JP2007141605A - Anode and battery - Google Patents

Anode and battery Download PDF

Info

Publication number
JP2007141605A
JP2007141605A JP2005332624A JP2005332624A JP2007141605A JP 2007141605 A JP2007141605 A JP 2007141605A JP 2005332624 A JP2005332624 A JP 2005332624A JP 2005332624 A JP2005332624 A JP 2005332624A JP 2007141605 A JP2007141605 A JP 2007141605A
Authority
JP
Japan
Prior art keywords
negative electrode
atomic
current collector
reaction part
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005332624A
Other languages
Japanese (ja)
Other versions
JP4877475B2 (en
Inventor
Tomoo Takada
智雄 高田
Kenichi Kawase
賢一 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005332624A priority Critical patent/JP4877475B2/en
Publication of JP2007141605A publication Critical patent/JP2007141605A/en
Application granted granted Critical
Publication of JP4877475B2 publication Critical patent/JP4877475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode restrained from collapse of shape, capable of improving characteristics, and a battery using the same. <P>SOLUTION: An electrode reaction part of the anode 12 is supported by an anode current collector having three dimensional structure. The electrode reaction part contains anode activator containing Sn and first elements (Zn, Al, Ag, In, Sb, Pb or the like) other than Sn not electrochemically reacting with Li, and second elements (Co, Cu, Mn, Fe, Ni, Cr or the like) not electrochemically reacting with Li. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構成元素としてスズ(Sn)を含む負極、およびそれを用いた電池に関する。   The present invention relates to a negative electrode containing tin (Sn) as a constituent element, and a battery using the same.

近年、モバイル機器の高性能化および多機能化に伴い、または電気自動車などの駆動用として、それらの電源である二次電池の高容量化および高出力化が切望されている。この要求に応える二次電池としてリチウム二次電池がある。しかし、現在におけるリチウム二次電池の代表的な形態である、正極にコバルト酸リチウム、負極に黒鉛を用いた場合の電池容量は飽和状態にあり、大幅な高容量化は極めて困難な状況である。そこで、古くから負極に金属リチウム(Li)を用いることが検討されているが、この負極を実用化するには、リチウムの析出溶解効率の向上およびデンドライト状の析出形態の制御などを図る必要がある。   2. Description of the Related Art In recent years, as mobile devices have higher performance and more functions, or for driving electric vehicles or the like, there is a strong demand for higher capacity and higher output of secondary batteries that are power sources thereof. There is a lithium secondary battery as a secondary battery that meets this requirement. However, when lithium cobaltate is used for the positive electrode and graphite is used for the negative electrode, which is a typical form of the present lithium secondary battery, the battery capacity is in a saturated state, and it is extremely difficult to increase the capacity significantly. . Therefore, the use of metallic lithium (Li) for the negative electrode has been studied for a long time. However, in order to put this negative electrode into practical use, it is necessary to improve the precipitation and dissolution efficiency of lithium and control the dendrite-like precipitation form. is there.

その一方で、最近、スズなどを用いた高容量の負極の検討が盛んに行われている。しかし、これらの負極は充放電を繰り返すと、活物質の激しい膨張および収縮により粉砕して微細化し、集電性が低下したり、表面積の増大に起因して電解液の分解反応が促進され、サイクル特性は極めて劣悪であった。そこで、負極集電体に三次元構造を有する金属不織布を用いることにより、特性を向上させることが提案されている(例えば、特許文献1参照)。
特開2003−308831号公報
On the other hand, recently, a high capacity negative electrode using tin or the like has been actively studied. However, when these negative electrodes are repeatedly charged and discharged, they are pulverized and refined by vigorous expansion and contraction of the active material, current collection is reduced, or decomposition reaction of the electrolyte is promoted due to an increase in surface area, The cycle characteristics were extremely poor. Thus, it has been proposed to improve the characteristics by using a metal nonwoven fabric having a three-dimensional structure for the negative electrode current collector (see, for example, Patent Document 1).
JP 2003-308831 A

しかしながら、三次元構造を有する負極集電体を用いても、充放電に伴う活物質の膨張収縮は抑制することができず、形状崩壊により特性が低下してしまうという問題があった。特に、サイクルを繰り返したのちに高温状態に放置したり、または、高電流値で放電を行った場合などに特性の劣化が著しく、改善が求められていた。   However, even when a negative electrode current collector having a three-dimensional structure is used, there is a problem that the expansion and contraction of the active material due to charge and discharge cannot be suppressed, and the characteristics are deteriorated due to the shape collapse. In particular, when the cycle is repeated and then left in a high temperature state or when discharge is performed at a high current value, the characteristics are significantly deteriorated, and improvement has been demanded.

本発明はかかる問題点に鑑みてなされたもので、その目的は、形状崩壊を抑制し、特性を向上させることができる負極およびそれを用いた電池を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a negative electrode capable of suppressing shape collapse and improving characteristics and a battery using the same.

本発明による負極は、三次元構造を有する負極集電体と、スズと、スズ以外でリチウムと電気化学的に反応可能な第1元素と、リチウムと電気化学的に反応しない第2元素とを含む電極反応部とを有するものである。   The negative electrode according to the present invention comprises a negative electrode current collector having a three-dimensional structure, tin, a first element that can electrochemically react with lithium other than tin, and a second element that does not electrochemically react with lithium. Including an electrode reaction part.

本発明による電池は、正極および負極と共に電解質を備えたものであって、負極は、負極集電体と、電極反応部とを有し、負極集電体は、三次元構造を有し、電極反応部は、スズと、スズ以外でリチウムと電気化学的に反応可能な第1元素と、リチウムと電気化学的に反応しない第2元素とを含むものである。   A battery according to the present invention includes an electrolyte together with a positive electrode and a negative electrode, the negative electrode has a negative electrode current collector and an electrode reaction part, the negative electrode current collector has a three-dimensional structure, The reaction part includes tin, a first element that can electrochemically react with lithium other than tin, and a second element that does not electrochemically react with lithium.

本発明の負極によれば、三次元構造を有する負極集電体を用い、スズと第1元素と第2元素とを含む電極反応部を有するようにしたので、電極反応部が膨張収縮しても、負極集電体との密着性を向上させることができると共に、形状崩壊を抑制することができる。よって、この負極を用いた本発明の電池によれば、負極の集電性を確保することができると共に、電極反応部の形状崩壊に伴う電解質の分解反応を抑制することができる。従って、高温状態に放置したり、または、高電流値で放電を行うなどの過酷な条件で使用しても、優れた特性を得ることができる。   According to the negative electrode of the present invention, since the negative electrode current collector having a three-dimensional structure is used and the electrode reaction part including tin, the first element, and the second element is provided, the electrode reaction part expands and contracts. Moreover, while being able to improve adhesiveness with a negative electrode electrical power collector, shape collapse can be suppressed. Therefore, according to the battery of the present invention using this negative electrode, the current collecting property of the negative electrode can be secured, and the decomposition reaction of the electrolyte accompanying the shape collapse of the electrode reaction part can be suppressed. Therefore, excellent characteristics can be obtained even when used under severe conditions such as leaving in a high temperature state or discharging at a high current value.

特に、第1元素として、亜鉛(Zn),アルミニウム(Al),銀(Ag),インジウム(In),アンチモン(Sb)および鉛(Pb)からなる群のうちの少なくとも1種を含むようにすれば、また、第2元素として、コバルト(Co),銅(Cu),マンガン(Mn),鉄(Fe),ニッケル(Ni)およびクロム(Cr)からなる群のうちの少なくとも1種を含むようにすれば、より高い効果を得ることができる。   In particular, the first element may include at least one selected from the group consisting of zinc (Zn), aluminum (Al), silver (Ag), indium (In), antimony (Sb), and lead (Pb). For example, the second element includes at least one selected from the group consisting of cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), and chromium (Cr). If so, a higher effect can be obtained.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施の形態に係る負極は、負極集電体と、この負極集電体に支持されている電極反応部とを有している。負極集電体は、例えば、銅、ニッケル、チタン(Ti)、ステンレス、またはそれらの少なくとも1種を含むリチウムとの反応性が低い金属材料により構成されており、三次元構造を有している。三次元構造とすることにより、電極反応部と負極集電体との接触面積が増大し密着性を向上させることができるからである。なお、三次元構造というのは、発泡金属に代表される発泡体のような網目構造を有するものであり、内包される空隙は連続的につながっていても、分離されていてもよい。このほか三次元構造を有するものには、例えば、織物あるいは不織布などの繊維を加工したもの、または、めっきにより三次元構造体を形成したものが挙げられる。また、繊維を加工したものとしては、金属繊維を加工したものでも、有機繊維を加工した織物あるいは不織布などの表面に金属被膜を形成したものでもよい。   A negative electrode according to an embodiment of the present invention includes a negative electrode current collector and an electrode reaction part supported by the negative electrode current collector. The negative electrode current collector is made of, for example, copper, nickel, titanium (Ti), stainless steel, or a metal material having low reactivity with lithium including at least one of them, and has a three-dimensional structure. . This is because, by using a three-dimensional structure, the contact area between the electrode reaction part and the negative electrode current collector can be increased and the adhesion can be improved. The three-dimensional structure has a network structure such as a foam represented by foam metal, and the voids included may be continuously connected or separated. In addition, what has a three-dimensional structure includes, for example, one obtained by processing a fiber such as a woven fabric or a non-woven fabric, or one obtained by forming a three-dimensional structure by plating. Moreover, as what processed the fiber, what processed the metal fiber and what formed the metal film on the surface of the textile fabric or nonwoven fabric which processed the organic fiber may be used.

電極反応部は、構成元素として、スズと、スズ以外でリチウムと電気化学的に反応可能な第1元素と、リチウムと電気化学的に反応しない第2元素とを含む負極活物質を含有している。このようにスズと膨張率の異なる第1元素およびリチウムと反応しない第2元素を含むことにより、リチウムを吸蔵放出する際の膨張収縮による形状崩壊を抑制することができるようになっている。第1元素としては、例えば、亜鉛,アルミニウム,銀,インジウム,アンチモンおよび鉛が挙げられ、1種でもよいが2種以上を含んでいてもよい。第2元素としては、例えば、コバルト,銅,マンガン,鉄,ニッケルおよびクロムが挙げられ、1種でもよいが2種以上を含んでいてもよい。電極反応部におけるこれらの含有量は、スズが40原子%以上90原子%以下、第1元素が5原子%以上40原子%以下、第5元素が2原子%以上40原子%以下であることが好ましい。第1元素および第2元素の含有量が少ないと形状崩壊を十分に抑制することができず、多いとスズの含有量が少なくなるので容量が低下してしまうからである。   The electrode reaction part contains, as constituent elements, a negative electrode active material containing tin, a first element that can electrochemically react with lithium other than tin, and a second element that does not electrochemically react with lithium. Yes. Thus, by including the 1st element in which an expansion coefficient differs from tin, and the 2nd element which does not react with lithium, shape collapse by expansion contraction at the time of occlusion / release of lithium can be suppressed. Examples of the first element include zinc, aluminum, silver, indium, antimony, and lead. One type may be used, but two or more types may be included. Examples of the second element include cobalt, copper, manganese, iron, nickel, and chromium. One type may be used, or two or more types may be included. The content of these in the electrode reaction part is that tin is 40 atomic% to 90 atomic%, the first element is 5 atomic% to 40 atomic%, and the fifth element is 2 atomic% to 40 atomic%. preferable. This is because, when the contents of the first element and the second element are small, shape collapse cannot be sufficiently suppressed, and when the contents are large, the content of tin is reduced and the capacity is reduced.

電極反応部は、負極集電体内部の空隙に存在していてもよく、負極集電体の上に層を形成して存在していてもよく、その両方に存在していてもよい。また、電極反応部の少なくとも一部には、負極集電体の構成元素が拡散していることが好ましい。電極反応部の形状崩壊をより抑制することができるからである。   The electrode reaction part may exist in the void inside the negative electrode current collector, may exist by forming a layer on the negative electrode current collector, or may exist in both of them. Moreover, it is preferable that the constituent element of the negative electrode current collector is diffused in at least a part of the electrode reaction part. It is because shape collapse of the electrode reaction part can be further suppressed.

なお、電極反応部に含まれる負極活物質は粒子状でも粒子状でなくてもよいが、粒子状のものを用いる場合には、負極活物質粒子の平均粒径は、0.1μm以上であることが好ましく、30μm以下であればより好ましい。平均粒径があまり小さいと表面積が増大し、電解質の分解反応が増加してしまい、あまり大きいと膨張収縮による形状崩壊が生じやすくなるからである。また、負極活物質粒子は、少なくとも一部において互いに融着していることが好ましい。膨張収縮による形状崩壊を抑制することができるからである。   The negative electrode active material contained in the electrode reaction part may be either particulate or non-particulate, but when a particulate material is used, the average particle diameter of the negative electrode active material particles is 0.1 μm or more. Preferably, it is more preferably 30 μm or less. This is because if the average particle size is too small, the surface area increases and the decomposition reaction of the electrolyte increases, and if it is too large, the shape collapses easily due to expansion and contraction. Moreover, it is preferable that the negative electrode active material particles are fused to each other at least partially. This is because shape collapse due to expansion and contraction can be suppressed.

更に、負極活物質粒子を用いる場合には、負極活物質粒子に加えて、必要に応じて導電材または結着材などの他の材料を含有していてもよい。導電材は特に限定されるものではなく、充放電電位域において化学的に安定で、電子伝導性に優れているものが好ましい。結着材も特に限定されるものではなく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、あるいはテトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体などの熱可塑性樹脂または熱硬化性樹脂を用いることができる。また、負極活物質粒子とは別に、上述した第1元素または第2元素を含む単体、合金あるいは化合物の粒子を含有していてもよい。   Furthermore, when using negative electrode active material particles, in addition to the negative electrode active material particles, other materials such as a conductive material or a binder may be contained as required. The conductive material is not particularly limited, and a conductive material that is chemically stable in the charge / discharge potential region and excellent in electron conductivity is preferable. The binder is not particularly limited, and for example, a thermoplastic resin or a thermosetting resin such as polyvinylidene fluoride, polytetrafluoroethylene, or a copolymer of tetrafluoroethylene and hexafluoropropylene is used. it can. In addition to the negative electrode active material particles, particles of a simple substance, an alloy, or a compound containing the first element or the second element described above may be included.

この負極は、例えば、三次元構造を有する負極集電体に、負極活物質粒子を分散媒に分散させて塗布または噴霧などして付着させたのち、分散媒を除去して電極反応部を形成することにより作製することができる。その際、負極活物質粒子と共に、必要に応じて導電材または結着材などの他の材料を分散媒に分散させて、付着させるようにしてもよい。また、例えば、分散媒を除去したのちに熱処理を行うことにより、負極活物質粒子同士を融着させると共に、負極活物質粒子に負極集電体の構成元素を拡散させることが好ましい。   For example, the negative electrode is formed by dispersing the negative electrode active material particles in a dispersion medium and applying or spraying the negative electrode current collector having a three-dimensional structure, and then removing the dispersion medium to form an electrode reaction part. It can produce by doing. At that time, other materials such as a conductive material or a binder may be dispersed in a dispersion medium and attached together with the negative electrode active material particles as necessary. In addition, for example, it is preferable to perform heat treatment after removing the dispersion medium to fuse the negative electrode active material particles with each other and to diffuse the constituent elements of the negative electrode current collector into the negative electrode active material particles.

更に、この負極は、三次元構造を有する負極集電体に、気相法、液相法または溶射法などにより負極活物質を物理的または化学的に直接堆積させて電極反応部を形成することにより作製してもよい。この場合も、負極活物質を堆積させたのちに熱処理を行うことにより、電極反応部の構成元素同士を相互拡散させると共に、電極反応部に負極集電体の構成元素を拡散させることが好ましい。   Further, the negative electrode is formed by directly or physically depositing a negative electrode active material on a negative electrode current collector having a three-dimensional structure by a vapor phase method, a liquid phase method or a thermal spraying method to form an electrode reaction part. You may produce by. Also in this case, it is preferable to diffuse the constituent elements of the negative electrode current collector in the electrode reaction section while causing the constituent elements of the electrode reaction section to mutually diffuse by performing heat treatment after depositing the negative electrode active material.

この負極は例えば次のようにして二次電池に用いられる。   This negative electrode is used for a secondary battery as follows, for example.

図1は、その二次電池の構成を表すものである。この二次電池は、いわゆるコイン型といわれるものであり、外装カップ11内に収容された負極12と、外装缶13内に収容された正極14とが、セパレータ15を介して積層されたものである。外装カップ11および外装缶13の周縁部は絶縁性のガスケット16を介してかしめることにより密閉されている。外装カップ11および外装缶13は、例えば、ステンレスあるいはアルミニウムなどの金属によりそれぞれ構成されている。   FIG. 1 shows the configuration of the secondary battery. The secondary battery is a so-called coin-type battery, in which a negative electrode 12 accommodated in an exterior cup 11 and a positive electrode 14 accommodated in an exterior can 13 are stacked via a separator 15. is there. The peripheral portions of the outer cup 11 and the outer can 13 are sealed by caulking through an insulating gasket 16. The exterior cup 11 and the exterior can 13 are made of, for example, a metal such as stainless steel or aluminum.

負極12は、上述した構造を有しており、正極14は、例えば、正極集電体14Aと、正極集電体14Aに設けられた正極活物質層14Bとを有している。正極集電体14Aは、例えば、アルミニウム,ニッケルあるいはステンレスなどにより構成されている。   The negative electrode 12 has the structure described above, and the positive electrode 14 includes, for example, a positive electrode current collector 14A and a positive electrode active material layer 14B provided on the positive electrode current collector 14A. The positive electrode current collector 14A is made of, for example, aluminum, nickel, stainless steel, or the like.

正極活物質層14Bは、例えば、正極活物質としてリチウムを吸蔵および離脱することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよい。リチウムを吸蔵および離脱することが可能な正極材料としては、例えば、一般式Lix MIO2 で表されるリチウム含有金属複合酸化物が好ましい。これを含むことにより、高容量化を図ることができるからである。なお、MIは1種類以上の遷移金属であり、例えばコバルト,ニッケルおよびマンガンからなる群のうちの少なくとも1種が好ましい。xは電池の充放電状態によって異なり、通常0.05≦x≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO2 あるいはLiNiO2 などが挙げられる。 The positive electrode active material layer 14B includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a conductive agent such as a carbon material and the like as necessary. A binder such as polyvinylidene fluoride may be included. As the positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing metal composite oxide represented by the general formula Li x MIO 2 is preferable. This is because by including this, the capacity can be increased. MI is one or more transition metals, and for example, at least one of the group consisting of cobalt, nickel and manganese is preferable. x varies depending on the charge / discharge state of the battery and is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium-containing metal composite oxide include LiCoO 2 and LiNiO 2 .

セパレータ15は、負極12と正極14とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものであり、例えば、ポリエチレンやポリプロピレンにより構成されている。   The separator 15 separates the negative electrode 12 and the positive electrode 14 and allows lithium ions to pass while preventing a short circuit of current due to contact between both electrodes, and is made of, for example, polyethylene or polypropylene.

セパレータ15には、液状の電解質である電解液が含浸されている。この電解液は、例えば、溶媒と、この溶媒に溶解された電解質塩であるリチウム塩とを含んでおり、必要に応じて各種添加剤を含んでいてもよい。このように電解液を用いるようにすれば、高いイオン伝導率を得ることができるので好ましい。溶媒としては、例えば、炭酸エチレン,炭酸プロピレン,炭酸ジメチル,炭酸ジエチルあるいは炭酸エチルメチル等の有機溶媒が挙げられる。溶媒は、いずれか1種を用いてもよく、2種以上を混合して用いてもよい。   The separator 15 is impregnated with an electrolytic solution that is a liquid electrolyte. This electrolytic solution contains, for example, a solvent and a lithium salt that is an electrolyte salt dissolved in this solvent, and may contain various additives as necessary. It is preferable to use the electrolytic solution in this way because high ionic conductivity can be obtained. Examples of the solvent include organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Any 1 type may be used for a solvent and 2 or more types may be mixed and used for it.

リチウム塩としては、例えば、LiPF6 あるいはLiClO4 が挙げられる。リチウム塩は、いずれか1種を用いてもよく、2種以上を混合して用いてもよい。 Examples of the lithium salt include LiPF 6 and LiClO 4 . Any one lithium salt may be used, or two or more lithium salts may be mixed and used.

この二次電池は、例えば、正極14、電解液が含浸されたセパレータ15および負極12を積層して、外装缶13と外装カップ11との中に入れ、それらをかしめることにより製造することができる。   This secondary battery can be manufactured, for example, by laminating the positive electrode 14, the separator 15 impregnated with the electrolyte, and the negative electrode 12, placing them in the outer can 13 and the outer cup 11, and caulking them. it can.

この二次電池では、充電を行うと、例えば、正極14からリチウムイオンが離脱し、電解液を介して負極12に吸蔵される。放電を行うと、例えば、負極12からリチウムイオンが離脱し、電解液を介して正極14に吸蔵される。その際、負極12は、三次元構造を有する負極集電体により、スズと第1元素と第2元素とを含む電極反応部を支持するようにしたので、充放電に伴い電極反応部が大きく膨張収縮しても、形状崩壊が抑制される。   In this secondary battery, when charged, for example, lithium ions are released from the positive electrode 14 and inserted in the negative electrode 12 through the electrolytic solution. When the discharge is performed, for example, lithium ions are released from the negative electrode 12 and inserted in the positive electrode 14 through the electrolytic solution. In that case, since the negative electrode 12 supported the electrode reaction part containing tin, the 1st element, and the 2nd element with the negative electrode collector which has a three-dimensional structure, an electrode reaction part becomes large with charging / discharging. Even if it expands and contracts, shape collapse is suppressed.

本実施の形態に係る負極は、次のようにして二次電池に用いてもよい。   The negative electrode according to the present embodiment may be used for a secondary battery as follows.

図2は、その二次電池を分解して表すものである。この二次電池は、リード21,22が取り付けられた電極巻回体20をフィルム状の外装部材31の内部に収容したものであり、小型化,軽量化および薄型化が可能となっている。リード21,22は、それぞれ外装部材31の内部から外部に向かい例えば同一方向に導出されている。リード21,22は、例えば、アルミニウム,銅,ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。   FIG. 2 is an exploded view of the secondary battery. In this secondary battery, the wound electrode body 20 to which the leads 21 and 22 are attached is housed in a film-like exterior member 31 and can be reduced in size, weight, and thickness. The leads 21 and 22 are led out from the inside of the exterior member 31 to the outside, for example, in the same direction. The leads 21 and 22 are made of a metal material such as aluminum, copper, nickel, or stainless steel, respectively, and have a thin plate shape or a mesh shape, respectively.

外装部材31は、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材31は、例えば、ポリエチレンフィルム側と電極巻回体20とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材30とリード21,22との間には、外気の侵入を防止するための密着フィルム32が挿入されている。密着フィルム32は、リード21,22に対して密着性を有する材料、例えば、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。   The exterior member 31 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 31 is disposed, for example, so that the polyethylene film side and the electrode winding body 20 face each other, and the outer edge portions are in close contact with each other by fusion bonding or an adhesive. An adhesion film 32 for preventing the entry of outside air is inserted between the exterior member 30 and the leads 21 and 22. The adhesion film 32 is made of a material having adhesion to the leads 21 and 22, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

なお、外装部材30は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム,ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。   The exterior member 30 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.

図3は、図2に示した電極巻回体20のI−I線に沿った断面構造を表すものである。電極巻回体20は、負極23と正極24とをセパレータ25および電解質層26を介して積層し、巻回したものであり、最外周部は保護テープ27により保護されている。   FIG. 3 shows a cross-sectional structure taken along line II of the electrode winding body 20 shown in FIG. The electrode winding body 20 is obtained by laminating a negative electrode 23 and a positive electrode 24 via a separator 25 and an electrolyte layer 26 and winding them, and the outermost periphery is protected by a protective tape 27.

負極23は、上述した構造を有しており、正極24は、例えば、正極集電体24Aの片面あるいは両面に正極活物質層24Bが設けられた構造を有している。正極集電体24A,正極活物質層24Bおよびセパレータ25の構成は、それぞれ上述した正極集電体14A,正極活物質層14Bおよびセパレータ15と同様である。   The negative electrode 23 has the structure described above, and the positive electrode 24 has, for example, a structure in which the positive electrode active material layer 24B is provided on one surface or both surfaces of the positive electrode current collector 24A. The configurations of the positive electrode current collector 24A, the positive electrode active material layer 24B, and the separator 25 are the same as those of the positive electrode current collector 14A, the positive electrode active material layer 14B, and the separator 15 described above.

電解質層26は、電解液を高分子化合物に保持させたいわゆるゲル状の電解質により構成されている。電解液(すなわち溶媒および電解質塩など)の構成は、図1に示したコイン型の二次電池と同様である。高分子材料としては、例えば、フッ化ビニリデンを含む重合体が好ましく挙げられる。酸化還元安定性が高いからである。高分子化合物としては、また、重合性化合物が重合されることにより形成されたものも挙げられる。   The electrolyte layer 26 is constituted by a so-called gel electrolyte in which an electrolytic solution is held by a polymer compound. The configuration of the electrolytic solution (that is, the solvent, the electrolyte salt, and the like) is the same as that of the coin-type secondary battery shown in FIG. As the polymer material, for example, a polymer containing vinylidene fluoride is preferably exemplified. This is because the redox stability is high. Examples of the polymer compound include those formed by polymerizing a polymerizable compound.

この二次電池は例えば次のようにして製造することができる。   This secondary battery can be manufactured, for example, as follows.

まず、負極23および正極24を作製したのち、負極23および正極24にそれぞれ、高分子化合物に電解液を保持させた電解質層26を形成し、リード21,22を取り付ける。次いで、負極23と正極24とをセパレータ25を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ27を接着して電極巻回体20を形成する。そののち、例えば、外装部材31の間に電極巻回体20を挟み込み、外装部材31の外縁部同士を熱融着などにより密着させて封入する。これにより、図2,3に示した二次電池が完成する。   First, after preparing the negative electrode 23 and the positive electrode 24, the electrolyte layer 26 in which the electrolytic solution is held in the polymer compound is formed on the negative electrode 23 and the positive electrode 24, respectively, and the leads 21 and 22 are attached. Next, the negative electrode 23 and the positive electrode 24 are laminated via the separator 25 to form a laminated body, and then the laminated body is wound in the longitudinal direction, and the protective tape 27 is adhered to the outermost peripheral portion to bond the wound electrode body 20. Form. After that, for example, the electrode winding body 20 is sandwiched between the exterior members 31, and the outer edges of the exterior members 31 are in close contact with each other by thermal fusion or the like and sealed. Thereby, the secondary battery shown in FIGS. 2 and 3 is completed.

なお、電解質層26は次のようにして形成してもよい。例えば、負極23および正極24に重合性化合物と電解液とを含む電解質用組成物を塗布し、セパレータ25を介して巻回して外装部材31の内部に封入したのち、重合性化合物を重合させることにより形成するようにしてもよく、また、負極23と正極24とをセパレータ25を介して巻回して外装部材31の内部に封入したのち、外装部材31の内部に重合性化合物と電解液とを含む電解質用組成物を注入し、重合性化合物を重合させることにより形成するようにしてもよい。   The electrolyte layer 26 may be formed as follows. For example, an electrolyte composition containing a polymerizable compound and an electrolytic solution is applied to the negative electrode 23 and the positive electrode 24, wound through a separator 25 and sealed in the exterior member 31, and then the polymerizable compound is polymerized. Alternatively, the negative electrode 23 and the positive electrode 24 may be wound around the separator 25 and sealed in the exterior member 31, and then the polymerizable compound and the electrolyte may be contained in the exterior member 31. You may make it form by inject | pouring the composition for electrolyte containing and polymerizing a polymeric compound.

この二次電池の作用は、図2に示したコイン型の二次電池と同様である。   The operation of this secondary battery is the same as that of the coin-type secondary battery shown in FIG.

このように本実施の形態によれば、三次元構造を有する負極集電体により、スズと第1元素と第2元素とを含む電極反応部を支持するようにしたので、充放電に伴い電極反応部が膨張収縮しても、負極集電体との密着性を向上させることができると共に、形状崩壊を抑制することができる。よって、負極12,23の集電性を確保することができると共に、電極反応部の形状崩壊に伴う電解質の分解反応を抑制することができる。従って、高温状態に放置したり、または、高電流値で放電を行うなどの過酷な条件で使用しても、優れた特性を得ることができる。   As described above, according to the present embodiment, the electrode reaction part containing tin, the first element, and the second element is supported by the negative electrode current collector having a three-dimensional structure. Even if the reaction part expands and contracts, the adhesion to the negative electrode current collector can be improved and the shape collapse can be suppressed. Therefore, the current collecting property of the negative electrodes 12 and 23 can be ensured, and the decomposition reaction of the electrolyte accompanying the shape collapse of the electrode reaction part can be suppressed. Therefore, excellent characteristics can be obtained even when used under severe conditions such as leaving in a high temperature state or discharging at a high current value.

更に、本発明の具体的な実施例について図面を参照して詳細に説明する。   Further, specific embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1−1〜1−6)
図1に示したようなコイン型の二次電池を作製した。まず、プラズマを用いた瞬間気相生成法により、スズと第1元素と第2原子とを含む合金よりなる負極活物質粒子を作製した。具体的には、高周波熱プラズマを発生させた管内に原料となる金属をキャリアガスとともに供給して、プラズマ部を通過させることにより金属を瞬間的に溶融または気化させたのち、冷却して固化させることにより合成した。その際、第1元素は実施例1−1〜1−6で亜鉛、アルミニウム、銀、インジウム、アンチモン、または鉛と変化させ、第2元素は実施例1−1〜1−6でコバルト、銅、マンガン、鉄、ニッケルあるいはクロムと変化させた。また、スズと第1元素と第2元素との割合は、スズ80原子%、第1元素10原子%、第2元素10原子%とした。合成した負極活物質粒子の組成は、ICP(Inductively Coupled Plasma)発光分析により評価した。次いで、合成した負極活物質粒子の平均粒径を乾式気流分級機により1μmに調整した。
(Examples 1-1 to 1-6)
A coin-type secondary battery as shown in FIG. 1 was produced. First, negative electrode active material particles made of an alloy containing tin, a first element, and a second atom were produced by an instantaneous vapor phase generation method using plasma. Specifically, the raw material metal is supplied together with the carrier gas into the tube in which the high-frequency thermal plasma is generated, and the metal is instantaneously melted or vaporized by passing through the plasma part, and then cooled and solidified. Was synthesized. At that time, the first element was changed to zinc, aluminum, silver, indium, antimony, or lead in Examples 1-1 to 1-6, and the second element was cobalt, copper in Examples 1-1 to 1-6. , Manganese, iron, nickel or chromium. The ratios of tin, the first element, and the second element were 80 atomic% tin, 10 atomic% of the first element, and 10 atomic% of the second element. The composition of the synthesized negative electrode active material particles was evaluated by ICP (Inductively Coupled Plasma) emission analysis. Next, the average particle diameter of the synthesized negative electrode active material particles was adjusted to 1 μm with a dry air classifier.

続いて、作製した負極活物質粒子75質量%と、導電材である平均粒径6μmの人造黒鉛粉末10質量%と、結着材であるポリフッ化ビニリデン15質量%とを分散媒に混合してスラリーとした。そののち、繊維径8μmの銅繊維よりなり、空隙率70%、厚み40μmの金属不織布を負極集電体として用い、この負極集電体に作製したスラリーを充填し、分散媒を揮発させることにより負極活物質粒子を付着させた。次いで、これをアルゴン雰囲気中において200℃で10時間熱処理を行うことにより電極反応部を形成し、負極12を作製した。作製した負極12について、XPS(X-ray Photoelectron Spectroscopy;X線光電子分光法),AES( Auger Electron Spectroscopy;オージェ電子分光法),SEM(Scanning Electron Microscope;走査電子顕微鏡),EDX(Energy Dispersive X-Ray Spectroscope;エネルギー分散型X線検出器)およびXRD( X-Ray Diffraction;X線回折法)により分析したところ、熱処理により負極活物質粒子同士または負極活物質粒子と負極集電体とが少なくとも一部において融着していることが確認された。また、負極活物質粒子の少なくとも一部に、負極集電体の構成元素が拡散していることも確認された。   Subsequently, 75% by mass of the produced negative electrode active material particles, 10% by mass of artificial graphite powder having an average particle diameter of 6 μm as a conductive material, and 15% by mass of polyvinylidene fluoride as a binder were mixed in a dispersion medium. A slurry was obtained. After that, by using a metal nonwoven fabric made of copper fiber having a fiber diameter of 8 μm, porosity of 70% and thickness of 40 μm as a negative electrode current collector, the negative electrode current collector was filled with the prepared slurry, and the dispersion medium was volatilized. Negative electrode active material particles were adhered. Subsequently, the electrode reaction part was formed by heat-processing this at 200 degreeC for 10 hours in argon atmosphere, and the negative electrode 12 was produced. About the produced negative electrode 12, XPS (X-ray Photoelectron Spectroscopy; X-ray photoelectron spectroscopy), AES (Auger Electron Spectroscopy), SEM (Scanning Electron Microscope), EDX (Energy Dispersive X-) When analyzed by a Ray Spectroscope (energy dispersive X-ray detector) and XRD (X-Ray Diffraction; X-ray diffraction method), at least one of the negative electrode active material particles or the negative electrode active material particles and the negative electrode current collector is at least one by heat treatment. It was confirmed that it was fused in the part. It was also confirmed that the constituent elements of the negative electrode current collector were diffused in at least a part of the negative electrode active material particles.

また、正極活物質である平均粒径5μmのコバルト酸リチウム(LiCoO2 )粉末92質量%と、導電材であるカーボンブラック3質量%と、結着材であるポリフッ化ビニリデン5質量%とを分散媒に混合してスラリーとし、厚み20μmのアルミニウム箔よりなる正極集電体14Aに塗布して乾燥させ、プレスすることにより正極活物質層14Bを形成し、正極14を作製した。次いで、作製した負極12と正極14とを、電解液を含浸させた厚み25μmのポリプロピレン製微多孔膜よりなるセパレータ15を介して積層し、外装カップ11および外装缶13の中に入れ、それらをかしめることにより密閉した。電解液には、炭酸エチレン40質量%と炭酸ジメチル60質量%とを混合した溶媒に、LiPF6 を1.0mol/lとなるように溶解させたものを用いた。 In addition, 92% by mass of lithium cobaltate (LiCoO 2 ) powder having an average particle diameter of 5 μm as a positive electrode active material, 3% by mass of carbon black as a conductive material, and 5% by mass of polyvinylidene fluoride as a binder are dispersed. A positive electrode active material layer 14B was formed by applying the mixture to a positive electrode current collector 14A made of an aluminum foil having a thickness of 20 μm, drying, and pressing to form a positive electrode 14. Next, the prepared negative electrode 12 and positive electrode 14 were laminated through a separator 15 made of a polypropylene microporous film having a thickness of 25 μm impregnated with an electrolytic solution, and placed in an outer cup 11 and an outer can 13. Sealed by caulking. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at 1.0 mol / l in a solvent in which 40% by mass of ethylene carbonate and 60% by mass of dimethyl carbonate were mixed was used.

本実施例に対する比較例1−1〜1−13として、負極活物質粒子の組成を表1に示したように変化させたことを除き、他は実施例1−1〜1−6と同様にして、負極活物質粒子および二次電池を作製した。また、比較例1−14,1−15として、負極活物質粒子の組成を表1に示したように変化させると共に、負極集電体に厚み25μm、表面粗さRa0.5μmの銅箔を用いたことを除き、他は実施例1−1〜1−6と同様にして、負極活物質粒子および二次電池を作製した。   As Comparative Examples 1-1 to 1-13 for this example, except that the composition of the negative electrode active material particles was changed as shown in Table 1, other than that was the same as Example 1-1 to 1-6 Thus, negative electrode active material particles and a secondary battery were produced. As Comparative Examples 1-14 and 1-15, the composition of the negative electrode active material particles was changed as shown in Table 1, and a copper foil having a thickness of 25 μm and a surface roughness Ra of 0.5 μm was used for the negative electrode current collector. Except for the above, negative electrode active material particles and secondary batteries were produced in the same manner as in Examples 1-1 to 1-6.

作製した実施例1−1〜1−6および比較例1−1〜1−15の二次電池について、保存特性および高負荷特性を調べた。保存特性は、30サイクル充放電を繰り返し、31サイクル目の充電を行ったのち、充電した状態で60℃の恒温槽で10日間保存し、31サイクル目の放電および32サイクル目の充放電を行い、30サイクル目の放電容量(保存前の放電容量)を100%とした場合の32サイクル目の放電容量(保存後の放電容量)の割合を求めた。その際、充電は、上限電圧4.2V、電流密度1mA/cm2 の条件で定電流定電圧充電を行い、放電は、電流密度1mA/cm2 、終止電圧2.5Vの条件で定電流放電を行った。 With respect to the fabricated secondary batteries of Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-15, the storage characteristics and the high load characteristics were examined. The storage characteristic is that after 30 cycles of charge and discharge are repeated, the charge of the 31st cycle is performed, then the battery is stored in a constant temperature bath at 60 ° C. for 10 days, and the discharge of the 31st cycle and the charge and discharge of the 32nd cycle are performed. The ratio of the discharge capacity at the 32nd cycle (discharge capacity after storage) when the discharge capacity at 30th cycle (discharge capacity before storage) was taken as 100% was determined. At that time, charging is constant current and constant voltage charging under conditions of an upper limit voltage of 4.2 V and a current density of 1 mA / cm 2 , and discharging is constant current discharging under conditions of a current density of 1 mA / cm 2 and a final voltage of 2.5 V. Went.

また、高負荷特性は、上限電圧4.2V、電流密度1mA/cm2 の定電流定電圧充電と、電流密度1mA/cm2 、終止電圧2.5Vの定電流放電とを3サイクル繰り返し、再度同一の条件で4サイクル目の充電を行ったのち、4サイクル目の放電を電流密度5mA/cm2 、終止電圧2.5Vの条件で行い、3サイクル目の放電容量(電流密度1mA/cm2 )を100%とした場合の4サイクル目の放電容量(電流密度5mA/cm2 )の割合を求めた。得られた結果を表1に示す。 In addition, the high load characteristic is a constant current constant voltage charge with an upper limit voltage of 4.2 V and a current density of 1 mA / cm 2 and a constant current discharge with a current density of 1 mA / cm 2 and a final voltage of 2.5 V. After charging in the fourth cycle under the same conditions, the discharge in the fourth cycle is performed under the conditions of a current density of 5 mA / cm 2 and a final voltage of 2.5 V, and the discharge capacity of the third cycle (current density of 1 mA / cm 2). ) As 100%, the ratio of the discharge capacity (current density 5 mA / cm 2 ) at the fourth cycle was determined. The obtained results are shown in Table 1.

Figure 2007141605
Figure 2007141605

表1に示したように、実施例1−1〜1−6によれば、比較例1−1〜1−15に比べて保存特性および高負荷特性について共に高い値が得られた。すなわち、三次元構構造を有する負極集電体によりスズと第1元素と第2元素とを含む電極反応部を支持させるようにすれば、保存特性および高負荷特性を向上させることができることが分かった。   As shown in Table 1, according to Examples 1-1 to 1-6, both storage characteristics and high load characteristics were higher than those of Comparative Examples 1-1 to 1-15. That is, it is understood that storage characteristics and high load characteristics can be improved by supporting the electrode reaction part containing tin, the first element, and the second element by the negative electrode current collector having a three-dimensional structure. It was.

(実施例2−1〜2−5)
負極活物質粒子の組成を表2に示したように変化させたことを除き、他は実施例1−1と同様にして、負極活物質粒子および二次電池を作製した。実施例2−1〜2−5は、第1元素を亜鉛、第2元素をコバルトとし、スズの含有量を90原子%〜40原子%、亜鉛の含有量を5原子%〜40原子%、コバルトの含有量を5原子%〜40原子%の範囲内で変化させたものである。作製した実施例2−1〜2−5の二次電池についても、実施例1−1と同様にして保存特性および高負荷特性を調べた。得られた結果を実施例1−1および比較例1−1,1−2,1−8の結果と共に表2に示す。
(Examples 2-1 to 2-5)
Except that the composition of the negative electrode active material particles was changed as shown in Table 2, except that the negative electrode active material particles and the secondary battery were produced in the same manner as in Example 1-1. In Examples 2-1 to 2-5, the first element is zinc, the second element is cobalt, the tin content is 90 atomic% to 40 atomic%, the zinc content is 5 atomic% to 40 atomic%, The cobalt content is changed within the range of 5 atomic% to 40 atomic%. For the fabricated secondary batteries of Examples 2-1 to 2-5, the storage characteristics and the high load characteristics were examined in the same manner as in Example 1-1. The obtained results are shown in Table 2 together with the results of Example 1-1 and Comparative Examples 1-1, 1-2, and 1-8.

Figure 2007141605
Figure 2007141605

表2に示したように、第1元素および第2元素の含有量を増加させると、保存特性および高負荷特性は向上したのち低下する傾向がみられた。すなわち、電極反応部におけるスズの含有量は40原子%以上90原子%以下、第1元素の含有量は5原子%以上40原子%以下、第2元素の含有量は5原子%以上40原子%以下の範囲内とすれば、より好ましいことが分かった。   As shown in Table 2, when the contents of the first element and the second element were increased, the storage characteristics and the high load characteristics tended to decrease after being improved. That is, the tin content in the electrode reaction part is 40 atomic% to 90 atomic%, the first element content is 5 atomic% to 40 atomic%, and the second element content is 5 atomic% to 40 atomic%. It turned out that it is more preferable if it is within the following range.

(実施例3−1)
負極12の構成を変えたことを除き、他は実施例1−1と同様にして二次電池を作製した。負極12は、実施例1−1と同様の銅不織布よりなる負極集電体に、めっきにより、亜鉛を堆積させたのち、さらにスズコバルト合金を堆積し、アルゴン雰囲気中において200℃で10時間熱処理を行って電極反応部を形成することにより作製した。作製した負極12について、XPS,AES,SEM,EDXおよびXRDにより分析したところ、電極反応部において亜鉛とスズとコバルトとが相互に拡散しており、電極反応部に負極集電体の構成元素が拡散していることも確認された。
(Example 3-1)
A secondary battery was fabricated in the same manner as in Example 1-1, except that the configuration of the negative electrode 12 was changed. The negative electrode 12 was prepared by depositing zinc on the negative electrode current collector made of the same copper non-woven fabric as in Example 1-1 by plating, and further depositing a tin-cobalt alloy, followed by heat treatment at 200 ° C. for 10 hours in an argon atmosphere. It was produced by performing an electrode reaction part. When the produced negative electrode 12 was analyzed by XPS, AES, SEM, EDX, and XRD, zinc, tin, and cobalt were mutually diffused in the electrode reaction part, and the constituent elements of the negative electrode current collector were found in the electrode reaction part. It was also confirmed that it was spreading.

また、実施例3−1に対する比較例3−1として、負極集電体に厚み25μm、表面粗さRa0.5μmの銅箔を用いたことを除き、他は実施例3−1と同様にして二次電池を作製した。作製した実施例3−1および比較例3−1の二次電池についても、実施例1−1と同様にして保存特性および高負荷特性を調べた。得られた結果を表3に示す。   Moreover, as Comparative Example 3-1 with respect to Example 3-1, except that a copper foil having a thickness of 25 μm and a surface roughness Ra of 0.5 μm was used for the negative electrode current collector, the others were the same as Example 3-1. A secondary battery was produced. For the fabricated secondary batteries of Example 3-1 and Comparative Example 3-1, the storage characteristics and high load characteristics were examined in the same manner as in Example 1-1. The obtained results are shown in Table 3.

Figure 2007141605
Figure 2007141605

表3に示したように、実施例3−1によれば、比較例3−1に比べて保存特性および高負荷特性について共に高い値が得られた。すなわち、負極活物質粒子を負極集電体に付着させて電極反応部を形成しても、負極活物質を負極集電体に直接堆積させて電極反応部を形成しても、同様の効果を得られることが分かった。   As shown in Table 3, according to Example 3-1, both storage characteristics and high load characteristics were higher than those of Comparative Example 3-1. That is, the negative electrode active material particles are attached to the negative electrode current collector to form an electrode reaction part, or the negative electrode active material is directly deposited on the negative electrode current collector to form an electrode reaction part. It turns out that it is obtained.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は実施の形態および実施例に限定されず、種々の変形が可能である。例えば、上記実施の形態および実施例では、液状の電解質である電解液、またはいわゆるゲル状の電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、イオン伝導性を有する固体電解質、固体電解質と電解液とを混合したもの、あるいは固体電解質とゲル状の電解質とを混合したものが挙げられる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, the case where an electrolytic solution which is a liquid electrolyte or a so-called gel electrolyte is used has been described, but another electrolyte may be used. Examples of other electrolytes include solid electrolytes having ionic conductivity, a mixture of a solid electrolyte and an electrolyte solution, and a mixture of a solid electrolyte and a gel electrolyte.

なお、固体電解質には、例えば、イオン伝導性を有する高分子化合物に電解質塩を分散させた高分子固体電解質、またはイオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質を用いることができる。高分子固体電解質の高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物を単独あるいは混合して、または共重合させて用いることができる。また、無機固体電解質としては、窒化リチウムあるいはリン酸リチウムなどを含むもの用いることができる。   As the solid electrolyte, for example, a polymer solid electrolyte in which an electrolyte salt is dispersed in a polymer compound having ion conductivity, or an inorganic solid electrolyte made of ion conductive glass or ionic crystals can be used. Examples of the polymer compound of the solid polymer electrolyte include, for example, an ether polymer compound such as polyethylene oxide or a crosslinked product containing polyethylene oxide, an ester polymer compound such as polymethacrylate, and an acrylate polymer compound. Or can be copolymerized. In addition, as the inorganic solid electrolyte, one containing lithium nitride or lithium phosphate can be used.

また、上記実施の形態および実施例では、コイン型または巻回ラミネート型の二次電池について説明したが、本発明は、円筒型,角型,ボタン型,薄型,大型あるいは積層ラミネート型などの他の形状を有する二次電池についても同様に適用することができる。加えて、二次電池に限らず、一次電池についても適用することができる。   In the above embodiments and examples, a coin type or wound laminate type secondary battery has been described. However, the present invention is not limited to a cylindrical type, a square type, a button type, a thin type, a large size, or a laminated laminate type. The present invention can be similarly applied to a secondary battery having the shape. In addition, the present invention can be applied not only to secondary batteries but also to primary batteries.

本発明の一実施の形態に係る負極を用いた二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery using the negative electrode which concerns on one embodiment of this invention. 本発明の一実施の形態に係る負極を用いた他の二次電池の構成を表す部分分解斜視図である。It is a partial exploded perspective view showing the structure of the other secondary battery using the negative electrode which concerns on one embodiment of this invention. 図2に示した二次電池のI−I線に沿った構造を表す断面図である。It is sectional drawing showing the structure along the II line of the secondary battery shown in FIG.

符号の説明Explanation of symbols

11…外装カップ、12,23…負極、13…外装缶、14,24…正極、14A,24A…正極集電体、14B,24B…正極活物質層、15,25…セパレータ、16…ガスケット、20…電極巻回体、21,22…リード、26…電解質層、27…保護テープ、31…外装部材、32…密着フィルム
DESCRIPTION OF SYMBOLS 11 ... Outer cup, 12, 23 ... Negative electrode, 13 ... Outer can, 14, 24 ... Positive electrode, 14A, 24A ... Positive electrode collector, 14B, 24B ... Positive electrode active material layer, 15, 25 ... Separator, 16 ... Gasket, 20 ... Electrode winding body, 21, 22 ... Lead, 26 ... Electrolyte layer, 27 ... Protective tape, 31 ... Exterior member, 32 ... Adhesion film

Claims (10)

三次元構造を有する負極集電体と、
スズ(Sn)と、スズ以外でリチウム(Li)と電気化学的に反応可能な第1元素と、リチウムと電気化学的に反応しない第2元素とを含む電極反応部と
を有することを特徴とする負極。
A negative electrode current collector having a three-dimensional structure;
An electrode reaction part including tin (Sn), a first element that can electrochemically react with lithium (Li) other than tin, and a second element that does not electrochemically react with lithium. Negative electrode.
前記第1元素は、亜鉛(Zn),アルミニウム(Al),銀(Ag),インジウム(In),アンチモン(Sb)および鉛(Pb)からなる群のうちの少なくとも1種を含む
ことを特徴とする請求項1記載の負極。
The first element includes at least one selected from the group consisting of zinc (Zn), aluminum (Al), silver (Ag), indium (In), antimony (Sb), and lead (Pb). The negative electrode according to claim 1.
前記第2元素は、コバルト(Co),銅(Cu),マンガン(Mn),鉄(Fe),ニッケル(Ni)およびクロム(Cr)からなる群のうちの少なくとも1種を含む
ことを特徴とする請求項1記載の負極。
The second element includes at least one selected from the group consisting of cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), and chromium (Cr). The negative electrode according to claim 1.
前記電極反応部におけるスズの含有量は40原子%以上90原子%以下であり、第1元素の含有量は5原子%以上40原子%以下であり、第2元素の含有量は5原子%以上40原子%以下である
ことを特徴とする請求項1記載の負極。
The content of tin in the electrode reaction part is 40 atomic% or more and 90 atomic% or less, the content of the first element is 5 atomic% or more and 40 atomic% or less, and the content of the second element is 5 atomic% or more. It is 40 atomic% or less. The negative electrode of Claim 1 characterized by the above-mentioned.
前記負極集電体の構成元素が前記電極反応部の少なくとも一部に拡散していることを特徴とする請求項1記載の負極。   The negative electrode according to claim 1, wherein constituent elements of the negative electrode current collector are diffused in at least a part of the electrode reaction part. 正極および負極と共に電解質を備えた電池であって、
前記負極は、負極集電体と、電極反応部とを有し、
前記負極集電体は、三次元構造を有し、
前記電極反応部は、スズ(Sn)と、スズ以外でリチウム(Li)と電気化学的に反応可能な第1元素と、リチウムと電気化学的に反応しない第2元素とを含む
ことを特徴とする電池。
A battery comprising an electrolyte together with a positive electrode and a negative electrode,
The negative electrode has a negative electrode current collector and an electrode reaction part,
The negative electrode current collector has a three-dimensional structure,
The electrode reaction part includes tin (Sn), a first element that can electrochemically react with lithium (Li) other than tin, and a second element that does not electrochemically react with lithium. Battery to play.
前記第1元素は、亜鉛(Zn),アルミニウム(Al),銀(Ag),インジウム(In),アンチモン(Sb)および鉛(Pb)からなる群のうちの少なくとも1種を含む
ことを特徴とする請求項6記載の電池。
The first element includes at least one selected from the group consisting of zinc (Zn), aluminum (Al), silver (Ag), indium (In), antimony (Sb), and lead (Pb). The battery according to claim 6.
前記第2元素は、コバルト(Co),銅(Cu),マンガン(Mn),鉄(Fe),ニッケル(Ni)およびクロム(Cr)からなる群のうちの少なくとも1種を含む
ことを特徴とする請求項6記載の電池。
The second element includes at least one selected from the group consisting of cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), and chromium (Cr). The battery according to claim 6.
前記電極反応部におけるスズの含有量は40原子%以上90原子%以下であり、第1元素の含有量は5原子%以上40原子%以下であり、第2元素の含有量は5原子%以上40原子%以下である
ことを特徴とする請求項6記載の電池。
The content of tin in the electrode reaction part is 40 atomic% or more and 90 atomic% or less, the content of the first element is 5 atomic% or more and 40 atomic% or less, and the content of the second element is 5 atomic% or more. It is 40 atomic% or less. The battery according to claim 6.
前記負極集電体の構成元素が前記電極反応部の少なくとも一部に拡散していることを特徴とする請求項6記載の電池。
The battery according to claim 6, wherein a constituent element of the negative electrode current collector is diffused in at least a part of the electrode reaction part.
JP2005332624A 2005-11-17 2005-11-17 Negative electrode and battery Expired - Fee Related JP4877475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332624A JP4877475B2 (en) 2005-11-17 2005-11-17 Negative electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332624A JP4877475B2 (en) 2005-11-17 2005-11-17 Negative electrode and battery

Publications (2)

Publication Number Publication Date
JP2007141605A true JP2007141605A (en) 2007-06-07
JP4877475B2 JP4877475B2 (en) 2012-02-15

Family

ID=38204235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332624A Expired - Fee Related JP4877475B2 (en) 2005-11-17 2005-11-17 Negative electrode and battery

Country Status (1)

Country Link
JP (1) JP4877475B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152772A1 (en) * 2007-06-12 2008-12-18 Panasonic Corporation Method of manufacturing electrode for nonaqueous electrolyte secondary battery
JP2011034839A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2011034836A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2011032541A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosize particle, negative electrode material for lithium ion secondary battery containing the nanosize particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nanosize particle
JP2014510386A (en) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド Battery having electrode structure containing metal fiber, and method for manufacturing said electrode structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2002198091A (en) * 2000-12-27 2002-07-12 Hyogo Prefecture Negative electrode for lithium secondary cell and lithium secondary cell using the same
JP2003036840A (en) * 2001-05-18 2003-02-07 Fukuda Metal Foil & Powder Co Ltd Lithium cell negative electrode and its manufacturing method
JP2003168425A (en) * 2001-11-30 2003-06-13 Nippon Foil Mfg Co Ltd NEGATIVE ELECTRODE MATERIAL FOR Li SECONDARY BATTERY
JP2003257420A (en) * 2002-03-06 2003-09-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003263979A (en) * 2002-03-12 2003-09-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005011802A (en) * 2003-05-22 2005-01-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2005129254A (en) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) Negative electrode for lithium secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2002198091A (en) * 2000-12-27 2002-07-12 Hyogo Prefecture Negative electrode for lithium secondary cell and lithium secondary cell using the same
JP2003036840A (en) * 2001-05-18 2003-02-07 Fukuda Metal Foil & Powder Co Ltd Lithium cell negative electrode and its manufacturing method
JP2003168425A (en) * 2001-11-30 2003-06-13 Nippon Foil Mfg Co Ltd NEGATIVE ELECTRODE MATERIAL FOR Li SECONDARY BATTERY
JP2003257420A (en) * 2002-03-06 2003-09-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003263979A (en) * 2002-03-12 2003-09-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005011802A (en) * 2003-05-22 2005-01-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2005129254A (en) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) Negative electrode for lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152772A1 (en) * 2007-06-12 2008-12-18 Panasonic Corporation Method of manufacturing electrode for nonaqueous electrolyte secondary battery
JP2011034839A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2011034836A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosized particles, nanosized-particles-included negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing nanosized particles
JP2011032541A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Nanosize particle, negative electrode material for lithium ion secondary battery containing the nanosize particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nanosize particle
JP2014510386A (en) * 2011-04-06 2014-04-24 シャイン カンパニー リミテッド Battery having electrode structure containing metal fiber, and method for manufacturing said electrode structure
US9929409B2 (en) 2011-04-06 2018-03-27 Jenax Inc. Battery having electrode structure including metal fiber and preparation method of electrode structure

Also Published As

Publication number Publication date
JP4877475B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US9876225B2 (en) Anode active material and battery
JP4193141B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and production method thereof
JP5364230B2 (en) Negative electrode and battery
JP4367311B2 (en) battery
JP4609048B2 (en) Negative electrode for secondary battery and secondary battery
JP6782461B2 (en) Negative electrode active material for non-aqueous electrolyte secondary batteries
JP4997739B2 (en) Negative electrode material for lithium ion secondary battery, lithium ion secondary battery using the same, and method for producing lithium ion secondary battery
JP4655976B2 (en) Negative electrode and battery
JP5018173B2 (en) Lithium ion secondary battery
JP5135712B2 (en) Secondary battery
JP2006338996A (en) Negative electrode for secondary battery, secondary battery, and manufacturing method of negative electrode for secondary battery
JP4849307B2 (en) Negative electrode and battery
JP2007027008A (en) Battery
JP2004207112A (en) Negative electrode and battery using it
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JP4877475B2 (en) Negative electrode and battery
JP2006236685A (en) Negative electrode, battery, and their manufacturing method
JP5098144B2 (en) Negative electrode and battery
JP5045977B2 (en) battery
JP2007257866A (en) Negative electrode and battery
KR101113350B1 (en) Negative electrode and the battery using it
JP2007128724A (en) Anode and battery
JP2006155958A (en) Battery
JP2006059714A (en) Negative electrode and battery
JP2006059712A (en) Negative electrode and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees