30と接する、第1固体電解質層41を設けている側が、保持層50と接する、第2固体電解質層42を設けている側よりも、単位厚さあたりの抵抗値が高くなっている。
[Relationship between first solid electrolyte layer and second solid electrolyte layer]
Thus, in the present embodiment, the first solid electrolyte layer 41 is made of Li 3 PO 4 and the second solid electrolyte layer 42 is made of LiPON. That is, both the first solid electrolyte layer 41 and the second solid electrolyte layer 42 contain lithium, phosphorus, and oxygen, respectively.
Here, Li 3 PO 4 constituting the first solid electrolyte layer 41 has a higher volume resistivity than LiPON constituting the second solid electrolyte layer 42. For this reason, in the solid electrolyte layer 40 of the present embodiment, the side provided with the first solid electrolyte layer 41 in contact with the positive electrode layer 30 is closer to the side provided with the second solid electrolyte layer 42 in contact with the holding layer 50. Also, the resistance value per unit thickness is high.
 また、第1固体電解質層41および第2固体電解質層42の厚さの関係については、どちらが厚くてもかまわないし、同じであってもよい。ただし、電池の内部抵抗の増大を抑制するという観点からすれば、第1固体電解質層41の厚さを、第2固体電解質層42の厚さよりも小さくすることが好ましく、2桁以上のオーダーで小さくすることがさらに好ましい。 Regarding the relationship between the thickness of the first solid electrolyte layer 41 and the thickness of the second solid electrolyte layer 42, whichever may be thicker or the same. However, from the viewpoint of suppressing an increase in the internal resistance of the battery, it is preferable that the thickness of the first solid electrolyte layer 41 is smaller than the thickness of the second solid electrolyte layer 42, and is in the order of two digits or more. More preferably, it is reduced.
(保持層)
 金属層の一例としての保持層50は、固体薄膜であって、充電時にはリチウムイオンを保持するとともに放電時にはリチウムイオンを放出する機能を備えるものである。ここで、本実施の形態の保持層50は、自身は負極活物質を含んでおらず、負極活物質として機能するリチウムを内部に保持するようになっている点が、一般的な負極層とは異なる。ここで、本実施の形態の保持層50は、リチウムを内部に保持した場合に、第2極性層の一例としての機能も果たすようになっている。なお、本実施の形態では、第2の極性に負極性が対応している。
(Holding layer)
The holding layer 50 as an example of a metal layer is a solid thin film and has a function of holding lithium ions during charging and releasing lithium ions during discharging. Here, the point that the holding layer 50 of the present embodiment does not itself include a negative electrode active material and is configured to hold lithium functioning as a negative electrode active material therein is different from a general negative electrode layer. Is different. Here, the holding layer 50 of the present embodiment also functions as an example of the second polar layer when lithium is held inside. In this embodiment, the second polarity corresponds to the negative polarity.
 そして、本実施の形態の保持層50は、多孔質構造を有しており、多数の空孔が形成された多孔質部(図示せず)によって構成されている。なお、保持層50の多孔質化すなわち多孔質部の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。 The holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed. The porousization of the holding layer 50, that is, the formation of the porous portion, is performed in the first charge / discharge operation after the film formation, and the details will be described later.
 保持層50を構成する材料としては、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)、アルミニウム(Al)あるいはこれらの合金を用いることができる。これらの中でも、より酸化されにくい白金または金で保持層50を構成することが望ましい。また、本実施の形態の保持層50は、上述した貴金属および金属あるいはこれらの合金の多結晶体で構成することができる。 材料 As a material for forming the holding layer 50, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof can be used. Among these, it is desirable that the holding layer 50 be made of platinum or gold, which is less likely to be oxidized. Further, the holding layer 50 of the present embodiment can be made of the above-mentioned noble metal and metal or a polycrystal of an alloy thereof.
 ここで、本実施の形態では、保持層50を白金で構成している。 Here, in the present embodiment, the holding layer 50 is made of platinum.
 保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、保持層50の厚さを40μm超としてもかまわない。 The thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient. On the other hand, if the thickness of the holding layer 50 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the holding layer 50 may be more than 40 μm.
 さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。そして、多孔質化した保持層50の製造方法としては、後述するような、充電と放電とを行う手法を採用することが望ましい。 Further, as a method for manufacturing the holding layer 50, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. As a method for manufacturing the porous holding layer 50, it is desirable to employ a method of performing charging and discharging, as described later.
(拡散防止層)
 非晶質層の一例としての拡散防止層60は、固体薄膜であって、保持層50に保持されたリチウムイオンの、リチウムイオン二次電池1の外部への拡散を抑制するためのものである。
 拡散防止層60としては、非晶質構造を有する、金属または合金で構成されたものを用いることができる。また、拡散防止層60は、リチウムと金属間化合物を形成しない金属または合金で構成されることが好ましく、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましい。なお、拡散防止層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。また、本実施の形態における「非晶質構造」には、全体が非晶質構造を有しているものはもちろんのこと、非晶質構造中に微結晶が析出しているものも含まれる。
(Diffusion prevention layer)
The diffusion prevention layer 60 as an example of the amorphous layer is a solid thin film, and is for suppressing diffusion of lithium ions held in the holding layer 50 to the outside of the lithium ion secondary battery 1. .
As the diffusion prevention layer 60, a material having an amorphous structure and made of a metal or an alloy can be used. The diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among these, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferred. Is preferred. The diffusion prevention layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer). Further, the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
 ここで、本実施の形態では、拡散防止層60を、クロムおよびチタンの合金(CrTi)で構成している。また、拡散防止層60に用いることが可能な金属(合金)としては、CrTi以外に、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSi等を挙げることができる。 Here, in the present embodiment, the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi). Examples of the metal (alloy) that can be used for the diffusion prevention layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB. , AuSi and the like.
 拡散防止層60の厚さは、例えば10nm以上40μm以下とすることができる。拡散防止層60の厚さが10nm未満であると、固体電解質層40側から保持層50を通過してきたリチウムを、拡散防止層60でせき止めにくくなる。一方、拡散防止層60の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the diffusion preventing layer 60 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the diffusion preventing layer 60 is less than 10 nm, it is difficult for the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side to be blocked by the diffusion preventing layer 60. On the other hand, if the thickness of the diffusion prevention layer 60 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、拡散防止層60の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。特に、拡散防止層60を、上述したクロムチタン合金で構成する場合、スパッタ法を採用すると、クロムチタン合金が非晶質化しやすい。 Further, as a method for manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. In particular, when the diffusion prevention layer 60 is made of the above-described chromium-titanium alloy, the chromium-titanium alloy tends to be amorphous when the sputtering method is adopted.
(負極集電体層)
 負極集電体層70は、電子伝導性を有する固体薄膜であって、保持層50への集電を行う機能を備えるものである。ここで、負極集電体層70を構成する材料は、電子伝導性を有するものであれば、特に限定されるものではなく、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、拡散防止層60の腐食を抑制するという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
(Negative electrode current collector layer)
The negative electrode current collector layer 70 is a solid thin film having electron conductivity, and has a function of collecting current to the holding layer 50. Here, the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can. However, from the viewpoint of suppressing corrosion of the diffusion prevention layer 60, it is preferable to use a chemically stable material, for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold ( Au) or an alloy thereof is preferable.
 ここで、本実施の形態では、負極集電体層70を、保持層50と同じ白金で構成している。ただし、負極集電体層70は、保持層50とは異なり、多孔質構造を有していない。 Here, in the present embodiment, the negative electrode current collector layer 70 is made of the same platinum as the holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
 負極集電体層70の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層70の厚さが5nm未満であると、耐腐食性および集電機能が低下し、実用的ではなくなる。一方、負極集電体層70の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 μm. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, and it will not be practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、負極集電体層70の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 As a method of manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
[基板の構成]
 次に、本実施の形態で用いた基板10について説明を行う。
 基板10を構成する材料は、特に限定されるものではなく、金属、ガラス、セラミックス、樹脂など、各種材料を採用することができる。
[Structure of substrate]
Next, the substrate 10 used in the present embodiment will be described.
The material forming the substrate 10 is not particularly limited, and various materials such as metal, glass, ceramics, and resin can be adopted.
 ここで、本実施の形態では、基板10を、電子伝導性を有する金属製の板材で構成している。これにより、基板10を、下地層20を介して正極層30への集電を行う正極集電体層として機能させるようになっている。 Here, in the present embodiment, the substrate 10 is made of a metal plate having electron conductivity. Thereby, the substrate 10 is caused to function as a positive electrode current collector layer that collects electric current to the positive electrode layer 30 via the base layer 20.
 基板10の厚さは、例えば20μm以上2000μm以下とすることができる。基板10の厚さが20μm未満であると、リチウムイオン二次電池1の強度が不足するおそれがある。一方、基板10の厚さが2000μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。 The thickness of the substrate 10 can be, for example, not less than 20 μm and not more than 2000 μm. If the thickness of the substrate 10 is less than 20 μm, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, if the thickness of the substrate 10 exceeds 2000 μm, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery.
 図2は、実施の形態のリチウムイオン二次電池1を構成する基板10の断面構成例を示す図である。以下では、図2(a)に示す基板10を第1の構成例、また、図2(b)に示す基板10を第2の構成例と称し、それぞれについて説明を行う。 FIG. 2 is a diagram showing a cross-sectional configuration example of a substrate 10 constituting the lithium ion secondary battery 1 of the embodiment. Hereinafter, the substrate 10 shown in FIG. 2A will be referred to as a first configuration example, and the substrate 10 shown in FIG. 2B will be referred to as a second configuration example.
(第1の構成例)
 図2(a)に示す第1の構成例において、基板10は、単層の金属板で構成された基材11を備えている。
 第1の構成例において、基材11を構成する金属材料としては、各種金属やこれらの合金等を用いることができる。ここで、第1の構成例において、リン酸に起因する腐食を抑制するという観点からすれば、基材11としてステンレスを用いることが望ましく、特に、粒界腐食を抑止するという観点からすれば、SUS316、より好ましくはSUS316Lを用いることが望ましい。また、本実施の形態のように、基材11上に積層する下地層20としてLiNiO2を採用する場合は、基材11を構成する金属材料として、熱膨張率がLiNiO2に近いステンレスを用いることが好ましい。さらに、本実施の形態のように、基材11を正極集電体層としても利用する場合は、基材11を構成する金属材料として、高電圧環境下においても腐食されにくく、過放電に強いステンレスを用いることが好ましい。
 なお、第1の構成例において、基板10を構成する基材11は、単層の金属板に限られるものではなく、複数の金属板の積層体で構成されていてもかまわない。
(First configuration example)
In the first configuration example shown in FIG. 2A, the substrate 10 includes a base material 11 made of a single-layer metal plate.
In the first configuration example, various metals and alloys thereof can be used as the metal material forming the base material 11. Here, in the first configuration example, it is desirable to use stainless steel as the substrate 11 from the viewpoint of suppressing corrosion caused by phosphoric acid, and particularly from the viewpoint of suppressing intergranular corrosion, It is desirable to use SUS316, more preferably SUS316L. When LiNiO 2 is used as the base layer 20 laminated on the base material 11 as in the present embodiment, stainless steel having a coefficient of thermal expansion close to that of LiNiO 2 is used as the metal material forming the base material 11. Is preferred. Further, when the base material 11 is also used as a positive electrode current collector layer as in the present embodiment, the metal material constituting the base material 11 is hardly corroded even in a high voltage environment and resistant to overdischarge. It is preferable to use stainless steel.
In the first configuration example, the base material 11 forming the substrate 10 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
(第2の構成例)
 図2(b)に示す第2の構成例において、基板10は、単層の金属板で構成された基材11と、基材11の全面を覆う被覆層12とを備えている。
 第2の構成例において、基材11を構成する金属材料としては、各種金属やこれらの合金あるいは金属化合物等を用いることができる。ここで、第2の構成例において、リチウムに起因する腐食を抑制するという観点からすれば、基材11としてアルミニウムを用いることが望ましい。
 なお、第2の構成例において、基材11は、単層の金属板に限られるものではなく、複数の金属板の積層体で構成されていてもかまわない。
(Second configuration example)
In the second configuration example shown in FIG. 2B, the substrate 10 includes a base material 11 made of a single-layer metal plate, and a coating layer 12 that covers the entire surface of the base material 11.
In the second configuration example, as the metal material forming the base material 11, various metals, their alloys, metal compounds, and the like can be used. Here, in the second configuration example, it is desirable to use aluminum as the base material 11 from the viewpoint of suppressing corrosion caused by lithium.
Note that, in the second configuration example, the base material 11 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
 また、第2の構成例において、被覆層12を構成する材料としては、各種金属やこれらの合金あるいは金属化合物等を用いることができる。ここで、基材11に被覆層12を形成してなる基板10を採用する場合、リチウムに起因する腐食を抑制するという観点からすれば、CrTi、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、AlTi、FeSiB、AuSi等を用いることが好ましい。そして、これらの中でも、機械研磨が可能な硬質な外周面を設けるという観点からすれば、例えば、無電解ニッケルメッキ法により成膜されるNiP(ニッケル-リン、以下では「Ni-P」と表記することがある)を用いることが望ましい。
 ただし、被覆層12の形成手法としては、メッキ法に限られるものではなく、各種成膜手法を採用してかまわない。
Further, in the second configuration example, as a material forming the coating layer 12, various metals, their alloys, metal compounds, or the like can be used. Here, when the substrate 10 formed by forming the coating layer 12 on the base material 11 is adopted, from the viewpoint of suppressing corrosion caused by lithium, CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, It is preferable to use NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi, or the like. Among these, from the viewpoint of providing a hard outer peripheral surface capable of mechanical polishing, for example, NiP (nickel-phosphorous, hereinafter referred to as “Ni-P”) formed by an electroless nickel plating method. May be used).
However, the method for forming the coating layer 12 is not limited to the plating method, and various film forming methods may be employed.
 なお、図2(b)に示す例では、基材11の全面を被覆層12で覆うことによって基板10を形成しているが、これに限られるものではない。例えば図1に示したように、基板10の表面10aにのみ電池構造を形成する場合は、基材11のうち、少なくとも基板10において表面10aとなる側に、被覆層12を設ければよい。 In the example shown in FIG. 2B, the substrate 10 is formed by covering the entire surface of the base material 11 with the coating layer 12, but the present invention is not limited to this. For example, as shown in FIG. 1, when the battery structure is formed only on the surface 10 a of the substrate 10, the coating layer 12 may be provided on at least the side of the substrate 10 that becomes the surface 10 a on the substrate 10.
(最大最小高低差)
 次に、本実施の形態の基板10における最大最小高低差Rmmについて説明を行う。
 最大最小高低差Rmmは、基板10における電池構造の積層面(本実施の形態では基板10の表面10a)の平滑度を規定する尺度である。そして、本実施の形態における最大最小高低差Rmmは、AFM(Atomic Force Microscope)にて20μm×20μmの範囲(正方形状の領域)の凹凸を測定して得られた最大高さと最小高さとの高低差によって定義される。したがって、最大最小高低差Rmmは、例えばJIS B 0601に規定される最大高さRzとは定義が異なる。
(Maximum height difference)
Next, the maximum and minimum height difference Rmm of the substrate 10 of the present embodiment will be described.
The maximum / minimum height difference Rmm is a measure for defining the smoothness of the laminated surface of the battery structure on the substrate 10 (the surface 10a of the substrate 10 in the present embodiment). The maximum-to-minimum height difference Rmm in the present embodiment is the height between the maximum height and the minimum height obtained by measuring irregularities in a range of 20 μm × 20 μm (square region) with an AFM (Atomic Force Microscope). Defined by the difference. Therefore, the definition of the maximum and minimum height difference Rmm is different from the maximum height Rz defined in, for example, JIS B0601.
 では、最大最小高低差Rmmの定義について、より詳細な説明を行う。
 本実施の形態における最大最小高低差Rmmは、例えばAFM装置(原子間力顕微鏡システム)であるブルカー社製D3100を用い、20μm×20μmの領域内のデータを取得した後、スキャンライン毎に基準面を作成する際に、近似多項式として3次式を用い、基準面からの変位(+変位および-変位が存在し得る)に変換した(「平滑化」処理した)像を準備し、像における垂直方向(z変位)の「最大値-最小値」によって求めることができる。
Now, the definition of the maximum and minimum height difference Rmm will be described in more detail.
The maximum / minimum height difference Rmm in the present embodiment is obtained, for example, by using a D3100 manufactured by Bruker, which is an AFM apparatus (atomic force microscope system), and acquiring data in an area of 20 μm × 20 μm. Is prepared by using a cubic expression as an approximate polynomial, preparing an image (which has been subjected to “smoothing” processing) converted to a displacement from the reference plane (a positive displacement and a negative displacement may exist), and It can be obtained from the “maximum value−minimum value” of the direction (z displacement).
 本実施の形態では、基板10における表面10aの最大最小高低差Rmmが78nm以下に設定されている。ここで、図2(a)に示す第1の構成例の基板10では、表面10a側に位置する基材11の最大最小高低差Rmmが78nm以下に設定される。また、図2(b)に示す第2の構成例の基板10では、表面10a側に位置する被覆層12の最大最小高低差Rmmが78nm以下に設定される。 In the present embodiment, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is set to 78 nm or less. Here, in the substrate 10 of the first configuration example shown in FIG. 2A, the maximum and minimum height difference Rmm of the base material 11 located on the front surface 10a side is set to 78 nm or less. In the substrate 10 of the second configuration example shown in FIG. 2B, the maximum and minimum height difference Rmm of the coating layer 12 located on the surface 10a side is set to 78 nm or less.
(算術平均粗さ)
 続いて、本実施の形態の基板10における算術平均粗さRaについて説明を行う。
 算術平均粗さRaは、例えばJIS B 0601に規定されているものである。
 そして、本実施の形態では、基板10における表面10aの算術平均粗さRaが、1.1nm以下であることが好ましい。
(Arithmetic mean roughness)
Next, the arithmetic average roughness Ra of the substrate 10 according to the present embodiment will be described.
The arithmetic average roughness Ra is specified, for example, in JIS B0601.
In the present embodiment, the arithmetic mean roughness Ra of the surface 10a of the substrate 10 is preferably 1.1 nm or less.
[リチウムイオン二次電池の製造方法]
 では、上述したリチウムイオン二次電池1の製造方法について説明を行う。
 図3は、本実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。
[Method of manufacturing lithium ion secondary battery]
Now, a method for manufacturing the above-described lithium ion secondary battery 1 will be described.
FIG. 3 is a flowchart for explaining the method for manufacturing the lithium ion secondary battery of the present embodiment.
(基板準備工程)
 まず、表面10aの最大最小高低差Rmmが78(nm)以下となるように表面処理が施された基板10を準備する、基板準備工程を実行する(ステップ10)。
(Substrate preparation process)
First, a substrate preparation step of preparing a substrate 10 which has been subjected to a surface treatment so that the maximum / minimum height difference Rmm of the surface 10a is 78 (nm) or less is executed (step 10).
 ここで、図2(a)に示す第1の構成例にかかる基板10は、例えば以下の手順にて製造される。まず、圧延法等によって金属板を製造し、この金属板を切断して得られた基材11の表面10a側に、一般的な機械研磨処理を施した後、さらにCMP(Chemical Mechanical Polishing:化学機械研磨)法等を用いた精密研磨処理を施すことで、表面10aの最大最小高低差Rmmが78nm以下に設定された基板10を得る。 Here, the substrate 10 according to the first configuration example shown in FIG. 2A is manufactured by, for example, the following procedure. First, a metal plate is manufactured by a rolling method or the like, and the surface 10a side of the base material 11 obtained by cutting the metal plate is subjected to a general mechanical polishing treatment, and then further subjected to CMP (Chemical Mechanical Polishing). By performing a precision polishing process using a mechanical polishing method or the like, the substrate 10 in which the maximum and minimum height difference Rmm of the surface 10a is set to 78 nm or less is obtained.
 また、図2(b)に示す第2の構成例にかかる基板10は、例えば以下の手順にて製造される。まず圧延法等によって金属板を製造し、この金属板を切断して得られた基材11の全面に、無電解ニッケルメッキ法等によってNi-Pからなる被覆層12を形成することで、基材11と被覆層12との積層体を得る。そして、このようにして得られた積層体の表面10a側に位置する被覆層12に、一般的な機械研磨処理を施した後、CMP法等を用いた研磨処理を施すことで、表面10aの最大最小高低差Rmmが78nm以下に設定された基板10を得る。 {Circle around (2)} The substrate 10 according to the second configuration example shown in FIG. 2B is manufactured by, for example, the following procedure. First, a metal plate is manufactured by a rolling method or the like, and a coating layer 12 made of Ni—P is formed on the entire surface of a base material 11 obtained by cutting the metal plate by an electroless nickel plating method or the like. A laminate of the material 11 and the coating layer 12 is obtained. Then, after performing a general mechanical polishing process on the coating layer 12 positioned on the surface 10a side of the thus obtained laminated body, a polishing process using a CMP method or the like is performed, so that the surface 10a The substrate 10 having the maximum and minimum height difference Rmm set to 78 nm or less is obtained.
(下地層形成工程)
 そして、図示しないスパッタ装置に基板10を装着し、基板10の表面10a上に下地層20を形成する下地層形成工程を実行する(ステップ20)。
(Underlayer forming step)
Then, the substrate 10 is mounted on a sputtering device (not shown), and a base layer forming step of forming the base layer 20 on the surface 10a of the substrate 10 is performed (Step 20).
(正極層形成工程)
 次に、上記スパッタ装置にて、下地層20上に正極層30を形成する正極層形成工程(第1極性層形成工程の一例)を実行する(ステップ30)。
(Positive electrode layer forming step)
Next, a positive electrode layer forming step of forming the positive electrode layer 30 on the underlayer 20 (an example of a first polar layer forming step) is performed by the sputtering apparatus (step 30).
 なお、正極層30として合材正極を用いる場合、正極活物質と無機固体電解質とを含むスパッタリングターゲットを用いたスパッタを行ってもよいし、正極活物質を含むスパッタリングターゲットと無機固体電解質を含む他のスパッタリングターゲットとを用いたコスパッタを行ってもよい。 In the case of using a mixed material positive electrode as the positive electrode layer 30, sputtering using a sputtering target containing a positive electrode active material and an inorganic solid electrolyte may be performed, or a sputtering target containing a positive electrode active material and an inorganic solid electrolyte may be used. Co-sputtering using the above sputtering target.
(固体電解質層形成工程)
 続いて、上記スパッタ装置にて、正極層30上に固体電解質層40を形成する固体電解質層形成工程を実行する(ステップ40)。ここで、ステップ40の固体電解質層形成工程では、正極層30上に第1固体電解質層41を形成する第1固体電解質層形成工程を実行し(ステップ41)、第1固体電解質層41上に第2固体電解質層42を形成する第2固体電解質層形成工程を実行する(ステップ42)。
(Solid electrolyte layer forming step)
Subsequently, a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is performed by the sputtering device (step 40). Here, in the solid electrolyte layer forming step of Step 40, a first solid electrolyte layer forming step of forming the first solid electrolyte layer 41 on the positive electrode layer 30 is performed (Step 41), and the first solid electrolyte layer 41 is formed on the first solid electrolyte layer 41. A second solid electrolyte layer forming step of forming the second solid electrolyte layer 42 is performed (Step 42).
 なお、第1固体電解質層41としてLi3PO4を用い、第2固体電解質層42としてLiPONを用いる場合、リチウム、リンおよび酸素を含むスパッタリングターゲットを用い、最初は窒素を含まない雰囲気下で第1固体電解質層41の形成を行い、続いて、窒素を含む雰囲気下で第2固体電解質層42の形成を行うことが好ましい。 When Li 3 PO 4 is used for the first solid electrolyte layer 41 and LiPON is used for the second solid electrolyte layer 42, a sputtering target containing lithium, phosphorus and oxygen is used, and the first solid electrolyte layer is formed under an atmosphere containing no nitrogen. It is preferable that the first solid electrolyte layer 41 is formed, and then the second solid electrolyte layer 42 is formed in an atmosphere containing nitrogen.
(保持層形成工程)
 次いで、上記スパッタ装置にて、固体電解質層40の第2固体電解質層42上に保持層50を形成する保持層形成工程(金属層形成工程の一例)を実行する(ステップ50)。
(Retaining layer forming step)
Next, a holding layer forming step (an example of a metal layer forming step) for forming the holding layer 50 on the second solid electrolyte layer 42 of the solid electrolyte layer 40 is performed by the sputtering apparatus (step 50).
(拡散防止層形成工程)
 それから、上記スパッタ装置にて、保持層50上に拡散防止層60を形成する拡散防止層形成工程(非晶質層形成工程の一例)を実行する(ステップ60)。
(Diffusion prevention layer forming step)
Then, a diffusion preventing layer forming step (an example of an amorphous layer forming step) for forming the diffusion preventing layer 60 on the holding layer 50 is performed by the sputtering apparatus (step 60).
(負極集電体層形成工程)
 そして、上記スパッタ装置にて、拡散防止層60上に負極集電体層70を形成する負極集電体層形成工程を実行する(ステップ70)。
 これらステップ10~70を実行することにより、リチウムイオン二次電池1の基本構造体が得られる。そして、このリチウムイオン二次電池1の基本構造体を、スパッタ装置から取り外す。
(Negative electrode current collector layer forming step)
Then, a negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the diffusion prevention layer 60 is performed by the sputtering device (step 70).
By performing these steps 10 to 70, the basic structure of the lithium ion secondary battery 1 is obtained. Then, the basic structure of the lithium ion secondary battery 1 is removed from the sputtering device.
(初回充電工程)
 続いて、スパッタ装置から取り外したリチウムイオン二次電池1の基本構造体に対し、1回目の充電を行わせる初回充電工程(充電工程の一例)を実行する(ステップ80)。
(First charging process)
Subsequently, an initial charging step (an example of a charging step) for performing a first charging is performed on the basic structure of the lithium ion secondary battery 1 removed from the sputtering apparatus (step 80).
(初回放電工程)
 それから、充電がなされたリチウムイオン二次電池1の基本構造体に対し、1回目の放電を行わせる初回放電工程(放電工程の一例)を実行する(ステップ90)。これら初回充電と初回放電とにより、保持層50の多孔質化すなわち多孔質部および多数の空孔の形成が行われ、図1に示すリチウムイオン二次電池1が得られる。
(First discharge process)
Then, an initial discharge step (an example of a discharge step) for performing a first discharge is performed on the charged basic structure of the lithium ion secondary battery 1 (step 90). By these initial charging and initial discharging, the holding layer 50 is made porous, that is, a porous portion and a large number of pores are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained.
[保持層の多孔質化]
 では、上述した保持層50の多孔質化について、より詳細な説明を行う。
 図4は、保持層50を多孔質化する手順を説明するための図であり、保持層50およびその周辺を拡大して示した図である。ここで、図4(a)は成膜後且つ初回充電前(ステップ70とステップ80との間)の状態を、図4(b)は初回充電後且つ初回放電前(ステップ80とステップ90との間)の状態を、図4(c)は初回放電後(ステップ90の後)の状態を、それぞれ示している。
[Porosification of holding layer]
Now, the above-described porous formation of the holding layer 50 will be described in more detail.
FIG. 4 is a diagram for explaining a procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and the periphery thereof. Here, FIG. 4A shows the state after the film formation and before the first charge (between Step 70 and Step 80), and FIG. 4B shows the state after the first charge and before the first discharge (Step 80 and Step 90). 4C), and FIG. 4C shows a state after the first discharge (after step 90).
(成膜後且つ初回充電前)
 まず、図4(a)に示す「成膜後且つ初回充電前」の状態では、保持層50が緻密化している。また、保持層50の厚さは保持層厚さt50であり、拡散防止層60の厚さは拡散防止層厚さt60であり、負極集電体層70の厚さは負極集電体層厚さt70である。
(After film formation and before initial charge)
First, in the state “after film formation and before initial charging” shown in FIG. 4A, the holding layer 50 is dense. The thickness of the holding layer 50 is the thickness of the holding layer t50, the thickness of the diffusion prevention layer 60 is the thickness of the diffusion prevention layer t60, and the thickness of the negative electrode current collector layer 70 is the thickness of the negative electrode current collector layer. It is t70.
(初回充電後且つ初回放電前)
 図4(a)に示すリチウムイオン二次電池1を充電(初回充電)する場合、基板10(図1参照)には直流電源の正の電極が、負極集電体層70には直流電源の負の電極が、それぞれ接続される。すると、図4(b)に示すように、正極層30で正極活物質を構成するリチウムイオン(Li+)が、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(b)において上方向)に移動する。
(After initial charging and before initial discharging)
When charging (initial charging) the lithium ion secondary battery 1 shown in FIG. 4A, the positive electrode of the DC power supply is provided on the substrate 10 (see FIG. 1), and the DC power supply is provided on the negative electrode current collector layer 70. Negative electrodes are respectively connected. Then, as shown in FIG. 4B, lithium ions (Li + ) constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 4B).
 このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、保持層50を構成する金属と合金化する。例えば保持層50を白金(Pt)で構成した場合、保持層50では、リチウムと白金とが合金化(固溶体化、金属間化合物の形成あるいは共晶化)する。 At this time, the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the metal constituting the holding layer 50. For example, when the holding layer 50 is made of platinum (Pt), in the holding layer 50, lithium and platinum are alloyed (solid solution, formation of an intermetallic compound, or eutectic).
 また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を通過して拡散防止層60との境界部に到達する。ここで、本実施の形態の拡散防止層60は、非晶質構造を有する、金属または合金で構成されており、多結晶構造を有する保持層50と比べて、粒界の数が著しく少なくなっている。このため、保持層50と拡散防止層60との境界部に到達したリチウムイオンは、拡散防止層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。 (4) Part of the lithium ions that have entered the holding layer 50 passes through the holding layer 50 and reaches the boundary with the diffusion preventing layer 60. Here, the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly smaller than that of the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
 そして、初回充電動作が終了した状態において、正極層30から保持層50に移動したリチウムイオンは、保持層50に保持される。このとき、保持層50に移動してきたリチウムイオンは、白金との合金化あるいは白金内での金属リチウムの析出化等によって、保持層50に保持されるものと考えられる。 (4) In the state where the initial charging operation has been completed, the lithium ions that have moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50. At this time, it is considered that the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum.
 ここで、図4(b)に示すように、初回充電後且つ初回放電前のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。すなわち、保持層50の体積は、初回充電によって増加する。これは、保持層50において、リチウムと白金とが合金化することに起因しているものと考えられる。これに対し、拡散防止層厚さt60は、初回充電の前後でほぼ変わらない。すなわち、拡散防止層60の体積は、初回充電によってほぼ変わらない。これは、拡散防止層60に、リチウムが入り込みにくいことに起因するものと考えられる。そして、このことは、負極集電体層厚さt70が、初回充電の前後でほぼ変わらないこと、すなわち、負極集電体層70の体積が、初回充電の前後でほぼ変わらないこと(負極集電体層70を構成する白金が、保持層50を構成する白金のように多孔質化しておらず、緻密なままであること)によって裏付けられるものと考えられる。 Here, as shown in FIG. 4B, in the lithium ion secondary battery 1 after the first charge and before the first discharge, the holding layer thickness t50 is changed from the film formation shown in FIG. More than the state. That is, the volume of the holding layer 50 increases by the first charging. This is considered to be due to the fact that lithium and platinum are alloyed in the holding layer 50. On the other hand, the thickness t60 of the diffusion prevention layer does not substantially change before and after the first charge. That is, the volume of the diffusion prevention layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium hardly enters the diffusion preventing layer 60. This means that the thickness t70 of the negative electrode current collector layer does not substantially change before and after the first charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the first charge (negative electrode current collector). It is considered that the platinum constituting the electric conductor layer 70 is not made porous and remains dense like the platinum constituting the holding layer 50).
(初回放電後)
 図4(b)に示すリチウムイオン二次電池1を放電(初回放電)する場合、基板10(図1参照)には負荷の正の電極が、負極集電体層70には負荷の負の電極が、それぞれ接続される。すると、図4(c)に示すように、保持層50に保持されるリチウムイオン(Li+)が、固体電解質層40を介して正極層30へと移動する。すなわち、放電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(c)において下方向)へと移動し、正極層30に保持される。これに伴って、負荷には直流電流が供給される。
(After the first discharge)
When discharging (initial discharge) the lithium ion secondary battery 1 shown in FIG. 4B, a positive electrode of a load is provided on the substrate 10 (see FIG. 1), and a negative electrode of the load is provided on the negative electrode current collector layer 70. The electrodes are respectively connected. Then, as shown in FIG. 4C, the lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 via the solid electrolyte layer 40. That is, in the discharging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (downward in FIG. 4C) and are held by the positive electrode layer 30. Accordingly, a DC current is supplied to the load.
 このとき、保持層50では、リチウムが離脱することに伴い、リチウムと白金との合金の脱合金化(金属リチウムが析出した場合は金属リチウムの溶解化)が行われる。そして、保持層50で脱合金化が行われた結果、保持層50が多孔質化され、多数の空孔52が形成された多孔質部51となる。このようにして得られる多孔質部51は、ほぼ金属(例えば白金)で構成されることになる。ただし、初回放電が終了した状態において、保持層50の内部でリチウムは完全に消失するわけではなく、放電動作による移動を行わない一部のリチウムが残存する。 At this time, in the holding layer 50, the alloy of lithium and platinum is dealloyed (dissolution of the metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion 51 in which a large number of holes 52 are formed. The porous portion 51 obtained in this way is substantially made of metal (for example, platinum). However, in the state where the first discharge is completed, lithium does not completely disappear inside the holding layer 50, and some lithium which does not move by the discharge operation remains.
 ここで、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(b)に示す初回充電後且つ初回放電前の状態よりも減少する。これは、保持層50において、リチウムと白金との合金の脱合金化が行われることに起因するものと考えられる。そして、このことは、初回放電によって保持層50内に形成される空孔52の形状が、面方向に比べて厚さ方向が小さくなるように扁平化していることによって裏付けられる。また、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。これは、初回充電および初回放電によって保持層50が多孔質化されること、すなわち、保持層50内に多数の空孔52が形成されることに起因するものと考えられる。なお、これに対し、拡散防止層厚さt60および負極集電体層厚さt70は、初回放電の前後でもほぼ変わらない。 Here, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the first discharge, the holding layer thickness t50 is larger than the state after the first charge and before the first discharge shown in FIG. 4B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the holding layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the first discharge is flattened so that the thickness direction is smaller than the plane direction. Further, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the initial discharge, the holding layer thickness t50 is larger than the state after the film formation and before the first charge shown in FIG. I do. This is considered to be due to the fact that the holding layer 50 is made porous by the first charging and the first discharging, that is, a large number of holes 52 are formed in the holding layer 50. On the other hand, the thickness t60 of the diffusion prevention layer and the thickness t70 of the negative electrode current collector layer are not substantially changed before and after the first discharge.
[その他]
 なお、本実施の形態では、基板10の表面10a上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70の順に積層を行うことで、リチウムイオン二次電池1の基本構造体を形成していた。すなわち、基板10に近い側に正極層30を配置し、基板10から遠い側に保持層50を配置する構成を採用していた。ただし、これに限られるものではなく、基板10に近い側に保持層50を配置し、基板10から遠い側に正極層30を配置する構成を採用してもかまわない。ただし、この場合は、基板10に対する各層の積層順が、上述したものとは逆になる。
[Others]
In this embodiment, the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70 are sequentially stacked on the surface 10a of the substrate 10. Thus, the basic structure of the lithium ion secondary battery 1 was formed. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10. However, the configuration is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted. However, in this case, the order of lamination of each layer on the substrate 10 is opposite to that described above.
 また、本実施の形態では、基板10の一方の面すなわち表面10a上に、リチウムイオン二次電池1の基本構造体を形成していた。ただし、これに限られるものではなく、基板10の表面10a上にリチウムイオン二次電池1の基本構造体を形成するのに加えて、基板10の他方の面すなわち裏面10b上に、別のリチウムイオン二次電池1の基本構造体を形成するようにしてもかまわない。この場合は、基板10の裏面10bも、表面10aと同じく、最大最小高低差Rmmを78nm以下に設定しておくことが必要となる。 In the present embodiment, the basic structure of the lithium ion secondary battery 1 is formed on one surface of the substrate 10, that is, on the surface 10a. However, the present invention is not limited to this. In addition to forming the basic structure of the lithium ion secondary battery 1 on the front surface 10a of the substrate 10, another lithium The basic structure of the ion secondary battery 1 may be formed. In this case, it is necessary to set the maximum / minimum height difference Rmm on the back surface 10b of the substrate 10 to 78 nm or less, similarly to the front surface 10a.
 以下、実施例に基づいて本発明をさらに詳細に説明する。ただし、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
 本発明者は、3種類(実施例1、2および比較例)のリチウムイオン二次電池1を作製し、それぞれの構造と各種電気特性とに関する評価を行った。
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
The inventor manufactured three types of lithium ion secondary batteries 1 (Examples 1 and 2 and Comparative Example), and evaluated the respective structures and various electrical characteristics.
[実施例1について]
 まず、実施例1では、上記実施の形態で説明したリチウムイオン二次電池1のうち、図2(a)に示す第1の構成例の基板10を適用したものを用いた。すなわち、実施例1では、基材11で構成され、その表面10aが最大最小高低差Rmm≦78nmに研磨されてなる基板10を備えた、リチウムイオン二次電池1を用いた。
[Example 1]
First, in Example 1, among the lithium ion secondary batteries 1 described in the above embodiment, those using the substrate 10 of the first configuration example shown in FIG. 2A were used. That is, in Example 1, the lithium ion secondary battery 1 including the substrate 10 formed of the base material 11 and having its surface 10a polished to the maximum and minimum height difference Rmm ≦ 78 nm was used.
[実施例2について]
 また、実施例2では、上記実施の形態で説明したリチウムイオン二次電池1のうち、図2(b)に示す第2の構成例の基板10を適用したものを用いた、すなわち、実施例2では、基材11および被覆層12で構成され、その表面10aが最大最小高低差Rmm≦78nmに研磨されてなる基板10を備えた、リチウムイオン二次電池1を用いた。
[Example 2]
Further, in Example 2, among the lithium ion secondary batteries 1 described in the above embodiment, those using the substrate 10 of the second configuration example shown in FIG. 2B were used. In No. 2, a lithium ion secondary battery 1 including a substrate 10 composed of a base material 11 and a coating layer 12 and having its surface 10a polished to a maximum and minimum height difference Rmm ≦ 78 nm was used.
[比較例について]
 一方、比較例では、その基本構成自体は実施例1と同様であるものの、その表面10aが最大最小高低差Rmm>400nmに研磨されてなる基板10を備えた、リチウムイオン二次電池1を用いた。
[Comparative Example]
On the other hand, in the comparative example, although the basic configuration itself is the same as that of the first embodiment, a lithium ion secondary battery 1 having a substrate 10 whose surface 10a is polished to a maximum / minimum height difference Rmm> 400 nm is used. Was.
[実施例および比較例の具体的な構成]
 次に、実施例および比較例にかかるリチウムイオン二次電池1の具体的な構成について説明を行う。
[Specific Configurations of Examples and Comparative Examples]
Next, a specific configuration of the lithium ion secondary battery 1 according to the example and the comparative example will be described.
(基板の構成)
 表1は、実施例1、2および比較例にかかるリチウムイオン二次電池1における、基板10の構成を示している。ここで、表1は、基板10を構成する基材11の構成材料と、基板10における被覆層12の有無(ある場合はその構成材料)と、基板10に対するCMP処理の有無と、基板10の厚さと、基板10における表面10aの最大最小高低差Rmmおよび算術平均粗さRaとの関係を示している。
(Structure of substrate)
Table 1 shows the configuration of the substrate 10 in the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example. Here, Table 1 shows the constituent materials of the base material 11 constituting the substrate 10, the presence or absence of the coating layer 12 on the substrate 10 (if any), the presence or absence of the CMP process on the substrate 10, The relationship between the thickness, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10, and the arithmetic average roughness Ra is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 では、それぞれの基板10について説明を行う。
〔実施例1〕
 実施例1では、基板10を、基材11の単層構成とした。すなわち、基板10が被覆層12を備えない構成とした。また、実施例1では、基材11としてSUS316Lを用い、その厚さは0.1(mm)とした。さらに、実施例1では、基板10の表面10aに一般的な機械研磨処理を施した後、さらにCMP処理を施した。その結果、基板10における表面10aの最大最小高低差Rmmは78(nm)となり、その算術平均粗さRaは1.19(nm)となった。
Now, each substrate 10 will be described.
[Example 1]
In Example 1, the substrate 10 had a single-layer structure of the base material 11. That is, the configuration was such that the substrate 10 did not include the coating layer 12. In Example 1, SUS316L was used as the base material 11 and the thickness thereof was 0.1 (mm). Furthermore, in Example 1, after performing a general mechanical polishing process on the surface 10a of the substrate 10, a CMP process was further performed. As a result, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 was 78 (nm), and the arithmetic average roughness Ra was 1.19 (nm).
〔実施例2〕
 実施例2では、基板10を、基材11および被覆層12の積層構成とした。また、実施例2では、基材11としてAl(アルミニウム)を用い、その厚さは実施例1と同じ0.1(mm)とした。そして、実施例2では、被覆層12としてNi-Pを用いた。なお、被覆層12は、基材11に対し、無電解ニッケルメッキ法を用いて付着させた。さらに、実施例2では、実施例1と同様に、基板10の表面10aに一般的な機械研磨処理を施した後、さらにCMP処理を施した。その結果、基板10における表面10aの最大最小高低差Rmmは、実施例1よりも小さい2.7(nm)となり、その算術平均粗さRaは、実施例1よりも小さい0.499(nm)となった。
[Example 2]
In Example 2, the substrate 10 had a laminated structure of the base material 11 and the coating layer 12. In Example 2, Al (aluminum) was used as the base material 11 and the thickness was set to 0.1 (mm), which is the same as that in Example 1. In Example 2, Ni—P was used as the coating layer 12. The coating layer 12 was attached to the substrate 11 by using an electroless nickel plating method. Further, in the second embodiment, as in the first embodiment, the surface 10a of the substrate 10 is subjected to a general mechanical polishing process, and further subjected to a CMP process. As a result, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is 2.7 (nm) smaller than that of the first embodiment, and the arithmetic average roughness Ra is 0.499 (nm) smaller than that of the first embodiment. It became.
〔比較例〕
 比較例では、基板10を、実施例1と同じ基材11の単層構成とした。すなわち、基板10が被覆層12を備えない構成とした。また、比較例では、実施例1と同じく、基材11としてSUS316Lを用い、その厚さは0.1(mm)とした。ただし、比較例では、実施例1とは異なり、基板10の表面10aに一般的な機械研磨処理を施すのみとし、CMP処理を施さないようにした。その結果、基板10における表面10aの最大最小高低差Rmmは、実施例1、2よりも大きい438(nm)となり、その算術平均粗さRaは、実施例1、2よりも大きい61.2(nm)となった。
(Comparative example)
In the comparative example, the substrate 10 had the same single-layer structure of the base material 11 as in Example 1. That is, the configuration was such that the substrate 10 did not include the coating layer 12. In the comparative example, SUS316L was used as the base material 11 and the thickness was set to 0.1 (mm), as in Example 1. However, in the comparative example, unlike the first embodiment, only the general mechanical polishing process is performed on the surface 10a of the substrate 10, and the CMP process is not performed. As a result, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is 438 (nm), which is larger than that of the first and second embodiments, and the arithmetic average roughness Ra is 61.2 (greater than that of the first and second embodiments). nm).
(基板を除く各層の構成)
 表2は、実施例1、2および比較例にかかるリチウムイオン二次電池1における、基板10以外の構成を示している。ここで、表2は、基板10を除く各層の名称と、各層を構成する材料およびその厚さとの関係を示している。
(Structure of each layer except substrate)
Table 2 shows a configuration other than the substrate 10 in the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example. Here, Table 2 shows the relationship between the name of each layer excluding the substrate 10 and the material constituting each layer and its thickness.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔実施例1〕
 まず、実施例1について説明を行う。
 下地層20には、スパッタ法で形成されたLiNiO2を用いた。下地層20の厚さは200nmとした。
 正極層30には、スパッタ法で形成されたLiNiO2およびLi3PO4を用いた。正極層30の厚さは1000nmとした。そして、正極層30におけるLiNiO2とLi3PO4との比率(モル比)は73:27とした。
 固体電解質層40を構成する第1固体電解質層41には、スパッタ法で形成されたLi3PO4を用いた。第1固体電解質層41の厚さは20nmとした。
 固体電解質層40を構成する第2固体電解質層42には、スパッタ法で形成されたLiPONを用いた。第2固体電解質層42の厚さは980nmとした。したがって、固体電解質層40の全体の厚さは1000nmとした。
 保持層50には、スパッタ法で形成されたPtを用いた。保持層50の厚さは410nmとした。
 拡散防止層60には、スパッタ法で形成されたCrTiを用いた。拡散防止層60の厚さは50nmとした。
 負極集電体層70には、スパッタ法で形成されたPtを用いた。負極集電体層70の厚さは100nmとした。
[Example 1]
First, a first embodiment will be described.
For the underlayer 20, LiNiO 2 formed by a sputtering method was used. The thickness of the underlayer 20 was 200 nm.
For the positive electrode layer 30, LiNiO 2 and Li 3 PO 4 formed by a sputtering method were used. The thickness of the positive electrode layer 30 was 1000 nm. The ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
For the first solid electrolyte layer 41 constituting the solid electrolyte layer 40, Li 3 PO 4 formed by a sputtering method was used. The thickness of the first solid electrolyte layer 41 was 20 nm.
For the second solid electrolyte layer 42 constituting the solid electrolyte layer 40, LiPON formed by a sputtering method was used. The thickness of the second solid electrolyte layer 42 was 980 nm. Therefore, the entire thickness of the solid electrolyte layer 40 is set to 1000 nm.
For the holding layer 50, Pt formed by a sputtering method was used. The thickness of the holding layer 50 was 410 nm.
For the diffusion prevention layer 60, CrTi formed by a sputtering method was used. The thickness of the diffusion prevention layer 60 was 50 nm.
For the negative electrode current collector layer 70, Pt formed by a sputtering method was used. The thickness of the negative electrode current collector layer 70 was 100 nm.
〔実施例2〕
 続いて、実施例2について説明を行う。
 下地層20には、スパッタ法で形成されたLiNiO2を用いた。下地層20の厚さは200nmとした。
 正極層30には、スパッタ法で形成されたLiNiO2およびLi3PO4を用いた。正極層30の厚さは800nmとした。そして、正極層30におけるLiNiO2とLi3PO4との比率(モル比)は73:27とした。
 固体電解質層40を構成する第1固体電解質層41には、スパッタ法で形成されたLi3PO4を用いた。第1固体電解質層41の厚さは20nmとした。
 固体電解質層40を構成する第2固体電解質層42には、スパッタ法で形成されたLiPONを用いた。第2固体電解質層42の厚さは980nmとした。したがって、固体電解質層40の全体の厚さは1000nmとした。
 保持層50には、スパッタ法で形成されたPtを用いた。保持層50の厚さは60nmとした。
 拡散防止層60には、スパッタ法で形成されたCrTiを用いた。拡散防止層60の厚さは200nmとした。
 負極集電体層70には、スパッタ法で形成されたPtを用いた。負極集電体層70の厚さは60nmとした。
[Example 2]
Next, a second embodiment will be described.
For the underlayer 20, LiNiO 2 formed by a sputtering method was used. The thickness of the underlayer 20 was 200 nm.
For the positive electrode layer 30, LiNiO 2 and Li 3 PO 4 formed by a sputtering method were used. The thickness of the positive electrode layer 30 was 800 nm. The ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
For the first solid electrolyte layer 41 constituting the solid electrolyte layer 40, Li 3 PO 4 formed by a sputtering method was used. The thickness of the first solid electrolyte layer 41 was 20 nm.
For the second solid electrolyte layer 42 constituting the solid electrolyte layer 40, LiPON formed by a sputtering method was used. The thickness of the second solid electrolyte layer 42 was 980 nm. Therefore, the entire thickness of the solid electrolyte layer 40 is set to 1000 nm.
For the holding layer 50, Pt formed by a sputtering method was used. The thickness of the holding layer 50 was 60 nm.
For the diffusion prevention layer 60, CrTi formed by a sputtering method was used. The thickness of the diffusion prevention layer 60 was 200 nm.
For the negative electrode current collector layer 70, Pt formed by a sputtering method was used. The thickness of the negative electrode current collector layer 70 was 60 nm.
〔比較例〕
 さらに、比較例について説明を行う。
 比較例では、下地層20乃至負極集電体層70の各層の構成材料および厚さを、実施例1と同じにした。したがって、実施例1と比較例とは、基板10(基材11)における表面10aの平坦性のみが異なっていることになる。
(Comparative example)
Further, a comparative example will be described.
In the comparative example, the constituent materials and thicknesses of the respective layers from the base layer 20 to the negative electrode current collector layer 70 were the same as those in Example 1. Therefore, Example 1 and Comparative Example differ only in the flatness of the surface 10a of the substrate 10 (base material 11).
 このようにして得られた各リチウムイオン二次電池1の基本構造体に対し、初回充放電を行わせることにより、リチウムイオン二次電池1を得た。なお、初回充放電を行わせることにより、保持層50の厚さは、それぞれの初期値よりも増加した。 (4) The basic structure of each lithium ion secondary battery 1 thus obtained was initially charged and discharged, whereby a lithium ion secondary battery 1 was obtained. In addition, the thickness of the holding layer 50 was increased from the respective initial values by performing the initial charge / discharge.
[リチウムイオン二次電池の評価]
 ここでは、実施例1、2および比較例の各リチウムイオン二次電池1を評価するための尺度として、リチウムイオン二次電池1の構造(結晶構造および断面構造)と、電気的特性(容量維持率)とを用いた。
[Evaluation of lithium ion secondary battery]
Here, as a scale for evaluating each of the lithium ion secondary batteries 1 of Examples 1 and 2 and the comparative example, the structure (crystal structure and cross-sectional structure) of the lithium ion secondary battery 1 and the electrical characteristics (capacity maintenance) Rate).
(結晶構造)
 まず、結晶構造について説明を行う。本発明者は、実施例1、2および比較例の各リチウムイオン二次電池1に対し、電子線回折パターンを測定することで、リチウムイオン二次電池1を構成する各層の結晶構造(結晶化、非晶質化)に関する評価を行った。
(Crystal structure)
First, the crystal structure will be described. The inventor measured the electron diffraction pattern of each of the lithium ion secondary batteries 1 of Examples 1 and 2 and the comparative example, and thereby determined the crystal structure (crystallization) of each layer constituting the lithium ion secondary battery 1. , Amorphization).
 実施例1、2のリチウムイオン二次電池1において、基板10、保持層50および負極集電体層70は、それぞれ結晶化していた。これに対し、下地層20、第1固体電解質層41、第2固体電解質層42および拡散防止層60は、非晶質化していた。また、正極層30については、結晶化している領域と非晶質化している領域とが混在しており、非晶質化している領域に対し、結晶化している領域が点在していた。
 一方、比較例のリチウムイオン二次電池1も、上記実施例1、2のリチウムイオン二次電池1を構成する各層と、同様の結晶構造を呈していた。
In the lithium ion secondary batteries 1 of Examples 1 and 2, the substrate 10, the holding layer 50, and the negative electrode current collector layer 70 were each crystallized. On the other hand, the underlayer 20, the first solid electrolyte layer 41, the second solid electrolyte layer 42, and the diffusion prevention layer 60 were amorphous. In the positive electrode layer 30, a crystallized region and an amorphous region were mixed, and a crystallized region was scattered with respect to the amorphous region.
On the other hand, the lithium ion secondary battery 1 of the comparative example also exhibited the same crystal structure as the layers constituting the lithium ion secondary batteries 1 of Examples 1 and 2.
(断面構造)
 次に、断面構造について説明を行う。
〔比較例〕
 図5(a)は、比較例のリチウムイオン二次電池1の初回充放電前における断面STEM写真である。また、図5(b)は、比較例のリチウムイオン二次電池1の7回充放電後における断面STEM写真である。さらに、図6(a)は、比較例のリチウムイオン二次電池1の初回充放電前における拡大断面STEM写真である。さらにまた、図6(b)は、比較例のリチウムイオン二次電池1の7回充放電後における拡大断面STEM写真である。これらのSTEM写真は、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである(以下も同様)。ここで、図5(a)には図6(a)が対応し、また、図5(b)には図6(b)が対応している。ただし、図5(a)および図6(a)に示すSTEM写真と、図5(b)および図6(b)に示すSTEM写真とでは、撮影位置が異なるため、これらの断面形状は一致していない。
 なお、以下の説明においては、初回充放電前の状態を単に「充放電前」と称し、7回充放電後の状態を単に「充放電後」と称することがある。
(Cross section structure)
Next, a cross-sectional structure will be described.
(Comparative example)
FIG. 5A is a cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example before the first charge / discharge. FIG. 5B is a cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example after seven times of charge and discharge. Further, FIG. 6A is an enlarged cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example before the first charge / discharge. FIG. 6B is an enlarged cross-sectional STEM photograph of the lithium ion secondary battery 1 of the comparative example after seven times of charge and discharge. These STEM photographs were taken using an HD-2300 ultra-thin film evaluation device manufactured by Hitachi High-Technologies Corporation (the same applies hereinafter). Here, FIG. 5 (a) corresponds to FIG. 6 (a), and FIG. 5 (b) corresponds to FIG. 6 (b). However, since the photographing positions are different between the STEM photograph shown in FIG. 5A and FIG. 6A and the STEM photograph shown in FIG. 5B and FIG. Not.
In the following description, the state before the first charge and discharge may be simply referred to as “before charge and discharge”, and the state after seven times charge and discharge may be simply referred to as “after charge and discharge”.
 では、図5および図6を参照しつつ、比較例のリチウムイオン二次電池1の断面構造について説明を行う。
 まず、保持層50に着目すると、充放電後は、充放電前よりも厚さが大きくなっていることがわかる。また、拡散防止層60および負極集電体層70に着目すると、充放電前と充放電後とで、それぞれの厚さがほとんど変わっていないこともわかる。
Now, the cross-sectional structure of the lithium-ion secondary battery 1 of the comparative example will be described with reference to FIGS.
First, focusing on the holding layer 50, it can be seen that the thickness after charging / discharging is larger than that before charging / discharging. Further, focusing on the diffusion prevention layer 60 and the negative electrode current collector layer 70, it can be seen that the respective thicknesses hardly change before and after charging and discharging.
 また、充放電前において、下地層20乃至負極集電体層70には、これらの積層対象となる基板10の表面10aの平坦性の影響を受けたことにより、凹凸(うねり)が生じていることがわかる。これに対し、充放電後において、下地層20乃至負極集電体層70には、上述した基板10の表面10aの平坦性の影響に加え、リチウムイオンの移動に伴う正極層30乃至保持層50の厚さ方向への伸縮の影響を受けたことにより、生じる凹凸がさらに大きくなっていることがわかる。 Before the charge and discharge, the base layer 20 to the negative electrode current collector layer 70 have irregularities (undulations) due to the flatness of the surface 10a of the substrate 10 to be laminated. You can see that. On the other hand, after the charge and discharge, in addition to the above-described flatness of the surface 10a of the substrate 10, the base layer 20 to the negative electrode current collector layer 70 have the positive electrode layer 30 to the holding layer 50 due to the movement of lithium ions. It can be seen that the unevenness caused by the influence of the expansion and contraction in the thickness direction is further increased.
 特に、図5(b)および図6(b)に示すように、充放電後では、保持層50と拡散防止層60との界面のうち、V字状の断面を呈している部位において、保持層50側に巨大なボイド(図5(b)では白っぽく、図6(b)では黒っぽい領域)が発生していることがわかる。このようなボイドは、充放電に伴って保持層50内に形成される空孔52(図4(c)参照)よりもはるかに大きく、断面がV字状を呈する領域において、負極集電体層70側へのリチウムの漏れ(リーク)が生じる要因となり得る。また、このようなボイドは、保持層50と拡散防止層60とを剥離させる要因にもなり得る。 In particular, as shown in FIG. 5B and FIG. 6B, after charging / discharging, the portion of the interface between the holding layer 50 and the diffusion preventing layer 60 having a V-shaped cross section is held. It can be seen that huge voids (white areas in FIG. 5B and dark areas in FIG. 6B) are generated on the layer 50 side. Such voids are much larger than the holes 52 (see FIG. 4C) formed in the holding layer 50 due to charge and discharge, and in a region having a V-shaped cross section, the negative electrode current collector This may be a factor that causes leakage of lithium to the layer 70 side. In addition, such voids may be a factor that causes the retention layer 50 and the diffusion prevention layer 60 to peel off.
(容量維持率)
 実施例1、2および比較例の各リチウムイオン二次電池1に対して、充放電特性の測定を行うとともに、充放電特性の測定結果を用いて容量維持率の評価を行った。充放電特性の測定機器としては、北斗電工株式会社製 充放電装置HJ1020mSD8を用いた。
(Capacity maintenance rate)
For each of the lithium ion secondary batteries 1 of Examples 1 and 2 and Comparative Example, the charge / discharge characteristics were measured, and the capacity retention was evaluated using the measurement results of the charge / discharge characteristics. As a device for measuring charge / discharge characteristics, a charge / discharge device HJ1020mSD8 manufactured by Hokuto Denko KK was used.
 ここで、容量維持率は、リチウムイオン二次電池1の、充電完了後の初期の容量に対する、予め定められた期間が経過した時点における容量の比を、百分率で表したものである。この場合、容量維持率の値は、高いほどよく、最高で100%となる。ここでは、満充電後且つ3時間後の容量維持率の評価を行った。 容量 Here, the capacity retention ratio is a percentage of the capacity of the lithium ion secondary battery 1 at the time when a predetermined period has elapsed with respect to the initial capacity after the completion of charging. In this case, the higher the value of the capacity retention ratio, the better, and the maximum is 100%. Here, the capacity retention rate after full charge and after 3 hours was evaluated.
 表3は、実施例1、2および比較例にかかるリチウムイオン二次電池1の容量維持率を示している。ここで、表3は、基板10の構成と、それぞれの表面10aにおける最大最小高低差Rmmおよび算術平均粗さRaと、満充電直後および満充電後且つ3時間後の放電容量の比として表される容量維持率との関係を示している。ここで、実施例1および比較例では、充電時の電流値を20mAとし、実施例2では、充電時の電流値を2.7mAとした。これは、実施例1および比較例では、リチウムイオン二次電池1の面積(フットプリント)を同じ大きさとしたのに対し、実施例2では、リチウムイオン二次電池1の面積を実施例1および比較例よりも小さくしたことに起因するものである。 Table 3 shows the capacity retention of the lithium ion secondary batteries 1 according to Examples 1 and 2 and Comparative Example. Here, Table 3 is expressed as a ratio of the configuration of the substrate 10, the maximum and minimum height difference Rmm and the arithmetic average roughness Ra on each surface 10a, and the discharge capacity immediately after full charge and after 3 hours after full charge. It shows the relationship with the capacity retention rate. Here, in Example 1 and Comparative Example, the current value during charging was 20 mA, and in Example 2, the current value during charging was 2.7 mA. This is because the area (footprint) of the lithium ion secondary battery 1 was the same in Example 1 and the comparative example, whereas the area of the lithium ion secondary battery 1 was This is due to the fact that it was smaller than the comparative example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1における容量維持率は、98.8%となった。また、実施例2における容量維持率は、実施例1よりも高い99.9%となった。これに対し、比較例における容量維持率は、実施例1および実施例2よりも低い77.6%となった。 容量 The capacity retention rate in Example 1 was 98.8%. Further, the capacity retention ratio in Example 2 was 99.9%, which was higher than that in Example 1. On the other hand, the capacity retention ratio in the comparative example was 77.6%, which was lower than that in Examples 1 and 2.
〔容量維持率の傾向について〕
 以上より、容量維持率について、以下のような傾向がみられるといえる。
 まず、基板10の最大最小高低差Rmmが78(nm)以下に設定される実施例1、2は、最大最小高低差Rmmが400(nm)超に設定される比較例よりも、容量維持率が高かった。これは、基板10の表面10aの平坦性が従来よりも著しく高く設定されることにより、基板10上に形成される下地層20乃至負極集電体層70の平坦性が向上したこと、そして、これに伴って、比較例のようなV字状の断面構造(図5および図6参照)に起因するリチウムの漏れが抑制されたこと、に起因するものと考えられる。なお、リチウムの漏れが生じるような場合は、拡散防止層60にリチウムを通過させるパスが形成されることになるため、容量維持率は低下する。
[About the trend of capacity retention rate]
From the above, it can be said that the following tendency is observed in the capacity retention ratio.
First, in the first and second embodiments in which the maximum / minimum height difference Rmm of the substrate 10 is set to 78 (nm) or less, the capacity retention ratio is higher than in the comparative example in which the maximum / minimum height difference Rmm is set to more than 400 (nm). Was high. This is because the flatness of the surface 10a of the substrate 10 is set to be significantly higher than in the past, whereby the flatness of the base layer 20 to the negative electrode current collector layer 70 formed on the substrate 10 is improved, and Accordingly, it is considered that the leakage of lithium due to the V-shaped cross-sectional structure (see FIGS. 5 and 6) as in the comparative example was suppressed. In the case where leakage of lithium occurs, a path for passing lithium is formed in the diffusion prevention layer 60, so that the capacity retention ratio is reduced.
 また、基板10の最大最小高低差Rmmが2.7(nm)に設定される実施例2は、最大最小高低差Rmmが78(nm)に設定される実施例1よりも、容量維持率が高かった。これも、実施例2が実施例1と比べて、基板10の表面10aの平坦性が高いことに起因するものと考えられる。 In the second embodiment in which the maximum and minimum height difference Rmm of the substrate 10 is set to 2.7 (nm), the capacity retention ratio is higher than in the first embodiment in which the maximum and minimum height difference Rmm is set to 78 (nm). it was high. This is also considered to be due to the fact that the flatness of the surface 10a of the substrate 10 is higher in the second embodiment than in the first embodiment.
1…リチウムイオン二次電池、10…基板、10a…表面、10b…裏面、11…基材、12…被覆層、20…下地層、30…正極層、40…固体電解質層、41…第1固体電解質層、42…第2固体電解質層、50…保持層、51…多孔質部、52…空孔、60…拡散防止層、70…負極集電体層 DESCRIPTION OF SYMBOLS 1 ... lithium ion secondary battery, 10 ... board | substrate, 10a ... front surface, 10b ... back surface, 11 ... base material, 12 ... coating layer, 20 ... underlayer, 30 ... positive electrode layer, 40 ... solid electrolyte layer, 41 ... 1st Solid electrolyte layer, 42: second solid electrolyte layer, 50: holding layer, 51: porous portion, 52: void, 60: diffusion preventing layer, 70: negative electrode current collector layer

Claims (19)

  1.  表面および裏面を有する基板と、
     前記基板における前記表面側に設けられ、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、
     リチウムイオン伝導性を有する無機固体電解質を含む固体電解質層と、
     前記第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層と
    を順に有し、
     前記基板における前記表面は、AFM(Atomic Force Microscope)にて20μm×20μmの範囲の凹凸を測定して得られた最大高さと最小高さとの高低差である最大最小高低差が、78nm以下であること
    を特徴とするリチウムイオン二次電池。
    A substrate having a front surface and a back surface;
    A first polar layer provided on the front surface side of the substrate and occluding and releasing lithium ions at a first polarity;
    A solid electrolyte layer containing an inorganic solid electrolyte having lithium ion conductivity,
    A second polar layer that occludes and releases lithium ions at a second polarity opposite to the first polarity, and
    The surface of the substrate has a maximum minimum height difference of 78 nm or less, which is a height difference between a maximum height and a minimum height obtained by measuring unevenness in a range of 20 μm × 20 μm with an AFM (Atomic Force Microscope). A lithium ion secondary battery characterized by the above-mentioned.
  2.  前記基板がSUS316Lで構成され、
     前記固体電解質層がLi3PO4における酸素の一部を窒素で置換したLiPONを含んでいること
    を特徴とする請求項1記載のリチウムイオン二次電池。
    The substrate is made of SUS316L;
    The lithium ion secondary battery according to claim 1, characterized in that it comprises a LiPON which the solid electrolyte layer is substituted for part of oxygen in the Li 3 PO 4 with nitrogen.
  3.  前記基板が前記表面にNi-Pめっきを施した金属材料で構成され、
     前記固体電解質層がLi3PO4における酸素の一部を窒素で置換したLiPONを含んでいること
    を特徴とする請求項1記載のリチウムイオン二次電池。
    The substrate is made of a metal material having Ni-P plating on the surface,
    The lithium ion secondary battery according to claim 1, characterized in that it comprises a LiPON which the solid electrolyte layer is substituted for part of oxygen in the Li 3 PO 4 with nitrogen.
  4.  前記第1の極性が正であり、前記第2の極性が負であり、
     前記固体電解質層は、
     前記第1極性層と対峙して設けられ、Li3PO4を含みLiNiO2を含まない第1固体電解質層と、
     前記第2極性層と対峙して設けられ、Li3PO4における酸素の一部を窒素で置換したLiPONを含む第2固体電解質層と
    を順に有することを特徴とする請求項2または3記載のリチウムイオン二次電池。
    The first polarity is positive, the second polarity is negative,
    The solid electrolyte layer,
    A first solid electrolyte layer provided opposite to the first polar layer and containing Li 3 PO 4 and not containing LiNiO 2 ;
    4. A second solid electrolyte layer comprising LiPON which is provided to face the second polar layer and includes LiPON in which a part of oxygen in Li 3 PO 4 is replaced by nitrogen. Lithium ion secondary battery.
  5.  前記第1極性層は、LiNiO2およびLi3PO4を含んでいることを特徴とする請求項4記載のリチウムイオン二次電池。 The first polarity layer is a lithium ion secondary battery according to claim 4, characterized in that it contains LiNiO 2 and Li 3 PO 4.
  6.  前記基板の前記表面と前記第1極性層との間に設けられ、LiNiO2を含みLi3PO4を含まない下地層をさらに有すること
    を特徴とする請求項5記載のリチウムイオン二次電池。
    It provided between said surface and said first polarity layer of the substrate, a lithium ion secondary battery according to claim 5, further comprising a base layer containing no Li 3 PO 4 include LiNiO 2.
  7.  前記固体電解質層と対峙して設けられ、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層をさらに有し、
     前記第2極性層は、前記金属層を構成する金属と合金化したリチウムを含んでいること
    を特徴とする請求項4乃至6のいずれか1項記載のリチウムイオン二次電池。
    A metal layer provided opposite to the solid electrolyte layer and made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof is further provided. And
    The lithium ion secondary battery according to any one of claims 4 to 6, wherein the second polar layer contains lithium alloyed with a metal constituting the metal layer.
  8.  前記金属層と対峙して設けられ、非晶質構造を有する、金属または合金で構成される非晶質層をさらに有すること
    を特徴とする請求項7記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 7, further comprising an amorphous layer provided opposite to the metal layer and having an amorphous structure and made of a metal or an alloy.
  9.  前記基板における前記表面の前記最大最小高低差が、2.7nm以下であること
    を特徴とする請求項1乃至8のいずれか1項記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to any one of claims 1 to 8, wherein the maximum and minimum height difference of the surface of the substrate is 2.7 nm or less.
  10.  前記基板における前記表面の算術平均粗さRaが1.1nm以下であること
    を特徴とする請求項1乃至9のいずれか1項記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to any one of claims 1 to 9, wherein the arithmetic mean roughness Ra of the surface of the substrate is 1.1 nm or less.
  11.  AFM(Atomic Force Microscope)にて20μm×20μmの範囲の凹凸を測定して得られた最大高さと最小高さとの高低差である最大最小高低差が、78nm以下となる表面が設けられた基板を準備する基板準備工程と、
     前記基板における前記表面側に、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層を形成する第1極性層形成工程と、
     前記基板上に設けられた前記第1極性層側に、リチウムイオン伝導性を有する無機固体電解質を含む固体電解質層を形成する固体電解質層形成工程と
    を有するリチウムイオン二次電池の製造方法。
    A substrate provided with a surface having a maximum / minimum height difference of 78 nm or less, which is a height difference between a maximum height and a minimum height obtained by measuring unevenness in a range of 20 μm × 20 μm with an AFM (Atomic Force Microscope). A substrate preparation step for preparing,
    A first polar layer forming step of forming a first polar layer for absorbing and releasing lithium ions with a first polarity on the front surface side of the substrate;
    Forming a solid electrolyte layer containing an inorganic solid electrolyte having lithium ion conductivity on the first polar layer side provided on the substrate.
  12.  前記基板準備工程では、SUS316Lで構成された前記基板を準備すること
    を特徴とする請求項11記載のリチウムイオン二次電池の製造方法。
    The method for manufacturing a lithium ion secondary battery according to claim 11, wherein in the substrate preparing step, the substrate made of SUS316L is prepared.
  13.  前記基板準備工程では、Ni-Pめっきを施した金属材料で構成された前記基板を準備すること
    を特徴とする請求項11記載のリチウムイオン二次電池の製造方法。
    12. The method of manufacturing a lithium ion secondary battery according to claim 11, wherein in the substrate preparing step, the substrate made of a metal material plated with Ni—P is prepared.
  14.  前記第1の極性が正であり、
     前記基板上に設けられた前記固体電解質層に、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層を形成する金属層形成工程と、
     前記基板、前記第1極性層、前記固体電解質層および前記金属層を含む積層体に対し、当該第1極性層から当該固体電解質層を介して当該金属層にリチウムイオンを移動させることで充電を行う充電工程と、
     充電された前記積層体に対し、前記金属層から前記固体電解質層を介して前記第1極性層にリチウムイオンを移動させることで放電を行う放電工程と
    をさらに有することを特徴とする請求項11乃至13のいずれか1項記載のリチウムイオン二次電池の製造方法。
    The first polarity is positive;
    A metal layer made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof is formed on the solid electrolyte layer provided on the substrate. Forming a metal layer forming step;
    For the laminate including the substrate, the first polar layer, the solid electrolyte layer, and the metal layer, charging is performed by moving lithium ions from the first polar layer to the metal layer via the solid electrolyte layer. A charging process to be performed;
    12. The method according to claim 11, further comprising: discharging the charged layered product by moving lithium ions from the metal layer to the first polar layer via the solid electrolyte layer. 14. The method for producing a lithium ion secondary battery according to any one of claims 13 to 13.
  15.  前記金属層形成工程と前記充電工程との間において、前記金属層に、非晶質構造を有する、金属または合金で構成される非晶質層を形成する非晶質層形成工程
    をさらに含むことを特徴とする請求項14記載のリチウムイオン二次電池の製造方法。
    Between the metal layer forming step and the charging step, the metal layer further includes an amorphous layer forming step of forming an amorphous layer made of a metal or an alloy having an amorphous structure. The method for producing a lithium ion secondary battery according to claim 14, wherein:
  16.  前記第1の極性が正であり、
     前記第1極性層形成工程では、LiNiO2およびLi3PO4を含む合材正極を形成し、
     前記固体電解質層形成工程では、Li3PO4を含みLiNiO2を含まない第1固体電解質層を形成した後、Li3PO4における酸素の一部を窒素で置換したLiPONを含む第2固体電解質層を形成すること
    を特徴とする請求項11乃至15のいずれか1項記載のリチウムイオン二次電池の製造方法。
    The first polarity is positive;
    In the first polar layer forming step, a mixed material positive electrode including LiNiO 2 and Li 3 PO 4 is formed,
    In the solid electrolyte layer forming step, after forming a first solid electrolyte layer containing Li 3 PO 4 and not containing LiNiO 2 , a second solid electrolyte containing LiPON in which part of oxygen in Li 3 PO 4 has been replaced with nitrogen The method for manufacturing a lithium ion secondary battery according to any one of claims 11 to 15, wherein a layer is formed.
  17.  前記基板準備工程と前記第1極性層形成工程との間において、前記基板における前記表面に、LiNiO2を含みLi3PO4を含まない下地層を形成する下地層形成工程をさらに含むことを特徴とする請求項11乃至16のいずれか1項記載のリチウムイオン二次電池の製造方法。 Between the substrate preparing step and the first polar layer forming step, the method further includes an underlayer forming step of forming an underlayer containing LiNiO 2 and not Li 3 PO 4 on the surface of the substrate. The method for manufacturing a lithium ion secondary battery according to any one of claims 11 to 16.
  18.  前記基板準備工程では、前記表面の前記最大最小高低差が2.7nm以下に設定された前記基板を準備すること
    を特徴とする請求項11乃至17のいずれか1項記載のリチウムイオン二次電池の製造方法。
    The lithium ion secondary battery according to any one of claims 11 to 17, wherein in the substrate preparing step, the substrate having the maximum and minimum height difference of the surface set to 2.7 nm or less is prepared. Manufacturing method.
  19.  前記基板準備工程では、前記表面の算術平均粗さRaが1.1nm以下に設定された前記基板を準備すること
    を特徴とする請求項11乃至18のいずれか1項記載のリチウムイオン二次電池の製造方法。
    The lithium ion secondary battery according to any one of claims 11 to 18, wherein in the substrate preparing step, the substrate having an arithmetic mean roughness Ra of the surface set to 1.1 nm or less is prepared. Manufacturing method.
PCT/JP2019/026267 2018-10-03 2019-07-02 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery WO2020070932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-188635 2018-10-03
JP2018188635A JP2020057560A (en) 2018-10-03 2018-10-03 Lithium-ion secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020070932A1 true WO2020070932A1 (en) 2020-04-09

Family

ID=70055448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026267 WO2020070932A1 (en) 2018-10-03 2019-07-02 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP2020057560A (en)
WO (1) WO2020070932A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267800A (en) * 1994-03-25 1995-10-17 Shinkosha:Kk Surface treatment of single crystal
JPH08274195A (en) * 1995-03-30 1996-10-18 Mitsubishi Chem Corp Ferroelectric fet element
JP2004063419A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Method for manufacturing thin film, and battery
JP2012256581A (en) * 2010-12-02 2012-12-27 Sony Corp Solid electrolyte battery and positive electrode active material
JP2016115617A (en) * 2014-12-17 2016-06-23 富士通株式会社 Full solid secondary battery
JP2016213124A (en) * 2015-05-12 2016-12-15 トヨタ自動車株式会社 Electrode laminate
JP2016225281A (en) * 2015-05-26 2016-12-28 パナソニックIpマネジメント株式会社 All-solid lithium ion secondary battery and method of manufacturing the same
JP2018029046A (en) * 2016-08-19 2018-02-22 国立大学法人東北大学 All-solid lithium battery and method for manufacturing all-solid lithium battery
JP2018129159A (en) * 2017-02-07 2018-08-16 三星電子株式会社Samsung Electronics Co.,Ltd. Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267800A (en) * 1994-03-25 1995-10-17 Shinkosha:Kk Surface treatment of single crystal
JPH08274195A (en) * 1995-03-30 1996-10-18 Mitsubishi Chem Corp Ferroelectric fet element
JP2004063419A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Method for manufacturing thin film, and battery
JP2012256581A (en) * 2010-12-02 2012-12-27 Sony Corp Solid electrolyte battery and positive electrode active material
JP2016115617A (en) * 2014-12-17 2016-06-23 富士通株式会社 Full solid secondary battery
JP2016213124A (en) * 2015-05-12 2016-12-15 トヨタ自動車株式会社 Electrode laminate
JP2016225281A (en) * 2015-05-26 2016-12-28 パナソニックIpマネジメント株式会社 All-solid lithium ion secondary battery and method of manufacturing the same
JP2018029046A (en) * 2016-08-19 2018-02-22 国立大学法人東北大学 All-solid lithium battery and method for manufacturing all-solid lithium battery
JP2018129159A (en) * 2017-02-07 2018-08-16 三星電子株式会社Samsung Electronics Co.,Ltd. Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"RECHARGEABLE LITHIUM BATTERIES. 1st ed.", August 2010, OHMSHA, LTD., pages: 132 - 133 *

Also Published As

Publication number Publication date
JP2020057560A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
TWI720784B (en) Electrodeposited copper foil and electrode and lithium-ion secondary battery comprising the same
KR100940695B1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP2056381B1 (en) Cell, electrode, and collector used in them
US7432014B2 (en) Anode and battery
JP5169156B2 (en) Electrodes for electrochemical devices
JP4460642B2 (en) LITHIUM SECONDARY BATTERY NEGATIVE ELECTRODE AND METHOD FOR PRODUCING THE SAME
WO2019123981A1 (en) Method of manufacturing lithium ion secondary battery
JP3922579B2 (en) Negative electrode and battery
WO2019123980A1 (en) Lithium ion secondary cell
JP3707617B2 (en) Negative electrode and battery using the same
WO2020070932A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
WO2020070933A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020116004A1 (en) Lithium ion secondary battery
US7524585B2 (en) Anode and battery using it
WO2020137449A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2018181636A (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
WO2020012734A1 (en) Lithium ion secondary battery
JP2019114529A (en) Lithium ion secondary battery
WO2020075352A1 (en) Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell
WO2019123951A1 (en) Lithium-ion secondary cell
JP2008010364A (en) Anode for lithium ion secondary battery
JP2008053214A (en) Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
WO2019102668A1 (en) Lithium ion secondary battery, multilayer structure for lithium ion secondary batteries, and method for producing lithium ion secondary battery
CN117378057A (en) Battery and method for manufacturing battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868508

Country of ref document: EP

Kind code of ref document: A1