WO2020075352A1 - Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell - Google Patents

Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell Download PDF

Info

Publication number
WO2020075352A1
WO2020075352A1 PCT/JP2019/026271 JP2019026271W WO2020075352A1 WO 2020075352 A1 WO2020075352 A1 WO 2020075352A1 JP 2019026271 W JP2019026271 W JP 2019026271W WO 2020075352 A1 WO2020075352 A1 WO 2020075352A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ion secondary
current collector
secondary battery
lithium ion
Prior art date
Application number
PCT/JP2019/026271
Other languages
French (fr)
Japanese (ja)
Inventor
安田 剛規
晴章 内田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020075352A1 publication Critical patent/WO2020075352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • a lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
  • an organic electrolyte or the like has been used as an electrolyte.
  • an all-solid-state and thin-film laminated lithium-ion secondary battery has been proposed in which a solid electrolyte (inorganic solid electrolyte) made of an inorganic material is used as the electrolyte, and the positive electrode, the solid electrolyte, and the negative electrode are all thin films.
  • Patent Document 1 a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated on a substrate made of an insulating resin, and the positive electrode layer, the solid electrolyte layer, and the negative electrode layer formed on the substrate are described. It is described that an overall protective film made of an ultraviolet curable resin is formed so as to cover the entire laminated body including the same.
  • An object of the present invention is to simplify the structure of a thin film type lithium ion secondary battery including a solid electrolyte.
  • the lithium-ion secondary battery of the present invention includes a first current collector layer that is conductive and that collects current, a first polar layer that occludes and releases lithium ions with a first polarity, and a lithium-ion conductive layer.
  • Solid electrolyte layer having an inorganic solid electrolyte exhibiting conductivity, a second polar layer that occludes and releases lithium ions with a second polarity opposite to the first polarity, and has conductivity and current collection.
  • the coating portion may be made of a synthetic resin material. Further, the coating portion may be made of a photoresist material. Further, the coating portion may be composed of a cyclized polymer of perfluorobutenyl vinyl ether.
  • the first current collector layer may be made of SUS316L.
  • the first current collector layer may be made of a metal material having a surface plated with Ni—P.
  • the method for manufacturing a lithium ion secondary battery according to the present invention includes a first current collector layer that has conductivity and that collects current.
  • the liquid organic material is a photoresist material, and the method further comprises an exposure step of exposing the heated liquid organic material over the entire area.
  • the liquid organic material may be a raw material of a cyclized polymer of perfluorobutenyl vinyl ether.
  • the structure of a thin film type lithium ion secondary battery including a solid electrolyte can be simplified.
  • FIG. 4 is a sectional view taken along line IV-IV of FIGS. (A), (b) is a figure showing an example of section composition of a substrate which constitutes a battery part. 4 is a flowchart for explaining a method of manufacturing a lithium ion secondary battery according to an embodiment.
  • (A), (b) is a figure for explaining the outline of a base layer formation process.
  • (A), (b) is a figure for demonstrating the outline of a positive electrode layer forming process.
  • (A), (b) is a figure for explaining the outline of a solid electrolyte layer formation process.
  • (A), (b) is a figure for demonstrating the outline of a holding layer formation process.
  • (A), (b) is a figure for explaining the outline of a diffusion prevention layer forming process.
  • (A), (b) is a figure for demonstrating the outline of a negative electrode electrical power collector layer forming process.
  • (A), (b) is a figure for explaining the outline of a division process.
  • (A), (b) is a figure which shows the structure of the battery part obtained through the division process.
  • (A), (b) is a figure for explaining the outline of a supply process.
  • (A), (b) is a figure for explaining the outline of a coating process.
  • (A), (b) is a figure for demonstrating the outline of a heating process.
  • (A), (b) is a figure for explaining the outline of an exposure process.
  • (A)-(c) is a figure for demonstrating the outline of a battery-ized process. It is a figure which shows the initial charging / discharging characteristic of the lithium ion secondary battery of embodiment. It is a figure which shows the cycle charge / discharge characteristic of the lithium ion secondary battery of embodiment. It is a figure which shows the discharge capacity maintenance factor of the lithium ion secondary battery of embodiment.
  • FIG. 1 is a perspective view showing the overall configuration of a lithium ion secondary battery 100 of this embodiment.
  • FIG. 2 is a perspective view of the battery unit 1 that constitutes the lithium-ion secondary battery 100.
  • FIG. 3A is a front view of the lithium ion secondary battery 100
  • FIG. 3B is a rear view thereof.
  • FIG. 4 is a IV-IV sectional view (longitudinal sectional view of the lithium-ion secondary battery 100) of FIGS. 3A and 3B.
  • the lithium-ion secondary battery 100 of the present embodiment includes a battery unit 1 that functions as a rechargeable battery that can be charged and discharged, that is, a secondary battery, and a coating unit 2 that has an insulating property and covers a main part of the battery unit 1. I have it.
  • the battery unit 1 includes a substrate 10, a base layer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the base layer 20, and a solid electrolyte layer laminated on the positive electrode layer 30. 40 and 40.
  • the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the end portions thereof are directly laminated on the substrate 10, thereby covering the base layer 20 and the positive electrode layer 30 together with the substrate 10.
  • the lithium ion secondary battery 100 includes a holding layer 50 laminated on the solid electrolyte layer 40, a diffusion preventing layer 60 laminated on the holding layer 50, and a negative electrode collector laminated on the diffusion preventing layer 60. And an electric body layer 70.
  • the substrate 10 as an example of the first current collector layer serves as a base for laminating the base layer 20 to the negative electrode current collector layer 70 by a film forming process.
  • the substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a. The details of the substrate 10 will be described later.
  • the underlayer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, as well as a material (particularly a metal material) forming the substrate 10 and a Li 3 PO 4 (phosphorus) forming the positive electrode layer 30.
  • Li 3 PO 4 phosphorus
  • Li 3 PO 4 and Li + unlikely to occur corrosion by (Li-ion) or PO 4 3- (phosphate ions) constituting formed of a metal or metal compound such as Can be used.
  • the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 100.
  • the thickness of the underlayer 20 can be, for example, 5 nm or more and 50 ⁇ m or less. When the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is lowered and it becomes impractical. On the other hand, if the thickness of the underlayer 20 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, the sputtering method or the vacuum method. It is desirable to use the vapor deposition method.
  • the positive electrode layer 30 as an example of the first polar layer is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging.
  • the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). Materials composed of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals can be used.
  • the positive electrode layer 30 may be a composite positive electrode further containing a solid electrolyte.
  • the positive electrode layer 30 is composed of a composite positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material. Then, in the positive electrode layer 30, the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed in a state of maintaining each. As a result, in the positive electrode layer 30, one is a matrix (base material) and the other is a filler (particles). Here, in the positive electrode layer 30, it is desirable that the solid electrolyte region be a matrix and the positive electrode region be a filler.
  • the positive electrode active material forming the positive electrode layer 30 the same LiNiO 2 as the underlayer 20 is used.
  • Li 3 PO 4 lithium phosphate
  • the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected.
  • the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
  • the thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 100 becomes too small, which is not practical.
  • the thickness of the positive electrode layer 30 exceeds 40 ⁇ m, it takes too much time to form the layer, and the productivity is reduced.
  • the thickness of the positive electrode layer 30 may be greater than 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
  • the solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field.
  • the solid electrolyte layer 40 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30. Further, the solid electrolyte layer 40 of the present embodiment contains Li 3 PO 4 , while LiPON (Li 3 PO 4-x N x (0 ⁇ x ⁇ ) in which part of oxygen in Li 3 PO 4 is replaced by nitrogen. 1)) is not included.
  • the thickness of the solid electrolyte layer 40 can be, for example, 400 nm or more and 800 nm or less.
  • the thickness of the solid electrolyte layer 40 is less than 400 nm, in the obtained lithium ion secondary battery 100, current leakage between the positive electrode layer 30 and the holding layer 50 is likely to occur.
  • the thickness of the solid electrolyte layer 40 exceeds 800 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the thickness of the solid electrolyte layer 40 is preferably, for example, not less than 600 nm and not more than 800 nm.
  • the thickness of the positive electrode layer 30 As for the relationship between the thickness of the positive electrode layer 30 and the thickness of the solid electrolyte layer 40, whichever may be thicker or the same. However, from the viewpoint of suppressing an increase in the internal resistance of the battery, it is preferable that the thickness of the solid electrolyte layer 40 be smaller than the thickness of the positive electrode layer 30.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the holding layer 50 as an example of the second polar layer is a solid thin film, and has a function of holding lithium ions during charging and releasing lithium ions during discharging.
  • the point that the holding layer 50 of the present embodiment does not itself include a negative electrode active material and is configured to hold lithium functioning as a negative electrode active material therein is different from a general negative electrode layer. Is different.
  • the holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed.
  • the porousization of the holding layer 50 that is, the formation of the porous portion, is performed in the first charge / discharge operation after the film formation, and the details will be described later.
  • a platinum group element Ru, Rh, Pd, Os, Ir, Pt
  • gold Au
  • aluminum Al
  • an alloy thereof it is desirable that the holding layer 50 be made of platinum or gold, which is less likely to be oxidized.
  • the holding layer 50 of the present embodiment can be made of the above-mentioned noble metal and metal or a polycrystal of an alloy thereof.
  • the holding layer 50 is made of platinum.
  • the thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient.
  • the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the thickness of the retaining layer 50 may exceed 40 ⁇ m.
  • a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a method for manufacturing the porous holding layer 50 it is desirable to employ a method of performing charging and discharging, as described later.
  • the diffusion prevention layer 60 is a solid thin film and is for suppressing the diffusion of lithium ions held by the holding layer 50 to the outside of the lithium ion secondary battery 100.
  • a layer made of metal or alloy having an amorphous structure can be used as the diffusion prevention layer 60.
  • the diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among these, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferred. Is preferred.
  • the diffusion prevention layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer).
  • the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
  • the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi).
  • the metals (alloys) that can be used for the diffusion preventing layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi And the like.
  • the thickness of the diffusion preventing layer 60 can be, for example, not less than 10 nm and not more than 40 ⁇ m.
  • the thickness of the diffusion preventing layer 60 is less than 10 nm, it is difficult for the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side to be blocked by the diffusion preventing layer 60.
  • the thickness of the diffusion prevention layer 60 exceeds 40 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the diffusion preventing layer 60 As a method for manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • a sputtering method when the diffusion preventing layer 60 is made of the above-described chromium titanium alloy, if the sputtering method is adopted, the chromium titanium alloy is likely to become amorphous.
  • the negative electrode current collector layer 70 as an example of the second polar layer is a solid thin film having electronic conductivity, and has a function of collecting current to the holding layer 50.
  • the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can.
  • a chemically stable material for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold ( Au) or an alloy thereof is preferable.
  • the negative electrode current collector layer 70 is made of the same platinum as the holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
  • the thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 ⁇ m. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, and it will not be practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 ⁇ m, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
  • the negative electrode current collector layer 70 As a method of manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
  • the substrate 10 of the present embodiment has a rectangular shape (square shape in this example), one surface being a front surface 10a and the other surface being a back surface 10b.
  • the substrate 10 of this embodiment is made of a conductive material having electronic conductivity.
  • the substrate 10 of the present embodiment functions as a positive electrode current collector layer that collects current to the positive electrode layer 30 via the underlayer 20.
  • the thickness of the substrate 10 can be, for example, not less than 20 ⁇ m and not more than 2000 ⁇ m. When the thickness of the substrate 10 is less than 20 ⁇ m, the strength of the lithium ion secondary battery 100 may be insufficient. On the other hand, if the thickness of the substrate 10 exceeds 2000 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery.
  • FIG. 5 is a diagram showing a cross-sectional configuration example of the substrate 10 that constitutes the lithium-ion secondary battery 100 of the embodiment.
  • the substrate 10 shown in FIG. 5A will be referred to as a first configuration example
  • the substrate 10 shown in FIG. 5B will be referred to as a second configuration example.
  • the substrate 10 includes a base material 11 formed of a single-layer metal plate.
  • various metals, alloys thereof, or the like can be used as the metal material forming the base material 11.
  • stainless steel whose coefficient of thermal expansion is close to that of LiNiO 2 is used as the metal material forming the base material 11. Is preferred.
  • the substrate 10 is also used as the positive electrode current collector layer as in the present embodiment, as the metal material forming the base material 11, stainless steel that is resistant to corrosion even under a high voltage environment and is resistant to over-discharge. Is preferably used.
  • the base material 11 forming the substrate 10 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
  • the substrate 10 includes a base material 11 formed of a single-layer metal plate and a coating layer 12 that covers the entire surface of the base material 11.
  • the metal material forming the base material various metals, their alloys, metal compounds, and the like can be used.
  • the base material 11 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
  • the coating layer 12 As a material forming the coating layer 12, various metals, their alloys, metal compounds, or the like can be used.
  • the substrate 10 in which the coating layer 12 is formed on the base material 11 is adopted, from the viewpoint of suppressing corrosion caused by lithium, CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, It is preferable to use NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi, or the like.
  • NiP nickel-phosphorous
  • the method for forming the coating layer 12 is not limited to the plating method, and various film forming methods may be employed.
  • the substrate 10 is formed by covering the entire surface of the base material 11 with the coating layer 12, but the present invention is not limited to this.
  • the coating layer 12 is formed on at least the side of the substrate 11 that becomes the surface 10a. It should be provided.
  • the maximum and minimum height difference Rmm of the substrate 10 of the present embodiment is a measure for defining the smoothness of the laminated surface of the battery structure on the substrate 10 (the surface 10a of the substrate 10 in the present embodiment).
  • the maximum-to-minimum height difference Rmm in the present embodiment is the height between the maximum height and the minimum height obtained by measuring irregularities in a range of 20 ⁇ m ⁇ 20 ⁇ m (square region) with an AFM (Atomic Force Microscope). Defined by the difference. Therefore, the definition of the maximum and minimum height difference Rmm is different from the maximum height Rz defined in, for example, JIS B0601.
  • the maximum / minimum height difference Rmm in the present embodiment is obtained, for example, by using a Bruker D3100, which is an AFM device (atomic force microscope system), and after acquiring data in a region of 20 ⁇ m ⁇ 20 ⁇ m, a reference plane for each scan line.
  • a cubic expression as an approximation polynomial, prepare an image that has been converted (“smoothed”) into displacement from the reference plane (+ displacement and ⁇ displacement may exist), It can be obtained by the "maximum value-minimum value" of the direction (z displacement).
  • the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is set to 78 nm or less.
  • the maximum / minimum height difference Rmm of the base material 11 located on the front surface 10a side is set to 78 nm or less.
  • the maximum / minimum height difference Rmm of the coating layer 12 located on the front surface 10a side is set to 78 nm or less.
  • the arithmetic average roughness Ra is, for example, specified in JIS B 0601.
  • the arithmetic mean roughness Ra of the surface 10a of the substrate 10 is preferably 1.1 nm or less.
  • the covering portion 2 of the present embodiment is a solid thin film, which protects the battery portion 1 and performs internal insulation and external insulation of the battery portion 1.
  • the coating portion 2 includes an upper surface of the negative electrode current collector layer 70, a side surface of the negative electrode current collector layer 70, a side surface of the diffusion prevention layer 60, a side surface of the holding layer 50, an upper surface (end side) and side surfaces of the solid electrolyte layer 40, Also, the side surface of the substrate 10 is covered. However, an opening 2a where the coating 2 does not exist is formed in substantially the center of the upper surface of the negative electrode current collector layer 70, and an exposed portion 71 from which the negative electrode current collector layer 70 is exposed is formed at this portion. It is provided. Further, the covering portion 2 does not cover the lower surface of the substrate 10, and the back surface 10b (see FIG. 5) of the substrate 10 is exposed at this portion.
  • the exposed portion 71 of the negative electrode current collector layer 70 functions as a negative electrode used for electrical connection with the outside, and the back surface 10b of the substrate 10 is formed. , But functions as a positive electrode used for electrical connection to the outside.
  • the covering part 2 various materials such as an organic material and an inorganic material can be used as long as they have insulation properties.
  • the battery unit 1 of the present embodiment has a structure that expands and contracts in the thickness direction with charging and discharging, as will be described later, the covering unit 2 is more flexible and expandable than an inorganic material. It is desirable to use an organic material (particularly a synthetic resin material), which is also expensive.
  • the covering portion 2 has good adhesion to each layer exposed to the outside of the battery portion 1 (in this example, the substrate 10, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70). It is desirable to use high materials. Further, from the viewpoint of making it easier to observe the state of the battery unit 1 from the outside of the lithium-ion secondary battery 100, the covering unit 2 has a light-transmitting property with respect to light having a wavelength in the visible region. Is desirable.
  • the covering portion 2 for example, silicon oxide (SiO 2 ) can be cited.
  • a synthetic resin material can be cited, and it is particularly preferable to use various photoresist materials and various engineering plastic materials.
  • the photoresist material may be either a positive type or a negative type, but a positive type is preferable from the viewpoint of simplifying the manufacturing process of the covering portion 2.
  • the engineering plastic material may be either a thermoplastic resin or a thermosetting resin, but from the viewpoint of obtaining high toughness, the thermoplastic resin is desirable.
  • a fluororesin from the viewpoint of ensuring durability against chemicals and electrical insulation, it is preferable to use an amorphous fluororesin. More desirable.
  • the amorphous fluororesin are those obtained by copolymerizing a fluoropolymer of a crystalline polymer to make it amorphous as a polymer alloy, and a perfluorodioxole copolymer (Teflon AF manufactured by DuPont). (Registered trademark)) and a cyclized polymer of perfluorobutenyl vinyl ether (trade name Cytop (registered trademark) manufactured by AGC Co.).
  • the thickness of the covering portion 2 can be, for example, 100 nm or more and 2 mm or less. If the thickness of the covering portion 2 is less than 100 nm, there is a high possibility that pinholes and the like will be formed, and Li may be oxidized by exposure to the atmosphere, or insulation may not be ensured. On the other hand, when the thickness of the covering portion 2 exceeds 2 mm, it becomes difficult to reduce the thickness of the lithium-ion secondary battery 100 as a whole, and it takes too much time to form the layer, which lowers the productivity.
  • a method for producing the covering portion 2 for example, when an inorganic material is used, a known film forming method such as various PVD or various CVD, or a sol-gel method can be adopted.
  • an organic material for example, a film forming method in which a liquid raw material is applied by dip coating, spin coating, a brush, or the like and then cured by heating or exposure can be adopted.
  • a film forming method in which the raw material is subjected to perforation processing, etc., and then placed on an object and cured by heating is adopted.
  • the solid raw material include a thermosetting epoxy resin sheet (a product of Kyocera Co., Ltd., a melting sheet).
  • FIG. 6 is a flowchart for explaining the method of manufacturing lithium-ion secondary battery 100 of the present embodiment.
  • the lithium-ion secondary battery 100 according to the present embodiment includes a battery part forming step (step 1) of forming the battery part 1, a covering part forming step of forming the covering part 2 on the battery part 1 (step 2), and a battery. It is manufactured through a battery forming step (step 3) of converting the basic structure of the lithium-ion secondary battery 100 in which the cover 2 is formed on the part 1 into a battery.
  • a substrate preparing process is performed to prepare the substrate 10 that has been surface-treated so that the maximum and minimum height difference Rmm of the surface 10a is 78 nm or less (step 11). Note that, here, the case where four (2 ⁇ 2) battery units 1 are formed using one substrate 10 is taken as an example, and the square substrate 10 is prepared.
  • the substrate 10 according to the first configuration example shown in FIG. 5A is manufactured by the following procedure, for example.
  • a metal plate is manufactured by a rolling method or the like, and the surface 10a side of the base material 11 obtained by cutting the metal plate is subjected to a general mechanical polishing treatment, and then further subjected to CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • the substrate 10 according to the second configuration example shown in FIG. 5B is manufactured by the following procedure, for example.
  • a metal plate is manufactured by a rolling method or the like, and a coating layer 12 made of Ni—P is formed on the entire surface of a base material 11 obtained by cutting the metal plate by an electroless nickel plating method or the like.
  • a laminate of the material 11 and the coating layer 12 is obtained.
  • a polishing process using a CMP method or the like is performed, so that the surface 10a
  • the substrate 10 having the maximum and minimum height difference Rmm set to 78 nm or less is obtained.
  • FIG. 7 is a diagram for explaining the outline of the step 12 of forming the underlayer.
  • FIG. 7A shows a front view
  • FIG. 7B shows a VIIB-VIIB sectional view of FIG. 7A.
  • each base layer 20 has a rectangular shape (square shape), and the area of each is set to a common size. Therefore, the area of each underlayer 20 is smaller than the area of the substrate 10 (less than 1/4 in this example).
  • the surface 10a of the substrate 10 is exposed between two adjacent underlayers 20 by providing a gap between the underlayers 20 so that the underlayers 20 do not contact each other.
  • substrate 10 is called a 1st laminated body.
  • FIG. 8 is a diagram for explaining the outline of the positive electrode layer forming step of step 13.
  • FIG. 8A is a front view
  • FIG. 8B is a sectional view taken along line VIIIB-VIIIB of FIG. 8A.
  • substrate 10 is called a 2nd laminated body.
  • FIG. 9 is a diagram for explaining the outline of the solid electrolyte layer forming step of step 14.
  • FIG. 9A shows a front view
  • FIG. 9B shows a sectional view taken along line IXB-IXB of FIG. 9A.
  • the solid electrolyte layer 40 is formed on the surface of the second laminated body on which the positive electrode layer 30 is formed.
  • the solid electrolyte layer 40 has a rectangular shape (square shape), and the area of the solid electrolyte layer 40 is the same as the area of the substrate 10.
  • the solid electrolyte layer 40 is formed so as to cover the surface and the side surface of the positive electrode layer 30, the side surface of the base layer 20, and the region of the surface 10 a of the substrate 10 that is not in contact with the base layer 20.
  • the solid electrolyte layer 40 is formed so as not to contact the side surface of the substrate 10 or the back surface 10b.
  • substrate 10 is called a 3rd laminated body.
  • FIG. 10 is a diagram for explaining the outline of the holding layer forming step of step 15.
  • FIG. 10A shows a front view
  • FIG. 10B shows a sectional view taken along the line XB-XB of FIG. 10A.
  • each holding layer 50 has a rectangular shape (square shape), and the area of each is set to a common size.
  • the area of each holding layer 50 is made larger than the area of each of the base layer 20 and each of the positive electrode layers 30 described above.
  • each holding layer 50 is arranged so as to overlap each positive electrode layer 30 when viewed from above, and the entire outer peripheral edge of each holding layer 50 is located outside the entire outer peripheral edge of each positive electrode layer 30. There is.
  • FIG. 11 is a diagram for explaining the outline of the diffusion prevention layer forming step of step 16.
  • FIG. 11A shows a front view
  • FIG. 11B shows a sectional view taken along the line XIB-XIB of FIG. 11A.
  • substrate 10 is called the 5th laminated body.
  • FIG. 12 is a diagram for explaining the outline of the negative electrode current collector layer forming step of step 17.
  • FIG. 12A shows a front view
  • FIG. 12B shows a sectional view taken along line XIIB-XIIB of FIG. 12A.
  • the sixth laminated body obtained in this way has a structure in which four battery parts 1 are integrated. Then, this sixth laminated body is removed from the sputtering apparatus.
  • FIG. 13 is a diagram for explaining the outline of the dividing process in step 18.
  • FIG. 13A shows a front view
  • FIG. 13B shows a sectional view taken along the line XIIIB-XIIIB of FIG. 13A.
  • FIG. 14 is a diagram showing a configuration of the battery unit 1 obtained through the division process of step 18.
  • FIG. 14A shows a front view
  • FIG. 14B shows a sectional view taken along the line XIVB-XIVB of FIG. 14A.
  • the battery unit 1 is formed by cutting the sixth laminated body along a plurality (vertical x 1, lateral x 1) of the dividing lines D into individual pieces. More specifically, the sixth laminated body is divided into a plurality of layers (4) by dividing the sixth laminated body so as to include the independent underlayer 20, the positive electrode layer 30, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70. Individual battery parts 1 are obtained.
  • the method for cutting the sixth stacked body include a method using a dicing blade and a method using a laser.
  • step 2 (Coating part forming process) Subsequently, the covering portion forming step of step 2 will be described.
  • FIG. 15 is a diagram for explaining the outline of the supply process in step 21.
  • FIG. 15A shows a front view
  • FIG. 15B shows a sectional view taken along the line XVB-XVB of FIG. 15A.
  • the battery unit 1 is mounted on a stage (not shown) of a spin coater so that the negative electrode current collector layer 70 side faces upward. Then, a liquid photoresist 200 (an example of a liquid organic material) is annularly supplied onto the negative electrode current collector layer 70 in the battery unit 1. At this time, the photoresist 200 can be supplied to the battery unit 1 by, for example, dropping. By thus supplying the photoresist 200 in a ring shape, the opening 2a surrounded by the photoresist 200 is formed in the negative electrode current collector layer 70, and this portion is the negative electrode current collector. It becomes the exposed portion 71 in the layer 70.
  • a liquid photoresist 200 an example of a liquid organic material
  • FIG. 16 is a diagram for explaining the outline of the coating process in step 22.
  • FIG. 16A shows a front view
  • FIG. 16B shows a cross-sectional view taken along the line XVIB-XVIB of FIG. 16A.
  • the stage of the spin coater equipped with the battery unit 1 to which the photoresist 200 is supplied is rotated, and the photoresist 200 is radially extended by the centrifugal force.
  • the photoresist 200 reaches the upper surface of the solid electrolyte layer 40 from the upper surface of the negative electrode current collector layer 70 through each side surface of the negative electrode current collector layer 70, the diffusion prevention layer 60, and the holding layer 50, and , Reach each side surface of the solid electrolyte layer 40 and the substrate 10. That is, the photoresist 200 covers the upper surface and the side surface of the battery unit 1.
  • the opening 2a formed by the photoresist 200 on the upper surface of the battery portion 1, that is, the central portion of the upper surface of the negative electrode current collector layer 70 is maintained as it is, and the exposed portion 71 is covered with the negative electrode current collector. Part of the upper surface of the electric body layer 70 is exposed. Further, the lower surface of the battery unit 1, that is, the lower surface of the substrate 10 is not covered with the photoresist 200 and is kept exposed.
  • FIG. 17 is a diagram for explaining the outline of the heating process of step 23.
  • FIG. 17A shows a front view
  • FIG. 17B shows a sectional view taken along the line XVIIB-XVIIB of FIG. 17A.
  • the battery unit 1 coated with the photoresist 200 is removed from the spin coater stage and mounted on a hot plate (not shown) so that the negative electrode current collector layer 70 side faces upward. Then, the hot plate is operated to heat (bak) the battery unit 1 coated with the photoresist 200. Then, with heating, the organic solvent contained in the photoresist 200 is volatilized, and the photoresist 200 adheres to the battery unit 1.
  • the photoresist may be heated in an oven.
  • FIG. 18 is a diagram for explaining the outline of the exposure process in step 24.
  • FIG. 18A shows a front view
  • FIG. 18B shows a sectional view taken along the line XVIIIB-XVIIIB of FIG. 18A.
  • the photoresist 200 that is brought into close contact with the battery unit 1 is irradiated with light having a wavelength at which the photoresist 200 has sensitivity, over the entire area without particularly interposing a mask or the like.
  • the photoresist 200 that is brought into close contact with the battery unit 1 is cured by exposure and becomes the solid coating unit 2.
  • the basic structure of the lithium ion secondary battery 100 having the battery part 1 and the covering part 2 is obtained.
  • step 3 In the battery conversion process of step 3, first, the initial charging process is performed to charge the basic structure of the lithium-ion secondary battery 100 in which the battery part 1 is formed with the coating part 2 for the first time (step). 31).
  • the initial discharging process for discharging the basic structure of the charged lithium-ion secondary battery 100 for the first time is performed (step 32).
  • the holding layer 50 is made porous, that is, the porous portion and a large number of pores are formed, and the lithium ion secondary battery 100 shown in FIG. 1 is obtained.
  • FIG. 19 is a view for explaining the procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and its periphery.
  • FIG. 19A shows a state before the first charge (before step 31)
  • FIG. 19B shows a state after the first charge and before the first discharge (between step 31 and step 32).
  • 19 (c) shows the state after the initial discharge (after step 32), respectively.
  • the holding layer 50 is densified.
  • the thickness of the holding layer 50 is the thickness of the holding layer t50
  • the thickness of the diffusion prevention layer 60 is the thickness of the diffusion prevention layer t60
  • the thickness of the negative electrode current collector layer 70 is the thickness of the negative electrode current collector layer. It is t70.
  • the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the metal constituting the holding layer 50.
  • the holding layer 50 is made of platinum (Pt)
  • platinum and platinum are alloyed (solid solution, formation of an intermetallic compound, or eutectic).
  • the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly smaller than that of the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
  • the lithium ions that have moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50.
  • the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum.
  • the holding layer thickness t50 is after the film formation and before the initial charge shown in FIG. 19A.
  • the volume of the holding layer 50 increases with the first charge. This is considered to be due to the fact that lithium and platinum are alloyed in the holding layer 50.
  • the thickness t60 of the diffusion prevention layer does not substantially change before and after the first charge. That is, the volume of the diffusion prevention layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium hardly enters the diffusion preventing layer 60.
  • the thickness t70 of the negative electrode current collector layer does not substantially change before and after the first charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the first charge (negative electrode current collector). It is considered that the platinum constituting the electric conductor layer 70 is not made porous and remains dense like the platinum constituting the holding layer 50).
  • the alloy of lithium and platinum is dealloyed (dissolution of the metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion 51 in which a large number of holes 52 are formed.
  • the porous portion 51 obtained in this way is almost composed of metal (for example, platinum).
  • metal for example, platinum
  • the holding layer thickness t50 is larger than that after the initial charge and before the initial discharge shown in FIG. 19B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the holding layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the first discharge is flattened so that the thickness direction is smaller than the plane direction. Further, as shown in FIG. 19C, in the lithium-ion secondary battery 100 after the initial discharge, the holding layer thickness t50 is larger than that after the film formation shown in FIG. 19A and before the initial charge. To do.
  • the holding layer 50 is made porous by the first charging and the first discharging, that is, a large number of holes 52 are formed in the holding layer 50.
  • the thickness t60 of the diffusion prevention layer and the thickness t70 of the negative electrode current collector layer are not substantially changed before and after the first discharge.
  • An Al substrate plated with NiP was used as the substrate 10.
  • the size of the substrate 10 (when viewed from above: the same hereinafter) was 12 mm ⁇ 12 mm, and the thickness was 8 mm.
  • lithium nickel oxide (LiNiO 2 ) formed by a sputtering method was used.
  • the size of the underlayer 20 was 8 mm ⁇ 8 mm, and the thickness was 200 nm.
  • lithium nickel oxide (LiNiO 2 ) and lithium phosphate (Li 3 PO 4 ) formed by a sputtering method were used.
  • the size of the positive electrode layer 30 was 8 mm ⁇ 8 mm, and the thickness was 800 nm.
  • lithium phosphate (Li 3 PO 4 ) formed by a sputtering method was used for the solid electrolyte layer 40.
  • the size of the solid electrolyte layer 40 was 12 mm ⁇ 12 mm, and the thickness was 1000 nm.
  • platinum (Pt) formed by the sputtering method was used for the holding layer 50.
  • the holding layer 50 had a size of 10 mm ⁇ 10 mm and a thickness of 60 nm.
  • a CoZrNb alloy (more specifically, Co 91 Zr 5 Nb 4 ) formed by a sputtering method was used for the diffusion prevention layer 60.
  • the diffusion prevention layer 60 had a size of 10 mm ⁇ 10 mm and a thickness of 200 nm.
  • Platinum (Pt) formed by a sputtering method was used for the negative electrode current collector layer 70.
  • the negative electrode current collector layer 70 had a size of 10 mm ⁇ 10 mm and a thickness of 60 nm.
  • the lithium-ion secondary battery 100 was manufactured according to the manufacturing method shown in FIG. More specifically, each layer of the battery unit 1 was formed by using the sputtering method.
  • the coating portion 2 was obtained by applying the photoresist 200 made of S1813G described above to the battery portion 1 by spin coating, and then performing heating (baking) and exposure.
  • the initial charge / discharge characteristics are charge / discharge characteristics when the basic structure of the lithium ion secondary battery 100 is repeatedly charged and discharged including initial charging and initial discharging three times (3 cycles).
  • Table 1 shows the evaluation conditions of the initial charge and discharge.
  • the charging and discharging currents were set to 80 ( ⁇ A), 400 ( ⁇ A), 800 ( ⁇ A), 1300 ( ⁇ A) and 2700 ( ⁇ A), respectively.
  • FIG. 20 is a diagram showing the initial charge / discharge characteristics of the lithium-ion secondary battery 100 of the present embodiment. 20, the horizontal axis represents the battery capacity ( ⁇ Ah) and the vertical axis represents the battery voltage (V). Further, in FIG. 20, the charging characteristic is shown in the upper right of the figure, and the discharging characteristic is shown in the lower right of the figure.
  • the lithium-ion secondary battery 100 of the present embodiment can be charged / discharged within a charge / discharge current range of 80 ( ⁇ A) to 2700 ( ⁇ A).
  • the cycle charge / discharge characteristic is the charge / discharge characteristic when the basic structure of the lithium ion secondary battery 100 is repeatedly charged / discharged.
  • Table 2 shows the evaluation conditions of the cycle charge / discharge.
  • CC Constant current
  • the number of times of charging / discharging in cycle charging was set to 1 time (1 cycle), 500 times (500 cycles) and 1000 times (1000 cycles).
  • FIG. 21 is a diagram showing the cycle charge / discharge characteristics of the lithium ion secondary battery 100 of the present embodiment.
  • the horizontal axis represents the battery capacity ( ⁇ Ah), and the vertical axis represents the battery voltage (V).
  • the charging characteristic is shown in the upper right of the figure, and the discharging characteristic is shown in the lower right of the figure.
  • the lithium-ion secondary battery 100 of the present embodiment can maintain a substantially constant level in the range of 1 to 1000 times of charge / discharge cycles, in other words, the number of charge / discharge cycles. It can be seen that the deterioration of the charge / discharge performance due to the increase of is suppressed.
  • the discharge capacity retention ratio is the discharge capacity (n-th time) of the lithium-ion secondary battery 100 when the charge-discharge is performed n times with respect to the discharge capacity (first discharge capacity) when the first charge-discharge is executed.
  • the discharge capacity) of the above is expressed as a percentage. That is, "nth discharge capacity / first discharge capacity" is expressed in percentage. In this case, the higher the discharge capacity retention rate, the better, and the maximum value is 100%.
  • the discharge capacity retention rate was obtained based on the result of measuring the charge / discharge characteristics according to the evaluation conditions for the cycle charge / discharge characteristics (see Table 2) described above.
  • the number of charge / discharge cycles was 1300 (1300 cycles).
  • FIG. 22 is a diagram showing the capacity maintenance rate of the lithium-ion secondary battery 100 of the present embodiment.
  • the horizontal axis represents the number of times charging and discharging are repeated (the number of cycles), and the vertical axis represents the discharge capacity retention rate (%).
  • the lithium-ion secondary battery 100 of the present embodiment has a lower discharge capacity maintenance rate as the number of charge / discharge cycles increases.
  • the discharge capacity maintenance ratio of the lithium-ion secondary battery 100 of the present embodiment can be secured at about 86%, which means that the charge / discharge cycle increases and decreases. It can be seen that the deterioration of discharge performance can be suppressed.
  • the underlayer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70 are laminated in this order on the surface 10 a of the substrate 10.
  • the battery unit 1 was configured. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10.
  • the configuration is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted.
  • the stacking order of the layers on the substrate 10 is opposite to that described above, and the substrate 10 functions as the negative electrode current collector layer 70.
  • the battery unit 1 includes the substrate 10, the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70.
  • the configuration of the battery unit 1 may be changed as appropriate.
  • the coating portion 2 is formed using the photoresist 200 as a raw material
  • the present invention is not limited to this.
  • the covering portion 2 is formed using the product name Cytop (registered trademark) manufactured by AGC Co. as a raw material
  • the exposure step of step 24 in the covering portion forming step of step 2 is unnecessary.
  • the covering portion 2 is formed by using a meltable sheet manufactured by Kyocera Co., Ltd. as a raw material, this sheet is subjected to perforation processing corresponding to the opening 2a, and then stacked on the battery portion 1, It suffices to perform heating. Therefore, in this case, the supply step of step 21, the coating step of step 22 and the exposure step of step 24 in the coating portion forming step of step 2 are unnecessary.
  • SYMBOLS 1 Battery part, 2 ... Covering part, 2a ... Opening part, 10 ... Substrate, 10a ... Front surface, 10b ... Back surface, 11 ... Base material, 12 ... Coating layer, 20 ... Underlayer, 30 ... Positive electrode layer, 40 ... Solid Electrolyte layer, 50 ... Retaining layer, 51 ... Porous part, 52 ... Hole, 60 ... Diffusion preventive layer, 70 ... Negative electrode current collector layer, 71 ... Exposed part, 100 ... Lithium ion secondary battery, 200 ... Photoresist

Abstract

A lithium ion secondary cell 100 comprises: a battery unit 1 obtained by layering, on a substrate 10 that has electroconductivity and also serves as a positive electrode collector layer, a base layer 20, a positive electrode layer 30, a solid electrolyte layer 40, a holding layer 50, a diffusion prevention layer 60, and a negative electrode collector layer 70; and a coating part 2 that has insulating properties and coats the side part of the battery unit 1. The coating part 2 is configured so as not to cover the center part of the top surface of the negative electrode collector layer 70 positioned on the upper side of the battery unit 1, or the rear surface of the substrate 10 positioned on the lower side of the battery unit 1, and these sections are used for electrical connection with the outside.

Description

リチウムイオン二次電池、リチウムイオン二次電池の製造方法Lithium ion secondary battery, method of manufacturing lithium ion secondary battery
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池の製造方法に関する。 The present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
 携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を示し且つ正極および負極の間に配置される電解質とを有している。 携 帯 With the spread of portable electronic devices such as mobile phones and notebook computers, there is a strong demand for the development of small and lightweight secondary batteries with high energy density. As a secondary battery satisfying such requirements, a lithium ion secondary battery is known. A lithium ion secondary battery has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte having lithium ion conductivity and disposed between the positive electrode and the negative electrode.
 従来のリチウムイオン二次電池では、電解質として有機電解液等が用いられてきた。これに対し、電解質として無機材料からなる固体電解質(無機固体電解質)を用いるとともに、正極、固体電解質および負極をすべて薄膜で構成した、全固体型且つ薄膜積層型のリチウムイオン二次電池が提案されている(特許文献1参照)。
 また、この特許文献1には、絶縁性樹脂からなる基板上に、正極層、固体電解質層および負極層を積層するとともに、基板上に形成された、これら正極層、固体電解質層および負極層を含む積層体の全体を覆うように、紫外線硬化樹脂からなる全体保護膜を形成することが記載されている。
In a conventional lithium ion secondary battery, an organic electrolyte or the like has been used as an electrolyte. On the other hand, an all-solid-state and thin-film laminated lithium-ion secondary battery has been proposed in which a solid electrolyte (inorganic solid electrolyte) made of an inorganic material is used as the electrolyte, and the positive electrode, the solid electrolyte, and the negative electrode are all thin films. (See Patent Document 1).
Further, in Patent Document 1, a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are laminated on a substrate made of an insulating resin, and the positive electrode layer, the solid electrolyte layer, and the negative electrode layer formed on the substrate are described. It is described that an overall protective film made of an ultraviolet curable resin is formed so as to cover the entire laminated body including the same.
特開2010-182448号公報JP, 2010-182448, A
 ここで、絶縁性樹脂からなる基板上に形成された薄膜型の電池部と、基板上に形成された電池部の全体を覆うように形成された全体保護膜とを有する構成を採用した場合、例えば全体保護膜に穴開けを行って、正負の電極を設ける必要があった。
 本発明は、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることを目的とする。
Here, when adopting a configuration having a thin film type battery portion formed on a substrate made of an insulating resin and an entire protective film formed so as to cover the entire battery portion formed on the substrate, For example, it is necessary to make holes in the entire protective film to provide positive and negative electrodes.
An object of the present invention is to simplify the structure of a thin film type lithium ion secondary battery including a solid electrolyte.
 本発明のリチウムイオン二次電池は、導電性を有し且つ集電を行う第1集電体層と、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層と、導電性を有し且つ集電を行う第2集電体層と、を順に含む電池部と、絶縁性を有し、前記電池部の一方の面側には前記第1集電体層の一部が露出するとともに当該電池部の他方の面側には前記第2集電体層の一部が露出し、前記第1極性層、前記固体電解質層および前記第2極性層が露出しないように当該電池部を被覆する被覆部とを備えている。
 このようなリチウムイオン二次電池において、前記被覆部が、合成樹脂材料で構成されることを特徴とすることができる。
 また、前記被覆部が、フォトレジスト材料で構成されることを特徴とすることができる。
 また、前記被覆部が、パーフルオロブテニルビニルエーテルの環化重合体で構成されることを特徴とすることができる。
 また、前記第1集電体層が、SUS316Lで構成されることを特徴とすることができる。
 また、前記第1集電体層が、表面にNi-Pめっきを施した金属材料で構成されることを特徴とすることができる。
 また、他の観点から捉えると、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、導電性を有し且つ集電を行う第1集電体層と、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層と、導電性を有し且つ集電を行う第2集電体層と、を順に含む電池部における当該第2集電体層の上面に対し、絶縁性を有する液状の有機材料を環状に供給する供給工程と、前記液状の有機材料が環状に供給された前記電池部を回転させて、当該液状の有機材料を当該電池部に塗布する塗布工程と、前記電池部に塗布された前記液状の有機材料を加熱する加熱工程とを有している。
 このようなリチウムイオン二次電池の製造方法において、前記液状の有機材料がフォトレジスト材料であり、加熱された前記液状の有機材料を、全域にわたって露光する露光工程をさらに有することを特徴とすることができる。
 また、前記液状の有機材料がパーフルオロブテニルビニルエーテルの環化重合体の原材料であることを特徴とすることができる。
The lithium-ion secondary battery of the present invention includes a first current collector layer that is conductive and that collects current, a first polar layer that occludes and releases lithium ions with a first polarity, and a lithium-ion conductive layer. Solid electrolyte layer having an inorganic solid electrolyte exhibiting conductivity, a second polar layer that occludes and releases lithium ions with a second polarity opposite to the first polarity, and has conductivity and current collection. A second current collector layer to be performed, and a battery part that has an insulating property, and a part of the first current collector layer is exposed on one surface side of the battery part and the battery part of the battery part is exposed. On the other surface side, a part of the second current collector layer is exposed, and a coating part that covers the battery part so that the first polar layer, the solid electrolyte layer and the second polar layer are not exposed. Is equipped with.
In such a lithium ion secondary battery, the coating portion may be made of a synthetic resin material.
Further, the coating portion may be made of a photoresist material.
Further, the coating portion may be composed of a cyclized polymer of perfluorobutenyl vinyl ether.
The first current collector layer may be made of SUS316L.
The first current collector layer may be made of a metal material having a surface plated with Ni—P.
From another point of view, from another point of view, the method for manufacturing a lithium ion secondary battery according to the present invention includes a first current collector layer that has conductivity and that collects current. A first polar layer that occludes and releases lithium ions with a polarity, a solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity, and a lithium ion with a second polarity opposite to the first polarity. It has an insulation property with respect to the upper surface of the second current collector layer in the battery part that includes, in order, the second polar layer that occludes and releases and the second current collector layer that has conductivity and collects current. A supplying step of supplying a liquid organic material in a ring shape; a coating step of rotating the battery section in which the liquid organic material is supplied in a ring shape to apply the liquid organic material to the battery section; Heater that heats the liquid organic material applied to the part And it has a door.
In such a method for manufacturing a lithium-ion secondary battery, the liquid organic material is a photoresist material, and the method further comprises an exposure step of exposing the heated liquid organic material over the entire area. You can
The liquid organic material may be a raw material of a cyclized polymer of perfluorobutenyl vinyl ether.
 本発明によれば、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることができる。 According to the present invention, the structure of a thin film type lithium ion secondary battery including a solid electrolyte can be simplified.
実施の形態のリチウムイオン二次電池の全体構成を示す斜視図である。It is a perspective view showing the whole lithium ion secondary battery composition of an embodiment. リチウムイオン二次電池を構成する電池部の斜視図である。It is a perspective view of the battery part which comprises a lithium ion secondary battery. (a)はリチウムイオン二次電池の正面図であり、(b)はその背面図である。(A) is a front view of a lithium ion secondary battery, (b) is a rear view thereof. 図3(a)、(b)のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIGS. (a)、(b)は、電池部を構成する基板の断面構成例を示す図である。(A), (b) is a figure showing an example of section composition of a substrate which constitutes a battery part. 実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。4 is a flowchart for explaining a method of manufacturing a lithium ion secondary battery according to an embodiment. (a)、(b)は、下地層形成工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a base layer formation process. (a)、(b)は、正極層形成工程の概要を説明するための図である。(A), (b) is a figure for demonstrating the outline of a positive electrode layer forming process. (a)、(b)は、固体電解質層形成工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a solid electrolyte layer formation process. (a)、(b)は、保持層形成工程の概要を説明するための図である。(A), (b) is a figure for demonstrating the outline of a holding layer formation process. (a)、(b)は、拡散防止層形成工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a diffusion prevention layer forming process. (a)、(b)は、負極集電体層形成工程の概要を説明するための図である。(A), (b) is a figure for demonstrating the outline of a negative electrode electrical power collector layer forming process. (a)、(b)は、分割工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a division process. (a)、(b)は、分割工程を経て得られた電池部の構成を示す図である。(A), (b) is a figure which shows the structure of the battery part obtained through the division process. (a)、(b)は、供給工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a supply process. (a)、(b)は、塗布工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of a coating process. (a)、(b)は、加熱工程の概要を説明するための図である。(A), (b) is a figure for demonstrating the outline of a heating process. (a)、(b)は、露光工程の概要を説明するための図である。(A), (b) is a figure for explaining the outline of an exposure process. (a)~(c)は、電池化工程の概要を説明するための図である。(A)-(c) is a figure for demonstrating the outline of a battery-ized process. 実施の形態のリチウムイオン二次電池の初期充放電特性を示す図である。It is a figure which shows the initial charging / discharging characteristic of the lithium ion secondary battery of embodiment. 実施の形態のリチウムイオン二次電池のサイクル充放電特性を示す図である。It is a figure which shows the cycle charge / discharge characteristic of the lithium ion secondary battery of embodiment. 実施の形態のリチウムイオン二次電池の放電容量維持率を示す図である。It is a figure which shows the discharge capacity maintenance factor of the lithium ion secondary battery of embodiment.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the size, thickness, and the like of each part in the drawings referred to in the following description may be different from actual dimensions.
[リチウムイオン二次電池の構成]
 図1は、本実施の形態のリチウムイオン二次電池100の全体構成を示す斜視図である。また、図2は、リチウムイオン二次電池100を構成する電池部1の斜視図である。さらに、図3(a)はリチウムイオン二次電池100の正面図であり、図3(b)はその背面図である。さらにまた、図4は、図3(a)、(b)のIV-IV断面図(リチウムイオン二次電池100の縦断面図)である。
[Configuration of lithium ion secondary battery]
FIG. 1 is a perspective view showing the overall configuration of a lithium ion secondary battery 100 of this embodiment. In addition, FIG. 2 is a perspective view of the battery unit 1 that constitutes the lithium-ion secondary battery 100. Furthermore, FIG. 3A is a front view of the lithium ion secondary battery 100, and FIG. 3B is a rear view thereof. Furthermore, FIG. 4 is a IV-IV sectional view (longitudinal sectional view of the lithium-ion secondary battery 100) of FIGS. 3A and 3B.
 本実施の形態のリチウムイオン二次電池100は、充放電可能な充電池すなわち二次電池として機能する電池部1と、絶縁性を有するとともに電池部1の要部を被覆する被覆部2とを備えている。 The lithium-ion secondary battery 100 of the present embodiment includes a battery unit 1 that functions as a rechargeable battery that can be charged and discharged, that is, a secondary battery, and a coating unit 2 that has an insulating property and covers a main part of the battery unit 1. I have it.
(電池部)
 では最初に、電池部1の構成について説明を行う。
 本実施の形態の電池部1は、基板10と、基板10上に積層される下地層20と、下地層20上に積層される正極層30と、正極層30上に積層される固体電解質層40とを備えている。ここで、固体電解質層40は、下地層20および正極層30の両者の周縁を覆うとともにその端部が基板10に直接積層されることで、基板10とともに下地層20および正極層30を覆っている。また、このリチウムイオン二次電池100は、固体電解質層40上に積層される保持層50と、保持層50上に積層される拡散防止層60と、拡散防止層60上に積層される負極集電体層70とをさらに備えている。
(Battery part)
First, the configuration of the battery unit 1 will be described.
The battery unit 1 according to the present embodiment includes a substrate 10, a base layer 20 laminated on the substrate 10, a positive electrode layer 30 laminated on the base layer 20, and a solid electrolyte layer laminated on the positive electrode layer 30. 40 and 40. Here, the solid electrolyte layer 40 covers the peripheral edges of both the base layer 20 and the positive electrode layer 30 and the end portions thereof are directly laminated on the substrate 10, thereby covering the base layer 20 and the positive electrode layer 30 together with the substrate 10. There is. In addition, the lithium ion secondary battery 100 includes a holding layer 50 laminated on the solid electrolyte layer 40, a diffusion preventing layer 60 laminated on the holding layer 50, and a negative electrode collector laminated on the diffusion preventing layer 60. And an electric body layer 70.
〔基板〕
 第1集電体層の一例としての基板10は、下地層20乃至負極集電体層70を、成膜プロセスによって積層するための土台となるものである。そして、この基板10は、表面10aと裏面10bとを有しており、表面10a側に、下地層20乃至負極集電体層70が積層されるようになっている。なお、基板10の詳細については後述する。
〔substrate〕
The substrate 10 as an example of the first current collector layer serves as a base for laminating the base layer 20 to the negative electrode current collector layer 70 by a film forming process. The substrate 10 has a front surface 10a and a back surface 10b, and the base layer 20 to the negative electrode current collector layer 70 are stacked on the front surface 10a. The details of the substrate 10 will be described later.
〔下地層〕
 下地層20は、固体薄膜であって、基板10と正極層30との密着性を高めるとともに、基板10を構成する材料(特に金属材料)と、正極層30を構成するLi3PO4(リン酸リチウム:詳細は後述する)とが、直接に接触するのを抑制するための障壁となるものである。
 下地層20としては、電子伝導性を有するとともに、Li3PO4を構成するLi+(リチウムイオン)やPO4 3-(リン酸イオン)による腐食が生じ難い、金属または金属化合物等で構成されたものを用いることができる。
[Underlayer]
The underlayer 20 is a solid thin film, which enhances the adhesion between the substrate 10 and the positive electrode layer 30, as well as a material (particularly a metal material) forming the substrate 10 and a Li 3 PO 4 (phosphorus) forming the positive electrode layer 30. (A lithium oxide: described later in detail) is a barrier for suppressing direct contact.
As the base layer 20, which has electron conductivity, Li 3 PO 4 and Li + unlikely to occur corrosion by (Li-ion) or PO 4 3- (phosphate ions) constituting, formed of a metal or metal compound such as Can be used.
 ここで、本実施の形態では、下地層20を、LiNiO2(リン酸ニッケル)で構成している。LiNiO2は、リチウムイオン二次電池100の正極材料として用いられることがあるものである。 Here, in the present embodiment, the underlayer 20 is made of LiNiO 2 (nickel phosphate). LiNiO 2 is sometimes used as a positive electrode material of the lithium ion secondary battery 100.
 下地層20の厚さは、例えば5nm以上50μm以下とすることができる。下地層20の厚さが5nm未満であると、障壁としての機能が低下し、実用的ではなくなる。一方、下地層20の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the underlayer 20 can be, for example, 5 nm or more and 50 μm or less. When the thickness of the underlayer 20 is less than 5 nm, the function as a barrier is lowered and it becomes impractical. On the other hand, if the thickness of the underlayer 20 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、下地層20の製造方法としては、各種PVD(物理蒸着)や各種CVD(化学蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法もしくは真空蒸着法を用いることが望ましい。 Further, as a method of manufacturing the underlayer 20, a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, the sputtering method or the vacuum method. It is desirable to use the vapor deposition method.
〔正極層〕
 第1極性層の一例としての正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含むものである。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、さらに固体電解質を含んだ合材正極であってもよい。
[Positive electrode layer]
The positive electrode layer 30 as an example of the first polar layer is a solid thin film and contains a positive electrode active material that releases lithium ions during charging and absorbs lithium ions during discharging. Here, the positive electrode active material constituting the positive electrode layer 30 is, for example, a kind selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), and vanadium (V). Materials composed of various materials such as oxides, sulfides, and phosphorus oxides containing the above metals can be used. Further, the positive electrode layer 30 may be a composite positive electrode further containing a solid electrolyte.
 本実施の形態では、正極層30を、正極活物質と、無機材料からなる固体電解質(無機固体電解質)とを含む合材正極で構成している。より具体的に説明すると、本実施の形態の正極層30は、主として無機固体電解質を含む固体電解質領域と、主として正極活物質を含む正極領域とを有している。そして、正極層30内では、固体電解質領域を構成する無機固体電解質と、正極領域を構成する正極活物質とが、それぞれを維持した状態で混在している。その結果、正極層30では、一方がマトリックス(母材)となっており、他方がフィラー(粒子)となっている。ここで、正極層30においては、固体電解質領域をマトリックスとし、正極領域をフィラーとすることが望ましい。 In the present embodiment, the positive electrode layer 30 is composed of a composite positive electrode including a positive electrode active material and a solid electrolyte made of an inorganic material (inorganic solid electrolyte). More specifically, the positive electrode layer 30 of the present embodiment has a solid electrolyte region mainly containing an inorganic solid electrolyte and a positive electrode region mainly containing a positive electrode active material. Then, in the positive electrode layer 30, the inorganic solid electrolyte forming the solid electrolyte region and the positive electrode active material forming the positive electrode region are mixed in a state of maintaining each. As a result, in the positive electrode layer 30, one is a matrix (base material) and the other is a filler (particles). Here, in the positive electrode layer 30, it is desirable that the solid electrolyte region be a matrix and the positive electrode region be a filler.
 そして、本実施の形態では、正極層30を構成する正極活物質として、上記下地層20と同じLiNiO2を用いている。また、正極層30を構成する無機固体電解質として、Li3PO4(リン酸リチウム)を用いている。ここで、正極層30における正極活物質と無機固体電解質との比率については、適宜選択して差し支えない。ただし、容量および導電性の両者を確保するという観点からすれば、正極活物質と無機固体電解質との比率を、モル比で9:1(90%:10%)乃至3:2(60%:40%)の範囲とすることが好ましい。 Then, in the present embodiment, as the positive electrode active material forming the positive electrode layer 30, the same LiNiO 2 as the underlayer 20 is used. Li 3 PO 4 (lithium phosphate) is used as the inorganic solid electrolyte constituting the positive electrode layer 30. Here, the ratio between the positive electrode active material and the inorganic solid electrolyte in the positive electrode layer 30 may be appropriately selected. However, from the viewpoint of securing both capacity and conductivity, the molar ratio of the positive electrode active material to the inorganic solid electrolyte is from 9: 1 (90%: 10%) to 3: 2 (60%: 40%).
 正極層30の厚さは、例えば10nm以上40μm以下とすることができる。正極層30の厚さが10nm未満であると、得られるリチウムイオン二次電池100の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層30の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、リチウムイオン二次電池100に要求される電池容量が大きい場合には、正極層30の厚さを40μm超としてもかまわない。 (4) The thickness of the positive electrode layer 30 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 100 becomes too small, which is not practical. On the other hand, if the thickness of the positive electrode layer 30 exceeds 40 μm, it takes too much time to form the layer, and the productivity is reduced. However, when the battery capacity required for the lithium ion secondary battery 100 is large, the thickness of the positive electrode layer 30 may be greater than 40 μm.
 さらに、正極層30の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for forming the positive electrode layer 30, a known film forming method such as various PVD or various CVD may be used, but it is preferable to use a sputtering method from the viewpoint of production efficiency.
〔固体電解質層〕
 固体電解質層40は、無機材料からなる固体薄膜であって、外部から加えられた電場によってリチウムイオンを移動させることのできる無機固体電解質を含むものである。
 本実施の形態の固体電解質層40は、正極層30における無機固体電解質と同じLi3PO4で構成されている。また、本実施の形態の固体電解質層40は、Li3PO4を含む一方、Li3PO4における酸素の一部を窒素で置換したLiPON(Li3PO4-xx(0<x<1))を含んでいない。
[Solid electrolyte layer]
The solid electrolyte layer 40 is a solid thin film made of an inorganic material, and includes an inorganic solid electrolyte capable of moving lithium ions by an externally applied electric field.
The solid electrolyte layer 40 of the present embodiment is made of the same Li 3 PO 4 as the inorganic solid electrolyte in the positive electrode layer 30. Further, the solid electrolyte layer 40 of the present embodiment contains Li 3 PO 4 , while LiPON (Li 3 PO 4-x N x (0 <x <) in which part of oxygen in Li 3 PO 4 is replaced by nitrogen. 1)) is not included.
 固体電解質層40の厚さは、例えば400nm以上800nm以下とすることができる。固体電解質層40の厚さが400nm未満であると、得られたリチウムイオン二次電池100において、正極層30と保持層50との間での電流の漏れ(リーク)が生じやすくなる。一方、固体電解質層40の厚さが800nmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。また、固体電解質層40の厚さは、例えば600nm以上800nm以下とすることが好ましい。 厚 The thickness of the solid electrolyte layer 40 can be, for example, 400 nm or more and 800 nm or less. When the thickness of the solid electrolyte layer 40 is less than 400 nm, in the obtained lithium ion secondary battery 100, current leakage between the positive electrode layer 30 and the holding layer 50 is likely to occur. On the other hand, if the thickness of the solid electrolyte layer 40 exceeds 800 nm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging. Further, the thickness of the solid electrolyte layer 40 is preferably, for example, not less than 600 nm and not more than 800 nm.
 ここで、正極層30および固体電解質層40の厚さの関係については、どちらが厚くてもかまわないし、同じであってもよい。ただし、電池の内部抵抗の増大を抑制するという観点からすれば、固体電解質層40の厚さを、正極層30の厚さよりも小さくすることが好ましい。 Here, as for the relationship between the thickness of the positive electrode layer 30 and the thickness of the solid electrolyte layer 40, whichever may be thicker or the same. However, from the viewpoint of suppressing an increase in the internal resistance of the battery, it is preferable that the thickness of the solid electrolyte layer 40 be smaller than the thickness of the positive electrode layer 30.
 さらに、固体電解質層40の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 Further, as a method for manufacturing the solid electrolyte layer 40, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
〔保持層〕
 第2極性層の一例としての保持層50は、固体薄膜であって、充電時にはリチウムイオンを保持するとともに放電時にはリチウムイオンを放出する機能を備えるものである。ここで、本実施の形態の保持層50は、自身は負極活物質を含んでおらず、負極活物質として機能するリチウムを内部に保持するようになっている点が、一般的な負極層とは異なる。
[Holding layer]
The holding layer 50 as an example of the second polar layer is a solid thin film, and has a function of holding lithium ions during charging and releasing lithium ions during discharging. Here, the point that the holding layer 50 of the present embodiment does not itself include a negative electrode active material and is configured to hold lithium functioning as a negative electrode active material therein is different from a general negative electrode layer. Is different.
 そして、本実施の形態の保持層50は、多孔質構造を有しており、多数の空孔が形成された多孔質部(図示せず)によって構成されている。なお、保持層50の多孔質化すなわち多孔質部の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。 The holding layer 50 of the present embodiment has a porous structure, and is constituted by a porous portion (not shown) in which a large number of holes are formed. The porousization of the holding layer 50, that is, the formation of the porous portion, is performed in the first charge / discharge operation after the film formation, and the details will be described later.
 保持層50を構成する材料としては、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)、アルミニウム(Al)あるいはこれらの合金を用いることができる。これらの中でも、より酸化されにくい白金または金で保持層50を構成することが望ましい。また、本実施の形態の保持層50は、上述した貴金属および金属あるいはこれらの合金の多結晶体で構成することができる。 材料 As a material for forming the holding layer 50, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt), gold (Au), aluminum (Al), or an alloy thereof can be used. Among these, it is desirable that the holding layer 50 be made of platinum or gold, which is less likely to be oxidized. Further, the holding layer 50 of the present embodiment can be made of the above-mentioned noble metal and metal or a polycrystal of an alloy thereof.
 ここで、本実施の形態では、保持層50を白金で構成している。 Here, in the present embodiment, the holding layer 50 is made of platinum.
 保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池100に要求される電池容量が大きい場合には、保持層50の厚さを40μm超としてもかまわない。 The thickness of the holding layer 50 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the holding layer 50 is less than 10 nm, the ability to hold lithium becomes insufficient. On the other hand, if the thickness of the holding layer 50 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging. However, when the battery capacity required for the lithium-ion secondary battery 100 is large, the thickness of the retaining layer 50 may exceed 40 μm.
 さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。そして、多孔質化した保持層50の製造方法としては、後述するような、充電と放電とを行う手法を採用することが望ましい。 Further, as a method for manufacturing the holding layer 50, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. As a method for manufacturing the porous holding layer 50, it is desirable to employ a method of performing charging and discharging, as described later.
〔拡散防止層〕
 拡散防止層60は、固体薄膜であって、保持層50に保持されたリチウムイオンの、リチウムイオン二次電池100の外部への拡散を抑制するためのものである。
 拡散防止層60としては、非晶質構造を有する、金属または合金で構成されたものを用いることができる。また、拡散防止層60は、リチウムと金属間化合物を形成しない金属または合金で構成されることが好ましく、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましい。なお、拡散防止層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。また、本実施の形態における「非晶質構造」には、全体が非晶質構造を有しているものはもちろんのこと、非晶質構造中に微結晶が析出しているものも含まれる。
[Diffusion prevention layer]
The diffusion prevention layer 60 is a solid thin film and is for suppressing the diffusion of lithium ions held by the holding layer 50 to the outside of the lithium ion secondary battery 100.
As the diffusion prevention layer 60, a layer made of metal or alloy having an amorphous structure can be used. The diffusion prevention layer 60 is preferably made of a metal or an alloy that does not form an intermetallic compound with lithium. Among these, from the viewpoint of corrosion resistance, chromium (Cr) alone or an alloy containing chromium is preferred. Is preferred. The diffusion prevention layer 60 may be formed by laminating a plurality of amorphous layers having different constituent materials (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer). Further, the “amorphous structure” in the present embodiment includes not only a structure having an amorphous structure as a whole but also a structure in which microcrystals are precipitated in the amorphous structure. .
 ここで、本実施の形態では、拡散防止層60を、クロムおよびチタンの合金(CrTi)で構成している。また、拡散防止層60に用いることが可能な金属(合金)としては、CrTi以外に、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、AlTi、FeSiB、AuSi等を挙げることができる。 Here, in the present embodiment, the diffusion preventing layer 60 is made of an alloy of chromium and titanium (CrTi). The metals (alloys) that can be used for the diffusion preventing layer 60 include, in addition to CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi And the like.
 拡散防止層60の厚さは、例えば10nm以上40μm以下とすることができる。拡散防止層60の厚さが10nm未満であると、固体電解質層40側から保持層50を通過してきたリチウムを、拡散防止層60でせき止めにくくなる。一方、拡散防止層60の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 The thickness of the diffusion preventing layer 60 can be, for example, not less than 10 nm and not more than 40 μm. When the thickness of the diffusion preventing layer 60 is less than 10 nm, it is difficult for the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side to be blocked by the diffusion preventing layer 60. On the other hand, if the thickness of the diffusion prevention layer 60 exceeds 40 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 さらに、拡散防止層60の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。特に、拡散防止層60を、上述したクロムチタン合金で構成する場合、スパッタ法を採用すると、クロムチタン合金が非晶質化しやすい。 Further, as a method for manufacturing the diffusion preventing layer 60, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method. In particular, when the diffusion preventing layer 60 is made of the above-described chromium titanium alloy, if the sputtering method is adopted, the chromium titanium alloy is likely to become amorphous.
〔負極集電体層〕
 第2極性層の一例としての負極集電体層70は、電子伝導性を有する固体薄膜であって、保持層50への集電を行う機能を備えるものである。ここで、負極集電体層70を構成する材料は、電子伝導性を有するものであれば、特に限定されるものではなく、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、拡散防止層60の腐食を抑制するという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
[Negative electrode current collector layer]
The negative electrode current collector layer 70 as an example of the second polar layer is a solid thin film having electronic conductivity, and has a function of collecting current to the holding layer 50. Here, the material constituting the negative electrode current collector layer 70 is not particularly limited as long as it has electron conductivity, and various metals and conductive materials including alloys of various metals may be used. it can. However, from the viewpoint of suppressing the corrosion of the diffusion prevention layer 60, it is preferable to use a chemically stable material, for example, a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold ( Au) or an alloy thereof is preferable.
 ここで、本実施の形態では、負極集電体層70を、保持層50と同じ白金で構成している。ただし、負極集電体層70は、保持層50とは異なり、多孔質構造を有していない。 Here, in the present embodiment, the negative electrode current collector layer 70 is made of the same platinum as the holding layer 50. However, unlike the holding layer 50, the negative electrode current collector layer 70 does not have a porous structure.
 負極集電体層70の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層70の厚さが5nm未満であると、耐腐食性および集電機能が低下し、実用的ではなくなる。一方、負極集電体層70の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。 厚 The thickness of the negative electrode current collector layer 70 can be, for example, not less than 5 nm and not more than 50 μm. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collecting function will be reduced, and it will not be practical. On the other hand, if the thickness of the negative electrode current collector layer 70 exceeds 50 μm, the internal resistance of the battery increases, which is disadvantageous for high-speed charging and discharging.
 また、負極集電体層70の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。 As a method of manufacturing the negative electrode current collector layer 70, a known film forming method such as various PVD or various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use a sputtering method.
(基板の構成)
 次に、本実施の形態で用いた基板10について説明を行う。
 本実施の形態の基板10は、矩形状(この例では正方形状)を呈しており、一方の面が表面10aとなっており、他方の面が裏面10bとなっている。そして、本実施の形態の基板10は、電子伝導性を有する導電性材料で構成される。これにより、本実施の形態の基板10は、下地層20を介して正極層30への集電を行う正極集電体層として機能するようになっている。
(Structure of substrate)
Next, the substrate 10 used in the present embodiment will be described.
The substrate 10 of the present embodiment has a rectangular shape (square shape in this example), one surface being a front surface 10a and the other surface being a back surface 10b. The substrate 10 of this embodiment is made of a conductive material having electronic conductivity. As a result, the substrate 10 of the present embodiment functions as a positive electrode current collector layer that collects current to the positive electrode layer 30 via the underlayer 20.
 基板10の厚さは、例えば20μm以上2000μm以下とすることができる。基板10の厚さが20μm未満であると、リチウムイオン二次電池100の強度が不足するおそれがある。一方、基板10の厚さが2000μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。 The thickness of the substrate 10 can be, for example, not less than 20 μm and not more than 2000 μm. When the thickness of the substrate 10 is less than 20 μm, the strength of the lithium ion secondary battery 100 may be insufficient. On the other hand, if the thickness of the substrate 10 exceeds 2000 μm, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery.
 図5は、実施の形態のリチウムイオン二次電池100を構成する基板10の断面構成例を示す図である。以下では、図5(a)に示す基板10を第1の構成例、また、図5(b)に示す基板10を第2の構成例と称し、それぞれについて説明を行う。 FIG. 5 is a diagram showing a cross-sectional configuration example of the substrate 10 that constitutes the lithium-ion secondary battery 100 of the embodiment. Hereinafter, the substrate 10 shown in FIG. 5A will be referred to as a first configuration example, and the substrate 10 shown in FIG. 5B will be referred to as a second configuration example.
〔第1の構成例〕
 図5(a)に示す第1の構成例において、基板10は、単層の金属板で構成された基材11を備えている。
 第1の構成例において、基材11を構成する金属材料としては、各種金属やこれらの合金等を用いることができる。ここで、第1の構成例において、リン酸に起因する腐食を抑制するという観点からすれば、基材11としてステンレスを用いることが望ましく、特に、粒界腐食を抑止するという観点からすれば、SUS316、より好ましくはSUS316Lを用いることが望ましい。また、本実施の形態のように、基板10上に積層する下地層20としてLiNiO2を採用する場合は、基材11を構成する金属材料として、熱膨張率がLiNiO2に近いステンレスを用いることが好ましい。さらに、本実施の形態のように、基板10を正極集電体層としても利用する場合は、基材11を構成する金属材料として、高電圧環境下においても腐食されにくく、過放電に強いステンレスを用いることが好ましい。
 なお、第1の構成例において、基板10を構成する基材11は、単層の金属板に限られるものではなく、複数の金属板の積層体で構成されていてもかまわない。
[First Configuration Example]
In the first configuration example shown in FIG. 5A, the substrate 10 includes a base material 11 formed of a single-layer metal plate.
In the first configuration example, various metals, alloys thereof, or the like can be used as the metal material forming the base material 11. Here, in the first configuration example, it is desirable to use stainless steel as the substrate 11 from the viewpoint of suppressing corrosion caused by phosphoric acid, and particularly from the viewpoint of suppressing intergranular corrosion, It is desirable to use SUS316, more preferably SUS316L. When LiNiO 2 is used as the underlayer 20 laminated on the substrate 10 as in the present embodiment, stainless steel whose coefficient of thermal expansion is close to that of LiNiO 2 is used as the metal material forming the base material 11. Is preferred. Furthermore, when the substrate 10 is also used as the positive electrode current collector layer as in the present embodiment, as the metal material forming the base material 11, stainless steel that is resistant to corrosion even under a high voltage environment and is resistant to over-discharge. Is preferably used.
In the first configuration example, the base material 11 forming the substrate 10 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
〔第2の構成例〕
 図5(b)に示す第2の構成例において、基板10は、単層の金属板で構成された基材11と、基材11の全面を覆う被覆層12とを備えている。
 第2の構成例において、基材11を構成する金属材料としては、各種金属やこれらの合金あるいは金属化合物等を用いることができる。ここで、第2の構成例において、リチウムに起因する腐食を抑制するという観点からすれば、基材11としてアルミニウムを用いることが望ましい。
 なお、第2の構成例において、基材11は、単層の金属板に限られるものではなく、複数の金属板の積層体で構成されていてもかまわない。
[Second Configuration Example]
In the second configuration example shown in FIG. 5B, the substrate 10 includes a base material 11 formed of a single-layer metal plate and a coating layer 12 that covers the entire surface of the base material 11.
In the second configuration example, as the metal material forming the base material 11, various metals, their alloys, metal compounds, and the like can be used. Here, in the second configuration example, it is desirable to use aluminum as the base material 11 from the viewpoint of suppressing corrosion caused by lithium.
Note that, in the second configuration example, the base material 11 is not limited to a single-layer metal plate, and may be formed of a laminate of a plurality of metal plates.
 また、第2の構成例において、被覆層12を構成する材料としては、各種金属やこれらの合金あるいは金属化合物等を用いることができる。ここで、基材11に被覆層12を形成してなる基板10を採用する場合、リチウムに起因する腐食を抑制するという観点からすれば、CrTi、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNb、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、AlTi、FeSiB、AuSi等を用いることが好ましい。そして、これらの中でも、機械研磨が可能な硬質な外周面を設けるという観点からすれば、例えば、無電解ニッケルメッキ法により成膜されるNiP(ニッケル-リン、以下では「Ni-P」と表記することがある)を用いることが望ましい。
 ただし、被覆層12の形成手法としては、メッキ法に限られるものではなく、各種成膜手法を採用してかまわない。
Further, in the second configuration example, as a material forming the coating layer 12, various metals, their alloys, metal compounds, or the like can be used. Here, when the substrate 10 in which the coating layer 12 is formed on the base material 11 is adopted, from the viewpoint of suppressing corrosion caused by lithium, CrTi, ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNb, NiNb, It is preferable to use NiTiNb, NiP, CuP, NiPCu, NiTi, AlTi, FeSiB, AuSi, or the like. Among these, from the viewpoint of providing a hard outer peripheral surface capable of mechanical polishing, for example, NiP (nickel-phosphorous, hereinafter referred to as “Ni-P”) formed by an electroless nickel plating method. May be used).
However, the method for forming the coating layer 12 is not limited to the plating method, and various film forming methods may be employed.
 なお、図5(b)に示す例では、基材11の全面を被覆層12で覆うことによって基板10を形成しているが、これに限られるものではない。例えば本実施の形態のように、基板10の表面10aにのみ電池構造を形成する場合(図4参照)は、基材11のうち、少なくとも基板10において表面10aとなる側に、被覆層12を設ければよい。 In the example shown in FIG. 5B, the substrate 10 is formed by covering the entire surface of the base material 11 with the coating layer 12, but the present invention is not limited to this. For example, when the battery structure is formed only on the surface 10a of the substrate 10 as in the present embodiment (see FIG. 4), the coating layer 12 is formed on at least the side of the substrate 11 that becomes the surface 10a. It should be provided.
〔最大最小高低差〕
 次に、本実施の形態の基板10における最大最小高低差Rmmについて説明を行う。
 最大最小高低差Rmmは、基板10における電池構造の積層面(本実施の形態では基板10の表面10a)の平滑度を規定する尺度である。そして、本実施の形態における最大最小高低差Rmmは、AFM(Atomic Force Microscope)にて20μm×20μmの範囲(正方形状の領域)の凹凸を測定して得られた最大高さと最小高さとの高低差によって定義される。したがって、最大最小高低差Rmmは、例えばJIS B 0601に規定される最大高さRzとは定義が異なる。
[Maximum minimum height difference]
Next, the maximum and minimum height difference Rmm of the substrate 10 of the present embodiment will be described.
The maximum / minimum height difference Rmm is a measure for defining the smoothness of the laminated surface of the battery structure on the substrate 10 (the surface 10a of the substrate 10 in the present embodiment). The maximum-to-minimum height difference Rmm in the present embodiment is the height between the maximum height and the minimum height obtained by measuring irregularities in a range of 20 μm × 20 μm (square region) with an AFM (Atomic Force Microscope). Defined by the difference. Therefore, the definition of the maximum and minimum height difference Rmm is different from the maximum height Rz defined in, for example, JIS B0601.
 では、最大最小高低差Rmmの定義について、より詳細な説明を行う。
 本実施の形態における最大最小高低差Rmmは、例えばAFM装置(原子間力顕微鏡システム)であるブルカー社製D3100を用い、20μm×20μmの領域内のデータを取得した後、スキャンライン毎に基準面を作成する際に、近似多項式として3次式を用い、基準面からの変位(+変位および-変位が存在し得る)に変換した(「平滑化」処理した)像を準備し、像における垂直方向(z変位)の「最大値-最小値」によって求めることができる。
Now, the definition of the maximum and minimum height difference Rmm will be described in more detail.
The maximum / minimum height difference Rmm in the present embodiment is obtained, for example, by using a Bruker D3100, which is an AFM device (atomic force microscope system), and after acquiring data in a region of 20 μm × 20 μm, a reference plane for each scan line. When creating, use a cubic expression as an approximation polynomial, prepare an image that has been converted (“smoothed”) into displacement from the reference plane (+ displacement and −displacement may exist), It can be obtained by the "maximum value-minimum value" of the direction (z displacement).
 本実施の形態では、基板10における表面10aの最大最小高低差Rmmが78nm以下に設定されている。ここで、図5(a)に示す第1の構成例の基板10では、表面10a側に位置する基材11の最大最小高低差Rmmが78nm以下に設定される。また、図5(b)に示す第2の構成例の基板10では、表面10a側に位置する被覆層12の最大最小高低差Rmmが78nm以下に設定される。 In the present embodiment, the maximum and minimum height difference Rmm of the surface 10a of the substrate 10 is set to 78 nm or less. Here, in the substrate 10 of the first configuration example shown in FIG. 5A, the maximum / minimum height difference Rmm of the base material 11 located on the front surface 10a side is set to 78 nm or less. In the substrate 10 of the second configuration example shown in FIG. 5B, the maximum / minimum height difference Rmm of the coating layer 12 located on the front surface 10a side is set to 78 nm or less.
〔算術平均粗さ〕
 続いて、本実施の形態の基板10における算術平均粗さRaについて説明を行う。
 算術平均粗さRaは、例えばJIS B 0601に規定されているものである。
 そして、本実施の形態では、基板10における表面10aの算術平均粗さRaが、1.1nm以下であることが好ましい。
[Arithmetic mean roughness]
Next, the arithmetic average roughness Ra of the substrate 10 according to the present embodiment will be described.
The arithmetic average roughness Ra is, for example, specified in JIS B 0601.
In the present embodiment, the arithmetic mean roughness Ra of the surface 10a of the substrate 10 is preferably 1.1 nm or less.
(被覆部)
 では、図1~図4を参照しつつ、被覆部2の構成について説明を行う。
 本実施の形態の被覆部2は、固体薄膜であって、電池部1を保護するとともに、電池部1の内部絶縁と外部絶縁とを行うためのものである。
(Coating part)
Now, the configuration of the covering portion 2 will be described with reference to FIGS. 1 to 4.
The covering portion 2 of the present embodiment is a solid thin film, which protects the battery portion 1 and performs internal insulation and external insulation of the battery portion 1.
 被覆部2は、負極集電体層70の上面、負極集電体層70の側面、拡散防止層60の側面、保持層50の側面、固体電解質層40の上面(端部側)および側面、および、基板10の側面を覆っている。ただし、負極集電体層70における上面のほぼ中央部には、被覆部2が存在しない開口部2aが形成されており、この部位には、負極集電体層70が露出する露出部71が設けられている。また、被覆部2は、基板10の下面を覆っておらず、この部位には、基板10の裏面10b(図5参照)が露出している。これにより、本実施の形態のリチウムイオン二次電池100では、負極集電体層70における露出部71が、外部との電気的な接続に用いられる負の電極として機能し、基板10における裏面10bが、外部との電気的な接続に用いられる正の電極として機能するようになっている。 The coating portion 2 includes an upper surface of the negative electrode current collector layer 70, a side surface of the negative electrode current collector layer 70, a side surface of the diffusion prevention layer 60, a side surface of the holding layer 50, an upper surface (end side) and side surfaces of the solid electrolyte layer 40, Also, the side surface of the substrate 10 is covered. However, an opening 2a where the coating 2 does not exist is formed in substantially the center of the upper surface of the negative electrode current collector layer 70, and an exposed portion 71 from which the negative electrode current collector layer 70 is exposed is formed at this portion. It is provided. Further, the covering portion 2 does not cover the lower surface of the substrate 10, and the back surface 10b (see FIG. 5) of the substrate 10 is exposed at this portion. Thereby, in the lithium ion secondary battery 100 of the present embodiment, the exposed portion 71 of the negative electrode current collector layer 70 functions as a negative electrode used for electrical connection with the outside, and the back surface 10b of the substrate 10 is formed. , But functions as a positive electrode used for electrical connection to the outside.
 被覆部2としては、絶縁性を有するものであれば、有機材料や無機材料など、各種材料を用いることができる。ただし、本実施の形態の電池部1は、後述するように、充放電に伴って厚さ方向に伸縮する構造となっていることから、被覆部2として、柔軟性および伸縮性が無機材料よりも高い、有機材料(特に合成樹脂材料)を用いることが望ましい。また、被覆部2は、電池部1の外側に露出する各層(この例では、基板10、固体電解質層40、保持層50、拡散防止層60および負極集電体層70)との密着性が高い材料を用いることが望ましい。さらに、リチウムイオン二次電池100の外側から電池部1の状態を観察しやすくするという観点からすれば、被覆部2は、可視領域の波長の光に対して透光性を有していることが望ましい。 As the covering part 2, various materials such as an organic material and an inorganic material can be used as long as they have insulation properties. However, since the battery unit 1 of the present embodiment has a structure that expands and contracts in the thickness direction with charging and discharging, as will be described later, the covering unit 2 is more flexible and expandable than an inorganic material. It is desirable to use an organic material (particularly a synthetic resin material), which is also expensive. In addition, the covering portion 2 has good adhesion to each layer exposed to the outside of the battery portion 1 (in this example, the substrate 10, the solid electrolyte layer 40, the holding layer 50, the diffusion preventing layer 60, and the negative electrode current collector layer 70). It is desirable to use high materials. Further, from the viewpoint of making it easier to observe the state of the battery unit 1 from the outside of the lithium-ion secondary battery 100, the covering unit 2 has a light-transmitting property with respect to light having a wavelength in the visible region. Is desirable.
 そして、被覆部2として使用することのできる無機材料としては、例えば酸化シリコン(SiO2)を挙げることができる。また、被覆部2として使用することのできる有機材料としては、合成樹脂材料を挙げることができ、特に、各種フォトレジスト材料や各種エンジニアリングプラスチック材料を用いることが望ましい。ここで、フォトレジスト材料としては、ポジ型、ネガ型のいずれであってもよいが、被覆部2の製造工程を簡略化するという観点からすれば、ポジ型であることが望ましい。また、エンジニアリングプラスチック材料としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよいが、高い靭性を得るという観点からすれば、熱可塑性樹脂であることが望ましい。さらに、化学薬品に対する耐久力や電気絶縁性を確保するという観点からすれば、フッ素樹脂を用いることが望ましく、高い透光性を得るという観点からすれば、非晶質のフッ素樹脂を用いることがさらに望ましい。非晶質のフッ素樹脂としては、結晶性ポリマーのフッ素樹脂を共重合化してポリマーアロイとして非晶質化させたものや、パーフルオロジオキソールの共重合体(デュポン社製の商品名テフロンAF(登録商標))やパーフルオロブテニルビニルエーテルの環化重合体(AGC社製の商品名サイトップ(登録商標))などを挙げることができる。そして、これらの中でも、電池部1との密着性を高めるという観点からすれば、パーフルオロブテニルビニルエーテルの環化重合体を用いることが望ましい。 And as an inorganic material that can be used as the covering portion 2, for example, silicon oxide (SiO 2 ) can be cited. Further, as an organic material that can be used as the covering portion 2, a synthetic resin material can be cited, and it is particularly preferable to use various photoresist materials and various engineering plastic materials. Here, the photoresist material may be either a positive type or a negative type, but a positive type is preferable from the viewpoint of simplifying the manufacturing process of the covering portion 2. Further, the engineering plastic material may be either a thermoplastic resin or a thermosetting resin, but from the viewpoint of obtaining high toughness, the thermoplastic resin is desirable. Further, from the viewpoint of ensuring durability against chemicals and electrical insulation, it is preferable to use a fluororesin, and from the viewpoint of obtaining high translucency, it is preferable to use an amorphous fluororesin. More desirable. Examples of the amorphous fluororesin are those obtained by copolymerizing a fluoropolymer of a crystalline polymer to make it amorphous as a polymer alloy, and a perfluorodioxole copolymer (Teflon AF manufactured by DuPont). (Registered trademark)) and a cyclized polymer of perfluorobutenyl vinyl ether (trade name Cytop (registered trademark) manufactured by AGC Co.). Among these, it is preferable to use a cyclized polymer of perfluorobutenyl vinyl ether from the viewpoint of enhancing the adhesion to the battery unit 1.
 被覆部2の厚さは、例えば100nm以上2mm以下とすることができる。被覆部2の厚さが100nm未満であると、ピンホール等が形成される可能性が高くなり、大気暴露に伴ってLiが酸化するおそれや、絶縁性を確保できなくなるおそれがある。一方、被覆部2の厚さが2mmを超えると、リチウムイオン二次電池100全体の薄型化が困難となり、また、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。 The thickness of the covering portion 2 can be, for example, 100 nm or more and 2 mm or less. If the thickness of the covering portion 2 is less than 100 nm, there is a high possibility that pinholes and the like will be formed, and Li may be oxidized by exposure to the atmosphere, or insulation may not be ensured. On the other hand, when the thickness of the covering portion 2 exceeds 2 mm, it becomes difficult to reduce the thickness of the lithium-ion secondary battery 100 as a whole, and it takes too much time to form the layer, which lowers the productivity.
 また、被覆部2の作製方法としては、例えば無機材料を使用する場合には、各種PVDや各種CVD、あるいはゾルゲル法など、公知の成膜手法を採用することができる。一方、例えば有機材料を使用する場合には、ディップコート、スピンコートあるいは刷毛等による、液体状の原材料の塗布を行った後、加熱や露光等により硬化させる成膜手法を採用することができる。また、予め固体状且つシート状に成形された有機材料を原材料とする場合には、この原材料に穴開け加工等を施してから対象物に積載し、加熱により硬化させる成膜手法を採用することもできる。ここで、固体状の原材料としては、熱硬化型エポキシ樹脂シート(京セラ社製の商品名とろけるシート)などを挙げることができる。 Further, as a method for producing the covering portion 2, for example, when an inorganic material is used, a known film forming method such as various PVD or various CVD, or a sol-gel method can be adopted. On the other hand, when an organic material is used, for example, a film forming method in which a liquid raw material is applied by dip coating, spin coating, a brush, or the like and then cured by heating or exposure can be adopted. In addition, when an organic material that has been molded into a solid and sheet shape is used as a raw material, a film forming method in which the raw material is subjected to perforation processing, etc., and then placed on an object and cured by heating is adopted. You can also Here, examples of the solid raw material include a thermosetting epoxy resin sheet (a product of Kyocera Co., Ltd., a melting sheet).
[リチウムイオン二次電池の製造方法]
 では、上述したリチウムイオン二次電池100の製造方法について説明を行う。
 図6は、本実施の形態のリチウムイオン二次電池100の製造方法を説明するためのフローチャートである。
 本実施の形態のリチウムイオン二次電池100は、電池部1を形成する電池部形成工程(ステップ1)、電池部1に被覆部2を形成する被覆部形成工程(ステップ2)、そして、電池部1に被覆部2を形成してなるリチウムイオン二次電池100の基本構造体を電池化する電池化工程(ステップ3)、を経て製造される。以下では、これら3つの工程について、さらに詳細且つ具体的な説明を行う。
[Method of manufacturing lithium ion secondary battery]
Now, a method for manufacturing the above-described lithium-ion secondary battery 100 will be described.
FIG. 6 is a flowchart for explaining the method of manufacturing lithium-ion secondary battery 100 of the present embodiment.
The lithium-ion secondary battery 100 according to the present embodiment includes a battery part forming step (step 1) of forming the battery part 1, a covering part forming step of forming the covering part 2 on the battery part 1 (step 2), and a battery. It is manufactured through a battery forming step (step 3) of converting the basic structure of the lithium-ion secondary battery 100 in which the cover 2 is formed on the part 1 into a battery. Hereinafter, these three steps will be described in more detail and specifically.
(電池部形成工程)
 最初に、ステップ1の電池部形成工程について説明を行う。
(Battery part formation process)
First, the battery part forming step of step 1 will be described.
〔基板準備工程〕
 ステップ1の電池部形成工程では、まず、表面10aの最大最小高低差Rmmが78nm以下となるように表面処理が施された基板10を準備する、基板準備工程を実行する(ステップ11)。なお、ここでは、1枚の基板10を用いて、4個(2×2)の電池部1を形成する場合を例とし、正方形状の基板10を準備するものとする。
[Substrate preparation process]
In the battery part forming process of step 1, first, a substrate preparing process is performed to prepare the substrate 10 that has been surface-treated so that the maximum and minimum height difference Rmm of the surface 10a is 78 nm or less (step 11). Note that, here, the case where four (2 × 2) battery units 1 are formed using one substrate 10 is taken as an example, and the square substrate 10 is prepared.
 ここで、図5(a)に示す第1の構成例にかかる基板10は、例えば以下の手順にて製造される。まず、圧延法等によって金属板を製造し、この金属板を切断して得られた基材11の表面10a側に、一般的な機械研磨処理を施した後、さらにCMP(Chemical Mechanical Polishing:化学機械研磨)法等を用いた精密研磨処理を施すことで、表面10aの最大最小高低差Rmmが78nm以下に設定された基板10を得る。 Here, the substrate 10 according to the first configuration example shown in FIG. 5A is manufactured by the following procedure, for example. First, a metal plate is manufactured by a rolling method or the like, and the surface 10a side of the base material 11 obtained by cutting the metal plate is subjected to a general mechanical polishing treatment, and then further subjected to CMP (Chemical Mechanical Polishing). By performing a precision polishing process using a mechanical polishing method or the like, the substrate 10 in which the maximum and minimum height difference Rmm of the surface 10a is set to 78 nm or less is obtained.
 また、図5(b)に示す第2の構成例にかかる基板10は、例えば以下の手順にて製造される。まず圧延法等によって金属板を製造し、この金属板を切断して得られた基材11の全面に、無電解ニッケルメッキ法等によってNi-Pからなる被覆層12を形成することで、基材11と被覆層12との積層体を得る。そして、このようにして得られた積層体の表面10a側に位置する被覆層12に、一般的な機械研磨処理を施した後、CMP法等を用いた研磨処理を施すことで、表面10aの最大最小高低差Rmmが78nm以下に設定された基板10を得る。 The substrate 10 according to the second configuration example shown in FIG. 5B is manufactured by the following procedure, for example. First, a metal plate is manufactured by a rolling method or the like, and a coating layer 12 made of Ni—P is formed on the entire surface of a base material 11 obtained by cutting the metal plate by an electroless nickel plating method or the like. A laminate of the material 11 and the coating layer 12 is obtained. Then, after performing a general mechanical polishing process on the coating layer 12 positioned on the surface 10a side of the thus obtained laminated body, a polishing process using a CMP method or the like is performed, so that the surface 10a The substrate 10 having the maximum and minimum height difference Rmm set to 78 nm or less is obtained.
〔下地層形成工程〕
 そして、図示しないスパッタ装置に基板10を装着し、基板10の表面10a上に下地層20を形成する下地層形成工程を実行する(ステップ12)。
 図7は、ステップ12の下地層形成工程の概要を説明するための図である。ここで、図7(a)は正面図を、図7(b)は図7(a)のVIIB-VIIB断面図を、それぞれ示している。
[Underlayer forming step]
Then, the substrate 10 is mounted on a sputtering device (not shown), and an underlayer forming step of forming the underlayer 20 on the surface 10a of the substrate 10 is executed (step 12).
FIG. 7 is a diagram for explaining the outline of the step 12 of forming the underlayer. Here, FIG. 7A shows a front view, and FIG. 7B shows a VIIB-VIIB sectional view of FIG. 7A.
 この例では、基板10の表面10a上に、マトリクス状(2×2=4箇所)に下地層20を形成している。このとき、各下地層20は矩形状(正方形状)とし、それぞれの面積は共通の大きさに設定している。したがって、各下地層20の面積は、基板10の面積よりも小さく(この例では4分の1未満)なる。そして、各下地層20が互いに接触しないように下地層20間にギャップを設けることで、隣接する2つの下地層20の間には、基板10の表面10aが露出している。なお、以下の説明では、基板10上に下地層20を積層したものを、第1積層体と称する。 In this example, the base layer 20 is formed in a matrix (2 × 2 = 4 places) on the surface 10 a of the substrate 10. At this time, each base layer 20 has a rectangular shape (square shape), and the area of each is set to a common size. Therefore, the area of each underlayer 20 is smaller than the area of the substrate 10 (less than 1/4 in this example). The surface 10a of the substrate 10 is exposed between two adjacent underlayers 20 by providing a gap between the underlayers 20 so that the underlayers 20 do not contact each other. In addition, in the following description, what laminated | stacked the base layer 20 on the board | substrate 10 is called a 1st laminated body.
〔正極層形成工程〕
 次に、上記スパッタ装置にて、下地層20上に正極層30を形成する正極層形成工程を実行する(ステップ13)。
 図8は、ステップ13の正極層形成工程の概要を説明するための図である。ここで、図8(a)は正面図を、図8(b)は図8(a)のVIIIB-VIIIB断面図を、それぞれ示している。
[Positive electrode layer forming step]
Next, a positive electrode layer forming step of forming the positive electrode layer 30 on the underlayer 20 is executed by the above sputtering apparatus (step 13).
FIG. 8 is a diagram for explaining the outline of the positive electrode layer forming step of step 13. Here, FIG. 8A is a front view and FIG. 8B is a sectional view taken along line VIIIB-VIIIB of FIG. 8A.
 この例では、第1積層体における各下地層20上に、それぞれ正極層30を形成している。より具体的に説明すると、第1積層体のうち、下地層20が形成されている側の面に、マトリクス状(2×2=4箇所)に正極層30を形成している。このとき、各正極層30は矩形状(正方形状)とし、各正極層30の面積は各下地層20の面積と同じとしている。そして、各正極層30が各下地層20と重なるようにし、各正極層30が基板10と直接に接触しないようにしている。なお、以下の説明では、基板10上に下地層20および正極層30を積層したものを、第2積層体と称する。 In this example, the positive electrode layer 30 is formed on each base layer 20 in the first stacked body. More specifically, the positive electrode layers 30 are formed in a matrix (2 × 2 = 4 places) on the surface of the first stacked body on which the base layer 20 is formed. At this time, each positive electrode layer 30 has a rectangular shape (square shape), and the area of each positive electrode layer 30 is the same as the area of each base layer 20. Then, each positive electrode layer 30 overlaps with each base layer 20, and each positive electrode layer 30 is prevented from directly contacting the substrate 10. In addition, in the following description, what laminated | stacked the base layer 20 and the positive electrode layer 30 on the board | substrate 10 is called a 2nd laminated body.
〔固体電解質層形成工程〕
 続いて、上記スパッタ装置にて、正極層30上に固体電解質層40を形成する固体電解質層形成工程を実行する(ステップ14)。
 図9は、ステップ14の固体電解質層形成工程の概要を説明するための図である。ここで、図9(a)は正面図を、図9(b)は図9(a)のIXB-IXB断面図を、それぞれ示している。
[Solid electrolyte layer forming step]
Subsequently, a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is executed by the above sputtering device (step 14).
FIG. 9 is a diagram for explaining the outline of the solid electrolyte layer forming step of step 14. Here, FIG. 9A shows a front view, and FIG. 9B shows a sectional view taken along line IXB-IXB of FIG. 9A.
 この例では、第2積層体のうち、正極層30が形成されている側の面に、固体電解質層40を形成している。このとき、固体電解質層40は矩形状(正方形状)とし、固体電解質層40の面積は基板10の面積と同じとしている。そして、固体電解質層40は、正極層30の表面および側面と、下地層20の側面と、基板10の表面10aのうち下地層20と接していない領域とを覆うように形成される。ただし、固体電解質層40は、基板10の側面や裏面10bと接触しないように形成される。なお、以下の説明では、基板10上に下地層20~固体電解質層40を積層したものを、第3積層体と称する。 In this example, the solid electrolyte layer 40 is formed on the surface of the second laminated body on which the positive electrode layer 30 is formed. At this time, the solid electrolyte layer 40 has a rectangular shape (square shape), and the area of the solid electrolyte layer 40 is the same as the area of the substrate 10. Then, the solid electrolyte layer 40 is formed so as to cover the surface and the side surface of the positive electrode layer 30, the side surface of the base layer 20, and the region of the surface 10 a of the substrate 10 that is not in contact with the base layer 20. However, the solid electrolyte layer 40 is formed so as not to contact the side surface of the substrate 10 or the back surface 10b. In addition, in the following description, what laminated | stacked the base layer 20-the solid electrolyte layer 40 on the board | substrate 10 is called a 3rd laminated body.
〔保持層形成工程〕
 次いで、上記スパッタ装置にて、固体電解質層40上に保持層50を形成する保持層形成工程を実行する(ステップ15)。
 図10は、ステップ15の保持層形成工程の概要を説明するための図である。ここで、図10(a)は正面図を、図10(b)は図10(a)のXB-XB断面図を、それぞれ示している。
[Holding layer forming step]
Next, a holding layer forming step of forming the holding layer 50 on the solid electrolyte layer 40 is executed by the above-mentioned sputtering apparatus (step 15).
FIG. 10 is a diagram for explaining the outline of the holding layer forming step of step 15. Here, FIG. 10A shows a front view and FIG. 10B shows a sectional view taken along the line XB-XB of FIG. 10A.
 この例では、第3積層体における固体電解質層40上に、マトリクス状(2×2=4箇所)に保持層50を形成している。このとき、各保持層50は矩形状(正方形状)とし、それぞれの面積は共通の大きさに設定している。ただし、各保持層50の面積は、上述した各下地層20および各正極層30の面積よりも大きくしている。そして、各保持層50は、上方からみたときに各正極層30と重なり、且つ、各保持層50の全外周縁が各正極層30の全外周縁よりも外側に位置するように配置されている。また、各保持層50が互いに接触しないように保持層50間にギャップを設けることで、隣接する2つの保持層50の間には、固体電解質層40の表面が露出している。なお、以下の説明では、基板10上に下地層20~保持層50を積層したものを、第4積層体と称する。 In this example, the holding layer 50 is formed in a matrix (2 × 2 = 4 places) on the solid electrolyte layer 40 in the third stacked body. At this time, each holding layer 50 has a rectangular shape (square shape), and the area of each is set to a common size. However, the area of each holding layer 50 is made larger than the area of each of the base layer 20 and each of the positive electrode layers 30 described above. Then, each holding layer 50 is arranged so as to overlap each positive electrode layer 30 when viewed from above, and the entire outer peripheral edge of each holding layer 50 is located outside the entire outer peripheral edge of each positive electrode layer 30. There is. Further, by providing a gap between the holding layers 50 so that the holding layers 50 do not contact each other, the surface of the solid electrolyte layer 40 is exposed between the two adjacent holding layers 50. In addition, in the following description, what laminated | stacked the base layer 20-the holding layer 50 on the board | substrate 10 is called a 4th laminated body.
〔拡散防止層形成工程〕
 それから、上記スパッタ装置にて、保持層50上に拡散防止層60を形成する拡散防止層形成工程を実行する(ステップ16)。
 図11は、ステップ16の拡散防止層形成工程の概要を説明するための図である。ここで、図11(a)は正面図を、図11(b)は図11(a)のXIB-XIB断面図を、それぞれ示している。
[Diffusion prevention layer forming step]
Then, the diffusion preventive layer forming step of forming the diffusion preventive layer 60 on the holding layer 50 is executed by the above sputtering apparatus (step 16).
FIG. 11 is a diagram for explaining the outline of the diffusion prevention layer forming step of step 16. Here, FIG. 11A shows a front view, and FIG. 11B shows a sectional view taken along the line XIB-XIB of FIG. 11A.
 この例では、第4積層体における各保持層50上に、それぞれ拡散防止層60を形成している。より具体的に説明すると、第4積層体のうち、保持層50が形成されている側の面に、マトリクス状(2×2=4箇所)に拡散防止層60を形成している。このとき、各拡散防止層60は矩形状(正方形状)とし、各拡散防止層60の面積は各保持層50の面積と同じとしている。そして、各拡散防止層60が各保持層50と重なるようにし、各拡散防止層60が固体電解質層40と直接に接触しないようにしている。なお、以下の説明では、基板10上に下地層20~拡散防止層60を積層したものを、第5積層体と称する。 In this example, the diffusion prevention layer 60 is formed on each holding layer 50 in the fourth stacked body. More specifically, the diffusion prevention layer 60 is formed in a matrix (2 × 2 = 4 places) on the surface of the fourth stacked body on which the holding layer 50 is formed. At this time, each diffusion prevention layer 60 has a rectangular shape (square shape), and the area of each diffusion prevention layer 60 is the same as the area of each holding layer 50. Then, each diffusion preventing layer 60 overlaps with each holding layer 50 so that each diffusion preventing layer 60 does not come into direct contact with the solid electrolyte layer 40. In addition, in the following description, what laminated | stacked the base layer 20-the diffusion prevention layer 60 on the board | substrate 10 is called the 5th laminated body.
〔負極集電体層形成工程〕
 そして、上記スパッタ装置にて、拡散防止層60上に負極集電体層70を形成する負極集電体層形成工程を実行する(ステップ17)。
 図12は、ステップ17の負極集電体層形成工程の概要を説明するための図である。ここで、図12(a)は正面図を、図12(b)は図12(a)のXIIB-XIIB断面図を、それぞれ示している。
[Negative electrode current collector layer forming step]
Then, a negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the diffusion prevention layer 60 is executed by the above sputtering apparatus (step 17).
FIG. 12 is a diagram for explaining the outline of the negative electrode current collector layer forming step of step 17. Here, FIG. 12A shows a front view, and FIG. 12B shows a sectional view taken along line XIIB-XIIB of FIG. 12A.
 この例では、第5積層体における各拡散防止層60上に、それぞれ負極集電体層70を形成している。より具体的に説明すると、第5積層体のうち、拡散防止層60が形成されている側の面に、マトリクス状(2×2=4箇所)に負極集電体層70を形成している。このとき、各負極集電体層70は矩形状(正方形状)とし、各負極集電体層70の面積は各拡散防止層60の面積と同じとしている。そして、各負極集電体層70が各拡散防止層60と重なるようにし、各負極集電体層70が各保持層50や固体電解質層40と直接に接触しないようにしている。なお、以下の説明においては、基板10上に下地層20~負極集電体層70を積層したものを、第6積層体と称する。 In this example, the negative electrode current collector layer 70 is formed on each diffusion prevention layer 60 in the fifth stacked body. More specifically, the negative electrode current collector layers 70 are formed in a matrix (2 × 2 = 4 places) on the surface of the fifth stacked body on which the diffusion prevention layer 60 is formed. . At this time, each negative electrode current collector layer 70 has a rectangular shape (square shape), and the area of each negative electrode current collector layer 70 is the same as the area of each diffusion prevention layer 60. Then, each negative electrode current collector layer 70 is made to overlap with each diffusion prevention layer 60 so that each negative electrode current collector layer 70 does not come into direct contact with each holding layer 50 or solid electrolyte layer 40. In addition, in the following description, what laminated | stacked the base layer 20-the negative electrode collector layer 70 on the board | substrate 10 is called the 6th laminated body.
 このようにして得られた第6積層体は、4個の電池部1を一体化した構成を有していることになる。そして、この第6積層体を、スパッタ装置から取り外す。 The sixth laminated body obtained in this way has a structure in which four battery parts 1 are integrated. Then, this sixth laminated body is removed from the sputtering apparatus.
〔分割工程〕
 その後、スパッタ装置から取り外した第6積層体を分割し、複数(4個)の電池部1を得る分割工程を実行する(ステップ18)。
 図13は、ステップ18の分割工程の概要を説明するための図である。ここで、図13(a)は正面図を、図13(b)は図13(a)のXIIIB-XIIIB断面図を、それぞれ示している。
 また、図14は、ステップ18の分割工程を経て得られた電池部1の構成を示す図である。ここで、図14(a)は正面図を、図14(b)は図14(a)のXIVB-XIVB断面図を、それぞれ示している。
[Division process]
After that, the sixth laminated body removed from the sputtering apparatus is divided, and a dividing step for obtaining a plurality of (four) battery units 1 is executed (step 18).
FIG. 13 is a diagram for explaining the outline of the dividing process in step 18. Here, FIG. 13A shows a front view and FIG. 13B shows a sectional view taken along the line XIIIB-XIIIB of FIG. 13A.
In addition, FIG. 14 is a diagram showing a configuration of the battery unit 1 obtained through the division process of step 18. Here, FIG. 14A shows a front view, and FIG. 14B shows a sectional view taken along the line XIVB-XIVB of FIG. 14A.
 この例では、第6積層体を複数(縦×1、横×1)の分割線Dに沿って切断し個片化することで、電池部1を形成している。より具体的に説明すると、第6積層体を、各々が独立した下地層20、正極層30、保持層50、拡散防止層60および負極集電体層70を含むように分割し、複数(4個)の電池部1を得ている。なお、第6積層体の切断手法としては、例えば、ダイシングブレードを用いるものや、レーザを用いるもの等が挙げられる。 In this example, the battery unit 1 is formed by cutting the sixth laminated body along a plurality (vertical x 1, lateral x 1) of the dividing lines D into individual pieces. More specifically, the sixth laminated body is divided into a plurality of layers (4) by dividing the sixth laminated body so as to include the independent underlayer 20, the positive electrode layer 30, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70. Individual battery parts 1 are obtained. Note that examples of the method for cutting the sixth stacked body include a method using a dicing blade and a method using a laser.
(被覆部形成工程)
 続いて、ステップ2の被覆部形成工程について説明を行う。
(Coating part forming process)
Subsequently, the covering portion forming step of step 2 will be described.
〔供給工程〕
 ステップ2の被覆部形成工程では、まず、電池部1に対し、被覆部2の原材料となるフォトレジストを供給する供給工程を実行する(ステップ21)。
 図15は、ステップ21の供給工程の概要を説明するための図である。ここで、図15(a)は正面図を、図15(b)は図15(a)のXVB-XVB断面図を、それぞれ示している。
[Supply process]
In the covering portion forming step of step 2, first, a supplying step of supplying a photoresist, which is a raw material of the covering portion 2, to the battery portion 1 is executed (step 21).
FIG. 15 is a diagram for explaining the outline of the supply process in step 21. Here, FIG. 15A shows a front view, and FIG. 15B shows a sectional view taken along the line XVB-XVB of FIG. 15A.
 この例では、電池部1を、負極集電体層70側が上方を向くように、スピンコータのステージ(図示せず)に装着する。そして、電池部1における負極集電体層70上に、環状に、液状のフォトレジスト200(液状の有機材料の一例)を供給する。このとき、電池部1に対するフォトレジスト200の供給は、例えば滴下によって行うことができる。このようにして、環状にフォトレジスト200が供給されることにより、負極集電体層70には、周囲がフォトレジスト200によって囲まれた開口部2aが形成され、この部位が、負極集電体層70における露出部71となる。 In this example, the battery unit 1 is mounted on a stage (not shown) of a spin coater so that the negative electrode current collector layer 70 side faces upward. Then, a liquid photoresist 200 (an example of a liquid organic material) is annularly supplied onto the negative electrode current collector layer 70 in the battery unit 1. At this time, the photoresist 200 can be supplied to the battery unit 1 by, for example, dropping. By thus supplying the photoresist 200 in a ring shape, the opening 2a surrounded by the photoresist 200 is formed in the negative electrode current collector layer 70, and this portion is the negative electrode current collector. It becomes the exposed portion 71 in the layer 70.
〔塗布工程〕
 次に、このようにして供給されたフォトレジスト200を電池部1に塗布する塗布工程を実行する(ステップ22)。
 図16は、ステップ22の塗布工程の概要を説明するための図である。ここで、図16(a)は正面図を、図16(b)は図16(a)のXVIB-XVIB断面図を、それぞれ示している。
[Coating process]
Next, a coating process for coating the photoresist 200 supplied in this way on the battery unit 1 is executed (step 22).
FIG. 16 is a diagram for explaining the outline of the coating process in step 22. Here, FIG. 16A shows a front view, and FIG. 16B shows a cross-sectional view taken along the line XVIB-XVIB of FIG. 16A.
 この例では、フォトレジスト200が供給された電池部1を搭載したスピンコータのステージを回転させ、遠心力により、フォトレジスト200を放射状に引き延ばす。このとき、フォトレジスト200は、負極集電体層70の上面から、負極集電体層70、拡散防止層60および保持層50の各側面を介して固体電解質層40の上面に到達し、さらに、固体電解質層40および基板10の各側面に到達する。すなわち、フォトレジスト200は、電池部1の上面および側面を覆う。ただし、フォトレジスト200によって、電池部1の上面すなわち負極集電体層70における上面の中央部に形成されていた開口部2aは、そのままの状態を維持しており、露出部71には負極集電体層70の上面の一部が露出している。また、電池部1の下面すなわち基板10の下面は、フォトレジスト200によって覆われることなく、露出したままの状態を維持する。 In this example, the stage of the spin coater equipped with the battery unit 1 to which the photoresist 200 is supplied is rotated, and the photoresist 200 is radially extended by the centrifugal force. At this time, the photoresist 200 reaches the upper surface of the solid electrolyte layer 40 from the upper surface of the negative electrode current collector layer 70 through each side surface of the negative electrode current collector layer 70, the diffusion prevention layer 60, and the holding layer 50, and , Reach each side surface of the solid electrolyte layer 40 and the substrate 10. That is, the photoresist 200 covers the upper surface and the side surface of the battery unit 1. However, the opening 2a formed by the photoresist 200 on the upper surface of the battery portion 1, that is, the central portion of the upper surface of the negative electrode current collector layer 70 is maintained as it is, and the exposed portion 71 is covered with the negative electrode current collector. Part of the upper surface of the electric body layer 70 is exposed. Further, the lower surface of the battery unit 1, that is, the lower surface of the substrate 10 is not covered with the photoresist 200 and is kept exposed.
〔加熱工程〕
 続いて、このようにして電池部1に塗布されたフォトレジスト200を加熱する加熱工程を実行する(ステップ23)。
 図17は、ステップ23の加熱工程の概要を説明するための図である。ここで、図17(a)は正面図を、図17(b)は図17(a)のXVIIB-XVIIB断面図を、それぞれ示している。
[Heating process]
Then, the heating process of heating the photoresist 200 applied to the battery unit 1 in this way is executed (step 23).
FIG. 17 is a diagram for explaining the outline of the heating process of step 23. Here, FIG. 17A shows a front view and FIG. 17B shows a sectional view taken along the line XVIIB-XVIIB of FIG. 17A.
 この例では、フォトレジスト200が塗布された電池部1をスピンコータのステージから取り外し、負極集電体層70側が上方を向くように、ホットプレート(図示せず)に搭載する。そして、ホットプレートを動作させ、フォトレジスト200が塗布された電池部1を加熱(ベーク)する。すると、加熱に伴って、フォトレジスト200に含まれる有機溶剤が揮発し、フォトレジスト200が電池部1に密着する。なお、フォトレジストの加熱は、オーブンで行ってもよい。 In this example, the battery unit 1 coated with the photoresist 200 is removed from the spin coater stage and mounted on a hot plate (not shown) so that the negative electrode current collector layer 70 side faces upward. Then, the hot plate is operated to heat (bak) the battery unit 1 coated with the photoresist 200. Then, with heating, the organic solvent contained in the photoresist 200 is volatilized, and the photoresist 200 adheres to the battery unit 1. The photoresist may be heated in an oven.
〔露光工程〕
 次いで、このようにして電池部1に密着させたフォトレジスト200に対して露光を施す露光工程を実行する(ステップ24)。
 図18は、ステップ24の露光工程の概要を説明するための図である。ここで、図18(a)は正面図を、図18(b)は図18(a)のXVIIIB-XVIIIB断面図を、それぞれ示している。
[Exposure process]
Next, an exposure process is performed to expose the photoresist 200 that is thus brought into close contact with the battery unit 1 (step 24).
FIG. 18 is a diagram for explaining the outline of the exposure process in step 24. Here, FIG. 18A shows a front view, and FIG. 18B shows a sectional view taken along the line XVIIIB-XVIIIB of FIG. 18A.
 この例では、電池部1に密着させたフォトレジスト200に対し、特にマスク等を介することなく、全域にわたって、フォトレジスト200が感度を有する波長の光を照射する。これにより、電池部1に密着させたフォトレジスト200は、露光によって硬化し、固体状の被覆部2となる。その結果、電池部1と被覆部2とを有する、リチウムイオン二次電池100の基本構造体が得られる。 In this example, the photoresist 200 that is brought into close contact with the battery unit 1 is irradiated with light having a wavelength at which the photoresist 200 has sensitivity, over the entire area without particularly interposing a mask or the like. As a result, the photoresist 200 that is brought into close contact with the battery unit 1 is cured by exposure and becomes the solid coating unit 2. As a result, the basic structure of the lithium ion secondary battery 100 having the battery part 1 and the covering part 2 is obtained.
(電池化工程)
 最後に、ステップ3の電池化工程について説明を行う。
(Battery conversion process)
Finally, the battery conversion process in step 3 will be described.
〔初回充電工程〕
 ステップ3の電池化工程では、まず、電池部1に被覆部2を形成してなるリチウムイオン二次電池100の基本構造体に対し、1回目の充電を行わせる初回充電工程を実行する(ステップ31)。
[First charging process]
In the battery conversion process of step 3, first, the initial charging process is performed to charge the basic structure of the lithium-ion secondary battery 100 in which the battery part 1 is formed with the coating part 2 for the first time (step). 31).
〔初回放電工程〕
 それから、充電がなされたリチウムイオン二次電池100の基本構造体に対し、1回目の放電を行わせる初回放電工程を実行する(ステップ32)。これら初回充電と初回放電とにより、保持層50の多孔質化すなわち多孔質部および多数の空孔の形成が行われ、図1に示すリチウムイオン二次電池100が得られる。
[First discharge process]
Then, the initial discharging process for discharging the basic structure of the charged lithium-ion secondary battery 100 for the first time is performed (step 32). By the first charge and the first discharge, the holding layer 50 is made porous, that is, the porous portion and a large number of pores are formed, and the lithium ion secondary battery 100 shown in FIG. 1 is obtained.
〔保持層の多孔質化〕
 では、上述した保持層50の多孔質化について、より詳細な説明を行う。
 図19は、保持層50を多孔質化する手順を説明するための図であり、保持層50およびその周辺を拡大して示した図である。ここで、図19(a)は初回充電前(ステップ31の前)の状態を、図19(b)は初回充電後且つ初回放電前(ステップ31とステップ32との間)の状態を、図19(c)は初回放電後(ステップ32の後)の状態を、それぞれ示している。
[Making the holding layer porous]
Now, the above-described porous formation of the holding layer 50 will be described in more detail.
FIG. 19 is a view for explaining the procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and its periphery. Here, FIG. 19A shows a state before the first charge (before step 31), and FIG. 19B shows a state after the first charge and before the first discharge (between step 31 and step 32). 19 (c) shows the state after the initial discharge (after step 32), respectively.
{初回充電前}
 まず、図19(a)に示す「初回充電前」の状態では、保持層50が緻密化している。また、保持層50の厚さは保持層厚さt50であり、拡散防止層60の厚さは拡散防止層厚さt60であり、負極集電体層70の厚さは負極集電体層厚さt70である。
{Before first charge}
First, in the state of “before first charge” shown in FIG. 19A, the holding layer 50 is densified. The thickness of the holding layer 50 is the thickness of the holding layer t50, the thickness of the diffusion prevention layer 60 is the thickness of the diffusion prevention layer t60, and the thickness of the negative electrode current collector layer 70 is the thickness of the negative electrode current collector layer. It is t70.
{初回充電後且つ初回放電前}
 図19(a)に示すリチウムイオン二次電池100を充電(初回充電)する場合、基板10(図1参照)には直流電源の正の電極が、負極集電体層70には直流電源の負の電極が、それぞれ接続される。すると、図19(b)に示すように、正極層30で正極活物質を構成するリチウムイオン(Li+)が、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池100の厚さ方向(図19(b)において上方向)に移動する。
{After initial charge and before initial discharge}
When the lithium-ion secondary battery 100 shown in FIG. 19A is charged (first charging), the substrate 10 (see FIG. 1) has the positive electrode of the DC power source, and the negative electrode current collector layer 70 has the DC power source of the DC power source. The negative electrodes are each connected. Then, as shown in FIG. 19B, lithium ions (Li + ) forming the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, during the charging operation, lithium ions move in the thickness direction of the lithium ion secondary battery 100 (upward in FIG. 19B).
 このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、保持層50を構成する金属と合金化する。例えば保持層50を白金(Pt)で構成した場合、保持層50では、リチウムと白金とが合金化(固溶体化、金属間化合物の形成あるいは共晶化)する。 At this time, the lithium ions that have moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the metal constituting the holding layer 50. For example, when the holding layer 50 is made of platinum (Pt), in the holding layer 50, lithium and platinum are alloyed (solid solution, formation of an intermetallic compound, or eutectic).
 また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を通過して拡散防止層60との境界部に到達する。ここで、本実施の形態の拡散防止層60は、非晶質構造を有する、金属または合金で構成されており、多結晶構造を有する保持層50と比べて、粒界の数が著しく少なくなっている。このため、保持層50と拡散防止層60との境界部に到達したリチウムイオンは、拡散防止層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。 (4) Part of the lithium ions that have entered the holding layer 50 passes through the holding layer 50 and reaches the boundary with the diffusion preventing layer 60. Here, the diffusion prevention layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly smaller than that of the holding layer 50 having a polycrystalline structure. ing. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the diffusion prevention layer 60 are less likely to enter the diffusion prevention layer 60, and thus maintain the state held in the holding layer 50.
 そして、初回充電動作が終了した状態において、正極層30から保持層50に移動したリチウムイオンは、保持層50に保持される。このとき、保持層50に移動してきたリチウムイオンは、白金との合金化あるいは白金内での金属リチウムの析出化等によって、保持層50に保持されるものと考えられる。 (4) In the state where the initial charging operation has been completed, the lithium ions that have moved from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50. At this time, it is considered that the lithium ions that have moved to the holding layer 50 are held by the holding layer 50 by alloying with platinum or by precipitating metallic lithium in the platinum.
 ここで、図19(b)に示すように、初回充電後且つ初回放電前のリチウムイオン二次電池100では、保持層厚さt50が、図19(a)に示す成膜後且つ初回充電前の状態よりも増加する。すなわち、保持層50の体積は、初回充電によって増加する。これは、保持層50において、リチウムと白金とが合金化することに起因しているものと考えられる。これに対し、拡散防止層厚さt60は、初回充電の前後でほぼ変わらない。すなわち、拡散防止層60の体積は、初回充電によってほぼ変わらない。これは、拡散防止層60に、リチウムが入り込みにくいことに起因するものと考えられる。そして、このことは、負極集電体層厚さt70が、初回充電の前後でほぼ変わらないこと、すなわち、負極集電体層70の体積が、初回充電の前後でほぼ変わらないこと(負極集電体層70を構成する白金が、保持層50を構成する白金のように多孔質化しておらず、緻密なままであること)によって裏付けられるものと考えられる。 Here, as shown in FIG. 19B, in the lithium ion secondary battery 100 after the initial charge and before the initial discharge, the holding layer thickness t50 is after the film formation and before the initial charge shown in FIG. 19A. Than the state of. That is, the volume of the holding layer 50 increases with the first charge. This is considered to be due to the fact that lithium and platinum are alloyed in the holding layer 50. On the other hand, the thickness t60 of the diffusion prevention layer does not substantially change before and after the first charge. That is, the volume of the diffusion prevention layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium hardly enters the diffusion preventing layer 60. This means that the thickness t70 of the negative electrode current collector layer does not substantially change before and after the first charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the first charge (negative electrode current collector). It is considered that the platinum constituting the electric conductor layer 70 is not made porous and remains dense like the platinum constituting the holding layer 50).
{初回放電後}
 図19(b)に示すリチウムイオン二次電池100を放電(初回放電)する場合、基板10(図1参照)には負荷の正の電極が、負極集電体層70には負荷の負の電極が、それぞれ接続される。すると、図19(c)に示すように、保持層50に保持されるリチウムイオン(Li+)が、固体電解質層40を介して正極層30へと移動する。すなわち、放電動作において、リチウムイオンはリチウムイオン二次電池100の厚さ方向(図19(c)において下方向)へと移動し、正極層30に保持される。これに伴って、負荷には直流電流が供給される。
{After first discharge}
When the lithium ion secondary battery 100 shown in FIG. 19B is discharged (first discharge), the substrate 10 (see FIG. 1) has the positive electrode of the load, and the negative electrode current collector layer 70 has the negative electrode of the load. The electrodes are each connected. Then, as shown in FIG. 19C, the lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 via the solid electrolyte layer 40. That is, in the discharging operation, lithium ions move in the thickness direction of the lithium ion secondary battery 100 (downward in FIG. 19C) and are retained by the positive electrode layer 30. Along with this, DC current is supplied to the load.
 このとき、保持層50では、リチウムが離脱することに伴い、リチウムと白金との合金の脱合金化(金属リチウムが析出した場合は金属リチウムの溶解化)が行われる。そして、保持層50で脱合金化が行われた結果、保持層50が多孔質化され、多数の空孔52が形成された多孔質部51となる。このようにして得られる多孔質部51は、ほぼ金属(例えば白金)で構成されることになる。ただし、初回放電が終了した状態において、保持層50の内部でリチウムは完全に消失するわけではなく、放電動作による移動を行わない一部のリチウムが残存する。 At this time, in the holding layer 50, the alloy of lithium and platinum is dealloyed (dissolution of the metallic lithium when metallic lithium is precipitated) with the release of lithium. Then, as a result of dealloying in the holding layer 50, the holding layer 50 is made porous, and becomes a porous portion 51 in which a large number of holes 52 are formed. The porous portion 51 obtained in this way is almost composed of metal (for example, platinum). However, in the state where the first discharge is completed, lithium does not completely disappear inside the holding layer 50, and some lithium which does not move by the discharge operation remains.
 ここで、図19(c)に示すように、初回放電後のリチウムイオン二次電池100では、保持層厚さt50が、図19(b)に示す初回充電後且つ初回放電前の状態よりも減少する。これは、保持層50において、リチウムと白金との合金の脱合金化が行われることに起因するものと考えられる。そして、このことは、初回放電によって保持層50内に形成される空孔52の形状が、面方向に比べて厚さ方向が小さくなるように扁平化していることによって裏付けられる。また、図19(c)に示すように、初回放電後のリチウムイオン二次電池100では、保持層厚さt50が、図19(a)に示す成膜後且つ初回充電前の状態よりも増加する。これは、初回充電および初回放電によって保持層50が多孔質化されること、すなわち、保持層50内に多数の空孔52が形成されることに起因するものと考えられる。なお、これに対し、拡散防止層厚さt60および負極集電体層厚さt70は、初回放電の前後でもほぼ変わらない。 Here, as shown in FIG. 19C, in the lithium ion secondary battery 100 after the initial discharge, the holding layer thickness t50 is larger than that after the initial charge and before the initial discharge shown in FIG. 19B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the holding layer 50. This is supported by the fact that the shape of the holes 52 formed in the holding layer 50 by the first discharge is flattened so that the thickness direction is smaller than the plane direction. Further, as shown in FIG. 19C, in the lithium-ion secondary battery 100 after the initial discharge, the holding layer thickness t50 is larger than that after the film formation shown in FIG. 19A and before the initial charge. To do. This is considered to be due to the fact that the holding layer 50 is made porous by the first charging and the first discharging, that is, a large number of holes 52 are formed in the holding layer 50. On the other hand, the thickness t60 of the diffusion prevention layer and the thickness t70 of the negative electrode current collector layer are not substantially changed before and after the first discharge.
[リチウムイオン二次電池の電気的特性]
 次に、本実施の形態のリチウムイオン二次電池100の電気的特性について説明を行う。
[Electrical characteristics of lithium-ion secondary battery]
Next, the electrical characteristics of the lithium ion secondary battery 100 of the present embodiment will be described.
(リチウムイオン二次電池の構成)
 この電気的特性の評価の対象となったリチウムイオン二次電池100の具体的な構成および製造方法は、以下に示すとおりである。
(Configuration of lithium-ion secondary battery)
The specific configuration and manufacturing method of the lithium-ion secondary battery 100 subjected to the evaluation of the electrical characteristics are as shown below.
〔電池部の構成〕
 基板10には、NiPメッキされたAl基板を用いた。基板10の大きさ(上方から見たとき:以下同じ)は12mm×12mmとし、厚さは8mmとした。
 下地層20には、スパッタ法で形成したニッケル酸リチウム(LiNiO2)を用いた。下地層20の大きさは8mm×8mmとし、厚さは200nmとした。
 正極層30には、スパッタ法で形成したニッケル酸リチウム(LiNiO2)およびリン酸リチウム(Li3PO4)を用いた。正極層30におけるニッケル酸リチウム(LiNiO2)とリン酸リチウム(Li3PO4)との比率は、重量比で、LiNiO2:Li3PO4=80:20とした。正極層30の大きさは8mm×8mmとし、厚さは800nmとした。
 固体電解質層40には、スパッタ法で形成したリン酸リチウム(Li3PO4)を用いた。固体電解質層40の大きさは12mm×12mmとし、厚さは1000nmとした。
 保持層50には、スパッタ法で形成した白金(Pt)を用いた。保持層50の大きさは10mm×10mmとし、厚さは60nmとした。
 拡散防止層60には、スパッタ法で形成したCoZrNb合金(より具体的には、Co91Zr5Nb4)を用いた。拡散防止層60の大きさは10mm×10mmとし、厚さは200nmとした。
 負極集電体層70には、スパッタ法で形成した白金(Pt)を用いた。負極集電体層70の大きさは10mm×10mmとし、厚さは60nmとした。
[Battery section configuration]
An Al substrate plated with NiP was used as the substrate 10. The size of the substrate 10 (when viewed from above: the same hereinafter) was 12 mm × 12 mm, and the thickness was 8 mm.
For the underlayer 20, lithium nickel oxide (LiNiO 2 ) formed by a sputtering method was used. The size of the underlayer 20 was 8 mm × 8 mm, and the thickness was 200 nm.
For the positive electrode layer 30, lithium nickel oxide (LiNiO 2 ) and lithium phosphate (Li 3 PO 4 ) formed by a sputtering method were used. The weight ratio of lithium nickel oxide (LiNiO 2 ) to lithium phosphate (Li 3 PO 4 ) in the positive electrode layer 30 was LiNiO 2 : Li 3 PO 4 = 80: 20. The size of the positive electrode layer 30 was 8 mm × 8 mm, and the thickness was 800 nm.
For the solid electrolyte layer 40, lithium phosphate (Li 3 PO 4 ) formed by a sputtering method was used. The size of the solid electrolyte layer 40 was 12 mm × 12 mm, and the thickness was 1000 nm.
For the holding layer 50, platinum (Pt) formed by the sputtering method was used. The holding layer 50 had a size of 10 mm × 10 mm and a thickness of 60 nm.
A CoZrNb alloy (more specifically, Co 91 Zr 5 Nb 4 ) formed by a sputtering method was used for the diffusion prevention layer 60. The diffusion prevention layer 60 had a size of 10 mm × 10 mm and a thickness of 200 nm.
Platinum (Pt) formed by a sputtering method was used for the negative electrode current collector layer 70. The negative electrode current collector layer 70 had a size of 10 mm × 10 mm and a thickness of 60 nm.
〔被覆部の構成〕
 被覆部2には、フォトレジスト材料として知られているS1813G(ローム・アンド・ハース社製)を用いた。被覆部2の厚さは1000nmとした。
[Structure of coating part]
For the coating portion 2, S1813G (manufactured by Rohm and Haas) known as a photoresist material was used. The thickness of the coating portion 2 was 1000 nm.
〔製造方法〕
 リチウムイオン二次電池100は、図6に示す製造方法にしたがって製造した。より具体的に説明すると、電池部1については、スパッタ法を用いて各層の形成を行った。また、被覆部2については、上述したS1813Gからなるフォトレジスト200をスピンコートにて電池部1に塗布した後、加熱(ベーク)および露光を行うことで得た。
〔Production method〕
The lithium-ion secondary battery 100 was manufactured according to the manufacturing method shown in FIG. More specifically, each layer of the battery unit 1 was formed by using the sputtering method. The coating portion 2 was obtained by applying the photoresist 200 made of S1813G described above to the battery portion 1 by spin coating, and then performing heating (baking) and exposure.
(電気的特性)
 では、評価に用いた電気的特性の詳細について説明を行う。
 今回は、電気的特性の評価の尺度として、「初期充放電特性」、「サイクル充放電特性」および「放電容量維持率」を採用した。そして、充放電特性の測定機器としては、北斗電工株式会社製 充放電装置HJ1020mSD8を用いた。
(Electrical characteristics)
Now, the details of the electrical characteristics used for the evaluation will be described.
This time, "initial charge and discharge characteristics", "cycle charge and discharge characteristics" and "discharge capacity maintenance rate" were adopted as the criteria for evaluation of electrical characteristics. And as a measuring instrument of charge / discharge characteristics, charge / discharge device HJ1020mSD8 manufactured by Hokuto Denko Co., Ltd. was used.
〔初期充放電特性〕
 初期充放電特性は、リチウムイオン二次電池100の基本構造体に対し、初回充電および初回放電を含む充放電を3回(3サイクル)繰り返して実行したときの充放電特性である。ここで、表1は、初期充放電の評価条件を示している。
[Initial charge / discharge characteristics]
The initial charge / discharge characteristics are charge / discharge characteristics when the basic structure of the lithium ion secondary battery 100 is repeatedly charged and discharged including initial charging and initial discharging three times (3 cycles). Here, Table 1 shows the evaluation conditions of the initial charge and discharge.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 充放電試験では、充放電方式として定電流(Constant Current:CC)充放電を採用し、充電電流の設定値は0.08mA(概ね1C条件)~2.7mAの範囲で設定した。また、充電における充電終止条件は4.3V到達とした。また、充電後における休止時間は10分とした。そして、放電における放電終止条件は2.0V到達とした。また、放電後における休止時間は10分とした。充電~休止~放電時の周囲温度は25℃とした。 In the charge / discharge test, constant current (CC) charge / discharge was adopted as the charge / discharge method, and the set value of the charge current was set in the range of 0.08 mA (generally 1 C condition) to 2.7 mA. Further, the charging termination condition in charging was set to reach 4.3V. The rest time after charging was 10 minutes. The discharge termination condition in the discharge was set to 2.0V. The rest time after discharge was 10 minutes. The ambient temperature during charging-resting-discharging was 25 ° C.
 また、今回は、充放電における充電電流および放電電流を、それぞれ、80(μA)、400(μA)、800(μA)、1300(μA)および2700(μA)とした。 Also, this time, the charging and discharging currents were set to 80 (μA), 400 (μA), 800 (μA), 1300 (μA) and 2700 (μA), respectively.
 図20は、本実施の形態のリチウムイオン二次電池100の初期充放電特性を示す図である。図20において、横軸は電池容量(μAh)であり、縦軸は電池電圧(V)である。また、図20において、図中右上がりとなっているのが充電特性であり、図中右下がりとなっているのが放電特性である。 FIG. 20 is a diagram showing the initial charge / discharge characteristics of the lithium-ion secondary battery 100 of the present embodiment. 20, the horizontal axis represents the battery capacity (μAh) and the vertical axis represents the battery voltage (V). Further, in FIG. 20, the charging characteristic is shown in the upper right of the figure, and the discharging characteristic is shown in the lower right of the figure.
 図20より、本実施の形態のリチウムイオン二次電池100は、充放電電流が80(μA)~2700(μA)の範囲において、充放電が可能となっていることがわかる。 From FIG. 20, it can be seen that the lithium-ion secondary battery 100 of the present embodiment can be charged / discharged within a charge / discharge current range of 80 (μA) to 2700 (μA).
〔サイクル充放電特性〕
 サイクル充放電特性は、リチウムイオン二次電池100の基本構造体に対し、充放電を繰り返し実行したときの充放電特性である。ここで、表2は、サイクル充放電の評価条件を示している。
[Cycle charge / discharge characteristics]
The cycle charge / discharge characteristic is the charge / discharge characteristic when the basic structure of the lithium ion secondary battery 100 is repeatedly charged / discharged. Here, Table 2 shows the evaluation conditions of the cycle charge / discharge.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 サイクル充放電のうちのサイクル充電では、充電方式として定電流(Constant Current:CC)充電を採用し、充電電圧は4.3V、充電電流は0.35mAとした。また、サイクル充電における充電の終止条件は0.2時間とし、充電中の周囲温度は25℃とした。また、サイクル充電における充電の休止時間は1分とし、充電休止中の周囲温度は25℃とした。 ㆍ Constant current (CC) charging was adopted as the charging method for the cycle charging of the cycle charge / discharge, and the charging voltage was 4.3 V and the charging current was 0.35 mA. Further, the termination condition of charging in cycle charging was 0.2 hours, and the ambient temperature during charging was 25 ° C. Further, the charging rest time in the cycle charging was 1 minute, and the ambient temperature during the charging rest was 25 ° C.
 これに対し、サイクル充放電のうちのサイクル放電では、放電方式として定電流(Constant Current:CC)放電を採用し、放電電圧は2.0V、放電電流は0.35mAとした。また、サイクル放電における放電の終止条件は0.2時間とし、放電中の周囲温度は25℃とした。また、サイクル放電における放電の休止時間は1分とし、放電休止中の周囲温度は25℃とした。 On the other hand, in the cycle discharge of the cycle charge / discharge, constant current (CC) discharge was adopted as the discharge method, and the discharge voltage was 2.0 V and the discharge current was 0.35 mA. The condition for ending the discharge in the cycle discharge was 0.2 hours, and the ambient temperature during the discharge was 25 ° C. Further, the discharge rest time in the cycle discharge was 1 minute, and the ambient temperature during the discharge rest was 25 ° C.
 このように、サイクル充放電における充放電の条件は、上述した初期放電における充放電の条件とは、一部が異なっている。そして、サイクル充電における充放電の繰返し回数は、1回(1サイクル)、500回(500サイクル)および1000回(1000サイクル)とした。 In this way, the charging / discharging conditions in the cycle charging / discharging are partially different from the charging / discharging conditions in the initial discharging described above. The number of times of charging / discharging in cycle charging was set to 1 time (1 cycle), 500 times (500 cycles) and 1000 times (1000 cycles).
 図21は、本実施の形態のリチウムイオン二次電池100のサイクル充放電特性を示す図である。図21において、横軸は電池容量(μAh)であり、縦軸は電池電圧(V)である。また、図21において、図中右上がりとなっているのが充電特性であり、図中右下がりとなっているのが放電特性である。 FIG. 21 is a diagram showing the cycle charge / discharge characteristics of the lithium ion secondary battery 100 of the present embodiment. In FIG. 21, the horizontal axis represents the battery capacity (μAh), and the vertical axis represents the battery voltage (V). Further, in FIG. 21, the charging characteristic is shown in the upper right of the figure, and the discharging characteristic is shown in the lower right of the figure.
 図21より、本実施の形態のリチウムイオン二次電池100は、充放電の繰返し回数が1回~1000回の範囲において、ほぼ一定のレベルを維持できていること、換言すれば、充放電回数の増加に伴う充放電性能の低下を抑制できていることがわかる。 From FIG. 21, it is found that the lithium-ion secondary battery 100 of the present embodiment can maintain a substantially constant level in the range of 1 to 1000 times of charge / discharge cycles, in other words, the number of charge / discharge cycles. It can be seen that the deterioration of the charge / discharge performance due to the increase of is suppressed.
〔放電容量維持率〕
 放電容量維持率は、リチウムイオン二次電池100の、1回目の充放電を実行したときの放電容量(1回目の放電容量)に対する、n回目の充放電を実行したときの放電容量(n回目の放電容量)の比を、百分率で表したものである。すなわち、「n回目の放電容量/1回目の放電容量」を百分率で表したものである。この場合、放電容量維持率の値は高いほどよく、最高で100%となる。
[Discharge capacity maintenance rate]
The discharge capacity retention ratio is the discharge capacity (n-th time) of the lithium-ion secondary battery 100 when the charge-discharge is performed n times with respect to the discharge capacity (first discharge capacity) when the first charge-discharge is executed. The discharge capacity) of the above is expressed as a percentage. That is, "nth discharge capacity / first discharge capacity" is expressed in percentage. In this case, the higher the discharge capacity retention rate, the better, and the maximum value is 100%.
 また、放電容量維持率は、上述したサイクル充放電特性の評価条件(表2参照)にしたがい、充放電特性を測定した結果に基づいて得た。なお、ここでは、充放電の繰返し回数を1300回(1300サイクル)とした。 Also, the discharge capacity retention rate was obtained based on the result of measuring the charge / discharge characteristics according to the evaluation conditions for the cycle charge / discharge characteristics (see Table 2) described above. Here, the number of charge / discharge cycles was 1300 (1300 cycles).
 図22は、本実施の形態のリチウムイオン二次電池100の容量維持率を示す図である。図22において、横軸は充放電の繰り返し回数(サイクル数)であり、縦軸は放電容量維持率(%)である。 FIG. 22 is a diagram showing the capacity maintenance rate of the lithium-ion secondary battery 100 of the present embodiment. In FIG. 22, the horizontal axis represents the number of times charging and discharging are repeated (the number of cycles), and the vertical axis represents the discharge capacity retention rate (%).
 図22より、本実施の形態のリチウムイオン二次電池100は、充放電のサイクル数が増加するほど、放電容量維持率が低下していくことがわかる。ただし、充放電のサイクル数が1300となった状態においても、本実施の形態のリチウムイオン二次電池100の放電容量維持率は86%程度を確保できており、充放電回数の増加に伴う充放電性能の低下を抑制できていることがわかる。 It can be seen from FIG. 22 that the lithium-ion secondary battery 100 of the present embodiment has a lower discharge capacity maintenance rate as the number of charge / discharge cycles increases. However, even when the number of charge / discharge cycles is 1300, the discharge capacity maintenance ratio of the lithium-ion secondary battery 100 of the present embodiment can be secured at about 86%, which means that the charge / discharge cycle increases and decreases. It can be seen that the deterioration of discharge performance can be suppressed.
[その他]
 なお、本実施の形態では、基板10の表面10a上に、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70の順に積層を行うことで、電池部1を構成していた。すなわち、基板10に近い側に正極層30を配置し、基板10から遠い側に保持層50を配置する構成を採用していた。ただし、これに限られるものではなく、基板10に近い側に保持層50を配置し、基板10から遠い側に正極層30を配置する構成を採用してもかまわない。ただし、この場合は、基板10に対する各層の積層順が、上述したものとは逆になり、基板10が負極集電体層70として機能することになる。
[Others]
In this embodiment, the underlayer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70 are laminated in this order on the surface 10 a of the substrate 10. Then, the battery unit 1 was configured. That is, a configuration is adopted in which the positive electrode layer 30 is arranged on the side closer to the substrate 10 and the holding layer 50 is arranged on the side farther from the substrate 10. However, the configuration is not limited to this, and a configuration in which the holding layer 50 is arranged on the side closer to the substrate 10 and the positive electrode layer 30 is arranged on the side farther from the substrate 10 may be adopted. However, in this case, the stacking order of the layers on the substrate 10 is opposite to that described above, and the substrate 10 functions as the negative electrode current collector layer 70.
 また、本実施の形態では、電池部1が、基板10、下地層20、正極層30、固体電解質層40、保持層50、拡散防止層60および負極集電体層70を備えていたが、電池部1の構成については、適宜変更してかまわない。 In addition, in the present embodiment, the battery unit 1 includes the substrate 10, the base layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the diffusion prevention layer 60, and the negative electrode current collector layer 70. The configuration of the battery unit 1 may be changed as appropriate.
 さらに、本実施の形態では、フォトレジスト200を原材料として被覆部2を形成する場合を例として説明を行ったが、これにかぎられるものではない。例えばAGC社製の商品名サイトップ(登録商標)を原材料として被覆部2を形成する場合は、ステップ2の被覆部形成工程におけるステップ24の露光工程は不要となる。また、例えば京セラ社製の商品名とろけるシートを原材料として被覆部2を形成する場合は、このシートに、開口部2aに対応する穴開け加工を施した後、電池部1の上に積載し、加熱を行うようにすればよい。したがって、この場合は、ステップ2の被覆部形成工程におけるステップ21の供給工程、ステップ22の塗布工程およびステップ24の露光工程が不要となる。 Further, in the present embodiment, the case where the coating portion 2 is formed using the photoresist 200 as a raw material has been described as an example, but the present invention is not limited to this. For example, when the covering portion 2 is formed using the product name Cytop (registered trademark) manufactured by AGC Co. as a raw material, the exposure step of step 24 in the covering portion forming step of step 2 is unnecessary. Further, for example, when the covering portion 2 is formed by using a meltable sheet manufactured by Kyocera Co., Ltd. as a raw material, this sheet is subjected to perforation processing corresponding to the opening 2a, and then stacked on the battery portion 1, It suffices to perform heating. Therefore, in this case, the supply step of step 21, the coating step of step 22 and the exposure step of step 24 in the coating portion forming step of step 2 are unnecessary.
 1…電池部、2…被覆部、2a…開口部、10…基板、10a…表面、10b…裏面、11…基材、12…被覆層、20…下地層、30…正極層、40…固体電解質層、50…保持層、51…多孔質部、52…空孔、60…拡散防止層、70…負極集電体層、71…露出部、100…リチウムイオン二次電池、200…フォトレジスト DESCRIPTION OF SYMBOLS 1 ... Battery part, 2 ... Covering part, 2a ... Opening part, 10 ... Substrate, 10a ... Front surface, 10b ... Back surface, 11 ... Base material, 12 ... Coating layer, 20 ... Underlayer, 30 ... Positive electrode layer, 40 ... Solid Electrolyte layer, 50 ... Retaining layer, 51 ... Porous part, 52 ... Hole, 60 ... Diffusion preventive layer, 70 ... Negative electrode current collector layer, 71 ... Exposed part, 100 ... Lithium ion secondary battery, 200 ... Photoresist

Claims (9)

  1.  導電性を有し且つ集電を行う第1集電体層と、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層と、導電性を有し且つ集電を行う第2集電体層と、を順に含む電池部と、
     絶縁性を有し、前記電池部の一方の面側には前記第1集電体層の一部が露出するとともに当該電池部の他方の面側には前記第2集電体層の一部が露出し、前記第1極性層、前記固体電解質層および前記第2極性層が露出しないように当該電池部を被覆する被覆部と
    を備えるリチウムイオン二次電池。
    A solid electrolyte having a first current collector layer having conductivity and collecting current, a first polar layer absorbing and releasing lithium ions with a first polarity, and an inorganic solid electrolyte exhibiting lithium ion conductivity. A layer, a second polar layer that occludes and releases lithium ions with a second polarity opposite to the first polarity, and a second current collector layer that is conductive and that collects current. Battery part that includes in order,
    A part of the first current collector layer having an insulating property is exposed on one surface side of the battery section and a part of the second current collector layer is exposed on the other surface side of the battery section. And a coating part that covers the battery part so that the first polar layer, the solid electrolyte layer, and the second polar layer are not exposed.
  2.  前記被覆部が、合成樹脂材料で構成されること
    を特徴とする請求項1記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 1, wherein the coating portion is made of a synthetic resin material.
  3.  前記被覆部が、フォトレジスト材料で構成されること
    を特徴とする請求項2記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 2, wherein the coating portion is made of a photoresist material.
  4.  前記被覆部が、パーフルオロブテニルビニルエーテルの環化重合体で構成されること
    を特徴とする請求項2記載のリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 2, wherein the coating portion is made of a cyclized polymer of perfluorobutenyl vinyl ether.
  5.  前記第1集電体層が、SUS316Lで構成されること
    を特徴とする請求項1乃至4のいずれか1項記載のリチウムイオン二次電池。
    The lithium-ion secondary battery according to any one of claims 1 to 4, wherein the first current collector layer is made of SUS316L.
  6.  前記第1集電体層が、表面にNi-Pめっきを施した金属材料で構成されること
    を特徴とする請求項1乃至4のいずれか1項記載のリチウムイオン二次電池。
    5. The lithium ion secondary battery according to claim 1, wherein the first current collector layer is made of a metal material having a surface plated with Ni—P.
  7.  導電性を有し且つ集電を行う第1集電体層と、第1の極性にてリチウムイオンを吸蔵および放出する第1極性層と、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該第1の極性とは逆の第2の極性にてリチウムイオンを吸蔵および放出する第2極性層と、導電性を有し且つ集電を行う第2集電体層と、を順に含む電池部における当該第2集電体層の上面に対し、絶縁性を有する液状の有機材料を環状に供給する供給工程と、
     前記液状の有機材料が環状に供給された前記電池部を回転させて、当該液状の有機材料を当該電池部に塗布する塗布工程と、
     前記電池部に塗布された前記液状の有機材料を加熱する加熱工程と
    を有するリチウムイオン二次電池の製造方法。
    A solid electrolyte having a first current collector layer having conductivity and collecting current, a first polar layer absorbing and releasing lithium ions with a first polarity, and an inorganic solid electrolyte exhibiting lithium ion conductivity. A layer, a second polar layer that occludes and releases lithium ions with a second polarity opposite to the first polarity, and a second current collector layer that is conductive and that collects current. A supplying step of annularly supplying a liquid organic material having an insulating property to the upper surface of the second current collector layer in the battery part including the order;
    Rotating the battery unit in which the liquid organic material is annularly supplied, a coating step of applying the liquid organic material to the battery unit,
    And a heating step of heating the liquid organic material applied to the battery portion.
  8.  前記液状の有機材料がフォトレジスト材料であり、
     加熱された前記液状の有機材料を、全域にわたって露光する露光工程
    をさらに有することを特徴とする請求項7記載のリチウムイオン二次電池の製造方法。
    The liquid organic material is a photoresist material,
    The method for manufacturing a lithium ion secondary battery according to claim 7, further comprising an exposure step of exposing the heated liquid organic material over the entire area.
  9.  前記液状の有機材料がパーフルオロブテニルビニルエーテルの環化重合体の原材料であること
    を特徴とする請求項7記載のリチウムイオン二次電池の製造方法。
    The method for producing a lithium ion secondary battery according to claim 7, wherein the liquid organic material is a raw material of a cyclized polymer of perfluorobutenyl vinyl ether.
PCT/JP2019/026271 2018-10-10 2019-07-02 Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell WO2020075352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-192079 2018-10-10
JP2018192079A JP2020061281A (en) 2018-10-10 2018-10-10 Lithium ion secondary battery and method of manufacturing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2020075352A1 true WO2020075352A1 (en) 2020-04-16

Family

ID=70164662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026271 WO2020075352A1 (en) 2018-10-10 2019-07-02 Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell

Country Status (2)

Country Link
JP (1) JP2020061281A (en)
WO (1) WO2020075352A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117851A (en) * 2000-07-31 2002-04-19 Kawasaki Steel Corp Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
WO2007086218A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Chip battery
JP2011258477A (en) * 2010-06-10 2011-12-22 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2014032966A (en) * 2013-10-15 2014-02-20 Sony Corp Battery pack
JP2015072849A (en) * 2013-10-04 2015-04-16 国立大学法人鳥取大学 Negative electrode material for secondary battery, method for producing negative electrode material for secondary battery, and negative electrode for secondary battery
JP2019040674A (en) * 2017-08-22 2019-03-14 昭和電工株式会社 Lithium ion secondary battery and positive electrode of lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117851A (en) * 2000-07-31 2002-04-19 Kawasaki Steel Corp Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
WO2007086218A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Chip battery
JP2011258477A (en) * 2010-06-10 2011-12-22 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2015072849A (en) * 2013-10-04 2015-04-16 国立大学法人鳥取大学 Negative electrode material for secondary battery, method for producing negative electrode material for secondary battery, and negative electrode for secondary battery
JP2014032966A (en) * 2013-10-15 2014-02-20 Sony Corp Battery pack
JP2019040674A (en) * 2017-08-22 2019-03-14 昭和電工株式会社 Lithium ion secondary battery and positive electrode of lithium ion secondary battery

Also Published As

Publication number Publication date
JP2020061281A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US10593985B2 (en) Amorphous cathode material for battery device
Li et al. On‐chip batteries for dust‐sized computers
JP6486906B2 (en) Rechargeable battery with wafer current collector and assembly method
JP2017152324A (en) All-solid-state battery
JP2004022250A5 (en)
JP2007123141A (en) Anode and battery
US20030054256A1 (en) Totally solid type polymer lithium ion secondary battery and manufacturing method of the same
JP2017532736A (en) Electrochemical cell with protected negative electrode
US20210305579A1 (en) Battery
US20110097625A1 (en) Lithium microbattery provided with an electronically conductive packaging layer
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
JPWO2020158884A1 (en) Solid-state battery and its manufacturing method
CN112151810A (en) Composite current collector, pole piece, battery core and secondary battery
KR101825624B1 (en) Flexible rechargeable battery
KR100666506B1 (en) Thin film battery and fabrication method thereof
WO2020075352A1 (en) Lithium ion secondary cell, and method for manufacturing lithium ion secondary cell
WO2019123981A1 (en) Method of manufacturing lithium ion secondary battery
JP7034703B2 (en) Lithium ion secondary battery
JP2017199664A (en) Battery, battery manufacturing method, and battery manufacturing device
WO2020116004A1 (en) Lithium ion secondary battery
JP2016048651A (en) Electrode body and secondary battery
WO2020070933A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020070932A1 (en) Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
CN111033855A (en) Lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP2018181636A (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871050

Country of ref document: EP

Kind code of ref document: A1