JP2008010364A - Anode for lithium ion secondary battery - Google Patents

Anode for lithium ion secondary battery Download PDF

Info

Publication number
JP2008010364A
JP2008010364A JP2006181837A JP2006181837A JP2008010364A JP 2008010364 A JP2008010364 A JP 2008010364A JP 2006181837 A JP2006181837 A JP 2006181837A JP 2006181837 A JP2006181837 A JP 2006181837A JP 2008010364 A JP2008010364 A JP 2008010364A
Authority
JP
Japan
Prior art keywords
active material
layer
material layer
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006181837A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006181837A priority Critical patent/JP2008010364A/en
Publication of JP2008010364A publication Critical patent/JP2008010364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a lithium ion secondary battery with excellent cycle characteristics. <P>SOLUTION: For the anode for the lithium ion secondary battery 1 having an active material layer 3 consisting of a lithium-active active material of either a tin, silicon, or antimony system formed on a collector layer 2 made of copper or a copper alloy, a reinforcing layer 4 made of a conductive and lithium-inactive matter is formed on the above active material layer 3, a second active material layer 3 is formed on the reinforcing layer 4, with that second active material layer 3 as an outermost layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、サイクル特性に優れたリチウムイオン二次電池用負極に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery excellent in cycle characteristics.

リチウムイオン二次電池は、モバイル機器をはじめとして広い用途に普及している。そのリチウムイオン二次電池の負極としては、銅箔又は銅合金箔のような銅又は銅合金からなる集電層(負極集電体とも言う)の上にカーボン系の活物質(リチウム活性な物質)からなる活物質層を形成したものが一般的であった。すなわち、圧延銅箔、電解銅箔等の集電層にカーボン系の活物質をバインダと溶剤で溶いた溶液を塗布し、この溶液を乾燥させた後、熱ロールプレスを施してリチウムイオン二次電池用負極とする。   Lithium ion secondary batteries are widely used in a wide range of applications including mobile devices. As a negative electrode of the lithium ion secondary battery, a carbon-based active material (lithium active material) is formed on a current collecting layer (also referred to as a negative electrode current collector) made of copper or a copper alloy such as a copper foil or a copper alloy foil. In general, an active material layer made of That is, a solution obtained by dissolving a carbon-based active material with a binder and a solvent is applied to a current collecting layer such as a rolled copper foil or an electrolytic copper foil, and the solution is dried and then subjected to a hot roll press to form a lithium ion secondary. A negative electrode for a battery is used.

なお、カーボン系の活物質とは、グラファイト、ハードカーボン、ソフトカーボンのうち少なくとも一つを含む活物質のことである。   Note that the carbon-based active material is an active material containing at least one of graphite, hard carbon, and soft carbon.

カーボン系の活物質としては、カーボンとリチウムの化合物であるLiC6がある。カーボン系の活物質は、リチウムイオンを吸蔵・脱離(離脱)することができる。このときLiC6の単位重さ当たりの理論放電容量(最大容量)は372mAh/gと言われている。カーボン系の活物質ではこの値を超えて容量の増大を図ることができないため、最近ではさらに放電容量の大きいスズ系の活物質(例えば、Li4.4Snは理論放電容量が約1000mAh/g)、ケイ素系の活物質(例えば、Li4.4Siは理論放電容量が約4000Ah/g)などの実用化検討が盛んに行われている。 An example of the carbon-based active material is LiC 6 which is a compound of carbon and lithium. The carbon-based active material can occlude and desorb (release) lithium ions. At this time, the theoretical discharge capacity (maximum capacity) per unit weight of LiC 6 is said to be 372 mAh / g. Since the capacity of the carbon-based active material cannot be increased beyond this value, recently a tin-based active material having a larger discharge capacity (for example, Li4.4Sn has a theoretical discharge capacity of about 1000 mAh / g), Studies on practical application of silicon-based active materials (for example, Li4.4Si has a theoretical discharge capacity of about 4000 Ah / g) are being actively conducted.

スズ(Sn)系の活物質とは、スズ、スズ合金のいずれかを含む活物質のことである。また、ケイ素(シリコン;Si)系の活物質とは、ケイ素、ケイ素合金のいずれかを含む活物質、アンチモン(Sb)系の活物質とは、アンチモン、アンチモン合金のいずれかを含む活物質のことである。   The tin (Sn) -based active material is an active material containing either tin or a tin alloy. The silicon (Si) -based active material is an active material containing either silicon or a silicon alloy, and the antimony (Sb) -based active material is an active material containing either antimony or an antimony alloy. That is.

スズ系の活物質については、非特許文献1に開示されている。すなわち、銅箔表面に電解めっきでスズのめっき層を形成して200℃で24時間熱処理を行った場合に、めっき層がSn−Cu6Sn5−Cu3Snの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上する。 The tin-based active material is disclosed in Non-Patent Document 1. That is, when a tin plating layer is formed on the copper foil surface by electrolytic plating and heat treatment is performed at 200 ° C. for 24 hours, the plating layer changes to a multilayer structure of Sn—Cu 6 Sn 5 —Cu 3 Sn. Since the stress due to the expansion and contraction of the active material during discharge is relieved to suppress separation, cycle characteristics are improved.

また、スズ系やケイ素系の活物質をあらかじめ微粉化しておき、この活物質を導電性のバインダに混合したものを集電層に塗布することにより、リチウムとの反応による体積膨張を軽減してサイクル特性を向上しようと言う試みもなされている。例えば、特許文献1には、スズ含有物の粒子を負極活物質とすることが開示されている。   In addition, the volume expansion due to the reaction with lithium is reduced by finely pulverizing a tin-based or silicon-based active material in advance and applying the active material mixed with a conductive binder to the current collecting layer. Attempts have also been made to improve cycle characteristics. For example, Patent Document 1 discloses that particles containing tin are used as the negative electrode active material.

特開2004−087232号公報JP 2004-087232 A 三洋電機技報、Vol.34、No.1、pp.87−93(2002)Sanyo Electric Technical Report, Vol. 34, no. 1, pp. 87-93 (2002)

前述のように、カーボン系の活物質は、理論放電容量に近いところまで開発が進んでおり、今後、放電容量の大幅な向上は困難である。このためスズ系やケイ素系の活物質の開発が行われている。しかしながら、これらの活物質は、リチウムイオンを吸蔵したときの体積膨張が極めて大きいという欠点がある。具体的には、カーボン系の活物質の体積膨張が1.5倍程度であるのに対し、スズ系の活物質の体積膨張は3.5倍、ケイ素系の活物質の体積膨張は4倍にもなる。この大きな体積変化のため、充放電サイクルに伴い、集電層である銅箔から活物質が剥離、脱落し、電池特性が急激に低下してしまうという問題が生じ、これが実用化にあたっての最大の障害となっている。   As described above, the development of carbon-based active materials has progressed to a point close to the theoretical discharge capacity, and it is difficult to significantly improve the discharge capacity in the future. For this reason, tin-based and silicon-based active materials are being developed. However, these active materials have a drawback that volume expansion is extremely large when lithium ions are occluded. Specifically, the volume expansion of the carbon-based active material is about 1.5 times, whereas the volume expansion of the tin-based active material is 3.5 times, and the volume expansion of the silicon-based active material is 4 times. It also becomes. Because of this large volume change, the active material peels off from the copper foil, which is the current collecting layer, and drops as the charge / discharge cycle occurs, resulting in a problem that the battery characteristics deteriorate sharply. It is an obstacle.

スズのめっき層を形成した銅箔を熱処理するという非特許文献1の対応策も十分とはいえず、熱処理しなかった場合の剥離を軽減するに過ぎない。   The countermeasure of Non-Patent Document 1 in which the copper foil on which the tin plating layer is formed is heat-treated is not sufficient, and only reduces the peeling when the heat treatment is not performed.

また、特許文献1の技術には、粒子を形成するためにメカニカルアロイングやガスアトマイズなどの工程を必要とし、製造コストが大幅にアップしてしまうという問題がある。また、活物質をバインダと混合するため、リチウムと反応する活物質の充填量が制限され、電池容量の低下という性能的な不具合を余儀なくされてしまう。   Further, the technique of Patent Document 1 requires a process such as mechanical alloying and gas atomization to form particles, and has a problem that the manufacturing cost is significantly increased. Further, since the active material is mixed with the binder, the filling amount of the active material that reacts with lithium is limited, and a performance defect such as a reduction in battery capacity is unavoidable.

そこで、本発明の目的は、上記課題を解決し、サイクル特性に優れたリチウムイオン二次電池用負極を提供することにある。   Then, the objective of this invention is providing the negative electrode for lithium ion secondary batteries which solved the said subject and was excellent in cycling characteristics.

上記目的を達成するために本発明は、銅又は銅合金からなる集電層の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層を形成したリチウムイオン二次電池用負極において、上記活物質層の上に導電性がありかつリチウム不活性な物質からなる強化層を形成し、その強化層の上に2つ目の活物質層を形成し、該2つ目の活物質層を最外層としたものである。   In order to achieve the above object, in the present invention, an active material layer made of a lithium-based active material that is any of tin, silicon, and antimony is formed on a current collecting layer made of copper or a copper alloy. In the negative electrode for a lithium ion secondary battery, a reinforcing layer made of a conductive and lithium inactive material is formed on the active material layer, and a second active material layer is formed on the reinforcing layer. The second active material layer is the outermost layer.

上記2つ目の活物質層の上に2つ目の強化層を形成し、該2つ目の強化層の上に3つ目の活物質層を形成するようにして、強化層と活物質層とを交互に多層形成し、最後の活物質層を最外層としてもよい。   A second reinforcing layer is formed on the second active material layer, and a third active material layer is formed on the second reinforcing material layer. Layers may be alternately formed, and the last active material layer may be the outermost layer.

上記強化層を形成する物質がニッケル、コバルト、鉄、銀、銅のいずれかの単金属又はいずれか2つ以上による合金であってもよい。   The material forming the reinforcing layer may be a single metal of nickel, cobalt, iron, silver, or copper, or an alloy of any two or more.

上記強化層の厚さが0.05μm以上かつ0.5μm未満であってもよい。   The reinforcing layer may have a thickness of 0.05 μm or more and less than 0.5 μm.

上記活物質層の厚さが5μm未満であってもよい。   The thickness of the active material layer may be less than 5 μm.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)サイクル特性に優れる。   (1) Excellent cycle characteristics.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係るリチウムイオン二次電池用負極1は、銅又は銅合金からなる集電層2の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層3を形成したリチウムイオン二次電池用負極1において、上記活物質層3の上に導電性がありかつリチウム不活性な物質からなる強化層4を形成し、その強化層4の上に2つ目の活物質層3を形成し、該2つ目の活物質層3を最外層としたものである。   As shown in FIG. 1, a negative electrode 1 for a lithium ion secondary battery according to the present invention is a tin-based, silicon-based, or antimony-based lithium on a current collecting layer 2 made of copper or a copper alloy. In the negative electrode 1 for a lithium ion secondary battery in which an active material layer 3 made of an active active material is formed, a reinforcing layer 4 made of a conductive and lithium inactive material is formed on the active material layer 3, A second active material layer 3 is formed on the reinforcing layer 4, and the second active material layer 3 is the outermost layer.

図示のように、本発明のリチウムイオン二次電池用負極1は、2つの活物質層3,3の間に導電性がありかつリチウム不活性な物質からなる強化層4を有する。これは、活物質層(活物質層3,3を合わせたもの)の内部に強化層4を設けたとも言える。   As shown in the figure, the negative electrode 1 for a lithium ion secondary battery of the present invention has a reinforcing layer 4 made of a conductive and inactive lithium material between the two active material layers 3 and 3. It can be said that the reinforcing layer 4 is provided inside the active material layer (a combination of the active material layers 3 and 3).

集電層2である銅箔上にめっきなどによりスズ膜からなる活物質層3を形成したり、銅とスズの金属間化合物からなる活物質層3を形成しただけでは、充放電のサイクルを繰り返すうちに急激に活物質層3が崩壊し脱落してしまう。この問題を解決するために、本発明者は、鋭意検討の末、活物質層の内部に強化層4を設けることにより、飛躍的に充放電のサイクル特性が向上するという新しい知見を得ることができた。この効果は、充放電に寄与しない強化層4が存在することで、その強化層4によって活物質を固定し、崩壊を抑制できることに起因すると考えられる。   If the active material layer 3 made of a tin film is formed on the copper foil as the current collecting layer 2 by plating or the like, or the active material layer 3 made of an intermetallic compound of copper and tin is formed, the charge / discharge cycle can be performed. The active material layer 3 suddenly collapses and falls off as it repeats. In order to solve this problem, the present inventor can obtain new knowledge that the charge / discharge cycle characteristics are drastically improved by providing the reinforcing layer 4 inside the active material layer after intensive studies. did it. This effect is considered to be due to the presence of the reinforcing layer 4 that does not contribute to charging / discharging, so that the active material can be fixed by the reinforcing layer 4 and collapse can be suppressed.

強化層4に導電性がない場合、集電層2との導通が得られないので、強化層4の物質は導電性物質である必要がある。また、強化層4の物質がリチウム活性である場合、充放電に伴って強化層4が膨張収縮してしまうため、活物質層3の崩落を抑制する効果が得られない。その点、本発明は、導電性がありかつリチウム不活性な物質からなる強化層4を形成するので、集電層2との導通が得られ、しかも、活物質層3の崩落を抑制する効果が得られる。   When the reinforcing layer 4 is not electrically conductive, conduction with the current collecting layer 2 cannot be obtained, and therefore the material of the reinforcing layer 4 needs to be a conductive material. In addition, when the material of the reinforcing layer 4 is lithium active, the reinforcing layer 4 expands and contracts with charge / discharge, so that the effect of suppressing the collapse of the active material layer 3 cannot be obtained. In that respect, the present invention forms the reinforced layer 4 made of a material that is conductive and inactive to lithium, so that conduction with the current collecting layer 2 can be obtained, and the collapse of the active material layer 3 can be suppressed. Is obtained.

また、強化層4を最外層としてしまうと、正常な充放電が起きない。その点、本発明は、強化層4の上に最外層として2つ目の活物質層3を設けた(=活物質層の内部に強化層4を設けた)ので、正常な充放電を起こすことができる。   If the reinforcing layer 4 is the outermost layer, normal charging / discharging does not occur. In that respect, in the present invention, since the second active material layer 3 is provided as the outermost layer on the reinforcing layer 4 (= the reinforcing layer 4 is provided inside the active material layer), normal charging / discharging occurs. be able to.

このように、本実施の形態によるリチウムイオン二次電池用負極は、集電層2の上に形成した活物質層3の上に、導電性がありかつリチウム不活性な物質からなる強化層4を形成し、その強化層4の上に2つ目の活物質層3を形成することにより、活物質層の内部に強化層4を設けた構造とした。これにより、活物質層3の崩落をなくすることができ、従来のスズ系やケイ素系の活物質を用いたものに比べてサイクル特性に優れる。また、従来のカーボン系の活物質を用いたものに比べるとエネルギ密度が高く、サイクル特性に優れ、小型化可能なリチウムイオン二次電池が供給可能となる。   As described above, the negative electrode for a lithium ion secondary battery according to the present embodiment is formed on the active material layer 3 formed on the current collecting layer 2 and the reinforcing layer 4 made of a conductive and lithium inactive material. And the second active material layer 3 is formed on the reinforcing layer 4 to provide a structure in which the reinforcing layer 4 is provided inside the active material layer. Thereby, the collapse of the active material layer 3 can be eliminated, and the cycle characteristics are superior to those using conventional tin-based or silicon-based active materials. In addition, it is possible to supply a lithium ion secondary battery that has higher energy density, excellent cycle characteristics, and can be miniaturized as compared with a conventional one using a carbon-based active material.

この実施形態において、強化層4を形成する物質は、導電性がありかつリチウム不活性な物質であればよいが、例として、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、銀(Ag)、銅(Cu)がある。これらは、単金属で使用してもよいし、いずれか2つ以上による合金を使用してもよく、前述した効果を奏することができる。   In this embodiment, the material that forms the reinforcing layer 4 may be any material that is conductive and lithium-inactive. For example, nickel (Ni), cobalt (Co), iron (Fe), silver ( Ag) and copper (Cu). These may be used as a single metal, or an alloy of any two or more may be used, and the above-described effects can be achieved.

強化層4の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするのが望ましい。なぜなら、0.05μm未満であると、強化層4によって被覆されない活物質層3の表面領域が不可避的に拡大し、その領域での強化効果が得られなくなる。また、0.05μm未満であると、強化層4自体の強度が低くなるため、活物質の崩壊を効果的に抑えられない。一方、0.5μmを超えると、強化層4が実質的にピンホールフリーとなって活物質層3の表面全体を覆ってしまうために、リチウムイオンが強化層4を透過できなくなり、強化層4に挟まれた活物質層3が充放電に寄与できなくなる。その点、本発明では、強化層4の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするので、活物質層3の表面が強化層4によって適度に覆われる。   The thickness of the reinforcing layer 4 is desirably in the range of 0.05 μm or more and less than 0.5 μm. This is because if the thickness is less than 0.05 μm, the surface region of the active material layer 3 that is not covered with the reinforcing layer 4 inevitably expands, and the reinforcing effect in that region cannot be obtained. Moreover, since the intensity | strength of reinforcement | strengthening layer 4 itself will become it low that it is less than 0.05 micrometer, collapse of an active material cannot be suppressed effectively. On the other hand, when the thickness exceeds 0.5 μm, the reinforcing layer 4 becomes substantially pinhole-free and covers the entire surface of the active material layer 3, so that lithium ions cannot pass through the reinforcing layer 4. The active material layer 3 sandwiched between the layers cannot contribute to charge / discharge. In that respect, in the present invention, the thickness of the reinforcing layer 4 is in the range of 0.05 μm or more and less than 0.5 μm, so that the surface of the active material layer 3 is appropriately covered with the reinforcing layer 4.

強化層4の厚さは、0.1μm以上かつ0.3μm未満の範囲内とするのがいっそう望ましい。なぜなら、前述した範囲に対してマージンをとれるからである。   It is more desirable that the thickness of the reinforcing layer 4 is in the range of 0.1 μm or more and less than 0.3 μm. This is because a margin can be taken with respect to the aforementioned range.

活物質層3の厚さは、5μm未満とするのが望ましい。図2のリチウムイオン二次電池用負極21のように強化層24と活物質層23とを交互に多層形成することで、活物質層23の厚さを薄くすることができ、活物質層23の厚さが薄いことにより、活物質が脱落しにくくなる。   The thickness of the active material layer 3 is preferably less than 5 μm. As the negative electrode 21 for the lithium ion secondary battery in FIG. 2, the reinforcing layers 24 and the active material layers 23 are alternately formed in multiple layers, whereby the thickness of the active material layer 23 can be reduced. Since the thickness of the active material is small, it becomes difficult for the active material to fall off.

活物質層3の厚さは、3μm未満とするのがいっそう望ましい。なぜなら、前述した上限に対してマージンをとれるからである。   The thickness of the active material layer 3 is more preferably less than 3 μm. This is because a margin can be taken with respect to the above-described upper limit.

活物質層3を形成する方法として、例えば、銅とスズの合金を活物質とする場合、集電層2の上に銅めっきとスズめっきを別々に施した後に、熱拡散によってCu6Snなどの合金からなる活物質層3を形成してもよいし、銅とスズを同時にめっきできるめっき液により、直接、集電層2の上に銅とスズの合金からなる活物質層3を形成してもよい。 As a method of forming the active material layer 3, for example, when an alloy of copper and tin is used as an active material, Cu 6 Sn or the like is formed by thermal diffusion after separately performing copper plating and tin plating on the current collecting layer 2. The active material layer 3 made of an alloy of the above may be formed, or the active material layer 3 made of an alloy of copper and tin is directly formed on the current collecting layer 2 with a plating solution capable of simultaneously plating copper and tin. May be.

次に、本発明の他の実施形態を説明する。   Next, another embodiment of the present invention will be described.

図2に示されるように、本発明に係るリチウムイオン二次電池用負極21は、銅又は銅合金からなる集電層22の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層23を形成したリチウムイオン二次電池用負極21において、上記活物質層23の上に導電性がありかつリチウム不活性な物質からなる強化層24を形成し、その強化層24の上に2つ目の活物質層23を形成し、該2つ目の活物質層23の上に2つ目の強化層24を形成し、該2つ目の強化層24の上に3つ目の活物質層23を形成するようにして、強化層24と活物質層23とを交互に多層形成し、最後の活物質層23を最外層としたものである。   As shown in FIG. 2, the negative electrode 21 for a lithium ion secondary battery according to the present invention is a tin-based, silicon-based, or antimony-based lithium on a current collecting layer 22 made of copper or a copper alloy. In the negative electrode 21 for a lithium ion secondary battery in which an active material layer 23 made of an active active material is formed, a reinforcing layer 24 made of a conductive and lithium inactive material is formed on the active material layer 23, A second active material layer 23 is formed on the reinforcing layer 24, a second reinforcing layer 24 is formed on the second active material layer 23, and the second reinforcing layer 24 is formed. A third active material layer 23 is formed thereon, and the reinforcing layers 24 and the active material layers 23 are alternately formed in multiple layers, with the last active material layer 23 being the outermost layer.

この構成により、各活物質層23を充放電反応に寄与させることができる。よって、各活物質層23における活物質量の合計が電池設計上で目標とする活物質量になるようにすればよい。このため、活物質層23の数を多くするほど1つの活物質層23の厚さを薄くすることができ、活物質層23の厚さを薄くすることで脱落しにくくできる。各活物質層23の厚さは同じである必要はない。   With this configuration, each active material layer 23 can contribute to the charge / discharge reaction. Therefore, the total amount of active materials in each active material layer 23 may be set to a target active material amount in battery design. For this reason, as the number of the active material layers 23 is increased, the thickness of one active material layer 23 can be reduced, and by reducing the thickness of the active material layer 23, it is difficult to drop off. The thickness of each active material layer 23 does not need to be the same.

表面粗さRa=0.12μmに粗化処理した厚さ18μmの銅箔を集電層として準備し、その集電層の上に、表1に示す銅めっき液で2.7μmの厚さの銅めっきを行い、次いで表1に示すスズめっき液で5μmの厚さのスズめっきを行った。次に、このめっきした試料を真空中で200℃において20時間熱処理し、負極を得た。この熱処理後の負極について、X線回折(XRD)装置でめっき層の構造解析を行い、JCPDSデータと比較することで、所望の活物質であるCu6Sn5の金属間化合物が形成されていることを確認した。この活物質層の厚さは8μmであった。この負極は、集電層の上に活物質層を1層のみ形成した従来構造のもので、これを比較例1−1の負極とする。 A copper foil having a thickness of 18 μm roughened to a surface roughness Ra = 0.12 μm was prepared as a current collecting layer. On the current collecting layer, a copper plating solution shown in Table 1 was used to make a thickness of 2.7 μm. Copper plating was performed, and then tin plating with a thickness of 5 μm was performed with a tin plating solution shown in Table 1. Next, this plated sample was heat-treated in vacuum at 200 ° C. for 20 hours to obtain a negative electrode. The negative electrode after this heat treatment is subjected to structural analysis of the plating layer with an X-ray diffraction (XRD) apparatus and compared with JCPDS data, whereby an intermetallic compound of Cu 6 Sn 5 as a desired active material is formed. It was confirmed. The thickness of this active material layer was 8 μm. This negative electrode has a conventional structure in which only one active material layer is formed on the current collecting layer, and this is used as the negative electrode of Comparative Example 1-1.

Figure 2008010364
Figure 2008010364

上記と同様の集電層の上に、同様のめっき液で1.3μmの厚さの銅めっきを行い、次いで2.5μmの厚さのスズめっきを行い、次いで、表1のニッケルめっき液で0.1μmの厚さのニッケルめっきを行い、さらに2.5μmの厚さのスズめっきを行った後、上記と同様に熱処理を行って負極を得た。この負極は、集電層の上に活物質層、強化層、活物質層を順に形成した図1の形態のもので、これを実施例1−1の負極とする。   On the same current collecting layer as above, copper plating with a thickness of 1.3 μm is performed with the same plating solution, then tin plating with a thickness of 2.5 μm is performed, and then the nickel plating solution in Table 1 is used. After nickel plating with a thickness of 0.1 μm and tin plating with a thickness of 2.5 μm, heat treatment was performed in the same manner as above to obtain a negative electrode. This negative electrode has the form of FIG. 1 in which an active material layer, a reinforcing layer, and an active material layer are formed in this order on a current collecting layer. This is the negative electrode of Example 1-1.

上記と同様の集電層の上に、同様のめっき液で0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっき、0.1μmの厚さのニッケルめっき、0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっき、0.1μmの厚さのニッケルめっき、0.9μmの厚さの銅めっき、1.6μmの厚さのスズめっきを順に行い、上記と同様に熱処理を行って負極を得た。この負極は、集電層の上に活物質層、強化層、活物質層、強化層、活物質層を順に形成した図2の形態のもので、これを実施例1−2の負極とする。   On the same current collecting layer as above, 0.9 μm-thick copper plating, 1.6 μm-thick tin plating, 0.1 μm-thickness nickel plating, 0.9 μm-thickness with the same plating solution Thickness copper plating, 1.6 μm thickness tin plating, 0.1 μm thickness nickel plating, 0.9 μm thickness copper plating, 1.6 μm thickness tin plating in order, In the same manner as above, heat treatment was performed to obtain a negative electrode. This negative electrode has the form of FIG. 2 in which an active material layer, a reinforcing layer, an active material layer, a reinforcing layer, and an active material layer are formed in this order on a current collecting layer, and this is used as the negative electrode of Example 1-2. .

実施例1−2の負極(めっき後)の断面SEM写真を図3に示す。図示のように、銅からなる集電層の上に、銅とスズからなる活物質層とニッケルからなる強化層とが交互に積層されている。   A cross-sectional SEM photograph of the negative electrode (after plating) of Example 1-2 is shown in FIG. As shown in the figure, an active material layer made of copper and tin and a reinforcing layer made of nickel are alternately laminated on a current collecting layer made of copper.

このようにして得た比較例1−1、実施例1−1、実施例1−2の負極をそれぞれ2cm2の円形に打ち抜き、この負極に対し金属リチウムを正極とする試作セル(リチウムイオン二次電池)を製作し、各試作セルの充放電試験と評価を行った。測定装置は北斗電工製HJ1001SM8Aであり、セパレータにはセルガード製#2400、電解液には富士薬品工業LIPASTER−EDMC/PF1(1mol/1000cm3のLiPF6を溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1 vol.))を用いた。充放電は、0.01〜1V vs Li/Li+の範囲で0.25mA/cm2の定電流密度で行った。 The negative electrodes of Comparative Example 1-1, Example 1-1, and Example 1-2 obtained in this way were each punched out into a 2 cm 2 circle, and a prototype cell (lithium ion secondary battery) using metallic lithium as the positive electrode for the negative electrode. Secondary battery) was manufactured, and charge / discharge tests and evaluations of each prototype cell were performed. The measuring device is HJ1001SM8A manufactured by Hokuto Denko, the separator is Celgard # 2400, and the electrolyte is Fuji Chemical Industry LIPASTER-EDMC / PF1 (1 mol / 1000 cm 3 of LiPF 6 mixed solution of ethylene carbonate and diethyl carbonate ( 1: 1 vol.)) Was used. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1 V vs Li / Li +.

表2に、初期サイクル(1サイクル目)の放電容量(以下、初回放電容量という)に対する5サイクル後と20サイクル後の放電容量で表される放電容量維持率の評価結果を示す。表2に示すように、活物質層が1層のみの比較例1−1に比べ、強化層を設けた実施例1−1、実施例1−2のほうが放電容量維持率が高い。この結果から、強化層を設けることでサイクル特性が向上することが分かる。   Table 2 shows the evaluation results of the discharge capacity retention ratio expressed by the discharge capacity after 5 cycles and after 20 cycles with respect to the discharge capacity (hereinafter referred to as initial discharge capacity) of the initial cycle (first cycle). As shown in Table 2, compared to Comparative Example 1-1 in which only one active material layer is provided, Example 1-1 and Example 1-2 in which a reinforcing layer is provided have a higher discharge capacity retention rate. From this result, it can be seen that the cycle characteristics are improved by providing the reinforcing layer.

Figure 2008010364
Figure 2008010364

また、充放電試験後の試作セルを分解し、負極表面を観察すると、比較例1−1の負極は活物質の脱落が起こっていたのに対し、実施例1−1、実施例1−2の負極では、活物質の脱落が起こっておらず、健全性が保たれていた。   In addition, when the prototype cell after the charge / discharge test was disassembled and the negative electrode surface was observed, the negative electrode of Comparative Example 1-1 had fallen off the active material, whereas Example 1-1 and Example 1-2. In the negative electrode, the active material did not fall off and the soundness was maintained.

実施例1−1と同様に、集電層の上に活物質層、強化層、活物質層を順に形成した図1の形態の負極を作成した。ただし、強化層の厚さが0.01,0.05,0.1,0.3,0.5μmの負極を作成し、その厚さの順に比較例2−1、実施例2−1、実施例2−2、実施例2−3、比較例2−2とした。   In the same manner as in Example 1-1, a negative electrode having the form of FIG. 1 in which an active material layer, a reinforcing layer, and an active material layer were sequentially formed on a current collecting layer was prepared. However, a negative electrode having a reinforcing layer thickness of 0.01, 0.05, 0.1, 0.3, 0.5 μm was prepared, and Comparative Example 2-1, Example 2-1, It was set as Example 2-2, Example 2-3, and Comparative Example 2-2.

これらの負極を用いて各々試作セルを作成し、前述と同様の充放電試験を行った。ここでは、初回放電容量と放電容量維持率とで評価した。   Using each of these negative electrodes, prototype cells were prepared and subjected to the same charge / discharge test as described above. Here, the initial discharge capacity and the discharge capacity retention rate were evaluated.

Figure 2008010364
Figure 2008010364

表3に示すように、初回放電容量は、比較例2−2が286mAh/gで他の例が530mAh/g前後であるのに比べて約半分である。これは比較例2−2における強化層の厚さが0.5μmと厚いため、リチウムイオンの透過が阻害されて活物質層の活物質が充放電に寄与していないためと考えられる。比較例2−1及び実施例2−1、実施例2−2、実施例2−3は、強化層をリチウムイオンが透過し易いため、活物質層が充放電によく寄与し、初回放電容量が高くなる。   As shown in Table 3, the initial discharge capacity is about half compared to 286 mAh / g in Comparative Example 2-2 and around 530 mAh / g in the other examples. This is presumably because the thickness of the reinforcing layer in Comparative Example 2-2 is as thick as 0.5 μm, so that lithium ion permeation is inhibited and the active material in the active material layer does not contribute to charge / discharge. In Comparative Example 2-1, Example 2-1, Example 2-2, and Example 2-3, the lithium ion easily penetrates the reinforcing layer, so that the active material layer contributes well to charge and discharge, and the initial discharge capacity. Becomes higher.

放電容量維持率で比較すると、強化層の厚さが0.01μmと薄い比較例2−1では放電容量維持率が低く、サイクル特性が悪いのに対し、強化層の厚さが0.05μm以上ある実施例2−1、実施例2−2、実施例2−3及び比較例2−2では放電容量維持率が高く、サイクル特性が良い。   When compared with the discharge capacity maintenance rate, the thickness of the reinforcing layer is as small as 0.01 μm, but Comparative Example 2-1 has a low discharge capacity maintenance rate and poor cycle characteristics, whereas the thickness of the reinforcing layer is 0.05 μm or more. In certain Example 2-1, Example 2-2, Example 2-3, and Comparative Example 2-2, the discharge capacity retention rate is high and the cycle characteristics are good.

この試験結果から、強化層の厚さは、0.05μm以上かつ0.5μm未満の範囲内とするのが好ましいことが分かる。   From this test result, it can be seen that the thickness of the reinforcing layer is preferably in the range of 0.05 μm or more and less than 0.5 μm.

本発明の一実施形態を示すリチウムイオン二次電池用負極の断面図である。It is sectional drawing of the negative electrode for lithium ion secondary batteries which shows one Embodiment of this invention. 本発明の他の実施形態を示すリチウムイオン二次電池用負極の断面図である。It is sectional drawing of the negative electrode for lithium ion secondary batteries which shows other embodiment of this invention. 実施例1−2の負極(めっき後)の断面SEM写真のイメージ図である。It is an image figure of the cross-sectional SEM photograph of the negative electrode (after plating) of Example 1-2.

符号の説明Explanation of symbols

1,21 リチウムイオン二次電池用負極
2,22 集電層
3,23 活物質層
4,24 強化層
1,21 Negative electrode for lithium ion secondary battery 2,22 Current collecting layer 3,23 Active material layer 4,24 Strengthening layer

Claims (5)

銅又は銅合金からなる集電層の上にスズ系、ケイ素系、アンチモン系のいずれかであってリチウム活性な活物質からなる活物質層を形成したリチウムイオン二次電池用負極において、上記活物質層の上に導電性がありかつリチウム不活性な物質からなる強化層を形成し、その強化層の上に2つ目の活物質層を形成し、該2つ目の活物質層を最外層としたことを特徴とするリチウムイオン二次電池用負極。   A negative electrode for a lithium ion secondary battery in which an active material layer made of a lithium-active active material that is either tin-based, silicon-based, or antimony-based is formed on a current collecting layer made of copper or a copper alloy. A reinforcing layer made of a material that is conductive and lithium-inactive is formed on the material layer, a second active material layer is formed on the reinforcing layer, and the second active material layer is formed on the outermost layer. A negative electrode for a lithium ion secondary battery, characterized in that it is an outer layer. 上記2つ目の活物質層の上に2つ目の強化層を形成し、該2つ目の強化層の上に3つ目の活物質層を形成するようにして、強化層と活物質層とを交互に多層形成し、最後の活物質層を最外層としたことを特徴とする請求項1記載のリチウムイオン二次電池用負極。   A second reinforcing layer is formed on the second active material layer, and a third active material layer is formed on the second reinforcing material layer. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the layers are alternately formed in multiple layers, and the last active material layer is the outermost layer. 上記強化層を形成する物質がニッケル、コバルト、鉄、銀、銅のいずれかの単金属又はいずれか2つ以上による合金であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。   3. The lithium ion secondary battery according to claim 1, wherein the material forming the reinforcing layer is a single metal of nickel, cobalt, iron, silver, or copper, or an alloy of any two or more thereof. Negative electrode. 上記強化層の厚さが0.05μm以上かつ0.5μm未満であることを特徴とする請求項1〜3いずれか記載のリチウムイオン二次電池用負極。   4. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the reinforcing layer has a thickness of 0.05 μm or more and less than 0.5 μm. 上記活物質層の厚さが5μm未満であることを特徴とする請求項1〜4いずれか記載のリチウムイオン二次電池用負極。
5. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the active material layer has a thickness of less than 5 μm.
JP2006181837A 2006-06-30 2006-06-30 Anode for lithium ion secondary battery Pending JP2008010364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181837A JP2008010364A (en) 2006-06-30 2006-06-30 Anode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181837A JP2008010364A (en) 2006-06-30 2006-06-30 Anode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008010364A true JP2008010364A (en) 2008-01-17

Family

ID=39068369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181837A Pending JP2008010364A (en) 2006-06-30 2006-06-30 Anode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008010364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery
JP2014212328A (en) * 2009-03-26 2014-11-13 コニカミノルタ株式会社 Organic electroluminescent material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212328A (en) * 2009-03-26 2014-11-13 コニカミノルタ株式会社 Organic electroluminescent material
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
CN100555733C (en) Battery
US20130288122A1 (en) Copper foil for negative electrode current collector of lithium ion secondary battery, negative electrode material of lithium ion secondary battery, and method for selecting negative electrode current collector of lithium ion secondary battery
JP6536538B2 (en) Fluoride ion battery and method of manufacturing the same
WO2006080265A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
JP7273119B2 (en) Solid-state battery and method for manufacturing solid-state battery
KR101103182B1 (en) Anode and battery using the same
JP2010521053A (en) Battery electrode and battery including such electrode
CN110233281A (en) All-solid-state battery
JP2006269362A (en) Negative electrode for lithium ion secondary battery
JP2021530847A (en) Lithium-ion battery with metal foam anode and cathode
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2006236685A (en) Negative electrode, battery, and their manufacturing method
JP2008171788A (en) Collector for lithium ion cells and method for manufacturing it
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP3922579B2 (en) Negative electrode and battery
JP3707617B2 (en) Negative electrode and battery using the same
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP2007035297A (en) Collector and lithium ion secondary battery using it
JP6926910B2 (en) Rechargeable battery
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
JP6561461B2 (en) Negative electrode for electric device and electric device using the same
JP2018045779A (en) All-solid lithium ion secondary battery
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method