WO2019123951A1 - Lithium-ion secondary cell - Google Patents

Lithium-ion secondary cell Download PDF

Info

Publication number
WO2019123951A1
WO2019123951A1 PCT/JP2018/042840 JP2018042840W WO2019123951A1 WO 2019123951 A1 WO2019123951 A1 WO 2019123951A1 JP 2018042840 W JP2018042840 W JP 2018042840W WO 2019123951 A1 WO2019123951 A1 WO 2019123951A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ion secondary
lithium ion
secondary battery
positive electrode
Prior art date
Application number
PCT/JP2018/042840
Other languages
French (fr)
Japanese (ja)
Inventor
晴章 内田
坂脇 彰
安田 剛規
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018192560A external-priority patent/JP2019114529A/en
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US16/771,719 priority Critical patent/US20210175512A1/en
Priority to CN201880077375.4A priority patent/CN111418106A/en
Publication of WO2019123951A1 publication Critical patent/WO2019123951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • a lithium ion secondary battery is known as a secondary battery satisfying such a demand.
  • the lithium ion secondary battery has a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte that exhibits lithium ion conductivity and is disposed between the positive electrode and the negative electrode.
  • an organic electrolytic solution or the like has been used as an electrolyte.
  • a solid electrolyte inorganic solid electrolyte
  • the negative electrode current collector It has been proposed to provide a block region containing an active material (see Patent Document 1).
  • An object of the present invention is to suppress the leakage of lithium to the outside in an all solid lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention is not composed of a metal or alloy having a solid structure containing an inorganic solid electrolyte exhibiting lithium ion conductivity, a holding layer capable of holding lithium, and an amorphous structure. And an amorphous metal layer in order.
  • the amorphous metal layer may be characterized by containing chromium (Cr).
  • the amorphous metal layer may be made of an alloy of chromium (Cr) and titanium (Ti).
  • the amorphous metal layer may be characterized by being made of a metal or an alloy which does not form an intermetallic compound with lithium.
  • the amorphous metal layer is characterized in that it is made of any of ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, AuSi. can do.
  • the holding layer may be characterized by being made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) having a porous structure, gold (Au), or an alloy thereof.
  • the holding layer can be characterized by being made of titanium having a plurality of columnar crystals each extending in the thickness direction.
  • the holding layer can be characterized by containing a negative electrode active material. Further, the holding layer can be characterized by containing a positive electrode active material. Further, a positive electrode layer containing a positive electrode active material is provided on the side opposite to the holding layer of the solid electrolyte layer, and the size of the plane of the holding layer is larger than the size of the plane of the positive electrode layer. can do. In addition, it is characterized by further comprising a noble metal layer composed of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy thereof, and laminated on the amorphous metal layer. can do.
  • Ru, Rh, Pd, Os, Ir, Pt platinum group element
  • Au gold
  • FIG. 1 is a view showing a cross-sectional configuration of a lithium ion secondary battery of Embodiment 1; 3 is a flowchart for illustrating a method of manufacturing the lithium ion secondary battery of Embodiment 1.
  • FIG. 2 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery after film formation and before initial charge according to Embodiment 1.
  • (A) to (c) are diagrams for explaining the procedure for making the holding layer porous.
  • A) is a cross section STEM photograph of the lithium ion secondary battery after film formation and before the first charge
  • (b) is a cross section STEM photograph of the lithium ion secondary battery after the first discharge.
  • FIG. 1 is a view showing a cross-sectional configuration of a lithium ion secondary battery of Embodiment 1
  • 3 is a flowchart for illustrating a method of manufacturing the lithium ion secondary battery of Embodiment 1.
  • FIG. 2 is a diagram showing a cross-sectional configuration
  • FIG. 5 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a first modified example of the first embodiment.
  • FIG. 7 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a second modified example of the first embodiment.
  • FIG. 16 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a third modified example of the first embodiment.
  • FIG. 18 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a fourth modified example of the first embodiment.
  • (A), (b) is a figure which shows the cross-sectional structure of the lithium ion secondary battery of Embodiment 2.
  • FIG. FIG. 10 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of Embodiment 3.
  • 7 is a cross-sectional STEM photograph of a lithium ion secondary battery of another configuration example according to Embodiment 1.
  • FIG. 1 is a view showing a cross-sectional configuration of the lithium ion secondary battery 1 of the first embodiment.
  • the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers (films) are stacked, as described later, and after forming a basic structure by a so-called film formation process, The structure is completed by the charge and discharge operation.
  • FIG. 1 shows the state after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
  • the lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, a positive electrode current collector layer 20 stacked on the substrate 10, a positive electrode layer 30 stacked on the positive electrode current collector layer 20, and a positive electrode layer 30.
  • a solid electrolyte layer 40 laminated on the upper side, and a holding layer 50 laminated on the solid electrolyte layer 40 are provided.
  • the solid electrolyte layer 40 covers the peripheries of both the positive electrode current collector layer 20 and the positive electrode layer 30 and the end portions thereof are directly laminated on the substrate 10, whereby the positive electrode current collector layer 20 and the substrate 10 are obtained.
  • the positive electrode layer 30 is covered.
  • the lithium ion secondary battery 1 is stacked on the holding layer 50 and directly stacked on the solid electrolyte layer 40 at the periphery of the holding layer 50, thereby covering the solid electrolyte layer 40 with the holding layer 50.
  • a covering layer 60 Furthermore, the lithium ion secondary battery 1 is laminated on the covering layer 60 and directly laminated on the solid electrolyte layer 40 at the periphery of the covering layer 60, thereby covering the covering layer 60 with respect to the solid electrolyte layer 40.
  • a negative electrode current collector layer 70 is provided.
  • the substrate 10 is not particularly limited, and substrates made of various materials such as metal, glass, and ceramics can be used.
  • the substrate 10 is formed of a metal plate having electron conductivity. More specifically, in the present embodiment, a stainless steel foil (plate) having a mechanical strength higher than that of copper, aluminum or the like is used as the substrate 10. Further, as the substrate 10, a metal foil plated with a conductive metal such as tin, copper, chromium or the like may be used as the substrate 10.
  • the thickness of the substrate 10 can be, for example, 20 ⁇ m or more and 2000 ⁇ m or less. If the thickness of the substrate 10 is less than 20 ⁇ m, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, when the thickness of the substrate 10 exceeds 2000 ⁇ m, the volume energy density and weight energy density decrease due to the increase in thickness and weight of the battery.
  • the positive electrode current collector layer 20 is not particularly limited as long as it is a solid thin film and has electron conductivity, and for example, a conductive material containing various metals or an alloy of various metals is used. Can.
  • the thickness of the positive electrode current collector layer 20 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the positive electrode current collector layer 20 is less than 5 nm, the current collection function is lowered and it is not practical. On the other hand, when the thickness of the positive electrode current collector layer 20 exceeds 50 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
  • the positive electrode current collector layer 20 As a method of manufacturing the positive electrode current collector layer 20, known film forming methods such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency It is desirable to use a method or a vacuum evaporation method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the positive electrode current collector layer 20 may not be provided between the substrate 10 and the positive electrode layer 30.
  • the positive electrode current collector layer 20 may be provided between the substrate 10 and the positive electrode layer 30.
  • the positive electrode layer 30 is a solid thin film, and contains a positive electrode active material that desorbs lithium ions during charging and stores lithium ions during discharging.
  • a positive electrode active material constituting the positive electrode layer 30 for example, one type selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), vanadium (V) It is possible to use one composed of various materials such as oxides, sulfides or phosphorus oxides containing the above metals.
  • the positive electrode layer 30 may be a composite positive electrode containing a solid electrolyte.
  • the thickness of the positive electrode layer 30 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small to be practical. On the other hand, when the thickness of the positive electrode layer 30 exceeds 40 ⁇ m, it takes too long to form the layer, and the productivity is lowered. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the positive electrode layer 30 may be more than 40 ⁇ m.
  • the positive electrode layer 30 As a method of producing the positive electrode layer 30, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
  • the solid electrolyte layer 40 is a solid thin film, and includes a solid electrolyte (inorganic solid electrolyte) made of an inorganic material.
  • the inorganic solid electrolyte constituting the solid electrolyte layer 40 is not particularly limited as long as it exhibits lithium ion conductivity, and is made of various materials such as oxides, nitrides, and sulfides. Can be used.
  • the thickness of the solid electrolyte layer 40 can be, for example, 10 nm or more and 10 ⁇ m or less.
  • the thickness of the solid electrolyte layer 40 is less than 10 nm, a short circuit (leakage) is likely to occur between the positive electrode layer 30 and the holding layer 50 in the obtained lithium ion secondary battery 1.
  • the thickness of the solid electrolyte layer 40 exceeds 10 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
  • the solid electrolyte layer 40 As a method of manufacturing the solid electrolyte layer 40, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method.
  • the holding layer 50 is a solid thin film and has a function of holding lithium ions.
  • maintenance layer 50 shown in FIG. 1 is comprised by the porous part 51 in which the many void
  • the holding layer 50 can be made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy of these. Among these, it is preferable that the holding layer 50 be made of platinum (Pt) or gold (Au) that is more resistant to oxidation.
  • the holding layer 50 (porous portion 51) of the present embodiment can be formed of the above-described noble metal or a polycrystal of an alloy of these.
  • the thickness of the holding layer 50 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the retention layer 50 is less than 10 nm, the ability to retain lithium will be insufficient. On the other hand, when the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the holding layer 50 may be more than 40 ⁇ m.
  • the holding layer 50 As a method of manufacturing the holding layer 50, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method. And as a manufacturing method of the holding layer 50 made porous, it is desirable to employ
  • the covering layer 60 as an example of the amorphous metal layer is made of a metal or an alloy which is a solid thin film and has an amorphous structure. And among these, from the viewpoint of corrosion resistance, it is preferable that it is chromium (Cr) alone or an alloy containing chromium, and it is more preferable that it is an alloy of chromium and titanium (Ti).
  • the covering layer 60 is preferably made of a metal or alloy which does not form an intermetallic compound with lithium (Li).
  • the covering layer 60 can also be configured by laminating a plurality of amorphous layers different in constituent material (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer).
  • amorphous layers different in constituent material for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer.
  • the range of the composition ratio to become an amorphous structure depends on the conditions for forming the layer, and thus the range of the preferred composition ratio can not be defined. It may be selected in combination with
  • the “amorphous structure” in the present embodiment includes not only one having an amorphous structure as a whole but also one having microcrystals precipitated in the amorphous structure. .
  • the thickness of the covering layer 60 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the covering layer 60 is less than 10 nm, it is difficult for the covering layer 60 to stop the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side. On the other hand, when the thickness of the covering layer 60 exceeds 40 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
  • the covering layer 60 As a method of manufacturing the covering layer 60, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
  • the covering layer 60 is made of the above-described chromium titanium alloy, the chromium titanium alloy is likely to be amorphous if the sputtering method is employed.
  • Examples of metals (alloys) that can be used for the covering layer 60 include ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, and AuSi. be able to.
  • the negative electrode current collector layer 70 as an example of the noble metal layer is not particularly limited as long as it is a solid thin film and has electron conductivity, and includes, for example, various metals and alloys of various metals.
  • a conductive material can be used.
  • a chemically stable material for example, platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) Or preferably composed of these alloys.
  • the thickness of the negative electrode current collector layer 70 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collection function are reduced, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 70 exceeds 50 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
  • the negative electrode current collector layer 70 As a method of manufacturing the negative electrode current collector layer 70, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
  • the positive electrode layer 30 and the holding layer 50 face each other with the solid electrolyte layer 40 interposed therebetween. That is, the positive electrode layer 30 containing the positive electrode active material is positioned on the opposite side of the solid electrolyte layer 40 to the holding layer 50.
  • the size of the plane of the holding layer 50 is larger than the size of the plane of the positive electrode layer 30.
  • the entire peripheral edge of the plane of the positive electrode layer 30 is located inside the entire peripheral edge of the plane of the holding layer 50.
  • the lower surface (planar surface) of the holding layer 50 is opposed to the upper surface (planar surface) of the positive electrode layer 30 shown in FIG. 1 with the solid electrolyte layer 40 interposed therebetween.
  • FIG. 2 is a flowchart for explaining the method of manufacturing the lithium ion secondary battery of the first embodiment.
  • the substrate 10 is mounted on a sputtering apparatus (not shown), and a positive electrode current collector layer forming step of forming the positive electrode current collector layer 20 on the substrate 10 is performed (step 20).
  • the positive electrode layer forming step of forming the positive electrode layer 30 on the positive electrode current collector layer 20 is performed by the sputtering apparatus (step 30).
  • a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is executed by the sputtering apparatus (step 40).
  • a holding layer forming step of forming the holding layer 50 on the solid electrolyte layer 40 is performed by the sputtering apparatus (step 50).
  • a covering layer forming step of forming a covering layer 60 on the solid electrolyte layer 40 and the holding layer 50 is performed (step 60).
  • the negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the solid electrolyte layer 40 and the covering layer 60 is executed by the sputtering apparatus (step 70).
  • an initial charge step of performing the first charge on the lithium ion secondary battery 1 removed from the sputtering apparatus is performed (step 80).
  • an initial discharge step of performing a first discharge on the charged lithium ion secondary battery 1 is performed (step 90).
  • the holding layer 50 is made porous, that is, the porous portion 51 and the plurality of pores 52 are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained. The details of making the holding layer 50 porous by the first charge and discharge operation will be described later.
  • FIG. 3 is a view showing a cross-sectional configuration of the lithium ion secondary battery 1 after film formation and before initial charge according to the first embodiment.
  • FIG. 3 shows a state in which steps up to step 70 shown in FIG. 2 are completed.
  • FIG. 1 shows a state in which step 90 (all steps) shown in FIG. 2 is completed.
  • the basic configuration of the lithium ion secondary battery 1 shown in FIG. 3 is the same as that shown in FIG. However, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the holding layer 50 is not made porous and is more compact than that shown in FIG. 1. Further, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the thickness of the holding layer 50 is thinner than that shown in FIG. 1.
  • FIG. 4 is a view for explaining the procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and the periphery thereof.
  • FIG. 4 (a) shows the state after film formation and before the first charge (after step 70)
  • FIG. 4 (b) shows the state after the first charge and before the first discharge (between step 80 and step 90).
  • FIG. 4C shows the state after the first discharge (after step 90), respectively. Therefore, FIG. 4 (a) corresponds to FIG. 3, and FIG. 4 (c) corresponds to FIG.
  • the holding layer 50 is densified.
  • the thickness of the holding layer 50 is a holding layer thickness t50
  • the thickness of the covering layer 60 is a covering layer thickness t60
  • the thickness of the negative electrode current collector layer 70 is a negative electrode current collector layer thickness t70. It is.
  • the substrate 10 (see FIG. 1) has a positive electrode of a DC power supply, and the negative electrode collector layer 70 has a DC power supply. Negative electrodes are connected respectively.
  • the lithium ions (Li + ) constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 4B).
  • lithium ions moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the noble metal constituting the holding layer 50.
  • the holding layer 50 is made of platinum (Pt)
  • platinum and platinum are alloyed (solid solution, formation of an intermetallic compound or eutectic).
  • the covering layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly reduced as compared with the holding layer 50 having a polycrystalline structure. There is. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the covering layer 60 hardly enter the covering layer 60, and therefore, the state of being held in the holding layer 50 is maintained.
  • the lithium ions transferred from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50 in the state where the initial charging operation is finished. At this time, it is considered that lithium ions transferred to the holding layer 50 are held in the holding layer 50 by alloying with platinum, precipitation of metal lithium in platinum, or the like.
  • the holding layer thickness t50 is after the film formation shown in FIG. 4 (a) and before the first charge. Increase from the state of That is, the volume of the holding layer 50 is increased by the first charge. This is considered to be attributable to the alloying of lithium and platinum in the holding layer 50.
  • the coating layer thickness t60 is substantially unchanged before and after the first charge. That is, the volume of the covering layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium does not easily enter the covering layer 60.
  • the negative electrode current collector layer thickness t70 does not substantially change before and after the initial charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the initial charge (negative electrode collection). It is considered that the platinum that constitutes the collector layer 70 is supported by the fact that it is not made porous like the platinum that constitutes the holding layer 50 and remains compact.
  • the substrate 10 (see FIG. 1) has a positive electrode of the load and the negative electrode collector layer 70 of the negative electrode. The electrodes are connected respectively. Then, as shown in FIG. 4C, lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 through the solid electrolyte layer 40. That is, in the discharge operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (downward in FIG. 4C) and are held in the positive electrode layer 30. Along with this, a direct current is supplied to the load.
  • the dealloying of the alloy of lithium and platinum (the dissolution of metal lithium when metal lithium is deposited) is performed as lithium is separated. And as a result of performing dealloying by the holding
  • the porous portion 51 obtained in this manner is substantially composed of a noble metal (for example, platinum).
  • a noble metal for example, platinum
  • the holding layer thickness t50 is greater than the state after the first charge and before the first discharge shown in FIG. 4B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the retaining layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the initial discharge is flattened so that the thickness direction becomes smaller than the surface direction. Further, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the first discharge, the holding layer thickness t50 is larger than the state after the film formation shown in FIG. 4A and before the first charge. Do.
  • the holding layer 50 is made porous by the first charge and the first discharge, that is, a large number of pores 52 are formed in the holding layer 50.
  • the coating layer thickness t60 and the negative electrode current collector layer thickness t70 are substantially the same before and after the first discharge.
  • FIG. 5 is a cross-sectional STEM (Scanning Transmission Electron Microscope) photograph of the lithium ion secondary battery 1 of the present embodiment, where (a) shows the state after film formation and before the first charge, and (b) shows the state after the first discharge. The state of each is shown.
  • the STEM photograph was taken using a Hitachi High-Technologies Corporation HD-2300 ultrathin film evaluation apparatus.
  • FIG. 5 (a) corresponds to FIG. 4 (a) (and FIG. 3) described above
  • FIG. 5 (b) corresponds to FIG. 4 (c) (and FIG. 1) described above.
  • the specific structure and manufacturing method of the lithium ion secondary battery 1 shown to Fig.5 (a) are as showing below.
  • Stainless steel (SUS304) was used for the substrate 10 (not shown in FIG. 5).
  • the thickness of the substrate 10 was 30 ⁇ m.
  • the positive electrode current collector layer 20 (not shown in FIG. 5), aluminum formed by sputtering was used. The thickness of the positive electrode current collector layer 20 was 100 nm.
  • lithium manganate Li 1.5 Mn 2 O 4
  • the thickness of the positive electrode layer 30 was 1000 nm.
  • LiPON a lithium phosphate (Li 3 PO 4 ) part of which oxygen was replaced with nitrogen
  • the thickness of the solid electrolyte layer 40 was 1000 nm.
  • the thickness of the holding layer 50 was 410 nm (after film formation and before initial charge).
  • a chromium titanium alloy (more specifically, Cr 50 Ti 50 ) formed by a sputtering method was used.
  • the thickness of the covering layer 60 was 50 nm.
  • the negative electrode current collector layer 70 platinum (Pt) formed by a sputtering method was used.
  • the thickness of the negative electrode current collector layer 70 was 100 nm.
  • the crystal structure was analyzed by electron beam diffraction, and it was as follows.
  • the substrate 10 made of SUS304, the positive electrode current collector layer 20 made of aluminum, the holding layer 50 made of platinum, and the negative electrode current collector layer 70 were each crystallized.
  • the positive electrode layer 30 made of lithium manganate, the solid electrolyte layer 40 made of LiPON, and the coating layer 60 made of a chromium titanium alloy were respectively made amorphous.
  • the solid electrolyte layer 40, and the covering layer 60 a ring was slightly observed by electron beam diffraction, and it was found that microcrystals were present in the amorphous structure.
  • FIG. 5A shows that the holding layer 50 is almost uniformly white
  • FIG. 5B shows that a plurality of gray spots are present on the white background.
  • the holding layer 50 is flattened on the side of the boundary with the covering layer 60 so that the thickness direction becomes smaller than the surface direction, and compared to other gray spots. It also shows that relatively large gray areas exist.
  • FIG. 5 (b) it is considered that the white part corresponds to the porous part 51 and the gray part corresponds to the air holes 52.
  • FIG.5 (b) it turns out also compared with FIG.5 (a) that the holding
  • the thickness of the holding layer 50 shown in FIG. 5B was 610 nm (after the first discharge).
  • both FIG. 5A and FIG. 5B it can be seen that the covering layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective shades. Furthermore, in both FIG. 5A and FIG. 5B, it can also be seen that the coating layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective thicknesses.
  • FIG. 12 is a cross-sectional STEM photograph of a lithium ion secondary battery 1 of another configuration example according to the present embodiment.
  • FIG. 12 shows the state after the first discharge. Similar to FIG. 5 described above, this STEM photograph was taken using an HD-2300 ultrathin film evaluation apparatus manufactured by Hitachi High-Technologies Corporation.
  • FIG. 12 corresponds to FIG. 4 (c) (and FIG. 1) described above.
  • the specific configuration and manufacturing method of the lithium ion secondary battery 1 shown in FIG. 12 are as follows.
  • Stainless steel (SUS304) was used for the substrate 10 (not shown in FIG. 12).
  • the thickness of the substrate 10 was 30 ⁇ m.
  • the positive electrode current collector layer 20 (not shown in FIG. 12), aluminum formed by sputtering was used. The thickness of the positive electrode current collector layer 20 was 100 nm.
  • lithium manganate Li 1.5 Mn 2 O 4
  • the thickness of the positive electrode layer 30 was 1000 nm.
  • lithium phosphate (Li 3 PO 4 ) formed by sputtering was used for the solid electrolyte layer 40.
  • the thickness of the solid electrolyte layer 40 was 1000 nm.
  • the thickness of the holding layer 50 was 70 nm (after film formation and before initial charge).
  • the covering layer 60 a CoZrNb alloy (more specifically, Co 91 Zr 5 Nb 4 ) formed by a sputtering method was used.
  • the thickness of the covering layer 60 was 200 nm.
  • the negative electrode current collector layer 70 platinum (Pt) formed by a sputtering method was used.
  • the thickness of the negative electrode current collector layer 70 was 70 nm.
  • the crystal structure of the lithium ion secondary battery 1 obtained as described above after film formation and before the first charge was analyzed by electron beam diffraction, and found to be as follows.
  • the substrate 10 made of SUS304, the positive electrode current collector layer 20 made of aluminum, the holding layer 50 made of platinum, and the negative electrode current collector layer 70 were each crystallized.
  • the positive electrode layer 30 made of lithium manganate, the solid electrolyte layer 40 made of lithium phosphate (Li 3 PO 4 ), and the coating layer 60 made of a CoZrNb alloy were amorphized, respectively.
  • the solid electrolyte layer 40, and the covering layer 60 a ring was slightly observed by electron beam diffraction, and it was found that microcrystals were present in the amorphous structure.
  • the holding layer 50 is flattened on the side of the boundary with the covering layer 60 so that the thickness direction becomes smaller than the surface direction, and It can be seen that relatively large gray areas exist as compared to gray spots.
  • the white area corresponds to the porous portion 51
  • the gray area corresponds to the air holes 52.
  • the thickness of the holding layer 50 shown in FIG. 12 was 105 nm (after the first discharge).
  • the coating layer 60 and the negative electrode current collector layer 70 hardly changed with respect to their respective shades and thicknesses before and after the first charge and discharge.
  • the coating layer 60 was laminated. Thereby, as compared with, for example, the case where the covering layer 60 having a polycrystalline structure is laminated on the holding layer 50, the covering layer 60 of lithium transferred from the positive electrode layer 30 to the holding layer 50 along with the charging operation Leaks to the outside can be suppressed.
  • the holding layer 50 made of porous platinum is provided on the solid electrolyte layer 40.
  • the negative electrode layer made of, for example, silicon (Si) or the like is provided on solid electrolyte layer 40, peeling within lithium ion secondary battery 1 accompanying expansion due to charge and contraction due to discharge. Can be suppressed.
  • the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60.
  • the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
  • the size of the flat surface of the positive electrode layer 30 and the holding layer 50 disposed with the solid electrolyte layer 40 therebetween is positive electrode layer 30 ⁇ holding layer 50.
  • movement in the lateral direction (surface direction) when lithium ions move from the positive electrode layer 30 to the holding layer 50 side is suppressed.
  • leakage of lithium ions from the side of the lithium ion secondary battery 1 to the outside can be suppressed.
  • platinum is used when the holding layer 50 is formed of platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or their alloys.
  • the holding layer 50 can be made porous by charging and discharging, as in the case where the holding layer 50 is constituted alone, and lithium can be held in the holding layer 50.
  • substrate 10 and solid electrolyte layer 40 are used to cover positive electrode current collector layer 20 and positive electrode layer 30, and solid electrolyte layer 40 and covering layer 60. And although the structure which covers the holding layer 50 using the negative electrode collector layer 70 was employ
  • FIG. 6 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a first modified example of the first embodiment.
  • FIG. 6 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
  • the planar size of the positive electrode current collector layer 20 and the positive electrode layer 30 when viewed from the upper side of FIG. 6 is substantially the same as the planar size of the solid electrolyte layer 40.
  • This is different from the first embodiment.
  • the first modification after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 6) in which the holding layer 50 is made porous can be obtained.
  • FIG. 7 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 according to a second modification of the first embodiment.
  • FIG. 7 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
  • the size of the plane of the covering layer 60 when viewed from above in FIG. 7 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG.
  • the second embodiment differs from the first embodiment in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60.
  • charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain the lithium ion secondary battery 1 (see FIG. 7) in which the holding layer 50 is made porous.
  • FIG. 8 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a third modification of the first embodiment.
  • FIG. 8 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
  • the size of the plane of the covering layer 60 when viewed from above in FIG. 8 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG.
  • This embodiment differs from the first modification in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60.
  • charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 8) in which the holding layer 50 is made porous can be obtained.
  • FIG. 9 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a fourth modification of the first embodiment.
  • FIG. 9 shows a state (corresponding to FIG. 1 of the first embodiment) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
  • the size of the plane of the holding layer 50 when viewed from above in FIG. 9 is the same as the size of the plane of the solid electrolyte layer 40, Is different.
  • the fourth modification after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain a lithium ion secondary battery 1 (see FIG. 9) in which the holding layer 50 is made porous.
  • the holding layer 50 is made of a noble metal having a porous structure.
  • the holding layer 50 is made of titanium (Ti) having a plurality of columnar crystals each extending in the thickness direction.
  • Ti titanium
  • the same components as those in Embodiment 1 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 10 is a diagram showing a cross-sectional configuration of lithium ion secondary battery 1 of the second embodiment.
  • the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers (films) are stacked, and after a basic structure is formed by a so-called film formation process, The structure is completed by the first (first) charging operation.
  • FIG. 10A shows the state after film formation and before the first charge
  • FIG. 10B shows the state after the first charge.
  • the lithium ion secondary battery 1 after film formation and before the first charge is the substrate 10, the positive electrode current collector layer 20, and the positive electrode layer 30 as in the first embodiment.
  • the solid electrolyte layer 40, the holding layer 50, the covering layer 60, and the negative electrode current collector layer 70 are stacked in this order.
  • the basic configuration of the lithium ion secondary battery 1 after the initial charge is substantially the same as the lithium ion secondary battery 1 after the film formation shown in FIG. 10 (a) and before the initial charge. However, the difference is that the negative electrode 80 is formed inside the holding layer 50.
  • the holding layer 50 of the present embodiment is a solid thin film, and has a structure in which a plurality of columnar crystals each made of titanium metal (Ti) and extending in the thickness direction are arranged side by side.
  • the columnar crystals of titanium constituting the holding layer 50 are usually composed of hexagonal columnar crystals.
  • the thickness of the holding layer 50 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the retention layer 50 is less than 10 nm, the ability to retain lithium will be insufficient. On the other hand, when the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
  • the holding layer 50 As a method for manufacturing the holding layer 50, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of efficiently forming an aggregate of columnar crystals of titanium, the sputtering method is used. It is desirable to use
  • the negative electrode 80 contains a negative electrode active material that stores lithium ions at the time of charge and releases lithium ions at the time of discharge.
  • the negative electrode 80 of the present embodiment is formed inside the holding layer 50 by the charging operation. More specifically, in the holding layer 50, the lithium ion is held at the boundary between adjacent columnar crystals, that is, the so-called crystal grain boundary, whereby the negative electrode 80 is formed.
  • metal lithium itself functions as a negative electrode active material.
  • the negative electrode 80 it is desirable to adopt a method of forming (depositing) the negative electrode 80 by charging.
  • the substrate 10 is mounted on a sputtering apparatus (not shown), and the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the covering layer 60 and the negative electrode current collector layer 70 are formed on the substrate 10.
  • the layers are formed (stacked) in this order.
  • the lithium ion secondary battery 1 after film formation and before the first charge shown in FIG. 10A is obtained.
  • the lithium ion secondary battery 1 is removed from the sputtering apparatus.
  • the lithium ion secondary battery 1 after film formation and before the first charge shown in FIG. 10A is charged for the first time.
  • the lithium ion secondary battery 1 shown in FIG. 10A lithium is precipitated at the crystal grain boundaries present inside the holding layer 50. That is, the negative electrode 80 made of lithium is formed inside the holding layer 50, and the lithium ion secondary battery 1 after the initial charge shown in FIG. 10 (b) is obtained.
  • the details of the charge and discharge operation of the lithium ion secondary battery 1 will be described later.
  • the lithium ions moved from the positive electrode layer 30 side to the holding layer 50 side reach the boundary between the solid electrolyte layer 40 and the holding layer 50.
  • the holding layer 50 is made of metallic titanium and has a plurality of columnar crystals each extending in the thickness direction, and the plurality of columnar crystals are arranged side by side.
  • the lithium ions reaching the boundary between the solid electrolyte layer 40 and the retention layer 50 enter the grain boundaries of the adjacent columnar crystals and move further along the thickness direction, and are retained in the retention layer 50. .
  • the covering layer 60 is made of an amorphized metal or alloy in which the number of grain boundaries is smaller than that of titanium metal (aggregation of columnar crystals) constituting the holding layer 50. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the covering layer 60 hardly enter the covering layer 60, and therefore, the state of being held in the holding layer 50 is maintained.
  • the lithium ions moved from the positive electrode layer 30 to the holding layer 50 side are held at the grain boundaries existing between the columnar crystals in the holding layer 50 to constitute the negative electrode 80.
  • the substrate 10 When discharging (using) the lithium ion secondary battery 1 in a charged state, the substrate 10 is connected to the positive electrode of the load, and the negative electrode current collector layer 70 is connected to the negative electrode of the load. Then, lithium ions contained in the negative electrode 80 present inside the holding layer 50 move along the thickness direction (downward direction in FIG. 10) to the positive electrode layer 30 via the solid electrolyte layer 40, and the positive electrode layer 30 constitute a positive electrode active material. Along with this, a direct current is supplied to the load.
  • the negative electrode 80 does not necessarily disappear inside the holding layer 50, and remains by part of lithium which is not moved by the discharge operation.
  • the coating layer 60 was laminated. Thereby, as compared with, for example, the case where the covering layer 60 having a polycrystalline structure is laminated on the holding layer 50, the covering layer 60 of lithium transferred from the positive electrode layer 30 to the holding layer 50 along with the charging operation Leaks to the outside can be suppressed.
  • the holding layer 50 formed by arranging columnar crystals made of titanium is provided on the solid electrolyte layer 40.
  • the negative electrode layer made of, for example, silicon (Si) or the like is provided on solid electrolyte layer 40, peeling within lithium ion secondary battery 1 accompanying expansion due to charge and contraction due to discharge. Can be suppressed.
  • the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60.
  • the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
  • Embodiment 3 In the first and second embodiments, between the solid electrolyte layer 40 and the covering layer 60, the holding layer 50 having the function of holding metallic lithium functioning as the negative electrode and not functioning itself as the negative electrode is provided. On the other hand, in the present embodiment, a layer functioning as a negative electrode is provided between the solid electrolyte layer 40 and the covering layer 60.
  • the same components as those in Embodiments 1 and 2 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 11 is a diagram showing a cross-sectional configuration of lithium ion secondary battery 1 of the third embodiment.
  • the lithium ion secondary battery 1 according to the present embodiment has a structure in which a plurality of layers (films) are stacked as in the first and second embodiments, but unlike the first and second embodiments, The structure is completed by the film forming process.
  • the lithium ion secondary battery 1 of the present embodiment includes the substrate 10, the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the negative electrode layer 90, the covering layer 60, and the negative electrode current collector.
  • the layers 70 and 70 are stacked in this order. That is, in the lithium ion secondary battery 1 of the present embodiment, the negative electrode layer 90 is provided at the position of the holding layer 50 of the other embodiments.
  • the negative electrode layer 90 (an example of a holding layer) is a solid thin film, and contains a negative electrode active material that occludes lithium ions during charge and releases lithium ions during discharge.
  • the negative electrode layer 90 of the present embodiment is made of amorphous silicon (Si) to which a dopant is added. Note that in this embodiment, silicon functions as a negative electrode active material which occludes and releases lithium ions.
  • the negative electrode layer 90 may be made of materials other than silicon, and the dopant is not essential.
  • the dopant to be added to the silicon forming the negative electrode layer 90 is not particularly limited as long as it enhances the conductivity of silicon, and one or two or more elements composed of various elements are used. be able to.
  • zinc (Zn), cadmium (Cd), boron (B), aluminum (Al), gallium (Ga), indium (In) which makes the anode layer 90 p-type by functioning as an acceptor.
  • the thickness of the negative electrode layer 90 can be, for example, 10 nm or more and 20 ⁇ m or less. If the thickness of the negative electrode layer 90 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small to be practical. On the other hand, when the thickness of the negative electrode layer 90 exceeds 20 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the negative electrode layer 90 may be more than 20 ⁇ m.
  • the negative electrode layer 90 As a method of manufacturing the negative electrode layer 90, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
  • the substrate 10 is mounted on a sputtering apparatus (not shown), and the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the negative electrode layer 90, the covering layer 60 and the negative electrode current collector layer 70 are formed on the substrate 10.
  • the layers are formed (stacked) in this order.
  • the lithium ion secondary battery 1 shown in FIG. 11 is obtained.
  • the lithium ion secondary battery 1 is removed from the sputtering apparatus.
  • the lithium ions moved from the positive electrode layer 30 side to the negative electrode layer 90 side reach the boundary between the solid electrolyte layer 40 and the negative electrode layer 90.
  • the negative electrode layer 90 is made of silicon formed by adding boron as a dopant. As a result, lithium ions that have reached the boundary between the solid electrolyte layer 40 and the negative electrode layer 90 are held by the negative electrode layer 90.
  • the covering layer 60 is made of a metal or an alloy in which the number of grain boundaries is reduced by amorphizing. Therefore, the lithium ions that have reached the boundary between the negative electrode layer 90 and the covering layer 60 are unlikely to enter the covering layer 60, and therefore, the state held in the negative electrode layer 90 is maintained.
  • the substrate 10 When discharging (using) the lithium ion secondary battery 1 in a charged state, the substrate 10 is connected to the positive electrode of the load, and the negative electrode current collector layer 70 is connected to the negative electrode of the load. Then, lithium ions present inside the negative electrode layer 90 move along the thickness direction (downward direction in FIG. 11) to the positive electrode layer 30 through the solid electrolyte layer 40, and the positive electrode active material is Configure. Along with this, a direct current is supplied to the load.
  • the negative electrode layer 90 made of silicon containing boron is provided.
  • the capacity of the lithium ion secondary battery 1 at the same thickness (volume) is obtained. It can be enlarged.
  • the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60.
  • the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
  • the covering layer 60 is provided on the holding layer 50 (or the negative electrode layer 90), the present invention is not limited to this, and a layer equivalent to the covering layer 60 on the positive electrode layer 30 side.
  • a layer equivalent to the covering layer 60 on the positive electrode layer 30 side may be provided.
  • the positive electrode layer 30 is an example of the holding layer.
  • providing an amorphous metal layer (amorphous alloy layer) between the positive electrode collector layer 20 and the positive electrode layer 30 is mentioned as one method for realizing this.
  • the positive electrode current collector layer 20 itself may be formed of an amorphous metal layer (amorphous alloy layer).
  • a layer corresponding to the covering layer 60 may be provided on each of the positive electrode layer 30 side and the holding layer 50 (or negative electrode layer 90) side.

Abstract

This lithium-ion secondary cell 1 is configured by stacking, in the stated order: a positive electrode layer 30 containing a positive electrode active material; a solid electrolyte layer 40 containing an inorganic solid electrolyte; a holding layer 50 configured from platinum (Pt) that has been made porous, the holding layer 50 holding lithium; a coating layer 60 configured from an amorphous metal or alloy; and a negative electrode collector layer 70 configured from platinum (Pt). This inhibits leakage of lithium in an all-solid lithium-ion secondary cell to the exterior.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を示し且つ正極および負極の間に配置される電解質とを有している。 With the spread of mobile electronic devices such as mobile phones and notebook computers, there is a strong demand for the development of small and lightweight secondary batteries having high energy density. A lithium ion secondary battery is known as a secondary battery satisfying such a demand. The lithium ion secondary battery has a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte that exhibits lithium ion conductivity and is disposed between the positive electrode and the negative electrode.
 従来のリチウムイオン二次電池では、電解質として有機電解液等が用いられてきた。これに対し、電解質として無機材料からなる固体電解質(無機固体電解質)を用いるとともに、負極側に設けられた負極集電体にリチウムが拡散するのを抑制するために、負極集電体に、正極活物質を含むブロック領域を設けることが提案されている(特許文献1参照)。 In a conventional lithium ion secondary battery, an organic electrolytic solution or the like has been used as an electrolyte. On the other hand, while using a solid electrolyte (inorganic solid electrolyte) made of an inorganic material as the electrolyte, in order to suppress the diffusion of lithium to the negative electrode current collector provided on the negative electrode side, the negative electrode current collector It has been proposed to provide a block region containing an active material (see Patent Document 1).
特開2013-164971号公報JP, 2013-164971, A
 しかしながら、負極集電体に、正極活物質を含むブロック領域を設ける手法を採用した場合であっても、ブロック領域を通過したリチウムがリチウムイオン二次電池の外部に漏出してくることがあった。
 本発明は、全固体リチウムイオン二次電池におけるリチウムの、外部への漏出を抑制することを目的とする。
However, even in the case of adopting a method of providing a block region containing a positive electrode active material in the negative electrode current collector, lithium that has passed through the block region sometimes leaks out of the lithium ion secondary battery .
An object of the present invention is to suppress the leakage of lithium to the outside in an all solid lithium ion secondary battery.
 本発明のリチウムイオン二次電池は、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、リチウムを保持可能な保持層と、非晶質構造を有する、金属または合金で構成される非晶質金属層とを順に有している。
 このようなリチウムイオン二次電池において、前記非晶質金属層は、クロム(Cr)を含むことを特徴とすることができる。
 また、前記非晶質金属層は、クロム(Cr)およびチタン(Ti)の合金からなることを特徴とすることができる。
 また、前記非晶質金属層は、リチウムと金属間化合物を形成しない金属または合金で構成されることを特徴とすることができる。
 また、前記非晶質金属層は、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSiのいずれかで構成されることを特徴とすることができる。
 また、前記保持層は、多孔質構造を有する白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成されることを特徴とすることができる。
 また、前記保持層は、それぞれが厚さ方向に伸びる複数の柱状結晶を有するチタンで構成されることを特徴とすることができる。
 また、前記保持層が負極活物質を含むことを特徴とすることができる。
 また、前記保持層が正極活物質を含むことを特徴とすることができる。
 また、前記固体電解質層の前記保持層とは反対側に正極活物質を含む正極層を有し、前記保持層の平面の大きさが、前記正極層の平面の大きさよりも大きいことを特徴とすることができる。
 また、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成され、前記非晶質金属層に積層される貴金属層をさらに有することを特徴とすることができる。
The lithium ion secondary battery of the present invention is not composed of a metal or alloy having a solid structure containing an inorganic solid electrolyte exhibiting lithium ion conductivity, a holding layer capable of holding lithium, and an amorphous structure. And an amorphous metal layer in order.
In such a lithium ion secondary battery, the amorphous metal layer may be characterized by containing chromium (Cr).
The amorphous metal layer may be made of an alloy of chromium (Cr) and titanium (Ti).
The amorphous metal layer may be characterized by being made of a metal or an alloy which does not form an intermetallic compound with lithium.
Further, the amorphous metal layer is characterized in that it is made of any of ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, AuSi. can do.
The holding layer may be characterized by being made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) having a porous structure, gold (Au), or an alloy thereof.
Further, the holding layer can be characterized by being made of titanium having a plurality of columnar crystals each extending in the thickness direction.
Further, the holding layer can be characterized by containing a negative electrode active material.
Further, the holding layer can be characterized by containing a positive electrode active material.
Further, a positive electrode layer containing a positive electrode active material is provided on the side opposite to the holding layer of the solid electrolyte layer, and the size of the plane of the holding layer is larger than the size of the plane of the positive electrode layer. can do.
In addition, it is characterized by further comprising a noble metal layer composed of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy thereof, and laminated on the amorphous metal layer. can do.
 本発明によれば、全固体リチウムイオン二次電池におけるリチウムの、外部への漏出を抑制することができる。 According to the present invention, it is possible to suppress the leakage of lithium in the all solid lithium ion secondary battery to the outside.
実施の形態1のリチウムイオン二次電池の断面構成を示す図である。FIG. 1 is a view showing a cross-sectional configuration of a lithium ion secondary battery of Embodiment 1; 実施の形態1のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。3 is a flowchart for illustrating a method of manufacturing the lithium ion secondary battery of Embodiment 1. 実施の形態1の成膜後且つ初回充電前のリチウムイオン二次電池の断面構成を示す図である。FIG. 2 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery after film formation and before initial charge according to Embodiment 1. (a)~(c)は、保持層を多孔質化する手順を説明するための図である。(A) to (c) are diagrams for explaining the procedure for making the holding layer porous. (a)は成膜後且つ初回充電前のリチウムイオン二次電池の断面STEM写真であり、(b)は初回放電後のリチウムイオン二次電池の断面STEM写真である。(A) is a cross section STEM photograph of the lithium ion secondary battery after film formation and before the first charge, and (b) is a cross section STEM photograph of the lithium ion secondary battery after the first discharge. 実施の形態1の第1の変形例のリチウムイオン二次電池の断面構成を示す図である。FIG. 5 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a first modified example of the first embodiment. 実施の形態1の第2の変形例のリチウムイオン二次電池の断面構成を示す図である。FIG. 7 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a second modified example of the first embodiment. 実施の形態1の第3の変形例のリチウムイオン二次電池の断面構成を示す図である。FIG. 16 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a third modified example of the first embodiment. 実施の形態1の第4の変形例のリチウムイオン二次電池の断面構成を示す図である。FIG. 18 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of a fourth modified example of the first embodiment. (a)、(b)は、実施の形態2のリチウムイオン二次電池の断面構成を示す図である。(A), (b) is a figure which shows the cross-sectional structure of the lithium ion secondary battery of Embodiment 2. FIG. 実施の形態3のリチウムイオン二次電池の断面構成を示す図である。FIG. 10 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery of Embodiment 3. 実施の形態1にかかる他の構成例のリチウムイオン二次電池の断面STEM写真である。7 is a cross-sectional STEM photograph of a lithium ion secondary battery of another configuration example according to Embodiment 1.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. Note that the size, thickness, and the like of each part in the drawings referred to in the following description may differ from the actual dimensions.
<実施の形態1>
[リチウムイオン二次電池の構成]
 図1は、実施の形態1のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、後述するように、複数の層(膜)を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている。ここで、図1は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態を示している。
Embodiment 1
[Configuration of lithium ion secondary battery]
FIG. 1 is a view showing a cross-sectional configuration of the lithium ion secondary battery 1 of the first embodiment. The lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers (films) are stacked, as described later, and after forming a basic structure by a so-called film formation process, The structure is completed by the charge and discharge operation. Here, FIG. 1 shows the state after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
 図1に示すリチウムイオン二次電池1は、基板10と、基板10上に積層される正極集電体層20と、正極集電体層20上に積層される正極層30と、正極層30上に積層される固体電解質層40と、固体電解質層40上に積層される保持層50とを備えている。ここで、固体電解質層40は、正極集電体層20および正極層30の両者の周縁を覆うとともにその端部が基板10に直接積層されることで、基板10とともに正極集電体層20および正極層30を覆っている。また、このリチウムイオン二次電池1は、保持層50上に積層されるとともに保持層50の周縁において固体電解質層40に直接積層されることで、固体電解質層40に対して保持層50を被覆する被覆層60を備えている。さらに、このリチウムイオン二次電池1は、被覆層60上に積層されるとともに被覆層60の周縁において固体電解質層40に直接積層されることで、固体電解質層40に対して被覆層60を覆う負極集電体層70を備えている。 The lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, a positive electrode current collector layer 20 stacked on the substrate 10, a positive electrode layer 30 stacked on the positive electrode current collector layer 20, and a positive electrode layer 30. A solid electrolyte layer 40 laminated on the upper side, and a holding layer 50 laminated on the solid electrolyte layer 40 are provided. Here, the solid electrolyte layer 40 covers the peripheries of both the positive electrode current collector layer 20 and the positive electrode layer 30 and the end portions thereof are directly laminated on the substrate 10, whereby the positive electrode current collector layer 20 and the substrate 10 are obtained. The positive electrode layer 30 is covered. Further, the lithium ion secondary battery 1 is stacked on the holding layer 50 and directly stacked on the solid electrolyte layer 40 at the periphery of the holding layer 50, thereby covering the solid electrolyte layer 40 with the holding layer 50. A covering layer 60. Furthermore, the lithium ion secondary battery 1 is laminated on the covering layer 60 and directly laminated on the solid electrolyte layer 40 at the periphery of the covering layer 60, thereby covering the covering layer 60 with respect to the solid electrolyte layer 40. A negative electrode current collector layer 70 is provided.
 次に、上記リチウムイオン二次電池1の各構成要素について、より詳細な説明を行う。
(基板)
 基板10としては、特に限定されず、金属、ガラス、セラミックスなど、各種材料で構成されたものを用いることができる。
 ここで、本実施の形態では、基板10を、電子伝導性を有する金属製の板材で構成している。より具体的に説明すると、本実施の形態では、基板10として、銅やアルミニウム等と比較して機械的強度が高いステンレス箔(板)を用いている。また、基板10として、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。
Next, each component of the lithium ion secondary battery 1 will be described in more detail.
(substrate)
The substrate 10 is not particularly limited, and substrates made of various materials such as metal, glass, and ceramics can be used.
Here, in the present embodiment, the substrate 10 is formed of a metal plate having electron conductivity. More specifically, in the present embodiment, a stainless steel foil (plate) having a mechanical strength higher than that of copper, aluminum or the like is used as the substrate 10. Further, as the substrate 10, a metal foil plated with a conductive metal such as tin, copper, chromium or the like may be used.
 基板10の厚さは、例えば20μm以上2000μm以下とすることができる。基板10の厚さが20μm未満であると、リチウムイオン二次電池1の強度が不足するおそれがある。一方、基板10の厚さが2000μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。 The thickness of the substrate 10 can be, for example, 20 μm or more and 2000 μm or less. If the thickness of the substrate 10 is less than 20 μm, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, when the thickness of the substrate 10 exceeds 2000 μm, the volume energy density and weight energy density decrease due to the increase in thickness and weight of the battery.
(正極集電体層)
 正極集電体層20は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。
(Positive current collector layer)
The positive electrode current collector layer 20 is not particularly limited as long as it is a solid thin film and has electron conductivity, and for example, a conductive material containing various metals or an alloy of various metals is used. Can.
 正極集電体層20の厚さは、例えば5nm以上50μm以下とすることができる。正極集電体層20の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、正極集電体層20の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the positive electrode current collector layer 20 can be, for example, 5 nm or more and 50 μm or less. If the thickness of the positive electrode current collector layer 20 is less than 5 nm, the current collection function is lowered and it is not practical. On the other hand, when the thickness of the positive electrode current collector layer 20 exceeds 50 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
 また、正極集電体層20の製造方法としては、各種PVD(物理蒸着)や各種CVD(化学蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法もしくは真空蒸着法を用いることが望ましい。 Also, as a method of manufacturing the positive electrode current collector layer 20, known film forming methods such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency It is desirable to use a method or a vacuum evaporation method.
 なお、金属製の板材のような導電性材料で基板10を構成する場合は、基板10と正極層30との間に正極集電体層20を設けなくてもよい。一方、基板10として絶縁性を有する材料を用いる場合には、基板10と正極層30との間に正極集電体層20を設けるとよい。 When the substrate 10 is made of a conductive material such as a metal plate, the positive electrode current collector layer 20 may not be provided between the substrate 10 and the positive electrode layer 30. On the other hand, in the case of using an insulating material as the substrate 10, the positive electrode current collector layer 20 may be provided between the substrate 10 and the positive electrode layer 30.
(正極層)
 正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含んでいる。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、固体電解質を含んだ合材正極であってもよい。
(Positive layer)
The positive electrode layer 30 is a solid thin film, and contains a positive electrode active material that desorbs lithium ions during charging and stores lithium ions during discharging. Here, as a positive electrode active material constituting the positive electrode layer 30, for example, one type selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), vanadium (V) It is possible to use one composed of various materials such as oxides, sulfides or phosphorus oxides containing the above metals. Further, the positive electrode layer 30 may be a composite positive electrode containing a solid electrolyte.
 正極層30の厚さは、例えば10nm以上40μm以下とすることができる。正極層30の厚さが10nm未満であると、得られるリチウムイオン二次電池1の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層30の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、正極層30の厚さを40μm超としてもかまわない。 The thickness of the positive electrode layer 30 can be, for example, 10 nm or more and 40 μm or less. If the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small to be practical. On the other hand, when the thickness of the positive electrode layer 30 exceeds 40 μm, it takes too long to form the layer, and the productivity is lowered. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the positive electrode layer 30 may be more than 40 μm.
 さらに、正極層30の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Furthermore, as a method of producing the positive electrode layer 30, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
(固体電解質層)
 固体電解質層40は、固体薄膜であって、無機材料からなる固体電解質(無機固体電解質)を含んでいる。ここで、固体電解質層40を構成する無機固体電解質については、リチウムイオン伝導性を示すものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。
(Solid electrolyte layer)
The solid electrolyte layer 40 is a solid thin film, and includes a solid electrolyte (inorganic solid electrolyte) made of an inorganic material. Here, the inorganic solid electrolyte constituting the solid electrolyte layer 40 is not particularly limited as long as it exhibits lithium ion conductivity, and is made of various materials such as oxides, nitrides, and sulfides. Can be used.
 固体電解質層40の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層40の厚さが10nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での短絡(リーク)が生じやすくなる。一方、固体電解質層40の厚さが10μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the solid electrolyte layer 40 can be, for example, 10 nm or more and 10 μm or less. When the thickness of the solid electrolyte layer 40 is less than 10 nm, a short circuit (leakage) is likely to occur between the positive electrode layer 30 and the holding layer 50 in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the solid electrolyte layer 40 exceeds 10 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
 さらに、固体電解質層40の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Furthermore, as a method of manufacturing the solid electrolyte layer 40, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method.
(保持層)
 保持層50は、固体薄膜であって、リチウムイオンを保持する機能を備えている。
 そして、図1に示す保持層50は、多数の空孔52が形成された多孔質部51によって構成されている。すなわち、本実施の形態の保持層50は、多孔質構造を有している。なお、保持層50の多孔質化すなわち多孔質部51の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。
(Retention layer)
The holding layer 50 is a solid thin film and has a function of holding lithium ions.
And the holding | maintenance layer 50 shown in FIG. 1 is comprised by the porous part 51 in which the many void | hole 52 was formed. That is, the holding layer 50 of the present embodiment has a porous structure. The formation of the porous portion 51 of the holding layer 50 is performed along with the first charge / discharge operation after film formation, and the details thereof will be described later.
 ここで、保持層50(多孔質部51)は、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することができる。これらの中でも、より酸化されにくい白金(Pt)または金(Au)で保持層50を構成することが望ましい。なお、本実施の形態の保持層50(多孔質部51)は、上述した貴金属あるいはこれらの合金の多結晶体で構成することができる。 Here, the holding layer 50 (porous portion 51) can be made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy of these. Among these, it is preferable that the holding layer 50 be made of platinum (Pt) or gold (Au) that is more resistant to oxidation. In addition, the holding layer 50 (porous portion 51) of the present embodiment can be formed of the above-described noble metal or a polycrystal of an alloy of these.
 保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、保持層50の厚さを40μm超としてもかまわない。 The thickness of the holding layer 50 can be, for example, 10 nm or more and 40 μm or less. If the thickness of the retention layer 50 is less than 10 nm, the ability to retain lithium will be insufficient. On the other hand, when the thickness of the holding layer 50 exceeds 40 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the holding layer 50 may be more than 40 μm.
 さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。そして、多孔質化した保持層50の製造方法としては、後述するような、充電と放電とを行う手法を採用することが望ましい。 Furthermore, as a method of manufacturing the holding layer 50, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method. And as a manufacturing method of the holding layer 50 made porous, it is desirable to employ | adopt the method of performing charge and discharge which are mentioned later.
(被覆層)
 非晶質金属層の一例としての被覆層60は、固体薄膜であって、非晶質構造を有する、金属または合金によって構成される。そして、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましく、クロムおよびチタン(Ti)の合金であることがより好ましい。また、被覆層60は、リチウム(Li)と金属間化合物を形成しない金属または合金で構成されることが好ましい。また、被覆層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。被覆層60を合金で形成する場合、非晶質構造になる組成比の範囲は、層を形成する条件に依存するため、好ましい組成比の範囲を規定することはできないが、層を形成する条件との組み合わせによって選定すればよい。
(Cover layer)
The covering layer 60 as an example of the amorphous metal layer is made of a metal or an alloy which is a solid thin film and has an amorphous structure. And among these, from the viewpoint of corrosion resistance, it is preferable that it is chromium (Cr) alone or an alloy containing chromium, and it is more preferable that it is an alloy of chromium and titanium (Ti). The covering layer 60 is preferably made of a metal or alloy which does not form an intermetallic compound with lithium (Li). The covering layer 60 can also be configured by laminating a plurality of amorphous layers different in constituent material (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer). In the case where the covering layer 60 is formed of an alloy, the range of the composition ratio to become an amorphous structure depends on the conditions for forming the layer, and thus the range of the preferred composition ratio can not be defined. It may be selected in combination with
 なお、本実施の形態における「非晶質構造」には、全体が非晶質構造を有しているものはもちろんのこと、非晶質構造中に微結晶が析出しているものも含まれる。 The “amorphous structure” in the present embodiment includes not only one having an amorphous structure as a whole but also one having microcrystals precipitated in the amorphous structure. .
 被覆層60の厚さは、例えば10nm以上40μm以下とすることができる。被覆層60の厚さが10nm未満であると、固体電解質層40側から保持層50を通過してきたリチウムを、被覆層60でせき止めにくくなる。一方、被覆層60の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the covering layer 60 can be, for example, 10 nm or more and 40 μm or less. When the thickness of the covering layer 60 is less than 10 nm, it is difficult for the covering layer 60 to stop the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side. On the other hand, when the thickness of the covering layer 60 exceeds 40 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
 さらに、被覆層60の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。特に、被覆層60を、上述したクロムチタン合金で構成する場合、スパッタ法を採用すると、クロムチタン合金が非晶質化しやすい。 Furthermore, as a method of manufacturing the covering layer 60, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method. In particular, when the covering layer 60 is made of the above-described chromium titanium alloy, the chromium titanium alloy is likely to be amorphous if the sputtering method is employed.
 なお、被覆層60に用いることが可能な金属(合金)としては、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSi等を挙げることができる。 Examples of metals (alloys) that can be used for the covering layer 60 include ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, and AuSi. be able to.
(負極集電体層)
 貴金属層の一例としての負極集電体層70は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、被覆層60の腐食を抑制するという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
(Anode current collector layer)
The negative electrode current collector layer 70 as an example of the noble metal layer is not particularly limited as long as it is a solid thin film and has electron conductivity, and includes, for example, various metals and alloys of various metals. A conductive material can be used. However, from the viewpoint of suppressing the corrosion of the covering layer 60, it is preferable to use a chemically stable material, for example, platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) Or preferably composed of these alloys.
 負極集電体層70の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層70の厚さが5nm未満であると、耐腐食性および集電機能が低下し、実用的ではなくなる。一方、負極集電体層70の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the negative electrode current collector layer 70 can be, for example, 5 nm or more and 50 μm or less. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collection function are reduced, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 70 exceeds 50 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
 また、負極集電体層70の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method of manufacturing the negative electrode current collector layer 70, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
(正極層と保持層との関係)
 このリチウムイオン二次電池1では、固体電解質層40を挟んで、正極層30と保持層50とが対向している。すなわち、固体電解質層40の保持層50とは反対側に、正極活物質を含む正極層30が位置している。そして、図1の上方からみたときに、保持層50の平面の大きさは、正極層30の平面の大きさよりも大きくなっている。また、図1の上方からみたときに、保持層50の平面の全周縁の内側に、正極層30の平面の全周縁が位置している。その結果、図1に示す正極層30の上面(平面)には、固体電解質層40を挟んで、保持層50の下面(平面)が対峙している。
(Relationship between positive electrode layer and holding layer)
In the lithium ion secondary battery 1, the positive electrode layer 30 and the holding layer 50 face each other with the solid electrolyte layer 40 interposed therebetween. That is, the positive electrode layer 30 containing the positive electrode active material is positioned on the opposite side of the solid electrolyte layer 40 to the holding layer 50. When viewed from above in FIG. 1, the size of the plane of the holding layer 50 is larger than the size of the plane of the positive electrode layer 30. Further, when viewed from above in FIG. 1, the entire peripheral edge of the plane of the positive electrode layer 30 is located inside the entire peripheral edge of the plane of the holding layer 50. As a result, the lower surface (planar surface) of the holding layer 50 is opposed to the upper surface (planar surface) of the positive electrode layer 30 shown in FIG. 1 with the solid electrolyte layer 40 interposed therebetween.
[リチウムイオン二次電池の製造方法]
 次に、上述したリチウムイオン二次電池1の製造方法について説明を行う。
 図2は、実施の形態1のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。
[Method of manufacturing lithium ion secondary battery]
Next, a method of manufacturing the lithium ion secondary battery 1 described above will be described.
FIG. 2 is a flowchart for explaining the method of manufacturing the lithium ion secondary battery of the first embodiment.
 まず、図示しないスパッタ装置に基板10を装着し、基板10上に、正極集電体層20を形成する正極集電体層形成工程を実行する(ステップ20)。次に、上記スパッタ装置にて、正極集電体層20上に、正極層30を形成する正極層形成工程を実行する(ステップ30)。次に、上記スパッタ装置にて、正極層30上に、固体電解質層40を形成する固体電解質層形成工程を実行する(ステップ40)。次いで、上記スパッタ装置にて、固体電解質層40上に、保持層50を形成する保持層形成工程を実行する(ステップ50)。それから、上記スパッタ装置にて、固体電解質層40上および保持層50上に、被覆層60を形成する被覆層形成工程を実行する(ステップ60)。そして、上記スパッタ装置にて、固体電解質層40上および被覆層60上に、負極集電体層70を形成する負極集電体層形成工程を実行する(ステップ70)。これらステップ20~70を実行することにより、後述する図3に示す、成膜後(且つ初回充電前)のリチウムイオン二次電池1が得られる。そして、このリチウムイオン二次電池1を、スパッタ装置から取り外す。 First, the substrate 10 is mounted on a sputtering apparatus (not shown), and a positive electrode current collector layer forming step of forming the positive electrode current collector layer 20 on the substrate 10 is performed (step 20). Next, the positive electrode layer forming step of forming the positive electrode layer 30 on the positive electrode current collector layer 20 is performed by the sputtering apparatus (step 30). Next, a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is executed by the sputtering apparatus (step 40). Next, a holding layer forming step of forming the holding layer 50 on the solid electrolyte layer 40 is performed by the sputtering apparatus (step 50). Then, in the sputtering apparatus, a covering layer forming step of forming a covering layer 60 on the solid electrolyte layer 40 and the holding layer 50 is performed (step 60). Then, the negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the solid electrolyte layer 40 and the covering layer 60 is executed by the sputtering apparatus (step 70). By performing these steps 20 to 70, the lithium ion secondary battery 1 after film formation (and before the first charge) shown in FIG. 3 described later can be obtained. Then, the lithium ion secondary battery 1 is removed from the sputtering apparatus.
 続いて、スパッタ装置から取り外したリチウムイオン二次電池1に対し、1回目の充電を行わせる初回充電工程を実行する(ステップ80)。それから、充電がなされたリチウムイオン二次電池1に対し、1回目の放電を行わせる初回放電工程を実行する(ステップ90)。これら初回充電と初回放電とにより、保持層50の多孔質化すなわち多孔質部51および多数の空孔52の形成が行われ、図1に示すリチウムイオン二次電池1が得られる。なお、初回充放電動作による保持層50の多孔質化の詳細については後述する。 Subsequently, an initial charge step of performing the first charge on the lithium ion secondary battery 1 removed from the sputtering apparatus is performed (step 80). Then, an initial discharge step of performing a first discharge on the charged lithium ion secondary battery 1 is performed (step 90). By the first charge and the first discharge, the holding layer 50 is made porous, that is, the porous portion 51 and the plurality of pores 52 are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained. The details of making the holding layer 50 porous by the first charge and discharge operation will be described later.
[成膜後且つ初回充電前のリチウムイオン二次電池の構成]
 図3は、実施の形態1の成膜後且つ初回充電前のリチウムイオン二次電池1の断面構成を示す図である。図3は、図2に示すステップ70までが完了した状態を示している。なお、図1は、上述したように、図2に示すステップ90(全工程)が完了した状態を示している。
[Configuration of lithium ion secondary battery after film formation and before initial charge]
FIG. 3 is a view showing a cross-sectional configuration of the lithium ion secondary battery 1 after film formation and before initial charge according to the first embodiment. FIG. 3 shows a state in which steps up to step 70 shown in FIG. 2 are completed. As described above, FIG. 1 shows a state in which step 90 (all steps) shown in FIG. 2 is completed.
 図3に示すリチウムイオン二次電池1の基本構成は、図1に示すものと同じである。ただし、図3に示すリチウムイオン二次電池1は、保持層50が多孔質化されておらず、図1に示すものよりも緻密になっている点が異なる。また、図3に示すリチウムイオン二次電池1は、保持層50の厚さが、図1に示すものよりも薄くなっている点が異なる。 The basic configuration of the lithium ion secondary battery 1 shown in FIG. 3 is the same as that shown in FIG. However, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the holding layer 50 is not made porous and is more compact than that shown in FIG. 1. Further, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the thickness of the holding layer 50 is thinner than that shown in FIG. 1.
[保持層の多孔質化]
 では、上述した保持層50の多孔質化について、より詳細な説明を行う。
 図4は、保持層50を多孔質化する手順を説明するための図であり、保持層50およびその周辺を拡大して示した図である。ここで、図4(a)は成膜後且つ初回充電前(ステップ70の後)の状態を、図4(b)は初回充電後且つ初回放電前(ステップ80とステップ90との間)の状態を、図4(c)は初回放電後(ステップ90の後)の状態を、それぞれ示している。したがって、図4(a)は図3に、図4(c)は図1に、それぞれ対応している。
[Porporation of Retaining Layer]
Now, the porous formation of the holding layer 50 described above will be described in more detail.
FIG. 4 is a view for explaining the procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and the periphery thereof. Here, FIG. 4 (a) shows the state after film formation and before the first charge (after step 70), and FIG. 4 (b) shows the state after the first charge and before the first discharge (between step 80 and step 90). FIG. 4C shows the state after the first discharge (after step 90), respectively. Therefore, FIG. 4 (a) corresponds to FIG. 3, and FIG. 4 (c) corresponds to FIG.
(成膜後且つ初回充電前)
 まず、図4(a)に示す「成膜後且つ初回充電前」の状態では、保持層50が緻密化している。また、保持層50の厚さは保持層厚さt50であり、被覆層60の厚さは被覆層厚さt60であり、負極集電体層70の厚さは負極集電体層厚さt70である。
(After film formation and before initial charge)
First, in the state of “after film formation and before initial charge” shown in FIG. 4A, the holding layer 50 is densified. The thickness of the holding layer 50 is a holding layer thickness t50, the thickness of the covering layer 60 is a covering layer thickness t60, and the thickness of the negative electrode current collector layer 70 is a negative electrode current collector layer thickness t70. It is.
(初回充電後且つ初回放電前)
 図4(a)に示すリチウムイオン二次電池1を充電(初回充電)する場合、基板10(図1参照)には直流電源の正の電極が、負極集電体層70には直流電源の負の電極が、それぞれ接続される。すると、図4(b)に示すように、正極層30で正極活物質を構成するリチウムイオン(Li)が、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(b)において上方向)に移動する。
(After first charge and before first discharge)
When the lithium ion secondary battery 1 shown in FIG. 4A is charged (first charge), the substrate 10 (see FIG. 1) has a positive electrode of a DC power supply, and the negative electrode collector layer 70 has a DC power supply. Negative electrodes are connected respectively. Then, as shown in FIG. 4B, lithium ions (Li + ) constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 4B).
 このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、保持層50を構成する貴金属と合金化する。例えば保持層50を白金(Pt)で構成した場合、保持層50では、リチウムと白金とが合金化(固溶体化、金属間化合物の形成あるいは共晶化)する。 At this time, lithium ions moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the noble metal constituting the holding layer 50. For example, when the holding layer 50 is made of platinum (Pt), in the holding layer 50, lithium and platinum are alloyed (solid solution, formation of an intermetallic compound or eutectic).
 また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を通過して被覆層60との境界部に到達する。ここで、本実施の形態の被覆層60は、非晶質構造を有する、金属または合金で構成されており、多結晶構造を有する保持層50と比べて、粒界の数が著しく少なくなっている。このため、保持層50と被覆層60との境界部に到達したリチウムイオンは、被覆層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。 In addition, part of lithium ions that have entered the holding layer 50 pass through the holding layer 50 and reach the boundary with the covering layer 60. Here, the covering layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly reduced as compared with the holding layer 50 having a polycrystalline structure. There is. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the covering layer 60 hardly enter the covering layer 60, and therefore, the state of being held in the holding layer 50 is maintained.
 そして、初回充電動作が終了した状態において、正極層30から保持層50に移動したリチウムイオンは、保持層50に保持される。このとき、保持層50に移動してきたリチウムイオンは、白金との合金化あるいは白金内での金属リチウムの析出化等によって、保持層50に保持されるものと考えられる。 Then, the lithium ions transferred from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50 in the state where the initial charging operation is finished. At this time, it is considered that lithium ions transferred to the holding layer 50 are held in the holding layer 50 by alloying with platinum, precipitation of metal lithium in platinum, or the like.
 ここで、図4(b)に示すように、初回充電後且つ初回放電前のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。すなわち、保持層50の体積は、初回充電によって増加する。これは、保持層50において、リチウムと白金とが合金化することに起因しているものと考えられる。これに対し、被覆層厚さt60は、初回充電の前後でほぼ変わらない。すなわち、被覆層60の体積は、初回充電によってほぼ変わらない。これは、被覆層60に、リチウムが入り込みにくいことに起因するものと考えられる。そして、このことは、負極集電体層厚さt70が、初回充電の前後でほぼ変わらないこと、すなわち、負極集電体層70の体積が、初回充電の前後でほぼ変わらないこと(負極集電体層70を構成する白金が、保持層50を構成する白金のように多孔質化しておらず、緻密なままであること)によって裏付けられるものと考えられる。 Here, as shown in FIG. 4 (b), in the lithium ion secondary battery 1 after the first charge and before the first discharge, the holding layer thickness t50 is after the film formation shown in FIG. 4 (a) and before the first charge. Increase from the state of That is, the volume of the holding layer 50 is increased by the first charge. This is considered to be attributable to the alloying of lithium and platinum in the holding layer 50. On the other hand, the coating layer thickness t60 is substantially unchanged before and after the first charge. That is, the volume of the covering layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium does not easily enter the covering layer 60. And this means that the negative electrode current collector layer thickness t70 does not substantially change before and after the initial charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the initial charge (negative electrode collection It is considered that the platinum that constitutes the collector layer 70 is supported by the fact that it is not made porous like the platinum that constitutes the holding layer 50 and remains compact.
(初回放電後)
 図4(b)に示すリチウムイオン二次電池1を放電(初回放電)する場合、基板10(図1参照)には負荷の正の電極が、負極集電体層70には負荷の負の電極が、それぞれ接続される。すると、図4(c)に示すように、保持層50に保持されるリチウムイオン(Li)が、固体電解質層40を介して正極層30へと移動する。すなわち、放電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(c)において下方向)へと移動し、正極層30に保持される。これに伴って、負荷には直流電流が供給される。
(After the first discharge)
When the lithium ion secondary battery 1 shown in FIG. 4B is discharged (first discharge), the substrate 10 (see FIG. 1) has a positive electrode of the load and the negative electrode collector layer 70 of the negative electrode. The electrodes are connected respectively. Then, as shown in FIG. 4C, lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 through the solid electrolyte layer 40. That is, in the discharge operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (downward in FIG. 4C) and are held in the positive electrode layer 30. Along with this, a direct current is supplied to the load.
 このとき、保持層50では、リチウムが離脱することに伴い、リチウムと白金との合金の脱合金化(金属リチウムが析出した場合は金属リチウムの溶解化)が行われる。そして、保持層50で脱合金化が行われた結果、保持層50が多孔質化され、多数の空孔52が形成された多孔質部51となる。このようにして得られる多孔質部51は、ほぼ貴金属(例えば白金)で構成されることになる。ただし、初回放電が終了した状態において、保持層50の内部でリチウムは消失するわけではなく、放電動作による移動を行わない一部のリチウムが残存する。 At this time, in the holding layer 50, the dealloying of the alloy of lithium and platinum (the dissolution of metal lithium when metal lithium is deposited) is performed as lithium is separated. And as a result of performing dealloying by the holding | maintenance layer 50, the holding | maintenance layer 50 is made porous and it becomes the porous part 51 in which the many void | hole 52 was formed. The porous portion 51 obtained in this manner is substantially composed of a noble metal (for example, platinum). However, in the state where the first discharge is finished, lithium does not necessarily disappear inside the holding layer 50, and some lithium which does not move due to the discharge operation remains.
 ここで、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(b)に示す初回充電後且つ初回放電前の状態よりも減少する。これは、保持層50において、リチウムと白金との合金の脱合金化が行われることに起因するものと考えられる。これは、初回放電によって保持層50内に形成される空孔52の形状が、面方向に比べて厚さ方向が小さくなるように扁平化していることによって裏付けられる。また、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。これは、初回充電および初回放電によって保持層50が多孔質化されること、すなわち、保持層50内に多数の空孔52が形成されることに起因するものと考えられる。なお、これに対し、被覆層厚さt60および負極集電体層厚さt70は、初回放電の前後でもほぼ変わらない。 Here, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the first discharge, the holding layer thickness t50 is greater than the state after the first charge and before the first discharge shown in FIG. 4B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the retaining layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the initial discharge is flattened so that the thickness direction becomes smaller than the surface direction. Further, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the first discharge, the holding layer thickness t50 is larger than the state after the film formation shown in FIG. 4A and before the first charge. Do. It is considered that this is caused by the fact that the holding layer 50 is made porous by the first charge and the first discharge, that is, a large number of pores 52 are formed in the holding layer 50. On the other hand, the coating layer thickness t60 and the negative electrode current collector layer thickness t70 are substantially the same before and after the first discharge.
[リチウムイオン二次電池の構成例]
 図5は、本実施の形態のリチウムイオン二次電池1の断面STEM(Scanning Transmission Electron Microscope)写真であり、(a)は成膜後且つ初回充電前の状態を、(b)は初回放電後の状態を、それぞれ示している。このSTEM写真は、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである。ここで、図5(a)は上述した図4(a)(および図3)に、図5(b)は上述した図4(c)(および図1)に、それぞれ対応している。
[Configuration Example of Lithium Ion Secondary Battery]
FIG. 5 is a cross-sectional STEM (Scanning Transmission Electron Microscope) photograph of the lithium ion secondary battery 1 of the present embodiment, where (a) shows the state after film formation and before the first charge, and (b) shows the state after the first discharge. The state of each is shown. The STEM photograph was taken using a Hitachi High-Technologies Corporation HD-2300 ultrathin film evaluation apparatus. Here, FIG. 5 (a) corresponds to FIG. 4 (a) (and FIG. 3) described above, and FIG. 5 (b) corresponds to FIG. 4 (c) (and FIG. 1) described above.
 図5(a)に示すリチウムイオン二次電池1の具体的な構成および製造方法は、以下に示す通りである。 The specific structure and manufacturing method of the lithium ion secondary battery 1 shown to Fig.5 (a) are as showing below.
 基板10(図5では省略)には、ステンレス(SUS304)を用いた。基板10の厚さは30μmとした。 Stainless steel (SUS304) was used for the substrate 10 (not shown in FIG. 5). The thickness of the substrate 10 was 30 μm.
 正極集電体層20(図5では省略)には、スパッタ法で形成したアルミニウムを用いた。正極集電体層20の厚さは100nmとした。 For the positive electrode current collector layer 20 (not shown in FIG. 5), aluminum formed by sputtering was used. The thickness of the positive electrode current collector layer 20 was 100 nm.
 正極層30(図5では省略)には、スパッタ法で形成したマンガン酸リチウム(Li1.5Mn)を用いた。正極層30の厚さは1000nmとした。 For the positive electrode layer 30 (not shown in FIG. 5), lithium manganate (Li 1.5 Mn 2 O 4 ) formed by sputtering was used. The thickness of the positive electrode layer 30 was 1000 nm.
 固体電解質層40には、スパッタ法で形成したLiPON(リン酸リチウム(LiPO)の酸素の一部を窒素に置き換えたもの)を用いた。固体電解質層40の厚さは1000nmとした。 For the solid electrolyte layer 40, LiPON (a lithium phosphate (Li 3 PO 4 ) part of which oxygen was replaced with nitrogen) formed by sputtering was used. The thickness of the solid electrolyte layer 40 was 1000 nm.
 保持層50には、スパッタ法で形成した白金(Pt)を用いた。保持層50の厚さは410nm(成膜後且つ初回充電前)とした。 For the holding layer 50, platinum (Pt) formed by sputtering was used. The thickness of the holding layer 50 was 410 nm (after film formation and before initial charge).
 被覆層60には、スパッタ法で形成したクロムチタン合金(より具体的には、Cr50Ti50)を用いた。被覆層60の厚さは50nmとした。 For the covering layer 60, a chromium titanium alloy (more specifically, Cr 50 Ti 50 ) formed by a sputtering method was used. The thickness of the covering layer 60 was 50 nm.
 負極集電体層70には、スパッタ法で形成した白金(Pt)を用いた。負極集電体層70の厚さは100nmとした。 For the negative electrode current collector layer 70, platinum (Pt) formed by a sputtering method was used. The thickness of the negative electrode current collector layer 70 was 100 nm.
 このようにして得られた、成膜後且つ初回充電前のリチウムイオン二次電池1(図3参照)に対し、電子線回折による結晶構造の解析を行ったところ、次の通りであった。 With respect to the lithium ion secondary battery 1 (see FIG. 3) after film formation and before the first charge thus obtained, the crystal structure was analyzed by electron beam diffraction, and it was as follows.
 SUS304からなる基板10、アルミニウムからなる正極集電体層20、白金からなる保持層50および負極集電体層70は、それぞれ結晶化していた。これに対し、マンガン酸リチウムからなる正極層30、LiPONからなる固体電解質層40、そして、クロムチタン合金からなる被覆層60は、それぞれ非晶質化していた。ただし、正極層30、固体電解質層40および被覆層60はそれぞれ、電子線回折で微かにリングが観られ、非晶質構造中に微結晶が存在していることがわかった。 The substrate 10 made of SUS304, the positive electrode current collector layer 20 made of aluminum, the holding layer 50 made of platinum, and the negative electrode current collector layer 70 were each crystallized. On the other hand, the positive electrode layer 30 made of lithium manganate, the solid electrolyte layer 40 made of LiPON, and the coating layer 60 made of a chromium titanium alloy were respectively made amorphous. However, in each of the positive electrode layer 30, the solid electrolyte layer 40, and the covering layer 60, a ring was slightly observed by electron beam diffraction, and it was found that microcrystals were present in the amorphous structure.
 このようにして得られたリチウムイオン二次電池1に対し、初回充電および初回放電を行った。
・初回充電条件
 電流 1C
 終了電圧 4.0Vもしくは2時間
・初回放電条件
 電流 1C
 終了電圧 2.0V
An initial charge and an initial discharge were performed on the lithium ion secondary battery 1 obtained in this manner.
・ First charge condition Current 1C
End voltage 4.0 V or 2 hours, first discharge condition Current 1 C
End voltage 2.0V
 では、図5に示すSTEM写真について説明を行う。
 まず、図5(a)では、保持層50がほぼ一様に白くなっているのに対し、図5(b)では、白地に複数の灰色の斑点が存在していることがわかる。また、図5(b)では、保持層50のうち、被覆層60との境界部側に、面方向に比べて厚さ方向が小さくなるように扁平化するとともに、他の灰色の斑点に比べて相対的に巨大な灰色の部位が存在していることもわかる。ここで、図5(b)では、白地になっている部位が多孔質部51に、灰色になっている部位が空孔52に、それぞれ対応しているものと考えられる。なお、図5(b)では、図5(a)に比べて、保持層50がより厚くなっていることもわかる。なお、図5(b)に示す保持層50の厚さは、610nm(初回放電後)となっていた。
Now, the STEM picture shown in FIG. 5 will be described.
First, FIG. 5A shows that the holding layer 50 is almost uniformly white, whereas FIG. 5B shows that a plurality of gray spots are present on the white background. Further, in FIG. 5B, the holding layer 50 is flattened on the side of the boundary with the covering layer 60 so that the thickness direction becomes smaller than the surface direction, and compared to other gray spots. It also shows that relatively large gray areas exist. Here, in FIG. 5 (b), it is considered that the white part corresponds to the porous part 51 and the gray part corresponds to the air holes 52. In addition, in FIG.5 (b), it turns out also compared with FIG.5 (a) that the holding | maintenance layer 50 is thicker. The thickness of the holding layer 50 shown in FIG. 5B was 610 nm (after the first discharge).
 また、図5(a)および図5(b)の両者において、被覆層60および負極集電体層70は、それぞれの濃淡に関しほとんど変化がないことがわかる。さらに、図5(a)および図5(b)の両者において、被覆層60および負極集電体層70は、それぞれの厚さに関しほとんど変化がないこともわかる。 Further, in both FIG. 5A and FIG. 5B, it can be seen that the covering layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective shades. Furthermore, in both FIG. 5A and FIG. 5B, it can also be seen that the coating layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective thicknesses.
[リチウムイオン二次電池の他の構成例]
 図12は、本実施の形態にかかる他の構成例のリチウムイオン二次電池1の断面STEM写真である。ここで、図12は、初回放電後の状態を示している。このSTEM写真は、上述した図5と同じく、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである。そして、図12は、上述した図4(c)(および図1)に対応している。
[Another Configuration Example of Lithium Ion Secondary Battery]
FIG. 12 is a cross-sectional STEM photograph of a lithium ion secondary battery 1 of another configuration example according to the present embodiment. Here, FIG. 12 shows the state after the first discharge. Similar to FIG. 5 described above, this STEM photograph was taken using an HD-2300 ultrathin film evaluation apparatus manufactured by Hitachi High-Technologies Corporation. FIG. 12 corresponds to FIG. 4 (c) (and FIG. 1) described above.
 図12に示すリチウムイオン二次電池1の具体的な構成および製造方法は、以下に示す通りである。 The specific configuration and manufacturing method of the lithium ion secondary battery 1 shown in FIG. 12 are as follows.
 基板10(図12では省略)には、ステンレス(SUS304)を用いた。基板10の厚さは30μmとした。 Stainless steel (SUS304) was used for the substrate 10 (not shown in FIG. 12). The thickness of the substrate 10 was 30 μm.
 正極集電体層20(図12では省略)には、スパッタ法で形成したアルミニウムを用いた。正極集電体層20の厚さは100nmとした。 For the positive electrode current collector layer 20 (not shown in FIG. 12), aluminum formed by sputtering was used. The thickness of the positive electrode current collector layer 20 was 100 nm.
 正極層30(図12では省略)には、スパッタ法で形成したマンガン酸リチウム(Li1.5Mn)を用いた。正極層30の厚さは1000nmとした。 For the positive electrode layer 30 (not shown in FIG. 12), lithium manganate (Li 1.5 Mn 2 O 4 ) formed by sputtering was used. The thickness of the positive electrode layer 30 was 1000 nm.
 固体電解質層40には、スパッタ法で形成したリン酸リチウム(LiPO)を用いた。固体電解質層40の厚さは1000nmとした。 For the solid electrolyte layer 40, lithium phosphate (Li 3 PO 4 ) formed by sputtering was used. The thickness of the solid electrolyte layer 40 was 1000 nm.
 保持層50には、スパッタ法で形成した白金(Pt)を用いた。保持層50の厚さは70nm(成膜後且つ初回充電前)とした。 For the holding layer 50, platinum (Pt) formed by sputtering was used. The thickness of the holding layer 50 was 70 nm (after film formation and before initial charge).
 被覆層60には、スパッタ法で形成したCoZrNb合金(より具体的には、Co91ZrNb)を用いた。被覆層60の厚さは200nmとした。 For the covering layer 60, a CoZrNb alloy (more specifically, Co 91 Zr 5 Nb 4 ) formed by a sputtering method was used. The thickness of the covering layer 60 was 200 nm.
 負極集電体層70には、スパッタ法で形成した白金(Pt)を用いた。負極集電体層70の厚さは70nmとした。 For the negative electrode current collector layer 70, platinum (Pt) formed by a sputtering method was used. The thickness of the negative electrode current collector layer 70 was 70 nm.
 このようにして得られた、成膜後且つ初回充電前のリチウムイオン二次電池1に対し、電子線回折による結晶構造の解析を行ったところ、次の通りであった。 The crystal structure of the lithium ion secondary battery 1 obtained as described above after film formation and before the first charge was analyzed by electron beam diffraction, and found to be as follows.
 SUS304からなる基板10、アルミニウムからなる正極集電体層20、白金からなる保持層50および負極集電体層70は、それぞれ結晶化していた。これに対し、マンガン酸リチウムからなる正極層30、リン酸リチウム(LiPO)からなる固体電解質層40、そして、CoZrNb合金からなる被覆層60は、それぞれ非晶質化していた。ただし、正極層30、固体電解質層40および被覆層60はそれぞれ、電子線回折で微かにリングが観られ、非晶質構造中に微結晶が存在していることがわかった。 The substrate 10 made of SUS304, the positive electrode current collector layer 20 made of aluminum, the holding layer 50 made of platinum, and the negative electrode current collector layer 70 were each crystallized. On the other hand, the positive electrode layer 30 made of lithium manganate, the solid electrolyte layer 40 made of lithium phosphate (Li 3 PO 4 ), and the coating layer 60 made of a CoZrNb alloy were amorphized, respectively. However, in each of the positive electrode layer 30, the solid electrolyte layer 40, and the covering layer 60, a ring was slightly observed by electron beam diffraction, and it was found that microcrystals were present in the amorphous structure.
 このようにして得られたリチウムイオン二次電池1に対し、初回充電および初回放電を行った。なお、初回充電条件および初回放電条件は、上述した、図5を用いて説明したものと同じとした。 An initial charge and an initial discharge were performed on the lithium ion secondary battery 1 obtained in this manner. The initial charge condition and the initial discharge condition are the same as those described above with reference to FIG.
 図12では、上述した図5(b)と同じく、保持層50のうち、被覆層60との境界部側に、面方向に比べて厚さ方向が小さくなるように扁平化するとともに、他の灰色の斑点に比べて相対的に巨大な灰色の部位が存在していることがわかる。ここで、図12では、図5(b)と同じく、白地になっている部位が多孔質部51に、灰色になっている部位が空孔52に、それぞれ対応しているものと考えられる。なお、図12に示す保持層50の厚さは、105nm(初回放電後)となっていた。 In FIG. 12, similarly to FIG. 5 (b) described above, the holding layer 50 is flattened on the side of the boundary with the covering layer 60 so that the thickness direction becomes smaller than the surface direction, and It can be seen that relatively large gray areas exist as compared to gray spots. Here, in FIG. 12, as in FIG. 5 (b), it is considered that the white area corresponds to the porous portion 51, and the gray area corresponds to the air holes 52. The thickness of the holding layer 50 shown in FIG. 12 was 105 nm (after the first discharge).
 また、こちらの場合も、初回充放電の前後において、被覆層60および負極集電体層70は、それぞれの濃淡および厚さに関し、ほとんど変化がみられなかった。 Also in this case, the coating layer 60 and the negative electrode current collector layer 70 hardly changed with respect to their respective shades and thicknesses before and after the first charge and discharge.
[実施の形態1のまとめ]
 以上説明したように、本実施の形態のリチウムイオン二次電池1では、固体電解質層40を挟んで正極層30と対向して配置される保持層50に、非晶質構造を有する金属または合金で構成される被覆層60を積層した。これにより、保持層50に、例えば多結晶構造を有する被覆層60を積層した場合と比較して、充電動作に伴って正極層30から保持層50に移動してきたリチウムの、被覆層60を介した外部への漏出を抑制することができる。
[Summary of Embodiment 1]
As described above, in the lithium ion secondary battery 1 of the present embodiment, the metal or alloy having an amorphous structure in the holding layer 50 disposed to face the positive electrode layer 30 with the solid electrolyte layer 40 interposed therebetween. The coating layer 60 was laminated. Thereby, as compared with, for example, the case where the covering layer 60 having a polycrystalline structure is laminated on the holding layer 50, the covering layer 60 of lithium transferred from the positive electrode layer 30 to the holding layer 50 along with the charging operation Leaks to the outside can be suppressed.
 また、本実施の形態では、固体電解質層40上に、多孔質化した白金で構成された保持層50を設けた。これにより、固体電解質層40上に、例えばシリコン(Si)等で構成された負極層を設ける場合と比較して、充電による膨張および放電による収縮に伴う、リチウムイオン二次電池1内での剥離を抑制することができる。 Moreover, in the present embodiment, the holding layer 50 made of porous platinum is provided on the solid electrolyte layer 40. Thereby, as compared with the case where the negative electrode layer made of, for example, silicon (Si) or the like is provided on solid electrolyte layer 40, peeling within lithium ion secondary battery 1 accompanying expansion due to charge and contraction due to discharge. Can be suppressed.
 さらに、本実施の形態では、被覆層60上に、白金で構成された負極集電体層70を設けた。これにより、被覆層60上に、貴金属以外で構成された負極集電体層70を設ける場合と比較して、被覆層60を構成する金属または合金の、酸化等による腐食(劣化)を抑制することができる。 Furthermore, in the present embodiment, the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60. Thereby, the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
 さらにまた、本実施の形態のリチウムイオン二次電池1では、固体電解質層40を挟んで配置される正極層30および保持層50の平面の大きさを、正極層30<保持層50とした。これにより、リチウムイオンが正極層30から保持層50側へと移動する際の、横方向(面方向)への移動が抑制される。その結果、リチウムイオン二次電池1の側面側からのリチウムイオンの外部への漏出を抑制することができる。 Furthermore, in the lithium ion secondary battery 1 of the present embodiment, the size of the flat surface of the positive electrode layer 30 and the holding layer 50 disposed with the solid electrolyte layer 40 therebetween is positive electrode layer 30 <holding layer 50. Thereby, movement in the lateral direction (surface direction) when lithium ions move from the positive electrode layer 30 to the holding layer 50 side is suppressed. As a result, leakage of lithium ions from the side of the lithium ion secondary battery 1 to the outside can be suppressed.
 なお、ここでは詳細な説明を行わないが、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で保持層50を構成した場合は、白金(Pt)単体で保持層50を構成した場合と同じく、充放電によって保持層50の多孔質化を図ることができ、保持層50にリチウムを保持させることが可能となる。 Although not described in detail here, platinum (Pt) is used when the holding layer 50 is formed of platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or their alloys. The holding layer 50 can be made porous by charging and discharging, as in the case where the holding layer 50 is constituted alone, and lithium can be held in the holding layer 50.
[実施の形態1の変形例]
 なお、実施の形態1のリチウムイオン二次電池1では、基板10と固体電解質層40とを用いて、正極集電体層20および正極層30を覆い、且つ、固体電解質層40と被覆層60および負極集電体層70とを用いて、保持層50を覆う構成を採用していたが、これに限られるものではない。
[Modification of Embodiment 1]
In lithium ion secondary battery 1 of the first embodiment, substrate 10 and solid electrolyte layer 40 are used to cover positive electrode current collector layer 20 and positive electrode layer 30, and solid electrolyte layer 40 and covering layer 60. And although the structure which covers the holding layer 50 using the negative electrode collector layer 70 was employ | adopted, it is not restricted to this.
(第1の変形例)
 図6は、実施の形態1の第1の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図6は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(実施の形態1の図1に対応)を示している。
(First modification)
FIG. 6 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a first modified example of the first embodiment. Here, FIG. 6 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
 この第1の変形例では、図6の上方からみたときの正極集電体層20および正極層30の平面の大きさが、固体電解質層40の平面の大きさとほぼ同じとなっている点が、上記実施の形態1とは異なる。ただし、第1の変形例においても、実施の形態1と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図6参照)を得ることができる。 In this first modification, the planar size of the positive electrode current collector layer 20 and the positive electrode layer 30 when viewed from the upper side of FIG. 6 is substantially the same as the planar size of the solid electrolyte layer 40. This is different from the first embodiment. However, also in the first modification, after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 6) in which the holding layer 50 is made porous can be obtained.
(第2の変形例)
 図7は、実施の形態1の第2の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図7は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(実施の形態1の図1に対応)を示している。
(Second modification)
FIG. 7 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 according to a second modification of the first embodiment. Here, FIG. 7 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
 この第2の変形例では、図7の上方からみたときの被覆層60の平面の大きさが、保持層50の平面の大きさと同じとなっており、且つ、図7の上方からみたときの負極集電体層70の大きさが、被覆層60の平面の大きさと同じとなっている点が、上記実施の形態1とは異なる。ただし、第2の変形例においても、実施の形態1と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図7参照)を得ることができる。 In the second modification, the size of the plane of the covering layer 60 when viewed from above in FIG. 7 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG. The second embodiment differs from the first embodiment in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60. However, also in the second modification, after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain the lithium ion secondary battery 1 (see FIG. 7) in which the holding layer 50 is made porous.
(第3の変形例)
 図8は、実施の形態1の第3の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図8は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(実施の形態1の図1に対応)を示している。
(Third modification)
FIG. 8 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a third modification of the first embodiment. Here, FIG. 8 shows a state after the first discharge, that is, a state in which the structure of the lithium ion secondary battery 1 is completed (corresponding to FIG. 1 of the first embodiment).
 この第3の変形例では、図8の上方からみたときの被覆層60の平面の大きさが、保持層50の平面の大きさと同じとなっており、且つ、図8の上方からみたときの負極集電体層70の大きさが、被覆層60の平面の大きさと同じとなっている点が、上記第1の変形例とは異なる。ただし、第3の変形例においても、実施の形態1と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図8参照)を得ることができる。 In the third modification, the size of the plane of the covering layer 60 when viewed from above in FIG. 8 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG. This embodiment differs from the first modification in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60. However, also in the third modification, after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 8) in which the holding layer 50 is made porous can be obtained.
(第4の変形例)
 図9は、実施の形態1の第4の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図9は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(実施の形態1の図1に対応)を示している。
(The 4th modification)
FIG. 9 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of a fourth modification of the first embodiment. Here, FIG. 9 shows a state (corresponding to FIG. 1 of the first embodiment) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
 この第4の変形例では、図9の上方からみたときの保持層50の平面の大きさが、固体電解質層40の平面の大きさと同じとなっている点が、上記第3の変形例とは異なる。ただし、第4の変形例においても、実施の形態1と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図9参照)を得ることができる。 In the fourth modification, the size of the plane of the holding layer 50 when viewed from above in FIG. 9 is the same as the size of the plane of the solid electrolyte layer 40, Is different. However, also in the fourth modification, after manufacturing lithium ion secondary battery 1 including dense holding layer 50 in the same procedure as in Embodiment 1 (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain a lithium ion secondary battery 1 (see FIG. 9) in which the holding layer 50 is made porous.
<実施の形態2>
 実施の形態1では、保持層50を、多孔質構造を有する貴金属で構成していた。これに対し、本実施の形態では、保持層50を、それぞれが厚さ方向に伸びる複数の柱状結晶を有するチタン(Ti)で構成したものである。なお、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
Second Embodiment
In the first embodiment, the holding layer 50 is made of a noble metal having a porous structure. On the other hand, in the present embodiment, the holding layer 50 is made of titanium (Ti) having a plurality of columnar crystals each extending in the thickness direction. In the present embodiment, the same components as those in Embodiment 1 are assigned the same reference numerals and detailed explanations thereof will be omitted.
[リチウムイオン二次電池の構成]
 図10は、実施の形態2のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、実施の形態1と同じく、複数の層(膜)を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、最初(初回)の充電動作によってその構造を完成させるようになっている。ここで、図10(a)は成膜後且つ初回充電前の状態を、図10(b)は初回充電後の状態を、それぞれ示している。
[Configuration of lithium ion secondary battery]
FIG. 10 is a diagram showing a cross-sectional configuration of lithium ion secondary battery 1 of the second embodiment. As in the first embodiment, the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers (films) are stacked, and after a basic structure is formed by a so-called film formation process, The structure is completed by the first (first) charging operation. Here, FIG. 10A shows the state after film formation and before the first charge, and FIG. 10B shows the state after the first charge.
(成膜後のリチウムイオン二次電池の構成)
 図10(a)に示すように、成膜後且つ初回充電前のリチウムイオン二次電池1は、実施の形態1と同様に、基板10と、正極集電体層20と、正極層30と、固体電解質層40と、保持層50と、被覆層60と、負極集電体層70とを、この順に積層した構成を有している。
(Configuration of lithium ion secondary battery after film formation)
As shown in FIG. 10A, the lithium ion secondary battery 1 after film formation and before the first charge is the substrate 10, the positive electrode current collector layer 20, and the positive electrode layer 30 as in the first embodiment. The solid electrolyte layer 40, the holding layer 50, the covering layer 60, and the negative electrode current collector layer 70 are stacked in this order.
(初回充電後のリチウムイオン二次電池の構成)
 図10(b)に示すように、初回充電後のリチウムイオン二次電池1の基本構成は、図10(a)に示す成膜後且つ初回充電前のリチウムイオン二次電池1とほぼ同様であるが、保持層50の内部に負極80が形成されている点が異なる。
(Configuration of lithium ion secondary battery after initial charge)
As shown in FIG. 10 (b), the basic configuration of the lithium ion secondary battery 1 after the initial charge is substantially the same as the lithium ion secondary battery 1 after the film formation shown in FIG. 10 (a) and before the initial charge. However, the difference is that the negative electrode 80 is formed inside the holding layer 50.
 次に、上記リチウムイオン二次電池1の各構成要素について、より詳細な説明を行うが、保持層50および負極80以外は実施の形態1と同様の構成を有するため、ここでは保持層50および負極80に関する説明を行う。 Next, although each component of the lithium ion secondary battery 1 will be described in more detail, since it has the same configuration as that of the first embodiment except for the holding layer 50 and the negative electrode 80, the holding layer 50 and A description of the negative electrode 80 will be made.
(保持層)
 本実施の形態の保持層50は、固体薄膜であって、金属チタン(Ti)で構成されるとともにそれぞれが厚さ方向に伸びる複数の柱状結晶を、並べて配置した構造を有している。なお、保持層50を構成するチタンの柱状結晶は、通常、六方晶柱状結晶で構成される。
(Retention layer)
The holding layer 50 of the present embodiment is a solid thin film, and has a structure in which a plurality of columnar crystals each made of titanium metal (Ti) and extending in the thickness direction are arranged side by side. The columnar crystals of titanium constituting the holding layer 50 are usually composed of hexagonal columnar crystals.
 保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the holding layer 50 can be, for example, 10 nm or more and 40 μm or less. If the thickness of the retention layer 50 is less than 10 nm, the ability to retain lithium will be insufficient. On the other hand, when the thickness of the holding layer 50 exceeds 40 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
 さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、チタンによる柱状結晶の集合体を効率よく形成するという観点からすれば、スパッタ法を用いることが望ましい。 Furthermore, as a method for manufacturing the holding layer 50, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of efficiently forming an aggregate of columnar crystals of titanium, the sputtering method is used. It is desirable to use
(負極)
 負極80は、充電時にはリチウムイオンを吸蔵するとともに放電時にはリチウムイオンを放出する負極活物質を含んでいる。ただし、本実施の形態の負極80は、上述したように、充電動作によって保持層50の内部に形成される。より具体的に説明すると、保持層50では、隣接する柱状結晶同士の境界部、所謂結晶粒界に、リチウムイオンが保持されることによって、負極80が形成される。ここで、本実施の形態では、金属リチウム自身が負極活物質として機能している。
(Negative electrode)
The negative electrode 80 contains a negative electrode active material that stores lithium ions at the time of charge and releases lithium ions at the time of discharge. However, as described above, the negative electrode 80 of the present embodiment is formed inside the holding layer 50 by the charging operation. More specifically, in the holding layer 50, the lithium ion is held at the boundary between adjacent columnar crystals, that is, the so-called crystal grain boundary, whereby the negative electrode 80 is formed. Here, in the present embodiment, metal lithium itself functions as a negative electrode active material.
 また、負極80の製造方法としては、充電によって負極80を形成(析出)させる手法を採用することが望ましい。 Moreover, as a manufacturing method of the negative electrode 80, it is desirable to adopt a method of forming (depositing) the negative electrode 80 by charging.
[リチウムイオン二次電池の製造方法]
 次に、図10に示すリチウムイオン二次電池1の製造方法について説明を行う。本実施の形態では、上述したように、まず、所謂成膜プロセスによって、図10(a)に示すリチウムイオン二次電池1の基本的な構造を形成した後、最初(初回)の充電動作によって、図10(b)に示すリチウムイオン二次電池1を得るようになっている。
[Method of manufacturing lithium ion secondary battery]
Next, a method of manufacturing the lithium ion secondary battery 1 shown in FIG. 10 will be described. In the present embodiment, as described above, after the basic structure of lithium ion secondary battery 1 shown in FIG. 10A is formed by the so-called film formation process, the first (first) charging operation is performed. The lithium ion secondary battery 1 shown in FIG. 10 (b) is obtained.
 まず、図示しないスパッタ装置に基板10を装着し、基板10上に、正極集電体層20、正極層30、固体電解質層40、保持層50、被覆層60および負極集電体層70を、この順で形成(積層)する。以上により、図10(a)に示す、成膜後且つ初回充電前のリチウムイオン二次電池1が得られる。そして、このリチウムイオン二次電池1を、スパッタ装置から取り外す。 First, the substrate 10 is mounted on a sputtering apparatus (not shown), and the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the covering layer 60 and the negative electrode current collector layer 70 are formed on the substrate 10. The layers are formed (stacked) in this order. Thus, the lithium ion secondary battery 1 after film formation and before the first charge shown in FIG. 10A is obtained. Then, the lithium ion secondary battery 1 is removed from the sputtering apparatus.
 続いて、図10(a)に示す、成膜後且つ初回充電前のリチウムイオン二次電池1に対し、1回目の充電を行わせる。その結果、図10(a)に示すリチウムイオン二次電池1のうち、保持層50の内部に存在する結晶粒界にリチウムが析出する。すなわち、保持層50の内部に、リチウムからなる負極80が形成され、図10(b)に示す、初回充電後のリチウムイオン二次電池1が得られる。なお、リチウムイオン二次電池1の充放電動作の詳細については後述する。 Subsequently, the lithium ion secondary battery 1 after film formation and before the first charge shown in FIG. 10A is charged for the first time. As a result, in the lithium ion secondary battery 1 shown in FIG. 10A, lithium is precipitated at the crystal grain boundaries present inside the holding layer 50. That is, the negative electrode 80 made of lithium is formed inside the holding layer 50, and the lithium ion secondary battery 1 after the initial charge shown in FIG. 10 (b) is obtained. The details of the charge and discharge operation of the lithium ion secondary battery 1 will be described later.
[リチウムイオン二次電池の動作]
 放電状態にあるリチウムイオン二次電池1を充電する場合、基板10には直流電源の正極が、負極集電体層70には直流電源の負極が、それぞれ接続される。そして、正極層30で正極活物質を構成するリチウムイオンが、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図10において上方向)に移動する。
[Operation of lithium ion secondary battery]
When charging the lithium ion secondary battery 1 in a discharged state, the substrate 10 is connected to the positive electrode of the DC power supply, and the negative electrode current collector layer 70 is connected to the negative electrode of the DC power supply. Then, lithium ions constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 through the solid electrolyte layer 40. That is, in the charging operation, lithium ions move in the thickness direction (upward direction in FIG. 10) of the lithium ion secondary battery 1.
 このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、固体電解質層40と保持層50との境界部に到達する。ここで、保持層50は、金属チタンで構成されるとともにそれぞれが厚さ方向に伸びる複数の柱状結晶を有しており、これら複数の柱状結晶は並べて配置されている。その結果、固体電解質層40と保持層50との境界部に到達したリチウムイオンは、隣接する柱状結晶の粒界に入り込むとともにさらに厚さ方向に沿って移動し、保持層50内に保持される。 At this time, the lithium ions moved from the positive electrode layer 30 side to the holding layer 50 side reach the boundary between the solid electrolyte layer 40 and the holding layer 50. Here, the holding layer 50 is made of metallic titanium and has a plurality of columnar crystals each extending in the thickness direction, and the plurality of columnar crystals are arranged side by side. As a result, the lithium ions reaching the boundary between the solid electrolyte layer 40 and the retention layer 50 enter the grain boundaries of the adjacent columnar crystals and move further along the thickness direction, and are retained in the retention layer 50. .
 また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を突き抜けて被覆層60との境界部に到達する。ここで、被覆層60は、保持層50を構成する金属チタン(柱状結晶の集合体)よりも粒界の数が少ない、非晶質化した金属または合金で構成されている。このため、保持層50と被覆層60との境界部に到達したリチウムイオンは、被覆層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。 In addition, part of lithium ions that have entered the holding layer 50 penetrate the holding layer 50 and reach the boundary with the covering layer 60. Here, the covering layer 60 is made of an amorphized metal or alloy in which the number of grain boundaries is smaller than that of titanium metal (aggregation of columnar crystals) constituting the holding layer 50. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the covering layer 60 hardly enter the covering layer 60, and therefore, the state of being held in the holding layer 50 is maintained.
 そして、充電動作が終了した状態において、正極層30から保持層50側に移動したリチウムイオンは、保持層50における柱状結晶間に存在する粒界に保持され、負極80を構成する。 Then, in the state where the charging operation is completed, the lithium ions moved from the positive electrode layer 30 to the holding layer 50 side are held at the grain boundaries existing between the columnar crystals in the holding layer 50 to constitute the negative electrode 80.
 充電状態にあるリチウムイオン二次電池1を放電(使用)する場合、基板10には負荷の正極が、負極集電体層70には負荷の負極が、それぞれ接続される。そして、保持層50の内部に存在する負極80に収容されるリチウムイオンが、固体電解質層40を介して正極層30へと厚さ方向(図10の下方向)に沿って移動し、正極層30で正極活物質を構成する。これに伴って、負荷には直流電流が供給される。 When discharging (using) the lithium ion secondary battery 1 in a charged state, the substrate 10 is connected to the positive electrode of the load, and the negative electrode current collector layer 70 is connected to the negative electrode of the load. Then, lithium ions contained in the negative electrode 80 present inside the holding layer 50 move along the thickness direction (downward direction in FIG. 10) to the positive electrode layer 30 via the solid electrolyte layer 40, and the positive electrode layer 30 constitute a positive electrode active material. Along with this, a direct current is supplied to the load.
 そして、放電動作が終了した状態において、保持層50の内部で負極80は消失するわけではなく、放電動作による移動を行わない一部のリチウムによって残存する。 Then, in the state where the discharge operation is completed, the negative electrode 80 does not necessarily disappear inside the holding layer 50, and remains by part of lithium which is not moved by the discharge operation.
[実施の形態2のまとめ]
 以上説明したように、本実施の形態のリチウムイオン二次電池1では、固体電解質層40を挟んで正極層30と対向して配置される保持層50に、非晶質構造を有する金属または合金で構成される被覆層60を積層した。これにより、保持層50に、例えば多結晶構造を有する被覆層60を積層した場合と比較して、充電動作に伴って正極層30から保持層50に移動してきたリチウムの、被覆層60を介した外部への漏出を抑制することができる。
[Summary of Embodiment 2]
As described above, in the lithium ion secondary battery 1 of the present embodiment, the metal or alloy having an amorphous structure in the holding layer 50 disposed to face the positive electrode layer 30 with the solid electrolyte layer 40 interposed therebetween. The coating layer 60 was laminated. Thereby, as compared with, for example, the case where the covering layer 60 having a polycrystalline structure is laminated on the holding layer 50, the covering layer 60 of lithium transferred from the positive electrode layer 30 to the holding layer 50 along with the charging operation Leaks to the outside can be suppressed.
 また、本実施の形態では、固体電解質層40上に、チタンからなる柱状結晶を並べて構成された保持層50を設けた。これにより、固体電解質層40上に、例えばシリコン(Si)等で構成された負極層を設ける場合と比較して、充電による膨張および放電による収縮に伴う、リチウムイオン二次電池1内での剥離を抑制することができる。 Further, in the present embodiment, the holding layer 50 formed by arranging columnar crystals made of titanium is provided on the solid electrolyte layer 40. Thereby, as compared with the case where the negative electrode layer made of, for example, silicon (Si) or the like is provided on solid electrolyte layer 40, peeling within lithium ion secondary battery 1 accompanying expansion due to charge and contraction due to discharge. Can be suppressed.
 さらに、本実施の形態では、被覆層60上に、白金で構成された負極集電体層70を設けた。これにより、被覆層60上に、貴金属以外で構成された負極集電体層70を設ける場合と比較して、被覆層60を構成する金属または合金の、酸化等による腐食(劣化)を抑制することができる。 Furthermore, in the present embodiment, the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60. Thereby, the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
<実施の形態3>
 実施の形態1、2では、固体電解質層40と被覆層60との間に、負極として機能する金属リチウムを保持する機能を有し、自身は負極としては機能しない保持層50を設けていた。これに対し、本実施の形態では、固体電解質層40と被覆層60との間に、負極として機能する層を設けるようにしたものである。なお、本実施の形態において、実施の形態1、2と同様のものについては、同じ符号を付してその詳細な説明を省略する。
Embodiment 3
In the first and second embodiments, between the solid electrolyte layer 40 and the covering layer 60, the holding layer 50 having the function of holding metallic lithium functioning as the negative electrode and not functioning itself as the negative electrode is provided. On the other hand, in the present embodiment, a layer functioning as a negative electrode is provided between the solid electrolyte layer 40 and the covering layer 60. In the present embodiment, the same components as those in Embodiments 1 and 2 are assigned the same reference numerals and detailed explanations thereof will be omitted.
[リチウムイオン二次電池の構成]
 図11は、実施の形態3のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、実施の形態1、2と同じく、複数の層(膜)を積層した構造を有しているが、実施の形態1、2とは異なり、所謂成膜プロセスによって構造を完成させるようになっている。
[Configuration of lithium ion secondary battery]
FIG. 11 is a diagram showing a cross-sectional configuration of lithium ion secondary battery 1 of the third embodiment. The lithium ion secondary battery 1 according to the present embodiment has a structure in which a plurality of layers (films) are stacked as in the first and second embodiments, but unlike the first and second embodiments, The structure is completed by the film forming process.
 本実施の形態のリチウムイオン二次電池1は、基板10と、正極集電体層20と、正極層30と、固体電解質層40と、負極層90と、被覆層60と、負極集電体層70とを、この順に積層した構成を有している。すなわち、本実施の形態のリチウムイオン二次電池1は、他の実施の形態の保持層50の位置に、負極層90が設けられている。 The lithium ion secondary battery 1 of the present embodiment includes the substrate 10, the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the negative electrode layer 90, the covering layer 60, and the negative electrode current collector. The layers 70 and 70 are stacked in this order. That is, in the lithium ion secondary battery 1 of the present embodiment, the negative electrode layer 90 is provided at the position of the holding layer 50 of the other embodiments.
 次に、上記リチウムイオン二次電池1の各構成要素について、より詳細な説明を行うが、負極層90以外は実施の形態1、2と同様の構成を有するため、ここでは負極層90に関する説明を行う。 Next, although each component of the lithium ion secondary battery 1 will be described in more detail, since it has the same configuration as that of the first and second embodiments except for the negative electrode layer 90, the explanation regarding the negative electrode layer 90 is here. I do.
(負極層)
 負極層90(保持層の一例)は、固体薄膜であって、充電時にはリチウムイオンを吸蔵するとともに放電時にはリチウムイオンを放出する負極活物質を含んでいる。そして、本実施の形態の負極層90は、ドーパントが添加されたアモルファスのシリコン(Si)で構成される。なお、本実施の形態では、シリコンが、リチウムイオンを吸蔵および放出する負極活物質として機能する。ただし、負極層90は、シリコン以外で構成してもよく、また、ドーパントは必須ではない。
(Anode layer)
The negative electrode layer 90 (an example of a holding layer) is a solid thin film, and contains a negative electrode active material that occludes lithium ions during charge and releases lithium ions during discharge. And, the negative electrode layer 90 of the present embodiment is made of amorphous silicon (Si) to which a dopant is added. Note that in this embodiment, silicon functions as a negative electrode active material which occludes and releases lithium ions. However, the negative electrode layer 90 may be made of materials other than silicon, and the dopant is not essential.
 ここで、負極層90を構成するシリコンに添加するドーパントとしては、シリコンの導電性を高めるものであれば、特に限定されるものではなく、各種元素で構成されたものを一種あるいは二種以上用いることができる。ただし、各種元素のうち、アクセプタとして機能することで負極層90をp型化する亜鉛(Zn)、カドミウム(Cd)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、あるいは、ドナーとして機能することで負極層90をn型化する窒素(N)、リン(P)、ヒ素(As)、硫黄(S)、セレン(Se)、テルル(Te)を用いることが望ましい。また、これらの中でも、ホウ素(B)を用いることが好ましい。 Here, the dopant to be added to the silicon forming the negative electrode layer 90 is not particularly limited as long as it enhances the conductivity of silicon, and one or two or more elements composed of various elements are used. be able to. However, among various elements, zinc (Zn), cadmium (Cd), boron (B), aluminum (Al), gallium (Ga), indium (In) which makes the anode layer 90 p-type by functioning as an acceptor. Nitrogen (N), Phosphorus (P), Arsenic (As), Sulfur (S), Selenium (Se), Tellurium (Te), which converts the anode layer 90 into n-type by functioning as a donor, thallium (Tl), or a donor. It is desirable to use Among these, it is preferable to use boron (B).
 負極層90の厚さは、例えば10nm以上20μm以下とすることができる。負極層90の厚さが10nm未満であると、得られるリチウムイオン二次電池1の容量が小さくなりすぎ、実用的ではなくなる。一方、負極層90の厚さが20μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、負極層90の厚さを20μm超としてもかまわない。 The thickness of the negative electrode layer 90 can be, for example, 10 nm or more and 20 μm or less. If the thickness of the negative electrode layer 90 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small to be practical. On the other hand, when the thickness of the negative electrode layer 90 exceeds 20 μm, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the negative electrode layer 90 may be more than 20 μm.
 さらにまた、負極層90の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Furthermore, as a method of manufacturing the negative electrode layer 90, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
[リチウムイオン二次電池の製造方法]
 次に、図11に示すリチウムイオン二次電池1の製造方法について説明を行う。
 まず、図示しないスパッタ装置に基板10を装着し、基板10上に、正極集電体層20、正極層30、固体電解質層40、負極層90、被覆層60および負極集電体層70を、この順で形成(積層)する。以上により、図11に示すリチウムイオン二次電池1が得られる。そして、このリチウムイオン二次電池1を、スパッタ装置から取り外す。
[Method of manufacturing lithium ion secondary battery]
Next, a method of manufacturing the lithium ion secondary battery 1 shown in FIG. 11 will be described.
First, the substrate 10 is mounted on a sputtering apparatus (not shown), and the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the negative electrode layer 90, the covering layer 60 and the negative electrode current collector layer 70 are formed on the substrate 10. The layers are formed (stacked) in this order. Thus, the lithium ion secondary battery 1 shown in FIG. 11 is obtained. Then, the lithium ion secondary battery 1 is removed from the sputtering apparatus.
[リチウムイオン二次電池の動作]
 放電状態にあるリチウムイオン二次電池1を充電する場合、基板10には直流電源の正極が、負極集電体層70には直流電源の負極が、それぞれ接続される。そして、正極層30で正極活物質を構成するリチウムイオンが、固体電解質層40を介して負極層90へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図11において上方向)に移動する。
[Operation of lithium ion secondary battery]
When charging the lithium ion secondary battery 1 in a discharged state, the substrate 10 is connected to the positive electrode of the DC power supply, and the negative electrode current collector layer 70 is connected to the negative electrode of the DC power supply. Then, lithium ions constituting the positive electrode active material in the positive electrode layer 30 move to the negative electrode layer 90 through the solid electrolyte layer 40. That is, in the charging operation, lithium ions move in the thickness direction (upward direction in FIG. 11) of the lithium ion secondary battery 1.
 このとき、正極層30側から負極層90側に移動してきたリチウムイオンは、固体電解質層40と負極層90との境界部に到達する。ここで、負極層90は、ドーパントとしてホウ素を添加してなるシリコンで構成されている。その結果、固体電解質層40と負極層90との境界部に到達したリチウムイオンは、負極層90に保持される。 At this time, the lithium ions moved from the positive electrode layer 30 side to the negative electrode layer 90 side reach the boundary between the solid electrolyte layer 40 and the negative electrode layer 90. Here, the negative electrode layer 90 is made of silicon formed by adding boron as a dopant. As a result, lithium ions that have reached the boundary between the solid electrolyte layer 40 and the negative electrode layer 90 are held by the negative electrode layer 90.
 また、負極層90内に入り込んできたリチウムイオンの一部は、負極層90を突き抜けて被覆層60との境界部に到達する。ここで、被覆層60は、非晶質化することで粒界の数が低減された金属または合金で構成されている。このため、負極層90と被覆層60との境界部に到達したリチウムイオンは、被覆層60に入り込みにくくなることから、負極層90内に保持された状態を維持する。 In addition, part of lithium ions that have entered into the negative electrode layer 90 pierce through the negative electrode layer 90 and reach the boundary with the covering layer 60. Here, the covering layer 60 is made of a metal or an alloy in which the number of grain boundaries is reduced by amorphizing. Therefore, the lithium ions that have reached the boundary between the negative electrode layer 90 and the covering layer 60 are unlikely to enter the covering layer 60, and therefore, the state held in the negative electrode layer 90 is maintained.
 充電状態にあるリチウムイオン二次電池1を放電(使用)する場合、基板10には負荷の正極が、負極集電体層70には負荷の負極が、それぞれ接続される。そして、負極層90の内部に存在するリチウムイオンが、固体電解質層40を介して正極層30へと厚さ方向(図11の下方向)に沿って移動し、正極層30で正極活物質を構成する。これに伴って、負荷には直流電流が供給される。 When discharging (using) the lithium ion secondary battery 1 in a charged state, the substrate 10 is connected to the positive electrode of the load, and the negative electrode current collector layer 70 is connected to the negative electrode of the load. Then, lithium ions present inside the negative electrode layer 90 move along the thickness direction (downward direction in FIG. 11) to the positive electrode layer 30 through the solid electrolyte layer 40, and the positive electrode active material is Configure. Along with this, a direct current is supplied to the load.
[実施の形態3のまとめ]
 以上説明したように、本実施の形態のリチウムイオン二次電池1では、固体電解質層40を挟んで正極層30と対向して配置される負極層90に、非晶質構造を有する金属または合金で構成される被覆層60を積層した。これにより、負極層90に、例えば多結晶構造を有する被覆層60を積層した場合と比較して、充電動作に伴って正極層30から負極層90に移動してきたリチウムの、被覆層60を介した外部への漏出を抑制することができる。
[Summary of Embodiment 3]
As described above, in the lithium ion secondary battery 1 of the present embodiment, a metal or alloy having an amorphous structure in the negative electrode layer 90 disposed opposite to the positive electrode layer 30 with the solid electrolyte layer 40 interposed therebetween. The coating layer 60 was laminated. Thereby, as compared with, for example, the case where the covering layer 60 having a polycrystalline structure is laminated on the negative electrode layer 90, the covering layer 60 of lithium transferred from the positive electrode layer 30 to the negative electrode layer 90 during the charging operation Leaks to the outside can be suppressed.
 また、本実施の形態では、ホウ素を含むシリコンからなる負極層90を設けた。これにより、固体電解質層40上に、例えば炭素(C)等で構成された負極層90を設ける場合と比較して、同じ厚さ(体積)とした場合のリチウムイオン二次電池1の容量を大きくすることができる。 Further, in the present embodiment, the negative electrode layer 90 made of silicon containing boron is provided. Thereby, compared with the case where the negative electrode layer 90 made of, for example, carbon (C) or the like is provided on the solid electrolyte layer 40, the capacity of the lithium ion secondary battery 1 at the same thickness (volume) is obtained. It can be enlarged.
 さらに、本実施の形態では、被覆層60上に、白金で構成された負極集電体層70を設けた。これにより、被覆層60上に、貴金属以外で構成された負極集電体層70を設ける場合と比較して、被覆層60を構成する金属または合金の、酸化等による腐食(劣化)を抑制することができる。 Furthermore, in the present embodiment, the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60. Thereby, the corrosion (deterioration) due to oxidation or the like of the metal or alloy constituting the covering layer 60 is suppressed as compared to the case where the negative electrode current collector layer 70 made of other than noble metal is provided on the covering layer 60 be able to.
<その他>
 なお、実施の形態1~3では、保持層50(あるいは負極層90)上に被覆層60を設けていたが、これに限られるものではなく、正極層30側に被覆層60と同等の層(リチウムの拡散を抑制するための非晶質金属層(非晶質合金層))を設けてもよい。この場合は、正極層30が保持層の一例となる。なお、これを実現するための一つの手法として、正極集電体層20と正極層30との間に、非晶質金属層(非晶質合金層)を設けることが挙げられる。また、これを実現するための他の手法として、正極集電体層20自体を、非晶質金属層(非晶質合金層)で構成することが挙げられる。
<Others>
Although in the first to third embodiments, the covering layer 60 is provided on the holding layer 50 (or the negative electrode layer 90), the present invention is not limited to this, and a layer equivalent to the covering layer 60 on the positive electrode layer 30 side. (Amorphous metal layer (amorphous alloy layer) for suppressing diffusion of lithium) may be provided. In this case, the positive electrode layer 30 is an example of the holding layer. In addition, providing an amorphous metal layer (amorphous alloy layer) between the positive electrode collector layer 20 and the positive electrode layer 30 is mentioned as one method for realizing this. In addition, as another method for achieving this, the positive electrode current collector layer 20 itself may be formed of an amorphous metal layer (amorphous alloy layer).
 また、正極層30側および保持層50(あるいは負極層90)側のそれぞれに、被覆層60に対応する層を設けてもかまわない。 In addition, a layer corresponding to the covering layer 60 may be provided on each of the positive electrode layer 30 side and the holding layer 50 (or negative electrode layer 90) side.
1…リチウムイオン二次電池、10…基板、20…正極集電体層、30…正極層、40…固体電解質層、50…保持層、51…多孔質部、52…空孔、60…被覆層、70…負極集電体層、80…負極、90…負極層 DESCRIPTION OF SYMBOLS 1 lithium ion secondary battery, 10 ... board | substrate, 20 ... positive electrode collector layer, 30 ... positive electrode layer, 40 ... solid electrolyte layer, 50 ... holding layer, 51 ... porous part, 52 ... hole, 60 ... coating Layers 70: negative electrode current collector layer 80: negative electrode 90: negative electrode layer

Claims (11)

  1.  リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、
     リチウムを保持可能な保持層と、
     非晶質構造を有する、金属または合金で構成される非晶質金属層と
    を順に有するリチウムイオン二次電池。
    A solid electrolyte layer comprising an inorganic solid electrolyte exhibiting lithium ion conductivity;
    A retention layer capable of retaining lithium,
    A lithium ion secondary battery having an amorphous metal layer composed of a metal or an alloy and having an amorphous structure in order.
  2.  前記非晶質金属層は、クロム(Cr)を含むことを特徴とする請求項1記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the amorphous metal layer contains chromium (Cr).
  3.  前記非晶質金属層は、クロム(Cr)およびチタン(Ti)の合金からなることを特徴とする請求項2記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 2, wherein the amorphous metal layer is made of an alloy of chromium (Cr) and titanium (Ti).
  4.  前記非晶質金属層は、リチウムと金属間化合物を形成しない金属または合金で構成されることを特徴とする請求項1記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the amorphous metal layer is composed of a metal or an alloy which does not form an intermetallic compound with lithium.
  5.  前記非晶質金属層は、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSiのいずれかで構成されることを特徴とする請求項1記載のリチウムイオン二次電池。 The amorphous metal layer is made of any of ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, AuSi. Item 6. The lithium ion secondary battery according to item 1.
  6.  前記保持層は、多孔質構造を有する白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成されることを特徴とする請求項1乃至5のいずれか1項記載のリチウムイオン二次電池。 The said holding | maintenance layer is comprised by the platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) which has a porous structure, or these alloys. The lithium ion secondary battery according to any one of the above.
  7.  前記保持層は、それぞれが厚さ方向に伸びる複数の柱状結晶を有するチタンで構成されることを特徴とする請求項1乃至5のいずれか1項記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the holding layer is made of titanium having a plurality of columnar crystals each extending in a thickness direction.
  8.  前記保持層が負極活物質を含むことを特徴とする請求項1乃至5のいずれか1項記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the holding layer contains a negative electrode active material.
  9.  前記保持層が正極活物質を含むことを特徴とする請求項1乃至5のいずれか1項記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the holding layer contains a positive electrode active material.
  10.  前記固体電解質層の前記保持層とは反対側に正極活物質を含む正極層を有し、
     前記保持層の平面の大きさが、前記正極層の平面の大きさよりも大きいことを特徴とする請求項1乃至9のいずれか1項記載のリチウムイオン二次電池。
    It has a positive electrode layer containing a positive electrode active material on the opposite side to the said holding layer of the said solid electrolyte layer,
    10. The lithium ion secondary battery according to claim 1, wherein a size of a plane of the holding layer is larger than a size of a plane of the positive electrode layer.
  11.  白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成され、前記非晶質金属層に積層される貴金属層をさらに有することを特徴とする請求項1乃至10のいずれか1項記載のリチウムイオン二次電池。 A platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy thereof, further comprising a noble metal layer laminated on the amorphous metal layer. 11. A lithium ion secondary battery according to any one of items 1 to 10.
PCT/JP2018/042840 2017-12-22 2018-11-20 Lithium-ion secondary cell WO2019123951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/771,719 US20210175512A1 (en) 2017-12-22 2018-11-20 Lithium-ion rechargeable battery
CN201880077375.4A CN111418106A (en) 2017-12-22 2018-11-20 Lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-246640 2017-12-22
JP2017246640 2017-12-22
JP2018-192560 2018-10-11
JP2018192560A JP2019114529A (en) 2017-12-22 2018-10-11 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2019123951A1 true WO2019123951A1 (en) 2019-06-27

Family

ID=66993262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042840 WO2019123951A1 (en) 2017-12-22 2018-11-20 Lithium-ion secondary cell

Country Status (1)

Country Link
WO (1) WO2019123951A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296812A (en) * 1994-04-28 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode and li secondary battery
JP2001250559A (en) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd Lithium secondary cell
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2012146479A (en) * 2011-01-12 2012-08-02 Idemitsu Kosan Co Ltd Lithium ion battery
JP2017500710A (en) * 2013-12-18 2017-01-05 エレクトリシテ・ドゥ・フランス Anode compartment with collector made of amorphous alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296812A (en) * 1994-04-28 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode and li secondary battery
JP2001250559A (en) * 2000-03-08 2001-09-14 Sanyo Electric Co Ltd Lithium secondary cell
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2012146479A (en) * 2011-01-12 2012-08-02 Idemitsu Kosan Co Ltd Lithium ion battery
JP2017500710A (en) * 2013-12-18 2017-01-05 エレクトリシテ・ドゥ・フランス Anode compartment with collector made of amorphous alloy

Similar Documents

Publication Publication Date Title
JP5151692B2 (en) Lithium battery
US8551656B2 (en) Solid electrolyte cell and positive electrode active material
US20030108795A1 (en) Lithium secondary battery-use electrode and lithium secondary battery
KR20090033385A (en) Negative electrode active material, negative electrode and lithium secondary battery
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
JP2009199920A (en) Lithium battery
WO2018135154A1 (en) Lithium ion secondary battery and positive electrode active material
WO2019123981A1 (en) Method of manufacturing lithium ion secondary battery
WO2019123980A1 (en) Lithium ion secondary cell
JP2019114529A (en) Lithium ion secondary battery
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
WO2019123951A1 (en) Lithium-ion secondary cell
WO2018189976A1 (en) Lithium ion secondary cell and method for manufacturing lithium ion secondary cell
US7524585B2 (en) Anode and battery using it
WO2020116004A1 (en) Lithium ion secondary battery
US20200006764A1 (en) Secondary battery
WO2020137449A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
WO2020070932A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2019102668A1 (en) Lithium ion secondary battery, multilayer structure for lithium ion secondary batteries, and method for producing lithium ion secondary battery
WO2020012734A1 (en) Lithium ion secondary battery
US20220285692A1 (en) Multilayered anode and associated methods and systems
JP2020057561A (en) Lithium-ion secondary battery and method of manufacturing the same
CN111052489A (en) Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery
JP2005050806A (en) Negative electrode and battery using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891978

Country of ref document: EP

Kind code of ref document: A1