JP2003168425A - NEGATIVE ELECTRODE MATERIAL FOR Li SECONDARY BATTERY - Google Patents

NEGATIVE ELECTRODE MATERIAL FOR Li SECONDARY BATTERY

Info

Publication number
JP2003168425A
JP2003168425A JP2001367254A JP2001367254A JP2003168425A JP 2003168425 A JP2003168425 A JP 2003168425A JP 2001367254 A JP2001367254 A JP 2001367254A JP 2001367254 A JP2001367254 A JP 2001367254A JP 2003168425 A JP2003168425 A JP 2003168425A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
layer
secondary battery
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001367254A
Other languages
Japanese (ja)
Other versions
JP3565272B2 (en
Inventor
Koichi Ashizawa
公一 芦澤
Tsugio Kataoka
次雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2001367254A priority Critical patent/JP3565272B2/en
Publication of JP2003168425A publication Critical patent/JP2003168425A/en
Application granted granted Critical
Publication of JP3565272B2 publication Critical patent/JP3565272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new negative electrode material for a Li secondary battery wherein the battery capacity can be enhanced compared with that from a graphite material and wherein deterioration of cycle life characteristic is not invited. <P>SOLUTION: This is a negative electrode material for a Li secondary battery to include a laminated structural body A<SB>0</SB>as the basic unit wherein an active layer 1 composed of metal or an alloy to stare/release Li ions and a collecting layer 2 composed of metal or an alloy not to store/release Li ions are alternately laminated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Liイオン電池,
ゲル電解質型Liポリマ電池,真性電解質型Liポリマ
電池などLi二次電池用の新規な負極材料とそれを用い
た容量密度の高い負極に関する。
TECHNICAL FIELD The present invention relates to a Li-ion battery,
The present invention relates to a novel negative electrode material for a Li secondary battery such as a gel electrolyte type Li polymer battery and an intrinsic electrolyte type Li polymer battery, and a negative electrode having a high capacity density using the same.

【0002】[0002]

【従来の技術】ノートパソコンや携帯電話などの各種電
気・電子機器の電源としてLi二次電池が広く用いられ
ているが、これら電気・電子機器に対する小型化・軽量
化の要求が強まっていることに伴って、Li二次電池に
対しても、小型化と高容量化の要求が強まっている。
2. Description of the Related Art Li secondary batteries are widely used as a power source for various electric and electronic devices such as laptop computers and mobile phones, but there is an increasing demand for downsizing and weight reduction of these electric and electronic devices. Accordingly, demands for smaller size and higher capacity are increasing for Li secondary batteries.

【0003】ところで、現行のLi二次電池の負極は、
その殆どが、黒鉛などの炭素材料を例えばフッ素系の結
着剤と混合して成るペーストを、Cu箔,Ni箔,ステ
ンレス鋼の箔のような金属集電体に塗工して製造された
ものである。負極材料として用いられる炭素材料は、例
えば黒鉛の場合、その結晶構造は、炭素原子の共有結合
によって形成された六員環構造が平面的に広がって1つ
の平面層を構成し、この層がファン・デア・ワールスの
力によって所定の間隔を置いて積層した層状構造になっ
ている。そして、上記した層間距離は、理論的には0.
3354nmになっている。
By the way, the negative electrode of the current Li secondary battery is
Most of them are manufactured by applying a paste formed by mixing a carbon material such as graphite with a fluorine-based binder to a metal current collector such as Cu foil, Ni foil, and stainless steel foil. It is a thing. When the carbon material used as the negative electrode material is, for example, graphite, the crystal structure thereof has a six-membered ring structure formed by covalent bonds of carbon atoms spread in a plane to form one plane layer, and this layer is a fan layer. -It has a layered structure that is laminated at a predetermined interval by the force of Der Waals. And the above-mentioned interlayer distance is theoretically 0.
It is 3354 nm.

【0004】このような結晶構造の黒鉛をLi二次電池
の負極材料として使用した場合、充電時にあっては、電
解質や正極から供給され、そのイオン半径が約0.1nm
程度であるLiイオンが、上記した黒鉛結晶の層間に侵
入し、そこに、例えばLiC 6の形態で吸蔵される。そ
して、放電時にあっては、上記した吸蔵LiはLiイオ
ンとなって層間から電解質へ放出される。充放電時に供
給・放出される電子は集電体で集電される。
A graphite having such a crystal structure is used as a Li secondary battery.
When used as a negative electrode material for
It is supplied from the disintegration and the positive electrode, and its ionic radius is about 0.1 nm
The degree of Li ions penetrates between the layers of the graphite crystal described above.
Put in there, for example LiC 6It is stored in the form of. So
Then, at the time of discharging, the above-mentioned occlusion Li is Li ion.
And is released from the interlayer to the electrolyte. For charging and discharging
The supplied and emitted electrons are collected by the collector.

【0005】黒鉛の場合、その層状構造における層間距
離はLiイオンの半径に対して適切な大きさであり、ま
た層間引力は比較的弱いファン・デア・ワールス力であ
るため、上記したLiイオンの吸蔵・放出に伴う層状構
造の膨張,収縮に対する耐性が良好である。そのため、
充放電サイクルを多数回反復しても、層状構造の崩壊と
いう問題は起こりづらく、長期に亘って負極材料として
の機能を維持する。
In the case of graphite, the interlayer distance in the layered structure is an appropriate size with respect to the radius of Li ions, and the interlayer attractive force is a relatively weak Van der Waals force. Good resistance to expansion and contraction of layered structure due to occlusion / release. for that reason,
Even if the charging / discharging cycle is repeated many times, the problem of collapse of the layered structure hardly occurs, and the function as the negative electrode material is maintained for a long period of time.

【0006】このようなことから、現行のLi二次電池
の負極材料としては、殆ど、黒鉛を代表例とする炭素材
料が使用されている。しかしながら、他方では、炭素材
料は、その容量密度(LiC6:理論容量372mAh/
g)が必ずしも高い値であるとはいえず、最近の高容量
化の要求に対しては充分に対応できないという問題があ
る。
For these reasons, a carbon material typified by graphite is mostly used as the negative electrode material of the current Li secondary battery. However, on the other hand, the carbon material has a capacity density (LiC 6 : theoretical capacity of 372 mAh /
It cannot be said that g) is always a high value, and there is a problem that the recent demand for higher capacity cannot be sufficiently met.

【0007】そのため、炭素材料に比べて容量密度が高
い金属系の材料で負極材料を製造する研究が従来から行
われている。例えば、金属Liは、その容量密度(L
i:理論容量3860mAh/g)が最も高い材料であ
る。しかしながら、この金属Liの場合、充電時にデン
ドライトとなって負極に析出するが、現在までのとこ
ろ、このデンドライト析出を抑制するなどの問題が未解
決の状態にある。そのため、いまだ実用化の目途は立っ
ていない。
[0007] Therefore, research has been conventionally conducted to manufacture a negative electrode material from a metal material having a higher capacity density than a carbon material. For example, metal Li has a capacity density (L
i: The material with the highest theoretical capacity of 3860 mAh / g). However, in the case of this metallic Li, it becomes a dendrite during charging and is deposited on the negative electrode, but up to the present, problems such as suppression of dendrite deposition are still unsolved. Therefore, there is still no prospect of commercialization.

【0008】また、容量密度が高い材料としては、Al
(LiAl:理論容量993mAh/g)やSn(Li4.4
Sn:理論容量994mAh/g)などが知られている。
例えば、特開2001−68094号公報では、Snの
負極材料が開示されている。これらの金属系材料は、炭
素材料に比べると確かに容量密度が2.6倍強と高いと
はいえ、その結晶構造は炭素材料のような層状構造では
ない。そのため、充放電サイクルを多数回反復している
うちに、Liイオンの吸蔵・放出に伴う結晶構造の膨張
・収縮によって、比較的短時間で、当該結晶構造が次第
に崩壊し、粉粒体になって集電体から脱落して電解質中
に分散し、電池劣化を招くという問題が発生する。
As a material having a high capacity density, Al is used.
(LiAl: theoretical capacity 993 mAh / g) and Sn (Li 4.4
Sn: theoretical capacity 994 mAh / g) and the like are known.
For example, Japanese Patent Laid-Open No. 2001-68094 discloses a Sn negative electrode material. Although these metal-based materials have a high capacity density of 2.6 times higher than that of carbon materials, their crystal structure is not a layered structure like carbon materials. Therefore, while the charge / discharge cycle is repeated many times, due to the expansion / contraction of the crystal structure accompanying the absorption / desorption of Li ions, the crystal structure gradually collapses in a relatively short time and becomes a granular material. Therefore, there is a problem in that it falls off from the current collector and disperses in the electrolyte, resulting in deterioration of the battery.

【0009】[0009]

【発明が解決しようとする課題】本発明は、Li二次電
池における従来から知られている負極材料に関する上記
した問題を解決することができる新規な負極材料とそれ
を用いた負極の提供を目的とする。具体的には、金属ま
たは合金であるため、炭素材料の場合に比べて容量密度
は高く、しかし金属または合金であるにもかかわらず、
炭素材料の場合と同等の充放電サイクル寿命を有してい
る負極材料とそれを用いた負極の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention aims to provide a novel negative electrode material and a negative electrode using the same, which can solve the above-mentioned problems associated with the conventionally known negative electrode materials in Li secondary batteries. And Specifically, since it is a metal or alloy, it has a higher capacity density than that of a carbon material, but it is a metal or alloy,
An object is to provide a negative electrode material having a charge / discharge cycle life equivalent to that of a carbon material and a negative electrode using the same.

【0010】[0010]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、Liイオンを吸蔵・放出す
る金属または合金から成る活性層と、Liイオンを吸蔵
・放出しない金属または合金から成る集電層とが、交互
に積層されている積層構造体を基本単位として含むこと
を特徴とする、Li二次電池用の負極材料が提供され
る。
In order to achieve the above object, in the present invention, an active layer made of a metal or an alloy that absorbs and releases Li ions and a metal or an alloy that does not absorb and release Li ions are used. A negative electrode material for a Li secondary battery is provided, in which the formed current collecting layer includes a laminated structure that is alternately laminated as a basic unit.

【0011】また、本発明においては、上記した負極材
料の粉末と結着剤との混合物が、集電体の片面または両
面に塗工されていることを特徴とする、Li二次電池用
の負極が提供される。
Further, in the present invention, the mixture of the above-mentioned powder of the negative electrode material and the binder is applied to one side or both sides of the current collector, which is used for a Li secondary battery. A negative electrode is provided.

【0012】[0012]

【発明の実施の形態】最初に、本発明の負極材料の開発
を可能にした材料の設計思想について説明する。 1)炭素材料の層状構造において、電気化学的にLiイ
オンの吸蔵・放出が起こる場は、炭素原子の共有結合で
形成されている平面層の間に位置する層間である。平面
層それ自体では電気化学的なLiイオンの吸蔵・放出は
起こらない。
BEST MODE FOR CARRYING OUT THE INVENTION First, the design concept of the material that enables the development of the negative electrode material of the present invention will be described. 1) In the layered structure of a carbon material, the place where Li ions are occluded / released electrochemically is between layers located between plane layers formed by covalent bonds of carbon atoms. Electrochemical occlusion / release of Li ions does not occur in the flat layer itself.

【0013】すなわち、炭素材料の場合、Liイオンを
吸蔵・放出する場と、Liイオンの吸蔵・放出をしない
場(平面層)とが交互に積層した層状構造になってい
る。このことにより、Liイオンの吸蔵・放出に伴う層
状構造の膨張・収縮が緩和され、それが良好な充放電サ
イクル寿命として発現する。しかしながら、一方では、
炭素材料の容量密度はそれ程高くないという問題があ
る。
That is, the carbon material has a layered structure in which a field for occluding / desorbing Li ions and a field for not occluding / desorbing Li ions (planar layer) are alternately laminated. As a result, the expansion / contraction of the layered structure due to the absorption / desorption of Li ions is relieved, and this manifests itself as a good charge / discharge cycle life. However, on the other hand,
There is a problem that the capacity density of the carbon material is not so high.

【0014】2)ところで、高い容量密度を得ようとす
る場合には、AlやSnのように、Liイオンを吸蔵・
放出する金属材料を用いることが有利である。しかしな
がら、金属材料の場合、一般に、単独でその結晶構造を
炭素材料のような前記した機能を有する層状構造にする
ことは事実上不可能である。仮に、炭素材料のような層
状構造、すなわち、Liイオンを吸蔵・放出する場とL
iイオンを吸蔵・放出しない場が交互に積層されている
層状構造を金属材料で形成することができれば、その材
料は、容量密度は高く、しかも炭素材料のように充放電
サイクル寿命特性が良好な材料として機能し得るものと
考えられる。
2) By the way, when a high capacity density is to be obtained, like Li or Sn, it absorbs Li ions.
It is advantageous to use emissive metallic materials. However, in the case of a metallic material, it is generally practically impossible to make the crystal structure by itself into a layered structure having the above-mentioned function such as a carbon material. For example, a layered structure such as a carbon material, that is, a field for occluding and releasing Li ions and L
If a layered structure in which fields that do not occlude / desorb i ions are alternately laminated can be formed of a metal material, that material has a high capacity density and, in addition, a good charge / discharge cycle life characteristic like a carbon material. It is considered that it can function as a material.

【0015】3)ところで、金属材料には、電気化学的
にLiイオンを吸蔵・放出しない、すなわちLiと合金
化しない材料も存在する。したがって、電気化学的にL
iイオンを吸蔵・放出する金属材料の薄層と、電気化学
的にLiイオンを吸蔵・放出しない金属材料の薄層とを
交互に積層すれば、得られる積層構造体は、炭素材料の
場合と同じような機能を発揮するのではないかと考えら
れる。しかも、その積層構造体の場合、Liイオンを吸
蔵・放出する層は金属材料で構成されているので、容量
密度は炭素材料の場合に比べて高くなるはずである。
3) By the way, as the metal material, there is a material which does not electrochemically store and release Li ions, that is, which does not alloy with Li. Therefore, electrochemically L
If a thin layer of a metal material that occludes / desorbs i ions and a thin layer of a metal material that does not electrochemically occlude / desorb Li ions are alternately laminated, the resulting laminated structure is the same as that of a carbon material. It is thought that they may exhibit similar functions. Moreover, in the case of the laminated structure, since the layer that absorbs and releases Li ions is made of a metal material, the capacity density should be higher than that of a carbon material.

【0016】また、Liイオンの吸蔵に伴う膨張・収縮
により、Liイオンを吸蔵・放出する金属材料が粉粒化
した場合であっても、その薄層は、Liイオンを吸蔵・
放出しない、すなわち、膨張・収縮に伴う粉粒化を起こ
さない別の金属材料の薄層で挟み込まれているので、発
生した粉粒体が電解質に分散して電池劣化を招くという
事態は抑制されるものと考えられる。
Further, even when the metal material which absorbs and releases Li ions is pulverized due to expansion and contraction accompanying the absorption of Li ions, the thin layer absorbs and absorbs Li ions.
It is not released, that is, it is sandwiched by a thin layer of another metal material that does not cause pulverization due to expansion and contraction, so the situation in which the produced pulverized material is dispersed in the electrolyte and causes battery deterioration is suppressed. It is considered to be one.

【0017】以上の着想と考察に基づき、本発明者は、
上記した両薄層を構成する金属材料の種類と互いの組み
合わせ、両薄層の厚み、また上記積層構造体の形成方法
などにつき鋭意研究を重ねた結果、上記した構成の負極
材料と、それを用いた負極を開発することに成功した。
まず、本発明の負極材料について詳細に説明する。
Based on the above idea and consideration, the present inventor
The above-mentioned negative electrode material having the above-mentioned configuration and the negative electrode material having the above-mentioned configuration are combined with each other in combination with the types of the metal materials forming the above-mentioned thin layers, the thickness of both the thin layers, and the method for forming the laminated structure. We succeeded in developing the negative electrode used.
First, the negative electrode material of the present invention will be described in detail.

【0018】本発明の負極材料の基本単位である積層構
造体の1例A0を図1に示す。この積層構造体A0は、L
iイオンを吸蔵・放出する金属材料から成る層1と、L
iイオンを吸蔵・放出しない金属材料から成る層2とを
交互に積層した構造になっている。そして、図2におけ
る最下層と最上層は、いずれも、Liイオンを吸蔵・放
出しない金属材料の層2で構成されている。
FIG. 1 shows an example A 0 of a laminated structure which is a basic unit of the negative electrode material of the present invention. This laminated structure A 0 is L
a layer 1 made of a metal material that absorbs and releases i ions, and L
It has a structure in which layers 2 made of a metal material that does not store and release i ions are alternately laminated. Each of the lowermost layer and the uppermost layer in FIG. 2 is composed of a layer 2 of a metal material that does not store or release Li ions.

【0019】なお層1は、Liイオンを吸蔵・放出する
ことにより全体の電池反応を可能にする活性な層という
意味で、以後、活性層といい、また層2は、Liイオン
を吸蔵・放出しないが導電性を備えており、そして活性
層1で生成した電子を集電する層という意味で、以後、
集電層という。この積層構造体A0を負極材料として使
用した場合、充電時には、各活性層1にLiイオンが吸
蔵される。そして、放電時には、活性層1から、そこに
吸蔵されていたLiイオンが放出され、そのときに各活
性層1に供給または生成した電子は、各活性層それ自体
で導電するだけではなく、各活性層1に隣接する集電層
2で集電される。
The layer 1 means an active layer which enables the entire battery reaction by absorbing and releasing Li ions, and is hereinafter referred to as an active layer. The layer 2 also stores and releases Li ions. However, in the sense that it has conductivity and collects electrons generated in the active layer 1,
It is called a current collecting layer. When this laminated structure A 0 is used as a negative electrode material, Li ions are occluded in each active layer 1 during charging. At the time of discharge, the Li ions stored therein are released from the active layer 1, and the electrons supplied to or generated in each active layer 1 at that time are not only electrically conductive in each active layer itself, but also each Current is collected by the current collecting layer 2 adjacent to the active layer 1.

【0020】上記した充放電サイクルが反復する過程
で、活性層1の膨張・収縮によって当該活性層を構成す
る金属材料の粉粒化が起こる。しかしながら、積層構造
体A0では、活性層1はその両面に積層されている集電
層2で挟み込まれており、かつ集電層2は充放電サイク
ルの過程で粉粒化せずに金属薄層のままの状態にあるの
で、活性層1の粉粒化が起こってもその粉粒体が電解質
に分散するという事態は、集電層2が1種の防護壁とな
ることによって抑制される。
In the process of repeating the charge / discharge cycle described above, the expansion and contraction of the active layer 1 causes the metal material constituting the active layer to be pulverized. However, in the laminated structure A 0 , the active layer 1 is sandwiched by the current collecting layers 2 laminated on both sides thereof, and the current collecting layer 2 is not powdered during the charging / discharging cycle and is made of a metal thin film. Since the layer remains as it is, even if the active layer 1 is granulated, the situation in which the granular material is dispersed in the electrolyte is suppressed by the current collecting layer 2 serving as one kind of protective wall. .

【0021】この積層構造体A0において、活性層1を
構成する金属材料としては、Liイオンを吸蔵・放出す
るものであれば何であってもよく、格別限定されるもの
ではなく、例えば、Sn,Zn,Ag,Alなどの金属
や、Cu−Sn合金,Zn含有量が40質量%以上であ
るCu−Zn合金などをあげることができる。また、集
電層2を構成する金属材料はLiイオンを吸蔵・放出し
ないものであればよく、例えば、Cu,Ni,Fe,ス
テンレス鋼,Zn含有量が40質量%より少ないCu−
Zn合金などをあげることができる。
In the laminated structure A 0 , the metal material forming the active layer 1 may be any material as long as it absorbs and releases Li ions, and is not particularly limited. For example, Sn , Zn, Ag, Al and the like, Cu—Sn alloys, and Cu—Zn alloys having a Zn content of 40 mass% or more. Further, the metal material forming the current collecting layer 2 may be one that does not occlude and release Li ions, and for example, Cu, Ni, Fe, stainless steel, and Cu-containing less than 40 mass% of Cu-
A Zn alloy etc. can be mentioned.

【0022】活性層1の厚みはLiイオンのイオン半径
(約0.1nm)以上に設定される。しかしながら、その
厚みが100μmを超えると、Liイオンの吸蔵・放出
が反復する過程で粉粒化が起こりやすくなるので、厚み
の上限は100μm以下に設定することが好ましい。1
0nm〜10μmであることが実用的である。一方、集電
層2の厚みは格別限定されるものではないが、負極材料
としての強度確保という点では厚い方が有効である。し
かし、容量密度の点からいえばできるだけ薄い方が有利
である。電池の要求特性や用いる金属材料の種類によっ
て厚みは適宜に設定されるが、概ね、0.1nm〜100
μm程度であればよい。好ましくは、10nm〜100μ
mである。
The thickness of the active layer 1 is set to be equal to or larger than the ionic radius of Li ions (about 0.1 nm). However, if the thickness exceeds 100 μm, pulverization tends to occur in the process of repeated absorption and desorption of Li ions, so the upper limit of the thickness is preferably set to 100 μm or less. 1
It is practical that the thickness is 0 nm to 10 μm. On the other hand, the thickness of the current collecting layer 2 is not particularly limited, but a thicker one is more effective in securing the strength as the negative electrode material. However, from the viewpoint of capacity density, it is advantageous to be as thin as possible. The thickness is appropriately set depending on the required characteristics of the battery and the type of metal material used, but is generally 0.1 nm to 100 nm.
It may be about μm. Preferably 10 nm to 100 μ
m.

【0023】また、積層構造体A0における活性層1と
集電層2の層数は格別限定されるものではない。しか
し、上記した説明からも明らかなように、1つの活性層
とその両面に積層された2つの集電層を最小単位として
いなければならない。この積層構造体A0は、例えば、
真空蒸着法,圧延箔の積層法,電気めっき法などを適用
して製造することができる。
The number of active layers 1 and current collecting layers 2 in the laminated structure A 0 is not particularly limited. However, as is clear from the above description, one active layer and two current collecting layers laminated on both surfaces thereof must be the minimum unit. This laminated structure A 0 is, for example,
It can be manufactured by applying a vacuum deposition method, a rolling foil laminating method, an electroplating method, or the like.

【0024】例えば真空蒸着法の場合、薄いCu箔を全
体の集電体として用意し、このCu箔の上に、PVD法
やCVD法により、Sn層(活性層),Cu層(集電
層)を交互に所望の層数だけ積層し、最後に集電層であ
るCu層を積層して目的とする積層構造体A0を製造す
ることができる。圧延箔の積層法を適用する場合も、C
u箔とSn箔を交互に積層し、最後にCu層を積層した
のち全体をプレス成形して密着させることによって製造
することができる。
For example, in the case of the vacuum deposition method, a thin Cu foil is prepared as a current collector for the whole, and an Sn layer (active layer) and a Cu layer (current collector layer) are formed on the Cu foil by PVD method or CVD method. The desired laminated structure A 0 can be manufactured by alternately laminating a desired number of layers, and finally laminating a Cu layer which is a current collecting layer. Even when applying the laminated method of rolled foil, C
It can be manufactured by alternately stacking u foils and Sn foils, finally stacking a Cu layer, and then press-molding the whole and bringing them into close contact.

【0025】しかしながら、上記した方法は、各層の厚
みを薄くして、しかも積層する層数を多くする場合には
多大の工数が必要である。その点からいえば、電気めっ
き法は少ない工数で積層構造の形成が可能であるが、活
性層と集電層の金属材料の種類が異なるため、各層の反
復形成にはやはり多大な工数が必要となる。このような
ことからすると、積層構造体A0の製造に際しては、パ
ルスめっき法を適用することが好適である。1種類の電
解液で活性層と集電層を交互に連続的に積層することが
できるからである。
However, the above-mentioned method requires a great number of steps when the thickness of each layer is reduced and the number of layers to be laminated is increased. From that point of view, the electroplating method can form a laminated structure with a small number of steps, but since the types of metal materials of the active layer and the current collecting layer are different, a large number of steps are required to repeatedly form each layer. Becomes From this point of view, it is preferable to apply the pulse plating method when manufacturing the laminated structure A 0 . This is because the active layers and the current collecting layers can be alternately and continuously laminated with one type of electrolytic solution.

【0026】例えば、活性層をCu−Sn合金で形成
し、集電層をCu層で形成する場合、電解液として硫
酸,硫酸銅,硫酸すずを主成分とする水溶液を用い、作
用極(カソード)にステンレス鋼,Ti,Cuなどを用
い、対極(アノード)に鉛を用い、一定時間ごとに通電
電流や通電電位を切り替えることにより、カソード上に
Cuめっき層とCu−Sn合金めっき層を交互に積層す
ることができる。その場合、それぞれのめっき時間を適
宜に選定することにより、めっき層の厚みを任意に変化
させることができる。
For example, when the active layer is formed of a Cu--Sn alloy and the current collecting layer is formed of a Cu layer, an aqueous solution containing sulfuric acid, copper sulfate and tin sulfate as the main components is used as the working electrode (cathode). ) Is made of stainless steel, Ti, Cu, etc., and the counter electrode (anode) is made of lead, and by switching the energizing current and energizing potential at regular intervals, the Cu plating layer and the Cu-Sn alloy plating layer alternate on the cathode. Can be laminated on. In that case, the thickness of the plating layer can be arbitrarily changed by appropriately selecting the respective plating times.

【0027】また、電解銅箔の製造時に使用している電
解ドラム(Tiやステンレス鋼など)をカソードとし、
Pbなどの不溶性電極をアノードとして組み合わせ、上
記したパルスめっき法を適用すれば、本発明の積層構造
体を連続して製造することができる。ところで、図1で
示した積層構造体A0の場合、最下層と最上層はいずれ
もLiイオンを吸蔵しない集電層である。したがって、
この積層構造体A0の周囲に電解質が存在していたとし
ても、Liイオンはこの積層構造体A0の厚み方向から
は活性層に吸蔵されないし、したがって活性層から放出
されることはない。
The electrolytic drum (Ti, stainless steel, etc.) used in the production of the electrolytic copper foil is used as the cathode,
By combining an insoluble electrode such as Pb as an anode and applying the above-described pulse plating method, the laminated structure of the present invention can be continuously manufactured. By the way, in the case of the laminated structure A 0 shown in FIG. 1, both the lowermost layer and the uppermost layer are current collecting layers that do not store Li ions. Therefore,
Even if the electrolyte is present around the laminated structure A 0 , Li ions are not occluded in the active layer from the thickness direction of the laminated structure A 0 and therefore are not released from the active layer.

【0028】Liイオンの活性層への吸蔵と活性層から
の放出、換言すれば、電解質と活性層との間のLiイオ
ンの授受反応は、活性層が表出している箇所、すなわ
ち、図1の積層構造体A0の4つの側面でのみ進行す
る。そのため、図1で示した積層構造体A0のままで
は、活性層は有効に活用されていないことになる。そこ
で、この積層構造体A0を負極材料として実用化するた
めには、活性層と電解質との接触面積を広げて両者間に
おけるLiイオンの授受反応を促進することが必要であ
る。
The absorption and release of Li ions into and from the active layer, in other words, the exchange reaction of Li ions between the electrolyte and the active layer, occurs at the point where the active layer is exposed, that is, in FIG. Only proceed on four sides of the laminated structure A 0 . Therefore, the active layer is not effectively utilized with the laminated structure A 0 shown in FIG. Therefore, in order to put this laminated structure A 0 into practical use as a negative electrode material, it is necessary to widen the contact area between the active layer and the electrolyte to promote the Li ion transfer reaction between them.

【0029】そのために、本発明においては、積層構造
体A0に次のような処置が施されたのち、負極材料とし
て実使用される。第1の処置は、積層構造体A0の厚み
方向に、例えばニードルパンチング加工,エキスパンド
加工,エンボス加工などの手段を講じて積層体の内部に
まで至る多数の微小クラックを形成する処置である。こ
のような処置を施すことにより、微小クラッチから積層
構造体A0の内部にまで電解質が侵入して活性層におけ
る電解質との接触面積が実効的に増加する。
Therefore, in the present invention, the laminated structure A 0 is actually used as a negative electrode material after the following treatment. The first measure is a measure in the thickness direction of the laminated structure A 0 to form a large number of minute cracks reaching the inside of the laminate by taking measures such as needle punching, expanding, and embossing. By performing such a treatment, the electrolyte penetrates from the minute clutch to the inside of the laminated structure A 0 , and the contact area of the active layer with the electrolyte is effectively increased.

【0030】第2の処置は、積層構造体A0を粉砕して
粉末化する処置である。この処置により、現行の炭素材
料の場合と同じように、表出する活性層の面積は増加し
て電解質との接触面積は著しく増加する。これら処置の
うち、後者の粉砕処置は、作業が簡便であり、また活性
層と電解質との接触面積は大幅に増量するという点で有
効である。
The second measure is a process of crushing the laminated structure A 0 into powder. By this treatment, as in the case of the current carbon materials, the exposed active layer area is increased and the contact area with the electrolyte is significantly increased. Of these treatments, the latter pulverization treatment is effective in that the work is simple and the contact area between the active layer and the electrolyte is significantly increased.

【0031】本発明の負極は、上記した負極材料と例え
ばフッ素系樹脂の結着剤を所定の量比で混合し、その混
合物を例えばCu箔の集電体に塗工して製造される。そ
の場合、上記した負極材料(積層構造体)の金属材料は
易酸化性であるため、その表面酸化を防ぐために、実使
用に先立ち、例えばクロム酸溶液に浸漬したのち水洗し
て、表面に防錆皮膜を形成しておくことが好ましい。
The negative electrode of the present invention is manufactured by mixing the above-mentioned negative electrode material and a binder of, for example, a fluororesin at a predetermined ratio, and coating the mixture on a current collector such as a Cu foil. In that case, since the metal material of the above-mentioned negative electrode material (laminated structure) is easily oxidizable, in order to prevent its surface oxidation, it is immersed in, for example, a chromic acid solution and then washed with water to prevent the surface from being oxidized. It is preferable to form a rust film.

【0032】[0032]

【実施例】1)負極材料の製造 下記の条件でパルスめっきを行った。 電解液:H2SO4 1mol/L,SnSO4 1mol/
L,CuSO4 0.1mol/L,液温40℃、 作用極(カソード):縦22cm,幅35cm,厚み1mmの
Ti板(有効面積は500cm2)、 対極(アノード):縦22cm,幅35cm,厚み5mmのP
b板(不溶性電極)、 パルス通電の態様:パルス通電時間はT1(1秒),T2
(5秒)の2種類とし、パルス時間T1のときの電流密
度は1A/dm2,パルス時間T2のときの電流密度は5A
/dm2に設定。
EXAMPLES 1) Production of Negative Electrode Material Pulse plating was performed under the following conditions. Electrolyte: H 2 SO 4 1 mol / L, SnSO 4 1 mol /
L, CuSO 4 0.1 mol / L, liquid temperature 40 ° C., working electrode (cathode): vertical 22 cm, width 35 cm, thickness 1 mm Ti plate (effective area 500 cm 2 ), counter electrode (anode): vertical 22 cm, width 35 cm , P with a thickness of 5 mm
b plate (insoluble electrode), mode of pulse energization: pulse energization time is T 1 (1 second), T 2
(5 seconds), the current density at the pulse time T 1 is 1 A / dm 2 , and the current density at the pulse time T 2 is 5 A.
Set to / dm 2 .

【0033】そして、上記パルス通電を120回反復。
上記したパルスめっきを行ったのち、Ti板から析出物
を剥離した。面積が約500cm2で厚みが10μm(平
均値)のシートが得られた。このシートの断面を走査電
顕で観察したところ、シートは層状構造になっていて、
パルス通電T1時の層はいずれも厚み約3nmであり、パ
ルス通電T2時の層はいずれも厚み約80nmであった。
Then, the pulse energization is repeated 120 times.
After performing the above-mentioned pulse plating, the deposit was peeled off from the Ti plate. A sheet having an area of about 500 cm 2 and a thickness of 10 μm (average value) was obtained. When the cross section of this sheet was observed with a scanning electron microscope, the sheet had a layered structure,
The layers under pulsed current T 1 had a thickness of about 3 nm, and the layers under pulsed current T 2 had a thickness of about 80 nm.

【0034】また、シートからサンプルを採取し、その
表面からEPMA分析を行ったところ、パルス通電T1
時の層はほとんど純銅から成り、パルス通電T2時の層
はCu−Sn合金から成り、そのSn含有率は約60質
量%であった。ついで、シートをカッタミルで粗粉砕
し、更に振動ミルで粉砕して平均粒径3μmの粉末にし
た。その後、この粉末を濃度5%のクロム酸溶液に1分
間浸漬し、水洗後乾燥して本発明の負極材料とした。
Further, when a sample was taken from the sheet and EPMA analysis was performed from the surface thereof, pulse energization T 1
The layer at the time was almost pure copper, the layer at the time of pulse current T 2 was Cu—Sn alloy, and the Sn content was about 60 mass%. Then, the sheet was roughly pulverized by a cutter mill and further pulverized by a vibration mill to obtain a powder having an average particle size of 3 μm. Then, this powder was immersed in a chromic acid solution having a concentration of 5% for 1 minute, washed with water and dried to obtain a negative electrode material of the present invention.

【0035】2)Liイオン二次電池の組み立て 上記した粉末とフッ素系結着剤を重量比9:1で混合
し、その混合物を、幅60mm,長さ600mmの圧延銅箔
の両面にそれぞれ厚み40μmで塗工して本発明の負極
を製造した。なお、上記塗膜におけるSnの割合は、約
50質量%であった。
2) Assembly of Li-ion secondary battery The above powder and a fluorine-based binder were mixed in a weight ratio of 9: 1, and the mixture was formed on both sides of a rolled copper foil having a width of 60 mm and a length of 600 mm, respectively. The negative electrode of the present invention was manufactured by coating at 40 μm. The Sn content in the coating film was about 50% by mass.

【0036】一方、コバルト酸リチウム,フッ素系結着
剤,黒鉛粉末を重量比8:1:1で混合し、その混合物
を、幅60mm,長さ600mm,厚み20μmのアルミ箔
の両面にそれぞれ厚み160μmで塗工して正極を製造
した。ついで、負極と正極の間にポリプロピレン製のセ
パレータを挟み込み、全体を渦巻状に巻回して直径18
mm,高さ65mmの円柱極板を成形した。
On the other hand, lithium cobalt oxide, a fluorine-based binder, and graphite powder were mixed in a weight ratio of 8: 1: 1, and the mixture was applied to both sides of an aluminum foil having a width of 60 mm, a length of 600 mm and a thickness of 20 μm. A positive electrode was manufactured by coating with a thickness of 160 μm. Then, a polypropylene separator is sandwiched between the negative electrode and the positive electrode, and the whole is spirally wound to have a diameter of 18
A cylindrical electrode plate having a height of 65 mm and a height of 65 mm was formed.

【0037】その円柱極板をステンレス鋼製の有底円筒
容器に収容し、更に、電解質がLiBF4で、溶媒がエ
チレンカーボネートとジメチルカーボネートの非水混合
液である電解液を注入し、正・負極端子を取り出したの
ち封口して、電池容量2000mAhの円筒型Liイオン
二次電池を組み立てた。比較のために、負極材料が黒鉛
粉末であり、負極の塗工厚みが100μm,正極の塗工
厚みが100μmであったことを除いては実施例と同様
の仕様で円筒型Liイオン二次電池を組み立てた。この
電池を比較例1とする。
The cylindrical electrode plate was placed in a bottomed cylindrical container made of stainless steel, and an electrolyte solution of LiBF 4 was used as a solvent, and a solvent was a nonaqueous mixed solution of ethylene carbonate and dimethyl carbonate. The negative electrode terminal was taken out and then sealed to assemble a cylindrical Li-ion secondary battery with a battery capacity of 2000 mAh. For comparison, a cylindrical Li-ion secondary battery having the same specifications as in the example except that the negative electrode material was graphite powder, the negative electrode had a coating thickness of 100 μm, and the positive electrode had a coating thickness of 100 μm. Assembled. This battery is referred to as Comparative Example 1.

【0038】また、負極材料が平均粒径3μmのCu−
Sn合金粉末(Sn含有量は約55質量%)であったこ
とを除いては、実施例と同様の仕様で円筒型Liイオン
二次電池を組み立てた。この電池を比較例2とする。 3)特性 これら3種類の電池につき、電流2.0A(1C)で1
時間の定電流充電を行ったのち、電池電圧4.2Vの定
電圧充電を1.5時間行い、また放電は0.4A(0.2
C)で行い、端子電圧が2.5Vにまで低下した時点で
放電を停止する充放電サイクルを反復した。
Further, the negative electrode material is Cu-having an average particle size of 3 μm.
A cylindrical Li-ion secondary battery was assembled with the same specifications as in the example except that the Sn alloy powder (Sn content was about 55 mass%) was used. This battery is referred to as Comparative Example 2. 3) Characteristics For these 3 types of batteries, the current is 2.0A (1C) and 1
After constant time constant current charging, battery voltage 4.2V constant voltage charging for 1.5 hours, discharge 0.4A (0.2
The charging / discharging cycle was repeated in which the discharge was stopped when the terminal voltage dropped to 2.5V.

【0039】そして、5サイクル後の電池容量を測定
し、また電池容量が初期容量の70%未満になるまでの
サイクル数を計測し、その値を電池劣化までのサイクル
数とした。そして、上記サイクル数が800サイクルを
超える場合は、電池性能は良好であるとして充放電サイ
クル試験を停止した。以上の結果を表1に示す。
Then, the battery capacity after 5 cycles was measured, and the number of cycles until the battery capacity became less than 70% of the initial capacity was measured, and the value was taken as the number of cycles until battery deterioration. When the number of cycles was more than 800, the battery performance was considered to be good and the charge / discharge cycle test was stopped. The above results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、本発明の負極材
料を用いた実施例の電池は、現行の黒鉛材料を負極材料
とする比較例1の電池に比べて、その電池容量は50%
以上増加しており、しかもそのサイクル寿命は略同等で
ある。また、Cu−Sn合金を負極材料とする比較例2
の電池は、比較例1の電池に比べてその電池容量が75
%以上増加しているとはいえ、そのサイクル寿命は極度
に劣化している。
As is clear from Table 1, the battery of the example using the negative electrode material of the present invention has a battery capacity of 50% as compared with the battery of the comparative example 1 using the current graphite material as the negative electrode material.
The cycle life has increased and the cycle life is almost the same. Further, Comparative Example 2 in which a Cu—Sn alloy is used as the negative electrode material
The battery of No. 1 has a battery capacity of 75 compared to the battery of Comparative Example 1.
%, The cycle life is extremely deteriorated.

【0042】[0042]

【発明の効果】以上の説明で明らかなように、本発明の
負極材料は、現行の黒鉛材料を用いた場合と対比して、
電池容量の大幅な増加を可能にし、同時に略同等のサイ
クル寿命特性を保障している。したがって、高容量化,
小型化が強く求められているLi二次電池用の負極材料
として有用であり、その工業的価値は極めて大である。
As is apparent from the above description, the negative electrode material of the present invention is compared with the case where the current graphite material is used.
It enables a significant increase in battery capacity and at the same time guarantees approximately the same cycle life characteristics. Therefore, high capacity,
It is useful as a negative electrode material for Li secondary batteries, which are strongly demanded to be miniaturized, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の負極材料の1例を示す概略図である。FIG. 1 is a schematic view showing an example of a negative electrode material of the present invention.

【符号の説明】[Explanation of symbols]

0 積層構造体 1 Liイオンを吸蔵・放出する金属材料の層(活性
層) 2 Liイオンを吸蔵・放出しない金属材料の層(集
電層)
A 0 Laminated structure 1 Layer of metal material that absorbs and releases Li ions (active layer) 2 Layer of metal material that does not absorb and release Li ions (collection layer)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL11 AM03 AM05 BJ02 BJ12 BJ14 CJ08 CJ22 CJ24 DJ07 DJ16 DJ17 EJ01 HJ01 HJ04 5H050 AA07 AA08 BA07 CA08 CB11 DA06 DA07 DA08 DA10 EA03 EA04 FA02 FA17 FA18 GA10 GA22 GA24 HA01 HA04    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ05 AK03 AL11 AM03                       AM05 BJ02 BJ12 BJ14 CJ08                       CJ22 CJ24 DJ07 DJ16 DJ17                       EJ01 HJ01 HJ04                 5H050 AA07 AA08 BA07 CA08 CB11                       DA06 DA07 DA08 DA10 EA03                       EA04 FA02 FA17 FA18 GA10                       GA22 GA24 HA01 HA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Liイオンを吸蔵・放出する金属または
合金から成る活性層と、Liイオンを吸蔵・放出しない
金属または合金から成る集電層とが、交互に積層されて
いる積層構造体を基本単位として含むことを特徴とす
る、Li二次電池用の負極材料。
1. A laminated structure, in which an active layer made of a metal or alloy that absorbs and releases Li ions and a current collecting layer that is made of a metal or alloy that does not absorb and release Li ions are alternately laminated. A negative electrode material for a Li secondary battery, characterized in that it is included as a unit.
【請求項2】 前記積層構造体の最外層は前記集電層に
なっている請求項1のLi二次電池用の負極材料。
2. The negative electrode material for a Li secondary battery according to claim 1, wherein the outermost layer of the laminated structure is the current collecting layer.
【請求項3】 前記活性層の厚みが0.1nm〜100μ
mであり、前記集電層の厚みが0.1nm〜100μmで
ある、請求項1のLi二次電池用の負極材料。
3. The active layer has a thickness of 0.1 nm to 100 μm.
m, and the thickness of the current collecting layer is 0.1 nm to 100 μm, and the negative electrode material for a Li secondary battery according to claim 1.
【請求項4】 前記活性層を構成する金属または合金
が、Sn,Zn,Ag,Al,Cu−Sn合金またはZ
n含有量が40質量%以上であるCu−Zn合金であ
る、請求項1〜3のいずれかのLi二次電池用の負極材
料。
4. The metal or alloy forming the active layer is Sn, Zn, Ag, Al, Cu—Sn alloy or Z.
The negative electrode material for a Li secondary battery according to claim 1, which is a Cu—Zn alloy having an n content of 40 mass% or more.
【請求項5】 前記集電層を構成する金属または合金
が、Cu,Ni,Fe,ステンレス鋼、またはZn含有
量が40質量%より少ないCu−Zn合金である、請求
項1〜4のいずれかのLi二次電池用の負極材料。
5. The metal or alloy forming the current collecting layer is Cu, Ni, Fe, stainless steel, or a Cu—Zn alloy having a Zn content of less than 40% by mass. A negative electrode material for such a Li secondary battery.
【請求項6】 前記積層構造体は、パルスめっき法で製
造されている、請求項1〜5のいずれかのLi二次電池
用の負極材料。
6. The negative electrode material for a Li secondary battery according to claim 1, wherein the laminated structure is manufactured by a pulse plating method.
【請求項7】 前記積層構造体の厚み方向には、複数個
の亀裂が形成されている、請求項1〜6のいずれかのL
i二次電池用の負極材料。
7. The L according to claim 1, wherein a plurality of cracks are formed in a thickness direction of the laminated structure.
i Negative electrode material for secondary battery.
【請求項8】 請求項1〜6のいずれかの負極材料の粉
末と結着剤との混合物が、集電体の片面または両面に塗
工されていることを特徴とする、Li二次電池用の負
極。
8. A Li secondary battery, wherein the mixture of the powder of the negative electrode material according to any one of claims 1 to 6 and a binder is coated on one side or both sides of a current collector. Negative electrode for.
JP2001367254A 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same Expired - Fee Related JP3565272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367254A JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367254A JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Publications (2)

Publication Number Publication Date
JP2003168425A true JP2003168425A (en) 2003-06-13
JP3565272B2 JP3565272B2 (en) 2004-09-15

Family

ID=19177032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367254A Expired - Fee Related JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Country Status (1)

Country Link
JP (1) JP3565272B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
WO2006027886A1 (en) * 2004-09-09 2006-03-16 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
JP2006253095A (en) * 2005-03-14 2006-09-21 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2007141605A (en) * 2005-11-17 2007-06-07 Sony Corp Anode and battery
WO2007077870A1 (en) * 2005-12-27 2007-07-12 Matsushita Electric Industrial Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery using same
JP2007250357A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
US7838154B2 (en) 2004-09-09 2010-11-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery
JP2015049965A (en) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 Electrode for secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
WO2006027886A1 (en) * 2004-09-09 2006-03-16 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery
US7838154B2 (en) 2004-09-09 2010-11-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery
JP2006253095A (en) * 2005-03-14 2006-09-21 Mitsui Mining & Smelting Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2007141605A (en) * 2005-11-17 2007-06-07 Sony Corp Anode and battery
WO2007077870A1 (en) * 2005-12-27 2007-07-12 Matsushita Electric Industrial Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery using same
US8080337B2 (en) 2005-12-27 2011-12-20 Panasonic Corporation Electrode for lithium secondary battery and lithium secondary battery using same
JP5237642B2 (en) * 2005-12-27 2013-07-17 パナソニック株式会社 Electrode for lithium secondary battery and lithium secondary battery using the same
JP2007250357A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2015049965A (en) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 Electrode for secondary battery

Also Published As

Publication number Publication date
JP3565272B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP4367311B2 (en) battery
JP5039956B2 (en) Negative electrode active material, negative electrode and lithium secondary battery
JP3935067B2 (en) Secondary battery negative electrode and secondary battery using the same
JP4024254B2 (en) Non-aqueous electrolyte secondary battery
JP4609048B2 (en) Negative electrode for secondary battery and secondary battery
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP3664253B2 (en) Secondary battery negative electrode and secondary battery using the same
JPH09115523A (en) Nonaqueous electrolytic secondary battery
WO2001073872A1 (en) Rechargeable battery
US20190229329A1 (en) Electrode for secondary battery and manufacturing method therefor
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004022306A (en) Negative electrode for lithium battery, and manufacturing method of same
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP3565272B2 (en) Negative electrode material for Li secondary battery, negative electrode using the same
JP2007299801A (en) Energy storing element
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP5098144B2 (en) Negative electrode and battery
JP3707617B2 (en) Negative electrode and battery using the same
JP2005085632A (en) Battery
US7524585B2 (en) Anode and battery using it
US9263742B2 (en) Negative electrode active substance for lithium secondary battery and method for producing same
JP5865841B2 (en) Anode material for lithium secondary battery
JP2006155960A (en) Negative electrode and battery
JP2006059712A (en) Negative electrode and battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Ref document number: 3565272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees