WO2020012734A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
WO2020012734A1
WO2020012734A1 PCT/JP2019/014775 JP2019014775W WO2020012734A1 WO 2020012734 A1 WO2020012734 A1 WO 2020012734A1 JP 2019014775 W JP2019014775 W JP 2019014775W WO 2020012734 A1 WO2020012734 A1 WO 2020012734A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid electrolyte
lithium ion
positive electrode
ion secondary
Prior art date
Application number
PCT/JP2019/014775
Other languages
French (fr)
Japanese (ja)
Inventor
安田 剛規
坂脇 彰
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020012734A1 publication Critical patent/WO2020012734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • a lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
  • Patent Literature 1 describes that Li 3 PO 4-x N x (generally referred to as LiPON) obtained by adding nitrogen to lithium phosphate (Li 3 PO 4 ) is used as a solid electrolyte. I have.
  • the capacity of a lithium ion secondary battery gradually decreases over time after charging, even if it is not particularly used.
  • the ratio of the capacity of the lithium ion secondary battery at the time when a predetermined period has elapsed to the initial capacity after the completion of charging is referred to as a capacity retention rate.
  • the capacity retention ratio tends to decrease, and the time until the lithium ion secondary battery does not function as a power source after charging is shortened even if not particularly used. there were.
  • An object of the present invention is to suppress a decrease in capacity retention in a lithium ion secondary battery using LiPON as a solid electrolyte.
  • the lithium ion secondary battery of the present invention includes a positive electrode layer containing a positive electrode active material, a first solid electrolyte layer containing Li 3 PO 4 , and a lithium ion secondary battery containing LiPON in which part of oxygen in Li 3 PO 4 is replaced with nitrogen. It has two solid electrolyte layers and a negative electrode layer containing a negative electrode active material in order. In such a lithium ion secondary battery, the thickness of the first solid electrolyte layer may be smaller than the thickness of the second solid electrolyte layer. Further, the first solid electrolyte layer and the second solid electrolyte layer may each have an amorphous structure. Further, the positive electrode layer includes a LiNiO 2 and Li 3 PO 4, the ratio of LiNiO 2 and Li 3 PO 4 in the positive electrode layer is, in molar ratio, 9: 1 to 3: 2 by weight It can be characterized.
  • the lithium ion secondary battery of the present invention includes a positive electrode layer containing a positive electrode active material and a solid layer containing lithium (Li), phosphate (PO 4 3- ), and nitrogen (N).
  • An electrolyte layer and a negative electrode layer containing a negative electrode active material are sequentially provided, and the solid electrolyte layer is such that the concentration of nitrogen on the side facing the positive electrode layer is lower than the concentration of nitrogen on the side facing the negative electrode layer. It is characterized by.
  • the solid electrolyte layer may be characterized in that the concentration of nitrogen on the side facing the positive electrode layer is 0%.
  • a lithium ion secondary battery of the present invention includes a positive electrode collector layer made of a metal or an alloy, an underlayer that does not contain Li 3 PO 4 comprises LiNiO 2, LiNiO 2 and Li 3 and covering material the positive electrode layer containing PO 4, Li 3 and the first solid electrolyte layer containing no LiNiO 2 comprises PO 4, second solid electrolyte comprising a LiPON a portion of the oxygen was replaced with nitrogen in Li 3 PO 4 And a negative electrode layer containing a negative electrode active material.
  • the second solid electrolyte layer is formed of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof.
  • a metal layer is formed, and the negative electrode layer is made of lithium alloyed with a metal forming the metal layer.
  • FIG. 2 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to an embodiment.
  • 4 is a flowchart illustrating a method for manufacturing a lithium ion secondary battery according to an embodiment.
  • FIG. 3 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery of a first comparative example. It is a figure showing the section composition of the lithium ion secondary battery of the 2nd comparative example. It is a figure showing the section composition of the lithium ion secondary battery of the 3rd comparative example.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of the present embodiment.
  • the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers are stacked. After forming a basic structure by a so-called film forming process, the first charge / discharge operation is performed. Completes the structure.
  • the lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, an underlayer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the underlayer 20, and a solid layer laminated on the positive electrode layer 30. And an electrolyte layer 40.
  • the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the ends thereof are directly laminated on the substrate 10, so that the solid electrolyte layer 40 covers the base layer 20 and the positive electrode layer 30 together with the substrate 10.
  • the lithium ion secondary battery 1 has a holding layer 50 stacked on the solid electrolyte layer 40, a diffusion prevention layer 60 stacked on the holding layer 50, and a negative electrode collection layer stacked on the diffusion prevention layer 60. And an electric conductor layer 70.
  • the substrate 10 serves as a base for stacking the base layer 20 to the negative electrode current collector layer 70 by a film forming process.
  • the material forming the substrate 10 is not particularly limited, and various materials such as metal, glass, ceramics, and resin can be adopted.
  • the substrate 10 is made of a metal plate having electron conductivity.
  • the substrate 10 functions as a positive electrode current collector layer that collects electric power into the positive electrode layer 30 via the base layer 20.
  • a stainless steel foil (plate) having higher mechanical strength than copper, aluminum, or the like is used as the substrate 10.
  • a metal foil plated with a conductive metal such as tin, copper, or chromium may be used.
  • the thickness of the substrate 10 can be, for example, not less than 20 ⁇ m and not more than 2000 ⁇ m. If the thickness of the substrate 10 is less than 20 ⁇ m, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, when the thickness of the substrate 10 exceeds 2000 ⁇ m, the volume energy density and the weight energy density decrease due to an increase in the thickness and weight of the battery.
  • the substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a.
  • the maximum height Rmax of the front surface 10a and the back surface 10b of the substrate 10 is about 300 nm to 500 nm.
  • the base layer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, and forms a metal material such as stainless steel forming the substrate 10 and Li 3 PO 4 (phosphoric acid) forming the positive electrode layer 30. (Lithium: described later in detail) is a barrier for suppressing direct contact.
  • the underlayer 20 is made of a metal or a metal compound, which has electron conductivity and is hardly corroded by Li + (lithium ion) or PO 4 3- (phosphate ion) constituting Li 3 PO 4. Can be used.
  • the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 1.
  • the thickness of the underlayer 20 can be, for example, not less than 5 nm and not more than 50 ⁇ m. If the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is reduced, which is not practical. On the other hand, when the thickness of the underlayer 20 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming technique such as various PVD (physical vapor deposition) or various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method or a vacuum method is used. It is desirable to use an evaporation method.
  • the positive electrode layer 30 is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging.
  • the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). It is possible to use those made of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals.
  • the positive electrode layer 30 may be a mixed material positive electrode further containing a solid electrolyte.
  • the positive electrode layer 30 is composed of a mixed positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material.
  • the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed while maintaining each.
  • one is a matrix (base material) and the other is a filler (particle).
  • the solid electrolyte region be a matrix and the positive electrode region be a filler.
  • the same LiNiO 2 as the underlayer 20 is used as the positive electrode active material constituting the positive electrode layer 30.
  • Li 3 PO 4 lithium phosphate
  • the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected.
  • the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
  • the thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small, which is not practical.
  • the thickness of the positive electrode layer 30 exceeds 40 ⁇ m, it takes too much time to form the layer, and the productivity is reduced.
  • the thickness of the positive electrode layer 30 may be more than 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
  • the solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field. Then, the solid electrolyte layer 40 of the present embodiment is stacked on the first solid electrolyte layer 41 and the first solid electrolyte layer 41 that are stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. A second solid electrolyte layer.
  • the first solid electrolyte layer 41 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30.
  • the thickness of the first solid electrolyte layer 41 can be, for example, 5 nm or more and 50 nm or less. When the thickness of the first solid electrolyte layer 41 is less than 5 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the first solid electrolyte layer 41 exceeds 50 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the second solid electrolyte layer 42 of the present embodiment includes LiPON (Li 3 PO 4-x N x (0 ⁇ x) in which a part of oxygen in Li 3 PO 4 constituting the first solid electrolyte layer 41 is substituted with nitrogen. ⁇ 1)).
  • the thickness of the second solid electrolyte layer 42 can be, for example, 10 nm or more and 10 ⁇ m or less. If the thickness of the second solid electrolyte layer 42 is less than 10 nm, current leakage between the positive electrode layer 30 and the holding layer 50 tends to occur in the obtained lithium ion secondary battery 1. On the other hand, if the thickness of the second solid electrolyte layer 42 exceeds 10 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the first solid electrolyte layer 41 is made of Li 3 PO 4 and the second solid electrolyte layer 42 is made of LiPON. That is, both the first solid electrolyte layer 41 and the second solid electrolyte layer 42 contain lithium, phosphorus, and oxygen, respectively.
  • the volume resistivity of Li 3 PO 4 forming the first solid electrolyte layer 41 is higher than that of LiPON forming the second solid electrolyte layer 42.
  • the side provided with the first solid electrolyte layer 41 in contact with the positive electrode layer 30 is closer to the side provided with the second solid electrolyte layer 42 in contact with the holding layer 50. Also, the resistance value per unit thickness is high.
  • the thickness of the first solid electrolyte layer 41 is smaller than the thickness of the second solid electrolyte layer 42, in the order of two digits or more. More preferably, it is reduced.
  • the holding layer 50 as an example of a metal layer is a solid thin film and has a function of holding lithium ions during charging and abandoning lithium ions during discharging.
  • the point that the holding layer 50 of the present embodiment does not include the negative electrode active material itself and is configured to hold lithium functioning as the negative electrode active material therein is different from a general negative electrode layer. Is different.
  • the holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed.
  • the porousization of the holding layer 50 that is, the formation of the porous portion is performed in accordance with the first charge / discharge operation after the film formation, and the details thereof will be described later.
  • a platinum group element Ru, Rh, Pd, Os, Ir, Pt
  • gold Au
  • the holding layer 50 of the present embodiment can be made of a polycrystal of the above-mentioned noble metal or an alloy thereof.
  • the holding layer 50 is made of platinum.
  • the thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient.
  • the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the thickness of the holding layer 50 may be more than 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a method for manufacturing the porous holding layer 50 it is desirable to employ a method of performing charging and discharging, as described later.
  • the diffusion prevention layer 60 is a solid thin film and is for suppressing the diffusion of lithium ions held in the holding layer 50 to the outside of the lithium ion secondary battery 1.
  • a material having an amorphous structure and made of a metal or an alloy can be used.
  • the diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among them, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferable. Is preferred.
  • the diffusion preventing layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer).
  • the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
  • the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi).
  • the metal (alloy) that can be used for the diffusion preventing layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB. , AuSi, and the like.
  • the thickness of the diffusion preventing layer 60 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the diffusion prevention layer 60 is less than 10 nm, it is difficult for the diffusion prevention layer 60 to block lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side. On the other hand, if the thickness of the diffusion prevention layer 60 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the diffusion preventing layer 60 As a method of manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a sputtering method when the diffusion prevention layer 60 is made of the above-described chromium-titanium alloy, the chromium-titanium alloy tends to be amorphous when the sputtering method is employed.
  • the negative electrode current collector layer 70 is a solid thin film having electron conductivity, and has a function of collecting current to the holding layer 50.
  • the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can.
  • a chemically stable material for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold. (Au) or an alloy thereof is preferable.
  • negative electrode current collector layer 70 is made of the same platinum as holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
  • the thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 ⁇ m. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, which is not practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the negative electrode current collector layer 70 As a method for manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
  • a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
  • FIG. 2 is a flowchart illustrating a method of manufacturing the lithium ion secondary battery according to the present embodiment.
  • the substrate 10 is mounted on a sputtering device (not shown), and an underlayer forming step of forming the underlayer 20 on the substrate 10 is performed (step 20).
  • a positive electrode layer forming step of forming the positive electrode layer 30 on the base layer 20 is performed by the above-mentioned sputtering apparatus (Step 30).
  • a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is performed by the sputtering device (step 40).
  • a first solid electrolyte layer forming step of forming the first solid electrolyte layer 41 on the positive electrode layer 30 is performed (Step 41), and the first solid electrolyte layer 41 is formed on the first solid electrolyte layer 41.
  • a second solid electrolyte layer forming step of forming the second solid electrolyte layer 42 is performed (Step 42).
  • a holding layer forming step of forming the holding layer 50 on the second solid electrolyte layer 42 of the solid electrolyte layer 40 is performed by the sputtering device (step 50).
  • a diffusion prevention layer forming step of forming the diffusion prevention layer 60 on the holding layer 50 is performed by the above-mentioned sputtering apparatus (Step 60).
  • a negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the diffusion preventing layer 60 is performed by the sputtering device (step 70).
  • the basic structure of the lithium ion secondary battery 1 is obtained.
  • the basic structure of the lithium ion secondary battery 1 is removed from the sputtering device.
  • an initial charging step of performing the first charging of the basic structure of the lithium ion secondary battery 1 removed from the sputtering apparatus is performed (Step 80).
  • an initial discharge step (an example of a discharge step) for performing a first discharge is performed on the charged basic structure of the lithium ion secondary battery 1 (step 90).
  • the holding layer 50 is made porous, that is, a porous portion and a large number of pores are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained.
  • a positive electrode of a DC power supply is connected to the substrate 10 functioning as a positive electrode current collector layer, and a negative electrode of the DC power supply is connected to the negative electrode current collector layer 70, respectively.
  • a direct current that is, a direct current from the substrate 10 to the lithium ion secondary battery 1 through the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70, Charging current flows.
  • lithium ions constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 1).
  • the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the noble metal (platinum in this example) constituting the holding layer 50 (solid solution, formation of an intermetallic compound, or eutectic). I do.
  • the noble metal platinum in this example
  • the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and has a significantly smaller number of grain boundaries than the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
  • the lithium ions moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50.
  • the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum. Therefore, in this state, it can be said that a negative electrode layer made of lithium is formed inside the holding layer 50.
  • lithium ions constituting the negative electrode existing inside the holding layer 50 move along the thickness direction (downward in FIG. 1) to the positive electrode layer 30 via the solid electrolyte layer 40, and again 30.
  • the alloy of lithium and platinum is dealloyed (dissolution of metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion in which a large number of holes are formed.
  • the porous portion obtained in this manner is substantially composed of a noble metal (platinum in this example).
  • the solid electrolyte layer 40 has a two-layer structure of the first solid electrolyte layer 41 and the second solid electrolyte layer 42, but is not limited to this.
  • the side in contact with the positive electrode layer 30 is set as a layer having a low nitrogen concentration (a layer having a composition close to Li 3 PO 4 ) and held.
  • the side in contact with the layer 50 may be a layer having a high nitrogen concentration (a layer having a composition of LiPON). In other words, there may not be a clear boundary between the first solid electrolyte layer 41 and the second solid electrolyte layer 42.
  • the nitrogen concentration in the chamber may be gradually increased in the solid electrolyte forming step shown in step 40 of FIG.
  • the concentration of nitrogen on the side of the solid electrolyte layer 40 that contacts the positive electrode layer 30 may not be 0%, but is preferably 0%.
  • the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70 are stacked on the substrate 10 in this order, so that lithium
  • the basic structure of the ion secondary battery 1 was formed. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10.
  • the present invention is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted.
  • the stacking order of each layer on the substrate 10 is opposite to that described above except for the base layer 20.
  • the holding layer 50 is made of a noble metal, but the present invention is not limited to this.
  • a noble metal a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy thereof) is used.
  • the holding layer 50 can be configured.
  • the present inventor produced ten types (Examples and Comparative Examples) of lithium ion secondary batteries 1 and evaluated the structures and various electrical characteristics of each.
  • the lithium ion secondary battery 1 having the structure shown in FIG. 1 described in the above embodiment was used. That is, in the example, the base layer 20, the positive electrode layer 30, the first solid electrolyte layer 41, the second solid electrolyte layer 42, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70 are formed on the substrate 10 in this order. The lithium ion secondary battery 1 laminated by the above was used.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the first comparative example.
  • the lithium ion secondary battery 1 of the first comparative example also has a structure in which a plurality of layers are stacked as described in the embodiment, that is, similarly to the lithium ion secondary battery 1 of the example.
  • the lithium ion secondary battery 1 of the first comparative example shown in FIG. 3 has a base layer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order.
  • the solid electrolyte layer 40 of the first comparative example includes only the second solid electrolyte layer 42 that is stacked on the positive electrode layer 30 and to be stacked with the holding layer 50, and includes the first solid electrolyte layer 41. Not in the embodiment.
  • the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the first comparative example is the same as the embodiment in that the solid electrolyte layer 40 includes the second solid electrolyte layer 42, but does not include the first solid electrolyte layer 41. This is different from the embodiment.
  • the first comparative example is different from the first comparative example in that the second solid electrolyte layer 42 is stacked on the positive electrode layer 30.
  • FIG. 4 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the second comparative example.
  • the lithium ion secondary battery 1 of the second comparative example shown in FIG. 4 also has an underlayer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order.
  • the solid electrolyte layer 40 of the second comparative example is stacked on the second solid electrolyte layer 42 and the second solid electrolyte layer 42 that are stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. It differs from the embodiment in that it has a first solid electrolyte layer 41. That is, although the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the second comparative example includes the first solid electrolyte layer 41 and the second solid electrolyte layer 42, the solid electrolyte layer 40 is the same as the embodiment, The difference from the embodiment is that the order is reversed. Further, as a result, in the second comparative example, the second solid electrolyte layer 42 is stacked on the positive electrode layer 30 and the holding layer 50 is stacked on the first solid electrolyte layer 41. different.
  • FIG. 5 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the third comparative example.
  • the lithium ion secondary battery 1 of the third comparative example shown in FIG. 5 also has an underlayer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order.
  • the solid electrolyte layer 40 of the third comparative example includes a second solid electrolyte layer 42 stacked on the positive electrode layer 30, a first solid electrolyte layer 41 stacked on the second solid electrolyte layer 42, and a first solid electrolyte layer 41.
  • the second embodiment is different from the first embodiment in that the second embodiment is provided with a second solid electrolyte layer 42 which is laminated on the solid electrolyte layer 41 and on which the holding layer 50 is laminated.
  • the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the third comparative example includes the first solid electrolyte layer 41 and the second solid electrolyte layer 42, the solid electrolyte layer 40 corresponds to the embodiment, This embodiment is different from the embodiment in that two solid electrolyte layers 42 are provided and one first solid electrolyte layer 41 is sandwiched between these two second solid electrolyte layers 42.
  • Table 1 shows a configuration of the lithium ion secondary battery 1 according to the example.
  • Table 1 shows the relationship between the name of each layer constituting the lithium ion secondary battery 1 and the material constituting each layer and its thickness. This is the same in Tables 2 to 4 described later.
  • three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared. Hereinafter, these are referred to as Examples 1 to 3, respectively.
  • Example 1 In Example 1, stainless steel (more specifically, SUS316L) was used as the substrate 10. The thickness of the substrate 10 was 0.1 mm.
  • the underlayer 20 made of LiNiO 2 was formed by using the sputtering method. The thickness of the underlayer 20 was 200 nm.
  • the positive electrode layer 30 made of LiNiO 2 and Li 3 PO 4 was formed by using the sputtering method. The thickness of the positive electrode layer 30 was 800 nm.
  • the ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
  • Example 1 the first solid electrolyte layer 41 made of Li 3 PO 4 was formed by using the sputtering method. The thickness of the first solid electrolyte layer 41 was 11 nm.
  • the second solid electrolyte layer 42 made of LiPON was formed by using the sputtering method. The thickness of the second solid electrolyte layer 42 was 1980 nm.
  • the holding layer 50 made of Pt was formed by using the sputtering method. The thickness of the holding layer 50 was 30 nm.
  • the diffusion preventing layer 60 made of CrTi was formed by using the sputtering method. The thickness of the diffusion prevention layer 60 was 200 nm.
  • Example 1 the negative electrode current collector layer 70 made of Pt was formed by using the sputtering method.
  • the thickness of the negative electrode current collector layer 70 was 30 nm.
  • the basic structure of the lithium ion secondary battery 1 thus obtained was initially charged and discharged to obtain the lithium ion secondary battery 1. Note that the thickness of the holding layer 50 was increased from the initial value of 30 nm by performing the initial charge / discharge.
  • Example 2 In Example 2, the same structure as in Example 1 was adopted except that the thickness of the first solid electrolyte layer 41 was set to 22 nm.
  • Example 3 In Example 3, the same structure as in Example 1 was adopted except that the thickness of the first solid electrolyte layer 41 was set to 33 nm.
  • Table 2 shows a configuration of the lithium ion secondary battery 1 according to the first comparative example.
  • one type of lithium ion secondary battery 1 was prepared as a first comparative example.
  • the same structure as in Example 1 was adopted except that the first solid electrolyte layer 41 was not provided, in other words, the thickness of the first solid electrolyte layer 41 was set to 0 nm.
  • Table 3 shows a configuration of the lithium ion secondary battery 1 according to the second comparative example.
  • three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared as a second comparative example.
  • these are referred to as a second comparative example (1) to a second comparative example (3), respectively.
  • Table 4 shows a configuration of the lithium ion secondary battery 1 according to the third comparative example.
  • a third comparative example three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared. Hereinafter, these are referred to as third comparative example (1) to third comparative example (3), respectively.
  • the third comparative example (1) has the same structure as that of the first embodiment except that the solid electrolyte layer 40 has a three-layer structure of a second solid electrolyte layer 42, a first solid electrolyte layer 41, and a second solid electrolyte layer 42. It was adopted.
  • one of the second solid electrolyte layers 42 stacked on the positive electrode layer 30 has a thickness of 1000 nm, and the other second solid electrolyte layer 42 to be stacked on the holding layer 50. was also 1000 nm thick.
  • the total thickness (2000 nm) of the second solid electrolyte layer 42 was made substantially the same as the thickness (1980 nm) in Examples 1 to 3, the first comparative example, and the second comparative example.
  • the thickness of the first solid electrolyte layer 41 sandwiched between the two second solid electrolyte layers 42 was set to 11 nm, which is the same as in the first embodiment.
  • Crystal structure First, the crystal structure will be described. The inventor measured the electron diffraction pattern of each of the lithium ion secondary batteries 1 of Examples and Comparative Examples, and found that the crystal structure (crystallized, amorphous) of each layer constituting the lithium ion secondary battery 1 was measured. Quality).
  • the substrate 10, the holding layer 50, and the negative electrode current collector layer 70 were each crystallized.
  • the underlayer 20, the first solid electrolyte layer 41, the second solid electrolyte layer 42, and the diffusion prevention layer 60 were amorphous.
  • the positive electrode layer 30 a crystallized region and an amorphous region were mixed, and a crystallized region was scattered with respect to the amorphous region.
  • each layer constituting the lithium ion secondary battery 1 of the first comparative example constitutes the lithium ion secondary battery 1 of the above-described Examples 1 to 3, except that the first solid electrolyte layer 41 does not exist. It had the same crystal structure as each layer.
  • the lithium ion secondary batteries 1 of the second comparative example (1) to the second comparative example (3) and the third comparative example 1 to the third comparative example (3) also have the lithium ion secondary batteries 1 of the first to third examples.
  • the crystal structure was the same as each layer constituting the ion secondary battery 1.
  • the discharge capacity represents the amount of electricity discharged from the lithium ion secondary battery 1 from the start of use (start of discharge) after the completion of charging to the end of use (end of discharge), and the discharge current (discharge current) It can be obtained by multiplying the time until the discharge end voltage is reached. In this case, the larger the value of the discharge capacity, the better.
  • the charge / discharge characteristics of each lithium ion secondary battery 1 of each of the examples and comparative examples were measured, and the discharge capacity was evaluated based on the results.
  • a charge and discharge device HJ1020mSD8 manufactured by Hokuto Denko KK was used as a device for measuring the charge and discharge characteristics.
  • the current during charging (charging current) and the current during discharging (discharge current) were 0.6 (mA) and 20 (mA), respectively.
  • the former is described as “$ 0.6 mA” and the latter is described as “$ 20 mA”.
  • the capacity retention ratio is a percentage of the capacity of the lithium ion secondary battery 1 at the time when a predetermined period has elapsed with respect to the initial capacity after the completion of charging. In this case, the higher the value of the capacity retention ratio, the better, and the value is 100% at the maximum.
  • the capacity retention rate after full charge and after 3 hours was measured. In Table 5, it was described as "$ 3 hours later".
  • the internal resistance is an electric resistance existing inside the lithium ion secondary battery 1. In this case, the smaller the value of the internal resistance, the better.
  • the internal resistance when a discharge current of 20 (mA) was passed was measured. In Table 5, it is described as “$ 20 mA”.
  • Example had a smaller discharge capacity value at 0.6 mA than the first comparative example. Further, in the example, the value of the discharge capacity at 20 mA was larger than in the first comparative example. Further, the example had a higher capacity retention ratio than the first comparative example. In the example, the value of the internal resistance was smaller than in the first comparative example.
  • Example and a second comparative example will be compared.
  • the example had a smaller discharge capacity value at 0.6 mA than the second comparative example. Further, in the example, the value of the discharge capacity at 20 mA was larger than that in the second comparative example. Further, the example had a higher capacity retention ratio than the second comparative example. In the example, the value of the internal resistance was smaller than in the second comparative example.
  • Example 1 Comparative of Example 1, Example 2, and Example 3
  • Example 2 and Example 3 are compared.
  • Example 2 [Comparison between Example 1 and Example 2] Now, a comparison between the first embodiment and the second embodiment will be made. First, in Example 2, the value of the discharge capacity at 0.6 mA was larger than that in Example 1 (about 107%). Further, in Example 2, the value of the discharge capacity at 20 mA was smaller than that in Example 1 (about 93%). Furthermore, Example 2 had a higher capacity retention ratio than Example 1 (about 101%). In Example 2, the value of the internal resistance was larger than that in Example 1 (about 159%).
  • Example 3 the value of the discharge capacity at 0.6 mA was smaller than that in Example 2 (about 99%).
  • Example 3 had a smaller discharge capacity value at 20 mA than Example 2 (about 94%).
  • Example 3 had a higher capacity retention ratio than Example 2 (about 101%).
  • the value of the internal resistance was larger than that in Example 2 (about 107%).
  • the discharge capacity at 0.6 mA although there is some magnitude relationship, in the example and all of the first to third comparative examples, the discharge capacity was on the order of 500 ⁇ Ah (third example (1)). The same applies hereinafter).
  • the discharge capacity at 20 mA was more than one order of magnitude larger than the first comparative example to the third comparative example and was on the order of 100 ⁇ A (actually 140 ⁇ A or more).
  • the capacity retention ratio of the example was higher than that of the first comparative example to the third comparative example, and exceeded 98%.
  • the capacity retention ratio was 100%, which is the highest value.
  • the capacity retention ratio was 98.6%, which was higher than that in the first comparative example (98%).
  • the example was smaller than the first to third examples and less than 30 ⁇ .
  • the internal resistance was 17 ⁇ , which was the lowest value.
  • the solid electrolyte layer 40 has a two-layer structure of the first solid electrolyte layer 41 made of Li 3 PO 4 and the second solid electrolyte layer 42 made of LiPON, and the first solid electrolyte layer 41 is provided on the positive electrode layer 30 side. It can be seen that by arranging the second solid electrolyte layers 42 on the holding layer 50 side, respectively, it is possible to suppress a decrease in the capacity retention ratio. It can also be seen that the adoption of such a structure can suppress an increase in internal resistance.
  • SYMBOLS 1 lithium ion secondary battery, 10 ... board

Abstract

This lithium ion secondary battery 1 is configured by, laminated in this order: a substrate 10 that comprises stainless steel and that doubles as a positive electrode current collector layer; a ground layer 20 configured by LiNiO2; a positive electrode layer 30 configured by a composite material positive electrode that contains LiNiO2 and Li3PO4; a first solid electrolyte layer 41 configured by Li3PO4; a second solid electrolyte layer 42 configured by LiPON for which a portion of the oxygen in Li3PO4 is substituted with nitrogen; a holding layer 50 configured by Pt; a diffusion prevention layer 60 configured by CrTi; and a negative electrode current collector layer 70 configured by Pt. By doing this, in the lithium ion secondary battery that uses LiPON as a solid electrolyte, a decrease in the capacity retention rate is suppressed.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
 携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を示し且つ正極および負極の間に配置される電解質とを有している。 携 帯 With the spread of mobile electronic devices such as mobile phones and notebook computers, there is a strong demand for the development of small and lightweight secondary batteries with high energy density. As a secondary battery satisfying such requirements, a lithium ion secondary battery is known. A lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
 従来のリチウムイオン二次電池では、電解質として有機電解液等が用いられてきた。これに対し、電解質として無機材料からなる固体電解質(無機固体電解質)を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成した、全固体型且つ薄膜型のリチウムイオン二次電池が提案されている(特許文献1参照)。
 また、特許文献1には、固体電解質として、リン酸リチウム(LiPO)に窒素を添加したLiPO4-x(一般に、LiPONと称される)を用いることが記載されている。
In a conventional lithium ion secondary battery, an organic electrolyte or the like has been used as an electrolyte. On the other hand, an all-solid-state and thin-film type lithium ion secondary battery in which a solid electrolyte made of an inorganic material (inorganic solid electrolyte) is used as an electrolyte and the negative electrode, the solid electrolyte, and the positive electrode are all formed of thin films has been proposed. (See Patent Document 1).
Patent Literature 1 describes that Li 3 PO 4-x N x (generally referred to as LiPON) obtained by adding nitrogen to lithium phosphate (Li 3 PO 4 ) is used as a solid electrolyte. I have.
特開2013-73846号公報JP 2013-73846 A
 一般に、リチウムイオン二次電池の容量は、充電後、特に使用しなくても、時間の経過とともに漸次減少していく。ここで、リチウムイオン二次電池の、充電完了後の初期の容量に対する、予め定められた期間が経過した時点における容量の比を百分率で表したものを、容量維持率と称する。
 そして、固体電解質としてLiPONを用いた場合、上記容量維持率が低下しやすくなり、充電後、特に使用しなくても、リチウムイオン二次電池が電源として機能しなくなるまでの時間が短くなることがあった。
 本発明は、固体電解質としてLiPONを用いたリチウムイオン二次電池において、容量維持率の低下を抑制することを目的とする。
In general, the capacity of a lithium ion secondary battery gradually decreases over time after charging, even if it is not particularly used. Here, the ratio of the capacity of the lithium ion secondary battery at the time when a predetermined period has elapsed to the initial capacity after the completion of charging, expressed as a percentage, is referred to as a capacity retention rate.
When LiPON is used as the solid electrolyte, the capacity retention ratio tends to decrease, and the time until the lithium ion secondary battery does not function as a power source after charging is shortened even if not particularly used. there were.
An object of the present invention is to suppress a decrease in capacity retention in a lithium ion secondary battery using LiPON as a solid electrolyte.
 本発明のリチウムイオン二次電池は、正極活物質を含む正極層と、LiPOを含む第1固体電解質層と、LiPOにおける酸素の一部を窒素で置換したLiPONを含む第2固体電解質層と、負極活物質を含む負極層とを順に有している。
 このようなリチウムイオン二次電池において、前記第1固体電解質層の厚さは、前記第2固体電解質層の厚さよりも小さいことを特徴とすることができる。
 また、前記第1固体電解質層および前記第2固体電解質層は、それぞれ、非晶質構造を有することを特徴とすることができる。
 さらに、前記正極層は、LiNiOおよびLiPOを含んでおり、前記正極層におけるLiNiOとLiPOとの比率が、モル比で、9:1~3:2の範囲にあることを特徴とすることができる。
The lithium ion secondary battery of the present invention includes a positive electrode layer containing a positive electrode active material, a first solid electrolyte layer containing Li 3 PO 4 , and a lithium ion secondary battery containing LiPON in which part of oxygen in Li 3 PO 4 is replaced with nitrogen. It has two solid electrolyte layers and a negative electrode layer containing a negative electrode active material in order.
In such a lithium ion secondary battery, the thickness of the first solid electrolyte layer may be smaller than the thickness of the second solid electrolyte layer.
Further, the first solid electrolyte layer and the second solid electrolyte layer may each have an amorphous structure.
Further, the positive electrode layer includes a LiNiO 2 and Li 3 PO 4, the ratio of LiNiO 2 and Li 3 PO 4 in the positive electrode layer is, in molar ratio, 9: 1 to 3: 2 by weight It can be characterized.
 また、他の観点から捉えると、本発明のリチウムイオン二次電池は、正極活物質を含む正極層と、リチウム(Li)、リン酸塩(PO 3-)および窒素(N)を含む固体電解質層と、負極活物質を含む負極層とを順に備え、前記固体電解質層は、前記正極層と対峙する側の窒素の濃度が、前記負極層と対峙する側の窒素の濃度よりも低いことを特徴としている。
 このようなリチウムイオン二次電池において、前記固体電解質層は、前記正極層と対峙する側の窒素の濃度が、0%であることを特徴とすることができる。
From another viewpoint, the lithium ion secondary battery of the present invention includes a positive electrode layer containing a positive electrode active material and a solid layer containing lithium (Li), phosphate (PO 4 3- ), and nitrogen (N). An electrolyte layer and a negative electrode layer containing a negative electrode active material are sequentially provided, and the solid electrolyte layer is such that the concentration of nitrogen on the side facing the positive electrode layer is lower than the concentration of nitrogen on the side facing the negative electrode layer. It is characterized by.
In such a lithium ion secondary battery, the solid electrolyte layer may be characterized in that the concentration of nitrogen on the side facing the positive electrode layer is 0%.
 さらに、他の観点から捉えると、本発明のリチウムイオン二次電池は、金属または合金からなる正極集電体層と、LiNiOを含みLiPOを含まない下地層と、LiNiOおよびLiPOを含む合材正極層と、LiPOを含みLiNiOを含まない第1固体電解質層と、LiPOにおける酸素の一部を窒素で置換したLiPONを含む第2固体電解質層と、負極活物質を含む負極層とを順に有している。
 このようなリチウムイオン二次電池において、前記第2固体電解質層には、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層が積層されており、前記負極層は、前記金属層を構成する金属と合金化したリチウムによって構成されることを特徴とすることができる。
Further, when regarded from another aspect, a lithium ion secondary battery of the present invention includes a positive electrode collector layer made of a metal or an alloy, an underlayer that does not contain Li 3 PO 4 comprises LiNiO 2, LiNiO 2 and Li 3 and covering material the positive electrode layer containing PO 4, Li 3 and the first solid electrolyte layer containing no LiNiO 2 comprises PO 4, second solid electrolyte comprising a LiPON a portion of the oxygen was replaced with nitrogen in Li 3 PO 4 And a negative electrode layer containing a negative electrode active material.
In such a lithium ion secondary battery, the second solid electrolyte layer is formed of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof. A metal layer is formed, and the negative electrode layer is made of lithium alloyed with a metal forming the metal layer.
 本発明によれば、固体電解質としてLiPONを用いたリチウムイオン二次電池において、容量維持率の低下を抑制することができる。 According to the present invention, in a lithium ion secondary battery using LiPON as a solid electrolyte, a decrease in capacity retention can be suppressed.
実施の形態のリチウムイオン二次電池の断面構成を示す図である。FIG. 2 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery according to an embodiment. 実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。4 is a flowchart illustrating a method for manufacturing a lithium ion secondary battery according to an embodiment. 第1比較例のリチウムイオン二次電池の断面構成を示す図である。FIG. 3 is a diagram illustrating a cross-sectional configuration of a lithium ion secondary battery of a first comparative example. 第2比較例のリチウムイオン二次電池の断面構成を示す図である。It is a figure showing the section composition of the lithium ion secondary battery of the 2nd comparative example. 第3比較例のリチウムイオン二次電池の断面構成を示す図である。It is a figure showing the section composition of the lithium ion secondary battery of the 3rd comparative example.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the size, thickness, and the like of each part in the drawings referred to in the following description may be different from actual dimensions.
[リチウムイオン二次電池の構成]
 図1は、本実施の形態のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、後述するように、複数の層を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている。
[Configuration of lithium ion secondary battery]
FIG. 1 is a diagram showing a cross-sectional configuration of a lithium ion secondary battery 1 of the present embodiment. As described later, the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers are stacked. After forming a basic structure by a so-called film forming process, the first charge / discharge operation is performed. Completes the structure.
 図1に示すリチウムイオン二次電池1は、基板10と、基板10上に積層される下地層20と、下地層20上に積層される正極層30と、正極層30上に積層される固体電解質層40とを備えている。ここで、固体電解質層40は、下地層20および正極層30の両者の周縁を覆うとともにその端部が基板10に直接積層されることで、基板10とともに下地層20および正極層30を覆っている。また、このリチウムイオン二次電池1は、固体電解質層40上に積層される保持層50と、保持層50上に積層される拡散防止層60と、拡散防止層60上に積層される負極集電体層70とをさらに備えている。 The lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, an underlayer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the underlayer 20, and a solid layer laminated on the positive electrode layer 30. And an electrolyte layer 40. Here, the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the ends thereof are directly laminated on the substrate 10, so that the solid electrolyte layer 40 covers the base layer 20 and the positive electrode layer 30 together with the substrate 10. I have. Further, the lithium ion secondary battery 1 has a holding layer 50 stacked on the solid electrolyte layer 40, a diffusion prevention layer 60 stacked on the holding layer 50, and a negative electrode collection layer stacked on the diffusion prevention layer 60. And an electric conductor layer 70.
 次に、上記リチウムイオン二次電池1の各構成要素について、より詳細な説明を行う。(基板)
 基板10は、下地層20~負極集電体層70を、成膜プロセスによって積層するための土台となるものである。
 基板10を構成する材料は、特に限定されるものではなく、金属、ガラス、セラミックス、樹脂など、各種材料を採用することができる。
Next, each component of the lithium ion secondary battery 1 will be described in more detail. (substrate)
The substrate 10 serves as a base for stacking the base layer 20 to the negative electrode current collector layer 70 by a film forming process.
The material forming the substrate 10 is not particularly limited, and various materials such as metal, glass, ceramics, and resin can be adopted.
 ここで、本実施の形態では、基板10を、電子伝導性を有する金属製の板材で構成している。これにより、本実施の形態では、基板10を、下地層20を介して正極層30への集電を行う正極集電体層として機能させるようになっている。より具体的に説明すると、本実施の形態では、基板10として、銅やアルミニウム等と比較して機械的強度が高いステンレス箔(板)を用いている。また、基板10として、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。 Here, in the present embodiment, the substrate 10 is made of a metal plate having electron conductivity. Thus, in the present embodiment, the substrate 10 functions as a positive electrode current collector layer that collects electric power into the positive electrode layer 30 via the base layer 20. More specifically, in the present embodiment, a stainless steel foil (plate) having higher mechanical strength than copper, aluminum, or the like is used as the substrate 10. In addition, as the substrate 10, a metal foil plated with a conductive metal such as tin, copper, or chromium may be used.
 基板10の厚さは、例えば20μm以上2000μm以下とすることができる。基板10の厚さが20μm未満であると、リチウムイオン二次電池1の強度が不足するおそれがある。一方、基板10の厚さが2000μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。 The thickness of the substrate 10 can be, for example, not less than 20 μm and not more than 2000 μm. If the thickness of the substrate 10 is less than 20 μm, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, when the thickness of the substrate 10 exceeds 2000 μm, the volume energy density and the weight energy density decrease due to an increase in the thickness and weight of the battery.
 基板10は、表面10aと裏面10bとを有しており、表面10a側に、下地層20乃至負極集電体層70が積層されるようになっている。
 ここで、基板10における表面10aおよび裏面10bは、その最大高さRmaxが、300nm~500nm程度となっている。
The substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a.
Here, the maximum height Rmax of the front surface 10a and the back surface 10b of the substrate 10 is about 300 nm to 500 nm.
(下地層)
 下地層20は、固体薄膜であって、基板10と正極層30との密着性を高めるとともに、基板10を構成するステンレス等の金属材料と、正極層30を構成するLiPO(リン酸リチウム:詳細は後述する)とが、直接に接触するのを抑制するための障壁となるものである。
 下地層20としては、電子伝導性を有するとともに、LiPOを構成するLi(リチウムイオン)やPO 3-(リン酸イオン)による腐食が生じ難い、金属または金属化合物等で構成されたものを用いることができる。
(Underlayer)
The base layer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, and forms a metal material such as stainless steel forming the substrate 10 and Li 3 PO 4 (phosphoric acid) forming the positive electrode layer 30. (Lithium: described later in detail) is a barrier for suppressing direct contact.
The underlayer 20 is made of a metal or a metal compound, which has electron conductivity and is hardly corroded by Li + (lithium ion) or PO 4 3- (phosphate ion) constituting Li 3 PO 4. Can be used.
 ここで、本実施の形態では、下地層20を、LiNiO(リン酸ニッケル)で構成している。LiNiOは、リチウムイオン二次電池1の正極材料として用いられることがあるものである。 Here, in the present embodiment, the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 1.
 下地層20の厚さは、例えば5nm以上50μm以下とすることができる。下地層20の厚さが5nm未満であると、障壁としての機能が低下し、実用的ではなくなる。一方、下地層20の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the underlayer 20 can be, for example, not less than 5 nm and not more than 50 μm. If the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is reduced, which is not practical. On the other hand, when the thickness of the underlayer 20 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、下地層20の製造方法としては、各種PVD(物理蒸着)や各種CVD(化学蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法もしくは真空蒸着法を用いることが望ましい。 In addition, as a method of manufacturing the underlayer 20, a known film forming technique such as various PVD (physical vapor deposition) or various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method or a vacuum method is used. It is desirable to use an evaporation method.
(正極層)
 正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含むものである。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、さらに固体電解質を含んだ合材正極であってもよい。
(Positive electrode layer)
The positive electrode layer 30 is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging. Here, the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). It is possible to use those made of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals. Further, the positive electrode layer 30 may be a mixed material positive electrode further containing a solid electrolyte.
 ここで、本実施の形態では、正極層30を、正極活物質と、無機材料からなる固体電解質(無機固体電解質)とを含む合材正極で構成している。より具体的に説明すると、本実施の形態の正極層30は、主として無機固体電解質を含む固体電解質領域と、主として正極活物質を含む正極領域とを有している。そして、正極層30内では、固体電解質領域を構成する無機固体電解質と、正極領域を構成する正極活物質とが、それぞれを維持した状態で混在している。その結果、正極層30では、一方がマトリックス(母材)となっており、他方がフィラー(粒子)となっている。ここで、正極層30においては、固体電解質領域をマトリックスとし、正極領域をフィラーとすることが望ましい。 Here, in the present embodiment, the positive electrode layer 30 is composed of a mixed positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material. In the positive electrode layer 30, the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed while maintaining each. As a result, in the positive electrode layer 30, one is a matrix (base material) and the other is a filler (particle). Here, in the positive electrode layer 30, it is desirable that the solid electrolyte region be a matrix and the positive electrode region be a filler.
 そして、本実施の形態では、正極層30を構成する正極活物質として、上記下地層20と同じLiNiOを用いている。また、正極層30を構成する無機固体電解質として、LiPO(リン酸リチウム)を用いている。ここで、正極層30における正極活物質と無機固体電解質との比率については、適宜選択して差し支えない。ただし、容量および導電性の両者を確保するという観点からすれば、正極活物質と無機固体電解質との比率を、モル比で9:1(90%:10%)乃至3:2(60%:40%)の範囲とすることが好ましい。 In the present embodiment, the same LiNiO 2 as the underlayer 20 is used as the positive electrode active material constituting the positive electrode layer 30. Li 3 PO 4 (lithium phosphate) is used as the inorganic solid electrolyte constituting the positive electrode layer 30. Here, the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected. However, from the viewpoint of securing both capacity and conductivity, the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
 正極層30の厚さは、例えば10nm以上40μm以下とすることができる。正極層30の厚さが10nm未満であると、得られるリチウムイオン二次電池1の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層30の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、正極層30の厚さを40μm超としてもかまわない。 The thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small, which is not practical. On the other hand, when the thickness of the positive electrode layer 30 exceeds 40 μm, it takes too much time to form the layer, and the productivity is reduced. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the positive electrode layer 30 may be more than 40 μm.
 さらに、正極層30の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method of forming the positive electrode layer 30, a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
(固体電解質層)
 固体電解質層40は、無機材料からなる固体薄膜であって、外部から加えられた電場によってリチウムイオンを移動させることのできる無機固体電解質を含むものである。
 そして、本実施の形態の固体電解質層40は、正極層30上に積層される第1固体電解質層41と、第1固体電解質層41上に積層されるとともに、保持層50の積層対象となる第2固体電解質層42とを備えている。
(Solid electrolyte layer)
The solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field.
Then, the solid electrolyte layer 40 of the present embodiment is stacked on the first solid electrolyte layer 41 and the first solid electrolyte layer 41 that are stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. A second solid electrolyte layer.
〔第1固体電解質層〕
 本実施の形態の第1固体電解質層41は、正極層30における無機固体電解質と同じLiPOで構成されている。
[First solid electrolyte layer]
The first solid electrolyte layer 41 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30.
 第1固体電解質層41の厚さは、例えば5nm以上50nm以下とすることができる。第1固体電解質層41の厚さが5nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での電流の漏れ(リーク)が生じやすくなる。一方、第1固体電解質層41の厚さが50nmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the first solid electrolyte layer 41 can be, for example, 5 nm or more and 50 nm or less. When the thickness of the first solid electrolyte layer 41 is less than 5 nm, current leakage between the positive electrode layer 30 and the holding layer 50 easily occurs in the obtained lithium ion secondary battery 1. On the other hand, when the thickness of the first solid electrolyte layer 41 exceeds 50 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、第1固体電解質層41の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for manufacturing the first solid electrolyte layer 41, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
〔第2固体電解質層〕
 本実施の形態の第2固体電解質層42は、第1固体電解質層41を構成するLiPOにおける酸素の一部を窒素で置換したLiPON(LiPO4-x(0<x<1))で構成されている。
[Second solid electrolyte layer]
The second solid electrolyte layer 42 of the present embodiment includes LiPON (Li 3 PO 4-x N x (0 <x) in which a part of oxygen in Li 3 PO 4 constituting the first solid electrolyte layer 41 is substituted with nitrogen. <1)).
 第2固体電解質層42の厚さは、例えば10nm以上10μm以下とすることができる。第2固体電解質層42の厚さが10nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での電流の漏れ(リーク)が生じやすくなる。一方、第2固体電解質層42の厚さが10μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the second solid electrolyte layer 42 can be, for example, 10 nm or more and 10 μm or less. If the thickness of the second solid electrolyte layer 42 is less than 10 nm, current leakage between the positive electrode layer 30 and the holding layer 50 tends to occur in the obtained lithium ion secondary battery 1. On the other hand, if the thickness of the second solid electrolyte layer 42 exceeds 10 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、第2固体電解質層42の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for manufacturing the second solid electrolyte layer 42, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
〔第1固体電解質層と第2固体電解質層との関係〕
 このように、本実施の形態では、第1固体電解質層41がLiPOで構成され、第2固体電解質層42がLiPONで構成される。すなわち、第1固体電解質層41および第2固体電解質層42の両者が、それぞれ、リチウム、リンおよび酸素を含んでいる。
 ここで、第1固体電解質層41を構成するLiPOは、第2固体電解質層42を構成するLiPONよりも体積抵抗率が高い。このため、本実施の形態の固体電解質層40では、正極層30と接する、第1固体電解質層41を設けている側が、保持層50と接する、第2固体電解質層42を設けている側よりも、単位厚さあたりの抵抗値が高くなっている。
[Relationship between first solid electrolyte layer and second solid electrolyte layer]
Thus, in the present embodiment, the first solid electrolyte layer 41 is made of Li 3 PO 4 and the second solid electrolyte layer 42 is made of LiPON. That is, both the first solid electrolyte layer 41 and the second solid electrolyte layer 42 contain lithium, phosphorus, and oxygen, respectively.
Here, the volume resistivity of Li 3 PO 4 forming the first solid electrolyte layer 41 is higher than that of LiPON forming the second solid electrolyte layer 42. Therefore, in the solid electrolyte layer 40 of the present embodiment, the side provided with the first solid electrolyte layer 41 in contact with the positive electrode layer 30 is closer to the side provided with the second solid electrolyte layer 42 in contact with the holding layer 50. Also, the resistance value per unit thickness is high.
 また、第1固体電解質層41および第2固体電解質層42の厚さの関係については、どちらが厚くてもかまわないし、同じであってもよい。ただし、電池の内部抵抗の増大を抑制するという観点からすれば、第1固体電解質層41の厚さを、第2固体電解質層42の厚さよりも小さくすることが好ましく、2桁以上のオーダーで小さくすることがさらに好ましい。 Regarding the relationship between the thickness of the first solid electrolyte layer 41 and the thickness of the second solid electrolyte layer 42, whichever may be thicker or the same. However, from the viewpoint of suppressing an increase in the internal resistance of the battery, it is preferable that the thickness of the first solid electrolyte layer 41 be smaller than the thickness of the second solid electrolyte layer 42, in the order of two digits or more. More preferably, it is reduced.
(保持層)
 金属層の一例としての保持層50は、固体薄膜であって、充電時にはリチウムイオンを保持するとともに放電時にはリチウムイオンを放棄する機能を備えるものである。ここで、本実施の形態の保持層50は、自身は負極活物質を含んでおらず、負極活物質として機能するリチウムを内部に保持するようになっている点が、一般的な負極層とは異なる。
(Holding layer)
The holding layer 50 as an example of a metal layer is a solid thin film and has a function of holding lithium ions during charging and abandoning lithium ions during discharging. Here, the point that the holding layer 50 of the present embodiment does not include the negative electrode active material itself and is configured to hold lithium functioning as the negative electrode active material therein is different from a general negative electrode layer. Is different.
 そして、本実施の形態の保持層50は、多孔質構造を有しており、多数の空孔が形成された多孔質部(図示せず)によって構成されている。なお、保持層50の多孔質化すなわち多孔質部の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。 The holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed. The porousization of the holding layer 50, that is, the formation of the porous portion is performed in accordance with the first charge / discharge operation after the film formation, and the details thereof will be described later.
 保持層50を構成する材料としては、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金を用いることができる。これらの中でも、より酸化されにくい白金または金で保持層50を構成することが望ましい。また、本実施の形態の保持層50は、上述した貴金属あるいはこれらの合金の多結晶体で構成することができる。 材料 As a material for forming the holding layer 50, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), or an alloy thereof can be used. Among these, it is desirable that the holding layer 50 be made of platinum or gold that is less likely to be oxidized. Further, the holding layer 50 of the present embodiment can be made of a polycrystal of the above-mentioned noble metal or an alloy thereof.
 ここで、本実施の形態では、保持層50を白金で構成している。 Here, in the present embodiment, the holding layer 50 is made of platinum.
 保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、保持層50の厚さを40μm超としてもかまわない。 The thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient. On the other hand, if the thickness of the holding layer 50 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the holding layer 50 may be more than 40 μm.
 さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。そして、多孔質化した保持層50の製造方法としては、後述するような、充電と放電とを行う手法を採用することが望ましい。 Further, as a method of manufacturing the holding layer 50, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. As a method for manufacturing the porous holding layer 50, it is desirable to employ a method of performing charging and discharging, as described later.
(拡散防止層)
 拡散防止層60は、固体薄膜であって、保持層50に保持されたリチウムイオンの、リチウムイオン二次電池1の外部への拡散を抑制するためのものである。
 拡散防止層60としては、非晶質構造を有する、金属または合金で構成されたものを用いることができる。また、拡散防止層60は、リチウムと金属間化合物を形成しない金属または合金で構成されることが好ましく、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましい。なお、拡散防止層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。また、本実施の形態における「非晶質構造」には、全体が非晶質構造を有しているものはもちろんのこと、非晶質構造中に微結晶が析出しているものも含まれる。
(Diffusion prevention layer)
The diffusion prevention layer 60 is a solid thin film and is for suppressing the diffusion of lithium ions held in the holding layer 50 to the outside of the lithium ion secondary battery 1.
As the diffusion preventing layer 60, a material having an amorphous structure and made of a metal or an alloy can be used. The diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among them, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferable. Is preferred. The diffusion preventing layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer). Further, the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
 ここで、本実施の形態では、拡散防止層60を、クロムおよびチタンの合金(CrTi)で構成している。また、拡散防止層60に用いることが可能な金属(合金)としては、CrTi以外に、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSi等を挙げることができる。 Here, in the present embodiment, the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi). Examples of the metal (alloy) that can be used for the diffusion preventing layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB. , AuSi, and the like.
 拡散防止層60の厚さは、例えば10nm以上40μm以下とすることができる。拡散防止層60の厚さが10nm未満であると、固体電解質層40側から保持層50を通過してきたリチウムを、拡散防止層60でせき止めにくくなる。一方、拡散防止層60の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the diffusion preventing layer 60 can be, for example, 10 nm or more and 40 μm or less. When the thickness of the diffusion prevention layer 60 is less than 10 nm, it is difficult for the diffusion prevention layer 60 to block lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side. On the other hand, if the thickness of the diffusion prevention layer 60 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、拡散防止層60の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。特に、拡散防止層60を、上述したクロムチタン合金で構成する場合、スパッタ法を採用すると、クロムチタン合金が非晶質化しやすい。 Further, as a method of manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. In particular, when the diffusion prevention layer 60 is made of the above-described chromium-titanium alloy, the chromium-titanium alloy tends to be amorphous when the sputtering method is employed.
(負極集電体層)
 負極集電体層70は、電子伝導性を有する固体薄膜であって、保持層50への集電を行う機能を備えるものである。ここで、負極集電体層70を構成する材料は、電子伝導性を有するものであれば、特に限定されるものではなく、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、拡散防止層60の腐食を抑制するこという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
(Negative electrode current collector layer)
The negative electrode current collector layer 70 is a solid thin film having electron conductivity, and has a function of collecting current to the holding layer 50. Here, the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can. However, from the viewpoint of suppressing corrosion of the diffusion preventing layer 60, it is preferable to use a chemically stable material, for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold. (Au) or an alloy thereof is preferable.
 ここで、本実施の形態では、負極集電体層70を、保持層50と同じ白金で構成している。ただし、負極集電体層70は、保持層50とは異なり、多孔質構造を有していない。 Here, in the present embodiment, negative electrode current collector layer 70 is made of the same platinum as holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
 負極集電体層70の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層70の厚さが5nm未満であると、耐腐食性および集電機能が低下し、実用的ではなくなる。一方、負極集電体層70の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 μm. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, which is not practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、負極集電体層70の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 As a method for manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
[リチウムイオン二次電池の製造方法]
 次に、上述したリチウムイオン二次電池1の製造方法について説明を行う。
 図2は、本実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。
[Method of manufacturing lithium ion secondary battery]
Next, a method for manufacturing the above-described lithium ion secondary battery 1 will be described.
FIG. 2 is a flowchart illustrating a method of manufacturing the lithium ion secondary battery according to the present embodiment.
 まず、図示しないスパッタ装置に基板10を装着し、基板10上に下地層20を形成する下地層形成工程を実行する(ステップ20)。次に、上記スパッタ装置にて、下地層20上に正極層30を形成する正極層形成工程を実行する(ステップ30)。続いて、上記スパッタ装置にて、正極層30上に固体電解質層40を形成する固体電解質層形成工程を実行する(ステップ40)。ここで、ステップ40の固体電解質層形成工程では、正極層30上に第1固体電解質層41を形成する第1固体電解質層形成工程を実行し(ステップ41)、第1固体電解質層41上に第2固体電解質層42を形成する第2固体電解質層形成工程を実行する(ステップ42)。次いで、上記スパッタ装置にて、固体電解質層40の第2固体電解質層42上に保持層50を形成する保持層形成工程を実行する(ステップ50)。それから、上記スパッタ装置にて、保持層50上に拡散防止層60を形成する拡散防止層形成工程を実行する(ステップ60)。そして、上記スパッタ装置にて、拡散防止層60上に負極集電体層70を形成する負極集電体層形成工程を実行する(ステップ70)。これらステップ20~70を実行することにより、リチウムイオン二次電池1の基本構造体が得られる。そして、このリチウムイオン二次電池1の基本構造体を、スパッタ装置から取り外す。 First, the substrate 10 is mounted on a sputtering device (not shown), and an underlayer forming step of forming the underlayer 20 on the substrate 10 is performed (step 20). Next, a positive electrode layer forming step of forming the positive electrode layer 30 on the base layer 20 is performed by the above-mentioned sputtering apparatus (Step 30). Subsequently, a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is performed by the sputtering device (step 40). Here, in the solid electrolyte layer forming step of Step 40, a first solid electrolyte layer forming step of forming the first solid electrolyte layer 41 on the positive electrode layer 30 is performed (Step 41), and the first solid electrolyte layer 41 is formed on the first solid electrolyte layer 41. A second solid electrolyte layer forming step of forming the second solid electrolyte layer 42 is performed (Step 42). Next, a holding layer forming step of forming the holding layer 50 on the second solid electrolyte layer 42 of the solid electrolyte layer 40 is performed by the sputtering device (step 50). Then, a diffusion prevention layer forming step of forming the diffusion prevention layer 60 on the holding layer 50 is performed by the above-mentioned sputtering apparatus (Step 60). Then, a negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the diffusion preventing layer 60 is performed by the sputtering device (step 70). By performing these steps 20 to 70, the basic structure of the lithium ion secondary battery 1 is obtained. Then, the basic structure of the lithium ion secondary battery 1 is removed from the sputtering device.
 続いて、スパッタ装置から取り外したリチウムイオン二次電池1の基本構造体に対し、1回目の充電を行わせる初回充電工程を実行する(ステップ80)。それから、充電がなされたリチウムイオン二次電池1の基本構造体に対し、1回目の放電を行わせる初回放電工程(放電工程の一例)を実行する(ステップ90)。これら初回充電と初回放電とにより、保持層50の多孔質化すなわち多孔質部および多数の空孔の形成が行われ、図1に示すリチウムイオン二次電池1が得られる。 (4) Next, an initial charging step of performing the first charging of the basic structure of the lithium ion secondary battery 1 removed from the sputtering apparatus is performed (Step 80). Then, an initial discharge step (an example of a discharge step) for performing a first discharge is performed on the charged basic structure of the lithium ion secondary battery 1 (step 90). By these initial charging and initial discharging, the holding layer 50 is made porous, that is, a porous portion and a large number of pores are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained.
[リチウムイオン二次電池の動作]
 では、本実施の形態のリチウムイオン二次電池1の動作を、充電動作と放電動作とに分けて、より詳細に説明する。
[Operation of lithium ion secondary battery]
Now, the operation of the lithium ion secondary battery 1 of the present embodiment will be described in more detail by dividing the operation into a charging operation and a discharging operation.
(充電動作)
 放電状態にあるリチウムイオン二次電池1を充電する場合、正極集電体層として機能する基板10には直流電源の正極が、負極集電体層70には直流電源の負極が、それぞれ接続される。これに伴い、基板10から、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を介して、リチウムイオン二次電池1に直流電流すなわち充電電流が流れる。
(Charging operation)
When charging the lithium ion secondary battery 1 in a discharged state, a positive electrode of a DC power supply is connected to the substrate 10 functioning as a positive electrode current collector layer, and a negative electrode of the DC power supply is connected to the negative electrode current collector layer 70, respectively. You. Accordingly, a direct current, that is, a direct current from the substrate 10 to the lithium ion secondary battery 1 through the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70, Charging current flows.
 すると、正極層30で正極活物質を構成するリチウムイオンが、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図1において上方向)に移動する。 Then, lithium ions constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, the lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 1).
 このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、保持層50を構成する貴金属(この例では白金)と合金化(固溶体化、金属間化合物の形成あるいは共晶化)する。 At this time, the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the noble metal (platinum in this example) constituting the holding layer 50 (solid solution, formation of an intermetallic compound, or eutectic). I do.
 また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を通過して拡散防止層60との境界部に到達する。ここで、本実施の形態の拡散防止層60は、非晶質構造を有する、金属または合金で構成されており、多結晶構造を有する保持層50と比べて、粒界の数が著しく少なくなっている。このため、保持層50と拡散防止層60との境界部に到達したリチウムイオンは、拡散防止層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。 (4) Part of the lithium ions that have entered the holding layer 50 passes through the holding layer 50 and reaches the boundary with the diffusion preventing layer 60. Here, the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and has a significantly smaller number of grain boundaries than the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
 そして、充電動作が終了した状態において、正極層30から保持層50に移動したリチウムイオンは、保持層50に保持される。このとき、保持層50に移動してきたリチウムイオンは、白金との合金化あるいは白金内での金属リチウムの析出化等によって、保持層50に保持されるものと考えられる。したがって、この状態では、保持層50の内部に、リチウムによる負極層が形成された状態となっているといえる。 (4) Then, in a state where the charging operation has been completed, the lithium ions moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50. At this time, it is considered that the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum. Therefore, in this state, it can be said that a negative electrode layer made of lithium is formed inside the holding layer 50.
(放電動作)
 充電状態にあるリチウムイオン二次電池1を放電(使用)する場合、基板10には負荷の正極が、負極集電体層70には負荷の負極が、それぞれ接続される。これに伴い、基板10から、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を介して、リチウムイオン二次電池1に直流電流すなわち放電電流が流れる。
(Discharge operation)
When discharging (using) the charged lithium ion secondary battery 1, the positive electrode of the load is connected to the substrate 10, and the negative electrode of the load is connected to the negative electrode current collector layer 70. Accordingly, a direct current, that is, a direct current from the substrate 10 to the lithium ion secondary battery 1 through the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70, A discharge current flows.
 このとき、保持層50の内部に存在する負極を構成するリチウムイオンは、固体電解質層40を介して正極層30へと厚さ方向(図1の下方向)に沿って移動し、再び正極層30の内部に収容される。 At this time, lithium ions constituting the negative electrode existing inside the holding layer 50 move along the thickness direction (downward in FIG. 1) to the positive electrode layer 30 via the solid electrolyte layer 40, and again 30.
 また、このとき、保持層50では、リチウムが離脱することに伴い、リチウムと白金との合金の脱合金化(金属リチウムが析出した場合は金属リチウムの溶解化)が行われる。そして、保持層50で脱合金化が行われた結果、保持層50が多孔質化され、多数の空孔が形成された多孔質部となる。このようにして得られる多孔質部は、ほぼ貴金属(この例では白金)で構成されることになる。ただし、放電が終了した状態において、保持層50の内部でリチウムは消失するわけではなく、放電動作による移動を行わない一部のリチウムが残存することになる。 (4) At this time, in the holding layer 50, the alloy of lithium and platinum is dealloyed (dissolution of metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion in which a large number of holes are formed. The porous portion obtained in this manner is substantially composed of a noble metal (platinum in this example). However, when the discharge is completed, the lithium does not disappear inside the holding layer 50, and a part of the lithium that does not move by the discharge operation remains.
[その他]
 本実施の形態では、固体電解質層40を、第1固体電解質層41および第2固体電解質層42の2層構成としていたが、これに限られるものではない。例えば、固体電解質層40における窒素の分布を連続的あるいは段階的に傾斜させることにより、正極層30と接する側を、窒素の濃度が低い層(組成がLiPOに近い層)とし、保持層50と接する側を、窒素の濃度が高い層(組成がLiPONとなる層)としてもかまわない。換言すれば、第1固体電解質層41と第2固体電解質層42との間に、明確な境界がなくてもよい。この場合、図2のステップ40に示す固体電解質形成工程において、チャンバ内の窒素濃度を漸次増加させるようにすればよい。また、この場合、固体電解質層40のうち、正極層30と接する側の窒素の濃度については、0%でなくてもかまわないが、0%であることが望ましい。
[Others]
In the present embodiment, the solid electrolyte layer 40 has a two-layer structure of the first solid electrolyte layer 41 and the second solid electrolyte layer 42, but is not limited to this. For example, by gradually or stepwise inclining the distribution of nitrogen in the solid electrolyte layer 40, the side in contact with the positive electrode layer 30 is set as a layer having a low nitrogen concentration (a layer having a composition close to Li 3 PO 4 ) and held. The side in contact with the layer 50 may be a layer having a high nitrogen concentration (a layer having a composition of LiPON). In other words, there may not be a clear boundary between the first solid electrolyte layer 41 and the second solid electrolyte layer 42. In this case, the nitrogen concentration in the chamber may be gradually increased in the solid electrolyte forming step shown in step 40 of FIG. In this case, the concentration of nitrogen on the side of the solid electrolyte layer 40 that contacts the positive electrode layer 30 may not be 0%, but is preferably 0%.
 また、本実施の形態では、基板10上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70の順に積層を行うことで、リチウムイオン二次電池1の基本構造体を形成していた。すなわち、基板10に近い側に正極層30を配置し、基板10から遠い側に保持層50を配置する構成を採用していた。ただし、これに限られるものではなく、基板10に近い側に保持層50を配置し、基板10から遠い側に正極層30を配置する構成を採用してもかまわない。ただし、この場合は、基板10に対する各層の積層順が、下地層20を除いて、上述したものとは逆になる。 In the present embodiment, the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70 are stacked on the substrate 10 in this order, so that lithium The basic structure of the ion secondary battery 1 was formed. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10. However, the present invention is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted. However, in this case, the stacking order of each layer on the substrate 10 is opposite to that described above except for the base layer 20.
 さらに、本実施の形態では、保持層50を貴金属で構成していたが、これに限られるものではない。例えばリチウムと金属間化合物を形成するアルミニウム(Al)や、アルミニウムと貴金属(白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金)との合金を用いて、保持層50を構成することも可能である。 Further, in the present embodiment, the holding layer 50 is made of a noble metal, but the present invention is not limited to this. For example, an alloy of aluminum (Al) which forms an intermetallic compound with lithium, or an alloy of aluminum and a noble metal (a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy thereof) is used. Thus, the holding layer 50 can be configured.
 以下、実施例に基づいて本発明をさらに詳細に説明する。ただし、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
 本発明者は、10種類(実施例および比較例)のリチウムイオン二次電池1を作製し、それぞれの構造と各種電気特性とに関する評価を行った。
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
The present inventor produced ten types (Examples and Comparative Examples) of lithium ion secondary batteries 1 and evaluated the structures and various electrical characteristics of each.
[実施例について]
 まず、実施例では、上記実施の形態で説明した、図1に示す構造を有するリチウムイオン二次電池1を用いた。すなわち、実施例では、基板10上に、下地層20、正極層30、第1固体電解質層41、第2固体電解質層42、保持層50、拡散防止層60および負極集電体層70の順で積層を行ったリチウムイオン二次電池1を用いた。
[Example]
First, in the example, the lithium ion secondary battery 1 having the structure shown in FIG. 1 described in the above embodiment was used. That is, in the example, the base layer 20, the positive electrode layer 30, the first solid electrolyte layer 41, the second solid electrolyte layer 42, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70 are formed on the substrate 10 in this order. The lithium ion secondary battery 1 laminated by the above was used.
[比較例について]
 これに対し、比較例では、上記実施例とは固体電解質層40の構造が異なる、3種類のリチウムイオン二次電池1を用いた。以下では、これら3種類のリチウムイオン二次電池1を、それぞれ第1比較例~第3比較例として説明を行う。
[Comparative Example]
On the other hand, in the comparative example, three types of lithium ion secondary batteries 1 having different structures of the solid electrolyte layer 40 from the above-described example were used. Hereinafter, these three types of lithium ion secondary batteries 1 will be described as first to third comparative examples, respectively.
(第1比較例)
 図3は、第1比較例のリチウムイオン二次電池1の断面構成を示す図である。第1比較例のリチウムイオン二次電池1も、実施の形態で説明したもの、すなわち、実施例のリチウムイオン二次電池1と同様に、複数の層を積層した構造を有している。また、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている点も同様である。なお、これらのことは、後述する実施例2および実施例3のリチウムイオン二次電池1においても同じである。
(First comparative example)
FIG. 3 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the first comparative example. The lithium ion secondary battery 1 of the first comparative example also has a structure in which a plurality of layers are stacked as described in the embodiment, that is, similarly to the lithium ion secondary battery 1 of the example. The same applies to the point that after a basic structure is formed by a so-called film forming process, the structure is completed by an initial charge / discharge operation. The same applies to the lithium ion secondary batteries 1 of Example 2 and Example 3 described later.
 図3に示す第1比較例のリチウムイオン二次電池1は、図1に示す実施例のリチウムイオン二次電池1と同じく、基板10上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を、この順に積層して構成される。ただし、第1比較例の固体電解質層40は、正極層30上に積層されるとともに保持層50の積層対象となる第2固体電解質層42のみを備えており、第1固体電解質層41を備えていない点が、実施例とは異なる。すなわち、第1比較例のリチウムイオン二次電池1における固体電解質層40は、第2固体電解質層42を備えている点では、実施例と一致するが、第1固体電解質層41を備えていない点が、実施例とは異なる。また、その結果、第1比較例では、正極層30上に第2固体電解質層42が積層されている点が、実施例とは異なる。 The lithium ion secondary battery 1 of the first comparative example shown in FIG. 3 has a base layer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order. However, the solid electrolyte layer 40 of the first comparative example includes only the second solid electrolyte layer 42 that is stacked on the positive electrode layer 30 and to be stacked with the holding layer 50, and includes the first solid electrolyte layer 41. Not in the embodiment. That is, the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the first comparative example is the same as the embodiment in that the solid electrolyte layer 40 includes the second solid electrolyte layer 42, but does not include the first solid electrolyte layer 41. This is different from the embodiment. As a result, the first comparative example is different from the first comparative example in that the second solid electrolyte layer 42 is stacked on the positive electrode layer 30.
(第2比較例)
 図4は、第2比較例のリチウムイオン二次電池1の断面構成を示す図である。
 図4に示す第2比較例のリチウムイオン二次電池1も、図1に示す実施例のリチウムイオン二次電池1と同じく、基板10上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を、この順に積層して構成される。ただし、第2比較例の固体電解質層40は、正極層30上に積層される第2固体電解質層42と、第2固体電解質層42上に積層されるとともに、保持層50の積層対象となる第1固体電解質層41とを備えている点が、実施例とは異なる。すなわち、第2比較例のリチウムイオン二次電池1における固体電解質層40は、第1固体電解質層41と第2固体電解質層42とを備えている点では、実施例と一致するが、その積層順が逆になっている点が、実施例とは異なる。また、その結果、第2比較例では、正極層30上に第2固体電解質層42が積層されるとともに、第1固体電解質層41上に保持層50が積層される点も、実施例とは異なる。
(Second comparative example)
FIG. 4 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the second comparative example.
The lithium ion secondary battery 1 of the second comparative example shown in FIG. 4 also has an underlayer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order. However, the solid electrolyte layer 40 of the second comparative example is stacked on the second solid electrolyte layer 42 and the second solid electrolyte layer 42 that are stacked on the positive electrode layer 30, and is an object to be stacked on the holding layer 50. It differs from the embodiment in that it has a first solid electrolyte layer 41. That is, although the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the second comparative example includes the first solid electrolyte layer 41 and the second solid electrolyte layer 42, the solid electrolyte layer 40 is the same as the embodiment, The difference from the embodiment is that the order is reversed. Further, as a result, in the second comparative example, the second solid electrolyte layer 42 is stacked on the positive electrode layer 30 and the holding layer 50 is stacked on the first solid electrolyte layer 41. different.
(第3比較例)
 図5は、第3比較例のリチウムイオン二次電池1の断面構成を示す図である。
 図5に示す第3比較例のリチウムイオン二次電池1も、図1に示す実施例のリチウムイオン二次電池1と同じく、基板10上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を、この順に積層して構成される。ただし、第3比較例の固体電解質層40は、正極層30上に積層される第2固体電解質層42と、第2固体電解質層42上に積層される第1固体電解質層41と、第1固体電解質層41上に積層されるとともに保持層50の積層対象となる第2固体電解質層42とを備えている点が、実施例とは異なる。すなわち、第3比較例のリチウムイオン二次電池1における固体電解質層40は、第1固体電解質層41と第2固体電解質層42とを備えている点では、実施例と一致するが、第2固体電解質層42が2つ設けられるとともに、これら2つの第2固体電解質層42によって1つの第1固体電解質層41が挟み込まれている点が、実施例とは異なる。
(Third comparative example)
FIG. 5 is a diagram showing a cross-sectional configuration of the lithium ion secondary battery 1 of the third comparative example.
The lithium ion secondary battery 1 of the third comparative example shown in FIG. 5 also has an underlayer 20, a positive electrode layer 30, and a solid electrolyte layer 40 on a substrate 10, similarly to the lithium ion secondary battery 1 of the embodiment shown in FIG. , A holding layer 50, a diffusion prevention layer 60 and a negative electrode current collector layer 70 are laminated in this order. However, the solid electrolyte layer 40 of the third comparative example includes a second solid electrolyte layer 42 stacked on the positive electrode layer 30, a first solid electrolyte layer 41 stacked on the second solid electrolyte layer 42, and a first solid electrolyte layer 41. The second embodiment is different from the first embodiment in that the second embodiment is provided with a second solid electrolyte layer 42 which is laminated on the solid electrolyte layer 41 and on which the holding layer 50 is laminated. That is, although the solid electrolyte layer 40 in the lithium ion secondary battery 1 of the third comparative example includes the first solid electrolyte layer 41 and the second solid electrolyte layer 42, the solid electrolyte layer 40 corresponds to the embodiment, This embodiment is different from the embodiment in that two solid electrolyte layers 42 are provided and one first solid electrolyte layer 41 is sandwiched between these two second solid electrolyte layers 42.
[実施例および比較例の具体的な構成]
 次に、実施例および比較例にかかるリチウムイオン二次電池1の具体的な構成について説明を行う。
[Specific Configurations of Examples and Comparative Examples]
Next, a specific configuration of the lithium ion secondary battery 1 according to the example and the comparative example will be described.
[実施例の構成]
 表1は、実施例にかかるリチウムイオン二次電池1の構成を示している。表1は、リチウムイオン二次電池1を構成する各層の名称と、各層を構成する材料およびその厚さとの関係を示している。このことは、後述する表2乃至表4においても同様である。なお、ここでは、実施例として、第1固体電解質層41の厚さが異なる3種類のリチウムイオン二次電池1を用意した。以下では、これらを、それぞれ実施例1~実施例3と称する。
[Configuration of Example]
Table 1 shows a configuration of the lithium ion secondary battery 1 according to the example. Table 1 shows the relationship between the name of each layer constituting the lithium ion secondary battery 1 and the material constituting each layer and its thickness. This is the same in Tables 2 to 4 described later. Here, as examples, three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared. Hereinafter, these are referred to as Examples 1 to 3, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 では、これら実施例1~実施例3のそれぞれについて説明を行う。
(実施例1)
 実施例1では、基板10としてステンレス(より具体的にはSUS316L)を用いた。基板10の厚さは0.1mmとした。
 また、実施例1では、スパッタ法を用いて、LiNiOからなる下地層20の形成を行った。下地層20の厚さは200nmとした。
 また、実施例1では、スパッタ法を用いて、LiNiOおよびLiPOからなる正極層30の形成を行った。正極層30の厚さは800nmとした。そして、正極層30におけるLiNiOとLiPOとの比率(モル比)は73:27とした。
 また、実施例1では、スパッタ法を用いて、LiPOからなる第1固体電解質層41の形成を行った。第1固体電解質層41の厚さは11nmとした。
 また、実施例1では、スパッタ法を用いて、LiPONからなる第2固体電解質層42の形成を行った。第2固体電解質層42の厚さは1980nmとした。
 また、実施例1では、スパッタ法を用いて、Ptからなる保持層50の形成を行った。保持層50の厚さは30nmとした。
 また、実施例1では、スパッタ法を用いて、CrTiからなる拡散防止層60の形成を行った。拡散防止層60の厚さは200nmとした。
 また、実施例1では、スパッタ法を用いて、Ptからなる負極集電体層70の形成を行った。負極集電体層70の厚さは30nmとした。
 このようにして得られたリチウムイオン二次電池1の基本構造体に対し、初回充放電を行わせることにより、リチウムイオン二次電池1を得た。なお、初回充放電を行わせることにより、保持層50の厚さは、初期値である30nmよりも増加した。
Now, each of the first to third embodiments will be described.
(Example 1)
In Example 1, stainless steel (more specifically, SUS316L) was used as the substrate 10. The thickness of the substrate 10 was 0.1 mm.
In Example 1, the underlayer 20 made of LiNiO 2 was formed by using the sputtering method. The thickness of the underlayer 20 was 200 nm.
In Example 1, the positive electrode layer 30 made of LiNiO 2 and Li 3 PO 4 was formed by using the sputtering method. The thickness of the positive electrode layer 30 was 800 nm. The ratio (molar ratio) between LiNiO 2 and Li 3 PO 4 in the positive electrode layer 30 was 73:27.
In Example 1, the first solid electrolyte layer 41 made of Li 3 PO 4 was formed by using the sputtering method. The thickness of the first solid electrolyte layer 41 was 11 nm.
In Example 1, the second solid electrolyte layer 42 made of LiPON was formed by using the sputtering method. The thickness of the second solid electrolyte layer 42 was 1980 nm.
In Example 1, the holding layer 50 made of Pt was formed by using the sputtering method. The thickness of the holding layer 50 was 30 nm.
In Example 1, the diffusion preventing layer 60 made of CrTi was formed by using the sputtering method. The thickness of the diffusion prevention layer 60 was 200 nm.
In Example 1, the negative electrode current collector layer 70 made of Pt was formed by using the sputtering method. The thickness of the negative electrode current collector layer 70 was 30 nm.
The basic structure of the lithium ion secondary battery 1 thus obtained was initially charged and discharged to obtain the lithium ion secondary battery 1. Note that the thickness of the holding layer 50 was increased from the initial value of 30 nm by performing the initial charge / discharge.
(実施例2)
 実施例2では、第1固体電解質層41の厚さを22nmとした以外は、実施例1と同様の構造を採用した。
(Example 2)
In Example 2, the same structure as in Example 1 was adopted except that the thickness of the first solid electrolyte layer 41 was set to 22 nm.
(実施例3)
 実施例3では、第1固体電解質層41の厚さを33nmとした以外は、実施例1と同様の構造を採用した。
(Example 3)
In Example 3, the same structure as in Example 1 was adopted except that the thickness of the first solid electrolyte layer 41 was set to 33 nm.
[第1比較例の構成]
 表2は、第1比較例にかかるリチウムイオン二次電池1の構成を示している。なお、ここでは、第1比較例として、1種類のリチウムイオン二次電池1を用意した。
[Configuration of First Comparative Example]
Table 2 shows a configuration of the lithium ion secondary battery 1 according to the first comparative example. Here, one type of lithium ion secondary battery 1 was prepared as a first comparative example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第1比較例では、第1固体電解質層41を設けない、換言すれば、第1固体電解質層41の厚さを0nmとした以外は、実施例1と同様の構造を採用した。 In the first comparative example, the same structure as in Example 1 was adopted except that the first solid electrolyte layer 41 was not provided, in other words, the thickness of the first solid electrolyte layer 41 was set to 0 nm.
[第2比較例の構成]
 表3は、第2比較例にかかるリチウムイオン二次電池1の構成を示している。なお、ここでは、第2比較例として、第1固体電解質層41の厚さが異なる3種類のリチウムイオン二次電池1を用意した。以下では、これらを、それぞれ第2比較例(1)~第2比較例(3)と称する。
[Configuration of Second Comparative Example]
Table 3 shows a configuration of the lithium ion secondary battery 1 according to the second comparative example. Here, three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared as a second comparative example. Hereinafter, these are referred to as a second comparative example (1) to a second comparative example (3), respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 では、これら第2比較例(1)~第2比較例(3)のそれぞれについて説明を行う。
(第2比較例(1))
 第2比較例(1)では、固体電解質層40における第1固体電解質層41と第2固体電解質層42との積層順を逆にした以外は、実施例1と同様の構造を採用した。すなわち、第2比較例(1)では、第1固体電解質層41の厚さを、実施例1と同じ11nmとした。
Now, each of the second comparative example (1) to the second comparative example (3) will be described.
(Second comparative example (1))
In the second comparative example (1), the same structure as that of the first example was adopted except that the stacking order of the first solid electrolyte layer 41 and the second solid electrolyte layer 42 in the solid electrolyte layer 40 was reversed. That is, in the second comparative example (1), the thickness of the first solid electrolyte layer 41 was set to 11 nm, which is the same as that of the first embodiment.
(第2比較例(2))
 第2比較例(2)では、第1固体電解質層41の厚さを、実施例2と同じ22nmとした以外は、第2比較例(1)と同様の構造を採用した。
(Second comparative example (2))
In the second comparative example (2), a structure similar to that of the second comparative example (1) was adopted, except that the thickness of the first solid electrolyte layer 41 was set to 22 nm, which is the same as that of the second embodiment.
(第2比較例(3))
 第2比較例(3)では、第1固体電解質層41の厚さを、実施例3と同じ33nmとした以外は、第2比較例(1)と同様の構造を採用した。
(Second comparative example (3))
In the second comparative example (3), a structure similar to that of the second comparative example (1) was adopted, except that the thickness of the first solid electrolyte layer 41 was set to 33 nm, which is the same as that of the third embodiment.
[第3比較例の構成]
 表4は、第3比較例にかかるリチウムイオン二次電池1の構成を示している。なお、ここでは、第3比較例として、第1固体電解質層41の厚さが異なる3種類のリチウムイオン二次電池1を用意した。以下では、これらを、それぞれ第3比較例(1)~第3比較例(3)と称する。
[Configuration of Third Comparative Example]
Table 4 shows a configuration of the lithium ion secondary battery 1 according to the third comparative example. Here, as a third comparative example, three types of lithium ion secondary batteries 1 having different thicknesses of the first solid electrolyte layer 41 were prepared. Hereinafter, these are referred to as third comparative example (1) to third comparative example (3), respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 では、これら第3比較例(1)~第3比較例(3)のそれぞれについて説明を行う。
(第3比較例(1))
 第3比較例(1)では、固体電解質層40を第2固体電解質層42、第1固体電解質層41および第2固体電解質層42の3層構成とした以外は、実施例1と同様の構造を採用した。
 そして、第3比較例(1)では、正極層30上に積層される一方の第2固体電解質層42の厚さを1000nmとし、保持層50の積層対象となる他方の第2固体電解質層42の厚さも1000nmとした。すなわち、第2固体電解質層42の全体の厚さ(2000nm)を、実施例1~実施例3、第1比較例および第2比較例の場合の厚さ(1980nm)とほぼ同じにした。
 また、第3比較例(1)では、2つの第2固体電解質層42に挟まれた第1固体電解質層41の厚さを実施例1と同じ11nmとした。
Now, each of the third comparative example (1) to the third comparative example (3) will be described.
(Third comparative example (1))
The third comparative example (1) has the same structure as that of the first embodiment except that the solid electrolyte layer 40 has a three-layer structure of a second solid electrolyte layer 42, a first solid electrolyte layer 41, and a second solid electrolyte layer 42. It was adopted.
In the third comparative example (1), one of the second solid electrolyte layers 42 stacked on the positive electrode layer 30 has a thickness of 1000 nm, and the other second solid electrolyte layer 42 to be stacked on the holding layer 50. Was also 1000 nm thick. That is, the total thickness (2000 nm) of the second solid electrolyte layer 42 was made substantially the same as the thickness (1980 nm) in Examples 1 to 3, the first comparative example, and the second comparative example.
In the third comparative example (1), the thickness of the first solid electrolyte layer 41 sandwiched between the two second solid electrolyte layers 42 was set to 11 nm, which is the same as in the first embodiment.
(第3比較例(2))
 第3比較例(2)では、第1固体電解質層41の厚さを実施例2と同じ22nmとした以外は、第3比較例(1)と同様の構造を採用した。
(Third comparative example (2))
In the third comparative example (2), a structure similar to that of the third comparative example (1) was employed, except that the thickness of the first solid electrolyte layer 41 was set to 22 nm, which is the same as that of the second embodiment.
(第3比較例(3))
 第3比較例(3)では、第1固体電解質層41の厚さを実施例3と同じ33nmとした以外は、第3比較例(1)と同様の構造を採用した。
(Third comparative example (3))
In the third comparative example (3), a structure similar to that of the third comparative example (1) was adopted, except that the thickness of the first solid electrolyte layer 41 was set to 33 nm, which is the same as that of the third embodiment.
[リチウムイオン二次電池の評価]
 ここでは、実施例および比較例の各リチウムイオン二次電池1を評価するための尺度として、リチウムイオン二次電池1の各部の結晶構造と、電気的特性とを用いた。
[Evaluation of lithium ion secondary battery]
Here, the crystal structure of each part of the lithium ion secondary battery 1 and the electrical characteristics were used as a scale for evaluating each lithium ion secondary battery 1 of the example and the comparative example.
(結晶構造)
 まず、結晶構造について説明を行う。本発明者は、実施例および比較例の各リチウムイオン二次電池1に対し、電子線回折パターンを測定することで、リチウムイオン二次電池1を構成する各層の結晶構造(結晶化、非晶質化)に関する評価を行った。
(Crystal structure)
First, the crystal structure will be described. The inventor measured the electron diffraction pattern of each of the lithium ion secondary batteries 1 of Examples and Comparative Examples, and found that the crystal structure (crystallized, amorphous) of each layer constituting the lithium ion secondary battery 1 was measured. Quality).
 実施例1~実施例3のリチウムイオン二次電池1において、基板10、保持層50および負極集電体層70は、それぞれ結晶化していた。これに対し、下地層20、第1固体電解質層41、第2固体電解質層42および拡散防止層60は、非晶質化していた。また、正極層30については、結晶化している領域と非晶質化している領域とが混在しており、非晶質化している領域に対し、結晶化している領域が点在していた。
 また、第1比較例のリチウムイオン二次電池1を構成する各層は、第1固体電解質層41が存在しないことを除き、上記実施例1~実施例3のリチウムイオン二次電池1を構成する各層と同様の結晶構造となっていた。
 さらに、第2比較例(1)~第2比較例(3)および第3比較例1~第3比較例(3)のリチウムイオン二次電池1も、上記実施例1~実施例3のリチウムイオン二次電池1を構成する各層と同様の結晶構造となっていた。
In the lithium ion secondary batteries 1 of Examples 1 to 3, the substrate 10, the holding layer 50, and the negative electrode current collector layer 70 were each crystallized. In contrast, the underlayer 20, the first solid electrolyte layer 41, the second solid electrolyte layer 42, and the diffusion prevention layer 60 were amorphous. In the positive electrode layer 30, a crystallized region and an amorphous region were mixed, and a crystallized region was scattered with respect to the amorphous region.
Further, each layer constituting the lithium ion secondary battery 1 of the first comparative example constitutes the lithium ion secondary battery 1 of the above-described Examples 1 to 3, except that the first solid electrolyte layer 41 does not exist. It had the same crystal structure as each layer.
Further, the lithium ion secondary batteries 1 of the second comparative example (1) to the second comparative example (3) and the third comparative example 1 to the third comparative example (3) also have the lithium ion secondary batteries 1 of the first to third examples. The crystal structure was the same as each layer constituting the ion secondary battery 1.
(電気的特性)
 次に、電気的特性について説明を行う。本発明者は、実施例および比較例の各リチウムイオン二次電池1に対し、放電容量、容量維持率および内部抵抗に関する評価を行った。表5は、各実施例および各比較例と、それぞれにおける第1固体電解質層41の厚さと、それぞれの電気的特性(放電容量、容量維持率および内部抵抗)との関係を示している。
(Electrical characteristics)
Next, electrical characteristics will be described. The present inventor evaluated each of the lithium ion secondary batteries 1 of Examples and Comparative Examples with respect to discharge capacity, capacity retention ratio, and internal resistance. Table 5 shows the relationship between the thickness of the first solid electrolyte layer 41 and the respective electrical characteristics (discharge capacity, capacity retention ratio and internal resistance) of each of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ではここで、放電容量、容量維持率および内部抵抗のそれぞれについて説明を行う。
〔放電容量〕
 放電容量とは、充電完了後の使用開始(放電開始)から使用終了(放電終了)までに、リチウムイオン二次電池1が放電を行った電気量を表し、放電時の電流(放電電流)と放電終止電圧に達するまでの時間とを乗算することで求めることができる。この場合、放電容量の値は、大きいほどよいことになる。ここでは、各実施例および比較例の各リチウムイオン二次電池1に対し、充放電特性の測定を行い、その結果から放電容量の評価を行った。充放電特性の測定機器としては、北斗電工株式会社製 充放電装置HJ1020mSD8を用いた。ここでは、充電時の電流(充電電流)および放電時の電流(放電電流)を、それぞれ、0.6(mA)および20(mA)とした。なお、表5においては、前者を「@0.6mA」と表記し、後者を「@20mA」と表記した。
Here, each of the discharge capacity, the capacity retention ratio, and the internal resistance will be described.
(Discharge capacity)
The discharge capacity represents the amount of electricity discharged from the lithium ion secondary battery 1 from the start of use (start of discharge) after the completion of charging to the end of use (end of discharge), and the discharge current (discharge current) It can be obtained by multiplying the time until the discharge end voltage is reached. In this case, the larger the value of the discharge capacity, the better. Here, the charge / discharge characteristics of each lithium ion secondary battery 1 of each of the examples and comparative examples were measured, and the discharge capacity was evaluated based on the results. As a device for measuring the charge and discharge characteristics, a charge and discharge device HJ1020mSD8 manufactured by Hokuto Denko KK was used. Here, the current during charging (charging current) and the current during discharging (discharge current) were 0.6 (mA) and 20 (mA), respectively. In Table 5, the former is described as “$ 0.6 mA” and the latter is described as “$ 20 mA”.
〔容量維持率〕
 容量維持率は、リチウムイオン二次電池1の、充電完了後の初期の容量に対する、予め定められた期間が経過した時点における容量の比を、百分率で表したものである。この場合、容量維持率の値は、高いほどよく、最高で100%となる。ここでは、満充電後且つ3時間後の容量維持率を測定した。なお、表5においては、「@3時間後」と表記した。
[Capacity maintenance rate]
The capacity retention ratio is a percentage of the capacity of the lithium ion secondary battery 1 at the time when a predetermined period has elapsed with respect to the initial capacity after the completion of charging. In this case, the higher the value of the capacity retention ratio, the better, and the value is 100% at the maximum. Here, the capacity retention rate after full charge and after 3 hours was measured. In Table 5, it was described as "$ 3 hours later".
〔内部抵抗〕
 内部抵抗は、リチウムイオン二次電池1の内部に存在する電気抵抗である。この場合、内部抵抗の値は、小さいほどよいことになる。ここでは、20(mA)の放電電流を流したときの内部抵抗を測定した。なお、表5においては「@20mA」と表記した。
(Internal resistance)
The internal resistance is an electric resistance existing inside the lithium ion secondary battery 1. In this case, the smaller the value of the internal resistance, the better. Here, the internal resistance when a discharge current of 20 (mA) was passed was measured. In Table 5, it is described as “$ 20 mA”.
〔第3比較例(1)について〕
 なお、表5に示したように、第3比較例(1)のリチウムイオン二次電池1では、内部短絡すなわちショートが発生したことにより、放電容量の測定が行えなかった。また、これに伴い、容量維持率および内部抵抗についても、測定が行えなかった。
[About the third comparative example (1)]
As shown in Table 5, in the lithium ion secondary battery 1 of the third comparative example (1), the internal short-circuit, that is, the short-circuit occurred, so that the discharge capacity could not be measured. Accordingly, the capacity retention ratio and the internal resistance could not be measured.
(評価結果の対比)
 続いて、表5を参照しつつ、各実施例および各比較例の評価結果の対比を行う。ここでは、まず、実施例と第1比較例との対比、実施例と第2比較例との対比、そして、実施例と第3比較例との対比を行う。また、その後、実施例1と実施例2と実施例3との対比を行う。
(Comparison of evaluation results)
Subsequently, with reference to Table 5, the evaluation results of each example and each comparative example are compared. Here, first, a comparison between the example and the first comparative example, a comparison between the example and the second comparative example, and a comparison between the example and the third comparative example are performed. After that, a comparison is made between the first embodiment, the second embodiment, and the third embodiment.
〔実施例と第1比較例との対比〕
 では、実施例と第1比較例とを対比する。
 まず、実施例は、第1比較例よりも、0.6mAでの放電容量の値が小さかった。
 また、実施例は、第1比較例よりも、20mAでの放電容量の値が大きかった。
 さらに、実施例は、第1比較例よりも、容量維持率が高かった。
 そして、実施例は、第1比較例よりも、内部抵抗の値が小さかった。
[Comparison between Example and First Comparative Example]
Now, an example and a first comparative example will be compared.
First, the example had a smaller discharge capacity value at 0.6 mA than the first comparative example.
Further, in the example, the value of the discharge capacity at 20 mA was larger than in the first comparative example.
Further, the example had a higher capacity retention ratio than the first comparative example.
In the example, the value of the internal resistance was smaller than in the first comparative example.
〔実施例と第2比較例との対比〕
 次に、実施例と第2比較例とを対比する。
 まず、実施例は、第2比較例よりも、0.6mAでの放電容量の値が小さかった。
 また、実施例は、第2比較例よりも、20mAでの放電容量の値が大きかった。
 さらに、実施例は、第2比較例よりも、容量維持率が高かった。
 そして、実施例は、第2比較例よりも、内部抵抗の値が小さかった。
[Comparison between Example and Second Comparative Example]
Next, an example and a second comparative example will be compared.
First, the example had a smaller discharge capacity value at 0.6 mA than the second comparative example.
Further, in the example, the value of the discharge capacity at 20 mA was larger than that in the second comparative example.
Further, the example had a higher capacity retention ratio than the second comparative example.
In the example, the value of the internal resistance was smaller than in the second comparative example.
〔実施例と第3比較例との対比〕
 続いて、実施例と第3比較例(ただし、第3比較例(1)を除く)とを対比する。
 まず、実施例は、第3比較例と、0.6mAでの放電容量の値がほぼ同じであった。
 また、実施例は、第3比較例よりも、20mAでの放電容量の値が大きかった。
 さらに、実施例は、第3比較例よりも、容量維持率が高かった。
 そして、実施例は、第3比較例よりも、内部抵抗の値が小さかった。
[Comparison between Example and Third Comparative Example]
Subsequently, the example and the third comparative example (except for the third comparative example (1)) will be compared.
First, in the example, the value of the discharge capacity at 0.6 mA was almost the same as the third comparative example.
Further, in the example, the value of the discharge capacity at 20 mA was larger than that of the third comparative example.
Further, the example had a higher capacity retention ratio than the third comparative example.
In the example, the value of the internal resistance was smaller than that in the third comparative example.
〔実施例1と実施例2と実施例3との対比〕
 今度は、実施例1と実施例2と実施例3とを対比する。ここでは、まず、実施例1と実施例2とを対比し、続いて、実施例2と実施例3とを対比する。
[Comparison of Example 1, Example 2, and Example 3]
This time, the first embodiment, the second embodiment, and the third embodiment are compared. Here, first, Example 1 and Example 2 are compared, and then Example 2 and Example 3 are compared.
〔実施例1と実施例2との対比〕
 では、実施例1と実施例2との対比を行う。
 まず、実施例2は、実施例1よりも、0.6mAでの放電容量の値が大きかった(約107%)。
 また、実施例2は、実施例1よりも、20mAでの放電容量の値が小さかった(約93%)。
 さらに、実施例2は、実施例1よりも、容量維持率が高かった(約101%)。
 そして、実施例2は、実施例1よりも、内部抵抗の値が大きかった(約159%)。
[Comparison between Example 1 and Example 2]
Now, a comparison between the first embodiment and the second embodiment will be made.
First, in Example 2, the value of the discharge capacity at 0.6 mA was larger than that in Example 1 (about 107%).
Further, in Example 2, the value of the discharge capacity at 20 mA was smaller than that in Example 1 (about 93%).
Furthermore, Example 2 had a higher capacity retention ratio than Example 1 (about 101%).
In Example 2, the value of the internal resistance was larger than that in Example 1 (about 159%).
〔実施例2と実施例3との対比〕
 次に、実施例2と実施例3との対比を行う。
 まず、実施例3は、実施例2よりも、0.6mAでの放電容量の値が小さかった(約99%)。
 また、実施例3は、実施例2よりも、20mAでの放電容量の値が小さかった(約94%)。
 さらに、実施例3は、実施例2よりも、容量維持率が高かった(約101%)。
 そして、実施例3は、実施例2よりも、内部抵抗の値が大きかった(約107%)。
[Comparison between Example 2 and Example 3]
Next, a comparison between the second embodiment and the third embodiment will be made.
First, in Example 3, the value of the discharge capacity at 0.6 mA was smaller than that in Example 2 (about 99%).
Example 3 had a smaller discharge capacity value at 20 mA than Example 2 (about 94%).
Furthermore, Example 3 had a higher capacity retention ratio than Example 2 (about 101%).
In Example 3, the value of the internal resistance was larger than that in Example 2 (about 107%).
〔全体的な傾向について〕
 以上より、放電容量、容量維持率および内部抵抗に関し、以下のような傾向がみられるといえる。
[Overall trends]
From the above, it can be said that the following trends are observed with respect to the discharge capacity, the capacity retention ratio, and the internal resistance.
 まず、0.6mAでの放電容量については、多少の大小関係は存在するものの、実施例および第1比較例~第3比較例のすべてにおいて、500μAh台であった(第3実施例(1)を除く、以下同じ)。 First, with respect to the discharge capacity at 0.6 mA, although there is some magnitude relationship, in the example and all of the first to third comparative examples, the discharge capacity was on the order of 500 μAh (third example (1)). The same applies hereinafter).
 また、20mAでの放電容量については、実施例は、第1比較例~第3比較例よりも1桁以上大きく100μA台(実際には140μA以上)であった。 放電 In addition, the discharge capacity at 20 mA was more than one order of magnitude larger than the first comparative example to the third comparative example and was on the order of 100 μA (actually 140 μA or more).
 さらに、容量維持率については、実施例は、第1比較例~第3比較例よりも高く、98%超であった。特に、実施例1~実施例3のうち、第1固体電解質層41が最も厚い実施例3では、容量維持率が、最高値となる100%となった。また、実施例1~実施例3のうち、第1固体電解質層41が最も薄い実施例1でも、容量維持率が、第1比較例(98%)よりも高い98.6%となった。 Furthermore, the capacity retention ratio of the example was higher than that of the first comparative example to the third comparative example, and exceeded 98%. In particular, in Example 3 in which the first solid electrolyte layer 41 was the thickest among Examples 1 to 3, the capacity retention ratio was 100%, which is the highest value. Further, among Examples 1 to 3, even in Example 1 in which the first solid electrolyte layer 41 was the thinnest, the capacity retention ratio was 98.6%, which was higher than that in the first comparative example (98%).
 そして、内部抵抗については、実施例は、第1実施例1~第3実施例よりも小さく、30Ω未満であった。特に、実施例1~実施例3のうち、第1固体電解質層41が最も薄い実施例1では、内部抵抗が、最低値となる17Ωとなった。 And, as for the internal resistance, the example was smaller than the first to third examples and less than 30Ω. In particular, in Example 1 of Examples 1 to 3, in which the first solid electrolyte layer 41 was the thinnest, the internal resistance was 17Ω, which was the lowest value.
 以上により、固体電解質層40を、LiPOからなる第1固体電解質層41およびLiPONからなる第2固体電解質層42の2層構成とし、正極層30側に第1固体電解質層41を、保持層50側に第2固体電解質層42を、それぞれ配置することにより、容量維持率の低下を抑制できることがわかる。また、このような構造を採用することにより、内部抵抗の上昇を抑制できることもわかる。 As described above, the solid electrolyte layer 40 has a two-layer structure of the first solid electrolyte layer 41 made of Li 3 PO 4 and the second solid electrolyte layer 42 made of LiPON, and the first solid electrolyte layer 41 is provided on the positive electrode layer 30 side. It can be seen that by arranging the second solid electrolyte layers 42 on the holding layer 50 side, respectively, it is possible to suppress a decrease in the capacity retention ratio. It can also be seen that the adoption of such a structure can suppress an increase in internal resistance.
1…リチウムイオン二次電池、10…基板、10a…表面、10b…裏面、20…下地層、30…正極層、40…固体電解質層、41…第1固体電解質層、42…第2固体電解質層、50…保持層、60…拡散防止層、70…負極集電体層 DESCRIPTION OF SYMBOLS 1 ... lithium ion secondary battery, 10 ... board | substrate, 10a ... front surface, 10b ... back surface, 20 ... base layer, 30 ... positive electrode layer, 40 ... solid electrolyte layer, 41 ... 1st solid electrolyte layer, 42 ... 2nd solid electrolyte Layer, 50: holding layer, 60: diffusion preventing layer, 70: negative electrode current collector layer

Claims (8)

  1.  正極活物質を含む正極層と、
     LiPOを含む第1固体電解質層と、
     LiPOにおける酸素の一部を窒素で置換したLiPONを含む第2固体電解質層と、
     負極活物質を含む負極層と
    を順に有するリチウムイオン二次電池。
    A positive electrode layer containing a positive electrode active material,
    A first solid electrolyte layer containing Li 3 PO 4 ,
    A second solid electrolyte layer containing LiPON in which part of oxygen in Li 3 PO 4 has been replaced with nitrogen,
    A lithium ion secondary battery having, in order, a negative electrode layer containing a negative electrode active material.
  2.  前記第1固体電解質層の厚さは、前記第2固体電解質層の厚さよりも小さいことを特徴とする請求項1記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the thickness of the first solid electrolyte layer is smaller than the thickness of the second solid electrolyte layer.
  3.  前記第1固体電解質層および前記第2固体電解質層は、それぞれ、非晶質構造を有することを特徴とする請求項1または2記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the first solid electrolyte layer and the second solid electrolyte layer each have an amorphous structure.
  4.  前記正極層は、LiNiOおよびLiPOを含んでおり、
     前記正極層におけるLiNiOとLiPOとの比率が、モル比で、9:1~3:2の範囲にあることを特徴とする請求項1乃至3のいずれか1項記載のリチウムイオン二次電池。
    The positive electrode layer includes LiNiO 2 and Li 3 PO 4 ,
    4. The lithium ion according to claim 1, wherein the molar ratio of LiNiO 2 to Li 3 PO 4 in the positive electrode layer is in the range of 9: 1 to 3: 2. Rechargeable battery.
  5.  正極活物質を含む正極層と、
     リチウム(Li)、リン酸塩(PO 3-)および窒素(N)を含む固体電解質層と、
     負極活物質を含む負極層と
    を順に備え、
     前記固体電解質層は、
     前記正極層と対峙する側の窒素の濃度が、前記負極層と対峙する側の窒素の濃度よりも低いこと
    を特徴とするリチウムイオン二次電池。
    A positive electrode layer containing a positive electrode active material,
    A solid electrolyte layer containing lithium (Li), phosphate (PO 4 3- ) and nitrogen (N);
    A negative electrode layer containing a negative electrode active material in order,
    The solid electrolyte layer,
    A lithium ion secondary battery, wherein the concentration of nitrogen on the side facing the positive electrode layer is lower than the concentration of nitrogen on the side facing the negative electrode layer.
  6.  前記固体電解質層は、前記正極層と対峙する側の窒素の濃度が、0%であることを特徴とする請求項5記載のリチウムイオン二次電池。 6. The lithium ion secondary battery according to claim 5, wherein the solid electrolyte layer has a nitrogen concentration on the side facing the positive electrode layer of 0%. 7.
  7.  金属または合金からなる正極集電体層と、
     LiNiOを含みLiPOを含まない下地層と、
     LiNiOおよびLiPOを含む合材正極層と、
     LiPOを含みLiNiOを含まない第1固体電解質層と、
     LiPOにおける酸素の一部を窒素で置換したLiPONを含む第2固体電解質層と、
     負極活物質を含む負極層と
    を順に有するリチウムイオン二次電池。
    A positive electrode current collector layer made of a metal or an alloy,
    An underlayer containing LiNiO 2 and no Li 3 PO 4 ;
    A composite positive electrode layer containing LiNiO 2 and Li 3 PO 4 ;
    A first solid electrolyte layer containing Li 3 PO 4 and not containing LiNiO 2 ;
    A second solid electrolyte layer containing LiPON in which part of oxygen in Li 3 PO 4 has been replaced with nitrogen,
    A lithium ion secondary battery having, in order, a negative electrode layer containing a negative electrode active material.
  8.  前記第2固体電解質層には、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、金(Au)またはアルミニウム(Al)あるいはこれらの合金で構成される金属層が積層されており、
     前記負極層は、前記金属層を構成する金属と合金化したリチウムによって構成されることを特徴とする請求項7記載のリチウムイオン二次電池。
    On the second solid electrolyte layer, a metal layer composed of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof is laminated. ,
    The lithium ion secondary battery according to claim 7, wherein the negative electrode layer is made of lithium alloyed with a metal constituting the metal layer.
PCT/JP2019/014775 2018-07-10 2019-04-03 Lithium ion secondary battery WO2020012734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130459 2018-07-10
JP2018130459A JP2020009653A (en) 2018-07-10 2018-07-10 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2020012734A1 true WO2020012734A1 (en) 2020-01-16

Family

ID=69142523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014775 WO2020012734A1 (en) 2018-07-10 2019-04-03 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2020009653A (en)
WO (1) WO2020012734A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228029A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Electrochemical element, manufacturing method thereof and its manufacturing apparatus
JP2013097969A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Electrode for all-solid battery, and all-solid battery including the same
JP2016219130A (en) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for manufacturing solid electrolyte battery
JP2017152324A (en) * 2016-02-26 2017-08-31 富士通株式会社 All-solid-state battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228029A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Electrochemical element, manufacturing method thereof and its manufacturing apparatus
JP2013097969A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Electrode for all-solid battery, and all-solid battery including the same
JP2016219130A (en) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for manufacturing solid electrolyte battery
JP2017152324A (en) * 2016-02-26 2017-08-31 富士通株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP2020009653A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP4367311B2 (en) battery
JP5151692B2 (en) Lithium battery
JP5590576B2 (en) Method for manufacturing electrode for power storage device, and power storage device
US20100266898A1 (en) Electrode for electrochemical device
US7226700B2 (en) Anode and battery using the same
JP2009152077A (en) Lithium battery
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP3922579B2 (en) Negative electrode and battery
JP3707617B2 (en) Negative electrode and battery using the same
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
WO2019123981A1 (en) Method of manufacturing lithium ion secondary battery
JP7034703B2 (en) Lithium ion secondary battery
WO2020012734A1 (en) Lithium ion secondary battery
US7524585B2 (en) Anode and battery using it
JP2007019032A (en) Battery
WO2020116004A1 (en) Lithium ion secondary battery
JP2018181636A (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
WO2020070933A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020070932A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020137449A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2019114529A (en) Lithium ion secondary battery
US20220285692A1 (en) Multilayered anode and associated methods and systems
WO2020075352A1 (en) Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell
WO2019123951A1 (en) Lithium-ion secondary cell
JP2010140703A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834861

Country of ref document: EP

Kind code of ref document: A1