JP2018129159A - Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery - Google Patents

Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery Download PDF

Info

Publication number
JP2018129159A
JP2018129159A JP2017020721A JP2017020721A JP2018129159A JP 2018129159 A JP2018129159 A JP 2018129159A JP 2017020721 A JP2017020721 A JP 2017020721A JP 2017020721 A JP2017020721 A JP 2017020721A JP 2018129159 A JP2018129159 A JP 2018129159A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
solid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017020721A
Other languages
Japanese (ja)
Other versions
JP7050419B2 (en
Inventor
好伸 山田
Yoshinobu Yamada
好伸 山田
清太郎 伊藤
Seitaro Ito
清太郎 伊藤
聡 藤木
Satoshi Fujiki
聡 藤木
卓 渡邊
Taku Watanabe
卓 渡邊
相原 雄一
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2017020721A priority Critical patent/JP7050419B2/en
Priority to KR1020170094965A priority patent/KR20180091678A/en
Priority to US15/890,472 priority patent/US20180226633A1/en
Publication of JP2018129159A publication Critical patent/JP2018129159A/en
Priority to US17/471,250 priority patent/US20210408522A1/en
Priority to US17/471,268 priority patent/US20210408523A1/en
Application granted granted Critical
Publication of JP7050419B2 publication Critical patent/JP7050419B2/en
Priority to KR1020230014387A priority patent/KR102651551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a novel and improved negative electrode for all-solid-state secondary batteries, capable of improving cycle characteristics of an all-solid-state secondary battery using metal lithium as a negative electrode; and an all-solid-state secondary battery.SOLUTION: According to an aspect of the present invention, there is provided a negative electrode for all-solid-state secondary batteries, which includes a negative electrode collector, and a coating layer which coats the negative electrode collector and on which metal lithium can be deposited via a lithium alloy layer that is fast in diffusion of lithium during charging. According to the aspect, metal lithium is substantially uniformly generated and lost on a surface of the coating layer along with charge and discharge, so that dead lithium is hardly occurs. Accordingly, capacity can be maintained even after repeated charging and discharging. More specifically, cycle characteristics can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、全固体型二次電池用負極及び全固体型二次電池に関する。   The present invention relates to a negative electrode for an all solid state secondary battery and an all solid state secondary battery.

金属リチウムは負極活物質として最大のエネルギー密度を有する。このため、金属リチウムを負極としたリチウム二次電池の実用化が古くから望まれている。   Metallic lithium has the maximum energy density as a negative electrode active material. For this reason, the practical application of a lithium secondary battery using metallic lithium as a negative electrode has long been desired.

一方、リチウムイオン二次電池として、負極に炭素、正極にリチウム含有層状酸化物、そして電解質に非水系の液体を用いた二次電池が広く実用化されている。金属リチウムを非水系電解質二次電池の負極に用いた場合、充放電によって金属リチウムの析出および溶解が繰り返し行われる。このような繰り返し析出溶解過程によって、樹枝状結晶(デンドライト)が生成し、このデンドライトが負極から正極へと短絡を起こす場合がある。このため、非水電解質二次電池の安全性及びサイクル寿命が不十分となる。   On the other hand, secondary batteries using carbon as a negative electrode, a lithium-containing layered oxide as a positive electrode, and a non-aqueous liquid as an electrolyte have been widely put into practical use as lithium ion secondary batteries. When metallic lithium is used for the negative electrode of a non-aqueous electrolyte secondary battery, deposition and dissolution of metallic lithium are repeatedly performed by charging and discharging. By such repeated precipitation and dissolution process, dendritic crystals (dendrites) are generated, and this dendrites may cause a short circuit from the negative electrode to the positive electrode. For this reason, the safety and cycle life of the nonaqueous electrolyte secondary battery are insufficient.

さらに、非水系電解質二次電池の充電時に析出したリチウムが非水系電解質、すなわち有機電解液と反応し、負極金属リチウム上に還元分解された被膜が形成される。これにより、充放電効率が悪くなるという問題がある。つまり、充放電によって金属リチウムが消費されるため、非水系電解質二次電池の製造時(つまり初期)に多くの金属リチウムを負極に搭載する必要がある。したがって、電池のエネルギー密度が低下してしまう。以上の理由により、金属リチウムを負極とする非水系電解質二次電池は実用化に至っていない。   Furthermore, lithium deposited during charging of the non-aqueous electrolyte secondary battery reacts with the non-aqueous electrolyte, that is, the organic electrolyte, and a reductively decomposed film is formed on the negative electrode metal lithium. Thereby, there exists a problem that charging / discharging efficiency worsens. That is, since lithium metal is consumed by charging / discharging, it is necessary to mount a large amount of lithium metal on the negative electrode during the manufacture (that is, the initial stage) of the nonaqueous electrolyte secondary battery. Therefore, the energy density of the battery is reduced. For the above reasons, non-aqueous electrolyte secondary batteries using metallic lithium as a negative electrode have not been put into practical use.

一方、リチウムイオン二次電池として、例えば特許文献1に開示されている全固体型二次電池が知られている。全固体型二次電池では、非水系電解質の代わりに無機系硫化物固体電解質を用いる。無機系硫化物固体電解質では、還元分解に伴う皮膜の生成は生じ得ない。したがって、充放電を繰り返しても、このような反応に起因したリチウムイオンの消費は発生しない。このため、充放電効率が高くなり、初期に負極に搭載する金属リチウムの量を極めて少なくすることができる。言い換えると、正極活物質中のリチウムだけを用いた電池構造を実現できる。したがって、全固体型二次電池では飛躍的にエネルギー密度を向上させることが可能となる。   On the other hand, as a lithium ion secondary battery, for example, an all solid state secondary battery disclosed in Patent Document 1 is known. In the all solid state secondary battery, an inorganic sulfide solid electrolyte is used instead of the non-aqueous electrolyte. In the inorganic sulfide solid electrolyte, the formation of a film accompanying reductive decomposition cannot occur. Therefore, even if charging and discharging are repeated, consumption of lithium ions due to such a reaction does not occur. For this reason, charging / discharging efficiency becomes high, and the amount of metallic lithium to be initially mounted on the negative electrode can be extremely reduced. In other words, a battery structure using only lithium in the positive electrode active material can be realized. Therefore, it is possible to dramatically improve the energy density in the all solid state secondary battery.

国際公開第2013/141241号International Publication No. 2013/141241

このように、全固体型二次電池の負極に金属リチウムを用いた場合、非水系電解質二次電池で生じた問題は発生しない。しかしながら、正極活物質中のリチウムだけを用いた電池構造をもつ全固体型二次電池では、充電時に負極集電体と固体電解質との接触部分に金属リチウムが析出する。また、負極集電体上に金属リチウムが析出する際の過電圧は大きく、析出した金属リチウム上に析出成長する方が過電圧は低くなり、より局所的に粗大化してしまう。また、負極集電体は、金属リチウムと合金を形成しない金属、例えばNiなどで構成される。さらに、析出した金属リチウムは、負極集電体の面方向にはほとんど成長せず、全固体型二次電池の厚さ方向に成長する。この金属リチウムは、放電時にはリチウムイオンとなって溶解するが、この過程において電流密度が高い場合には、金属リチウムと固体電解質との導通が途切れてしまい、金属リチウムが孤立することがある。このような金属リチウムはもはや充放電には使用できないので、デッドリチウムと称される。このため、充放電の繰り返しにより容量が急激に低下するという問題があった。つまり、全固体型二次電池が、負極に金属リチウムを持たない正極活物質中のリチウムだけを用いた電池構造を有する場合、全固体型二次電池のサイクル特性が著しく悪化するという問題があった。   As described above, when metallic lithium is used for the negative electrode of the all-solid-state secondary battery, the problem caused in the non-aqueous electrolyte secondary battery does not occur. However, in an all solid state secondary battery having a battery structure using only lithium in the positive electrode active material, metallic lithium is deposited at the contact portion between the negative electrode current collector and the solid electrolyte during charging. Moreover, the overvoltage at the time of depositing metallic lithium on the negative electrode current collector is large, and the overvoltage is lower when it is deposited and grown on the deposited metallic lithium, resulting in more coarsening locally. The negative electrode current collector is made of a metal that does not form an alloy with metallic lithium, such as Ni. Further, the deposited metallic lithium hardly grows in the surface direction of the negative electrode current collector, and grows in the thickness direction of the all solid state secondary battery. This metallic lithium dissolves as lithium ions during discharge, but if the current density is high in this process, conduction between the metallic lithium and the solid electrolyte is interrupted, and the metallic lithium may be isolated. Such metallic lithium can no longer be used for charging and discharging and is therefore referred to as dead lithium. For this reason, there existed a problem that a capacity | capacitance fell rapidly by repetition of charging / discharging. That is, when the all-solid-state secondary battery has a battery structure using only lithium in the positive electrode active material that does not have metallic lithium in the negative electrode, there is a problem that the cycle characteristics of the all-solid-state secondary battery are significantly deteriorated. It was.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、正極活物質中のリチウムだけを用いた電池構造を有する全固体型二次電池のサイクル特性を改善することが可能な、新規かつ改良された全固体型二次電池用負極及び全固体型二次電池を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to provide the cycle characteristics of an all solid state secondary battery having a battery structure using only lithium in the positive electrode active material. It is an object of the present invention to provide a new and improved all-solid-state secondary battery negative electrode and all-solid-state secondary battery that can be improved.

上記課題を解決するために、本発明のある観点によれば、負極集電体と、負極集電体を被覆し、充電時にリチウムの拡散が早いリチウム合金層を介して金属リチウムが析出可能な被覆層と、を備えることを特徴とする、全固体型二次電池用負極が提供される。   In order to solve the above-described problems, according to an aspect of the present invention, lithium metal can be deposited through a lithium alloy layer that covers a negative electrode current collector and a negative electrode current collector, and lithium diffuses quickly during charging. And a negative electrode for an all-solid-type secondary battery, comprising: a coating layer.

本観点によれば、負極集電体上に上述した特性を有する被覆層が形成されている。このため、充電時には、被覆層はリチウムの自己拡散に比べて拡散の早い合金層を介して表面から金属リチウムが略均一に析出する。そして、放電時には、金属リチウムは、徐々にリチウムイオンとなって溶解する。この過程において、金属リチウム層の厚さが略均一に小さくなっていくので、金属リチウム層と固体電解質との接触を維持することができる。このため、デッドリチウムが生成しにくくなる。したがって、充放電の繰り返しても容量を維持することができる。すなわち、サイクル特性が向上する。   According to this aspect, the coating layer having the above-described characteristics is formed on the negative electrode current collector. For this reason, at the time of charge, metallic lithium deposits substantially uniformly from the surface of the coating layer through an alloy layer that diffuses faster than lithium self-diffusion. At the time of discharging, metallic lithium gradually becomes lithium ions and dissolves. In this process, the thickness of the metallic lithium layer is reduced substantially uniformly, so that the contact between the metallic lithium layer and the solid electrolyte can be maintained. For this reason, it becomes difficult to produce dead lithium. Therefore, the capacity can be maintained even after repeated charging and discharging. That is, cycle characteristics are improved.

ここで、被覆層は、リチウムと合金を形成可能な金属を含んでいても良い。   Here, the coating layer may contain a metal capable of forming an alloy with lithium.

この観点によれば、充放電に伴って金属リチウムが被覆層の表面に略均一に生成、消失するので、デッドリチウムが発生しにくい。したがって、充放電を繰り返しても容量を維持することができる。すなわち、サイクル特性が向上する。   According to this viewpoint, the lithium metal is generated and disappears substantially uniformly on the surface of the coating layer with charge / discharge, so that dead lithium is hardly generated. Therefore, the capacity can be maintained even after repeated charging and discharging. That is, cycle characteristics are improved.

また、被覆層は、亜鉛、ゲルマニウム、錫、アンチモン、白金、金、ビスマス、およびこれらの二種以上を含む合金からなる群から選択されるいずれか1種以上を含んでいてもよい。   Moreover, the coating layer may contain any one or more selected from the group consisting of zinc, germanium, tin, antimony, platinum, gold, bismuth, and an alloy containing two or more of these.

この観点によれば、充放電に伴って金属リチウム層が被覆層の表面に略均一に生成、消失するので、デッドリチウムが発生しにくい。したがって、充放電の繰り返しても容量を維持することができる。すなわち、サイクル特性が向上する。   According to this aspect, since the metal lithium layer is generated and disappears substantially uniformly on the surface of the coating layer with charge / discharge, dead lithium is hardly generated. Therefore, the capacity can be maintained even after repeated charging and discharging. That is, cycle characteristics are improved.

また、被覆層の厚みは1nm以上100nm未満であってもよい。   Further, the thickness of the coating layer may be 1 nm or more and less than 100 nm.

本発明の他の観点によれば、上記の全固体型二次電池用負極を含むことを特徴とする、全固体型二次電池が提供される。   According to another aspect of the present invention, there is provided an all solid state secondary battery comprising the above-described negative electrode for an all solid state secondary battery.

以上説明したように本発明によれば、充放電に伴って金属リチウム層が被覆層の表面に略均一に生成、消失するので、デッドリチウムが発生しにくい。したがって、充放電の繰り返しても容量を維持することができる。すなわち、サイクル特性が向上する。   As described above, according to the present invention, the lithium metal layer is generated and disappears substantially uniformly on the surface of the coating layer with charge / discharge, so that dead lithium is hardly generated. Therefore, the capacity can be maintained even after repeated charging and discharging. That is, cycle characteristics are improved.

本発明の一実施形態に係る全固体型二次電池の層構成を模式的に示す断面図である。It is sectional drawing which shows typically the layer structure of the all-solid-state secondary battery which concerns on one Embodiment of this invention. 被覆層を有しない全固体型二次電池を充電した際の負極の挙動を模式的に示す断面図である。It is sectional drawing which shows typically the behavior of the negative electrode at the time of charging the all-solid-type secondary battery which does not have a coating layer. 被覆層を有しない全固体型二次電池を放電した際の負極の挙動を模式的に示す断面図である。It is sectional drawing which shows typically the behavior of a negative electrode at the time of discharging the all-solid-type secondary battery which does not have a coating layer. 本実施形態に係る全固体型二次電池を充電した際の負極の挙動を模式的に示す断面図である。It is sectional drawing which shows typically the behavior of the negative electrode at the time of charging the all-solid-type secondary battery which concerns on this embodiment. 本実施形態に係る全固体型二次電池を放電した際の負極の挙動を模式的に示す断面図である。It is sectional drawing which shows typically the behavior of the negative electrode at the time of discharging the all-solid-type secondary battery which concerns on this embodiment. 実施例及び比較例に係る全固体型二次電池のサイクル特性を示すグラフである。It is a graph which shows the cycling characteristics of the all-solid-type secondary battery which concerns on an Example and a comparative example. 比較例に係る全固体型二次電池の負極の表面状態を示すSEM(走査型電子顕微鏡)写真である。It is a SEM (scanning electron microscope) photograph which shows the surface state of the negative electrode of the all-solid-state secondary battery which concerns on a comparative example. 実施例に係る全固体型二次電池の負極の表面状態を示すSEM(走査型電子顕微鏡)写真である。It is a SEM (scanning electron microscope) photograph which shows the surface state of the negative electrode of the all-solid-type secondary battery which concerns on an Example. 負極活物質層の有無による電位プロファイルの変化を示すグラフである。It is a graph which shows the change of the electric potential profile by the presence or absence of a negative electrode active material layer. 被覆層の種類及び有無による充放電プロファイルの変化を示すグラフである。It is a graph which shows the change of the charging / discharging profile by the kind and presence / absence of a coating layer.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.全固体型二次電池の構成>
まず、図1に基づいて、本実施形態に係る全固体型二次電池1の構成について説明する。全固体型二次電池1は、電解質として固体電解質を用いた二次電池である。また、全固体型二次電池1は、リチウムイオンが正極10、負極層30間を移動する所謂全固体型リチウムイオン二次電池である。
<1. Configuration of all-solid-state secondary battery>
First, based on FIG. 1, the structure of the all-solid-state secondary battery 1 which concerns on this embodiment is demonstrated. The all solid state secondary battery 1 is a secondary battery using a solid electrolyte as an electrolyte. The all solid state secondary battery 1 is a so-called all solid state lithium ion secondary battery in which lithium ions move between the positive electrode 10 and the negative electrode layer 30.

図1に示すように、全固体型二次電池1は、正極層10と、固体電解質層20と、負極層30とを備える。   As shown in FIG. 1, the all solid state secondary battery 1 includes a positive electrode layer 10, a solid electrolyte layer 20, and a negative electrode layer 30.

(1−1.正極層)
正極層10は、正極活物質と、固体電解質とを含む。また、正極層10は、電子伝導性を補うために、導電助剤をさらに含んでもよい。なお、正極層10に含まれる固体電解質は、固体電解質層20に含まれる固体電解質と同種のものであっても、同種でなくてもよい。固体電解質の詳細は固体電解質層20の項にて詳細に説明する。
(1-1. Positive electrode layer)
The positive electrode layer 10 includes a positive electrode active material and a solid electrolyte. Further, the positive electrode layer 10 may further include a conductive auxiliary agent in order to supplement electronic conductivity. The solid electrolyte contained in the positive electrode layer 10 may or may not be the same type as the solid electrolyte contained in the solid electrolyte layer 20. Details of the solid electrolyte will be described in detail in the section of the solid electrolyte layer 20.

正極活物質は、リチウムイオンを可逆的に吸蔵および放出することが可能な正極活物質であればよい。   The positive electrode active material may be any positive electrode active material capable of reversibly occluding and releasing lithium ions.

例えば、正極活物質は、コバルト酸リチウム(以下、LCOと称する)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、NCAと称する)、ニッケルコバルトマンガン酸リチウム(以下、NCMと称する)、マンガン酸リチウム、リン酸鉄リチウム等のリチウム塩、硫化ニッケル、硫化銅、硫黄、酸化鉄、または酸化バナジウム等を用いて形成することができる。これらの正極活物質は、それぞれ単独で用いられてもよく、また2種以上を組み合わせて用いられてもよい。   For example, the positive electrode active material includes lithium cobaltate (hereinafter referred to as LCO), lithium nickelate, nickel cobaltate lithium, nickel cobalt lithium aluminumate (hereinafter referred to as NCA), nickel cobalt lithium manganate (hereinafter referred to as NCM). ), Lithium salts such as lithium manganate and lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, vanadium oxide, and the like. These positive electrode active materials may be used alone or in combination of two or more.

また、正極活物質は、上述したリチウム塩のうち、層状岩塩型構造を有する遷移金属酸化物のリチウム塩を含んで形成されることが好ましい。ここで、「層状」とは、薄いシート状の形状を表す。また、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことを表し、具体的には、陽イオンおよび陰イオンの各々が形成する面心立方格子が互いに単位格子の稜の1/2だけずれて配置された構造を表す。   Moreover, it is preferable that a positive electrode active material is formed including the lithium salt of the transition metal oxide which has a layered rock salt type structure among the lithium salts mentioned above. Here, “layered” represents a thin sheet-like shape. The “rock salt structure” refers to a sodium chloride structure, which is a kind of crystal structure. Specifically, the face-centered cubic lattice formed by each cation and anion is a unit lattice. It represents a structure that is displaced by a half of the edge.

このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、LiNiCoAl(NCA)、またはLiNiCoMn(NCM)(ただし、0<x<1、0<y<1、0<z<1、かつx+y+z=1)などの三元系遷移金属酸化物のリチウム塩が挙げられる。 The lithium salt of a transition metal oxide having such a layered rock-salt structure, for example, LiNi x Co y Al z O 2 (NCA), or LiNi x Co y Mn z O 2 (NCM) ( where 0 < and lithium salts of ternary transition metal oxides such as x <1, 0 <y <1, 0 <z <1, and x + y + z = 1).

正極活物質が、上記の層状岩塩型構造を有する三元系遷移金属酸化物のリチウム塩を含む場合、全固体型二次電池1のエネルギー(energy)密度および熱安定性を向上させることができる。   When the positive electrode active material includes a lithium salt of a ternary transition metal oxide having the above layered rock salt structure, the energy density and thermal stability of the all solid state secondary battery 1 can be improved. .

正極活物質は、被覆層によって覆われていても良い。ここで、本実施形態の被覆層は、全固体型二次電池の正極活物質の被覆層として公知のものであればどのようなものであってもよい。被覆層の例としては、例えば、LiO−ZrO等が挙げられる。 The positive electrode active material may be covered with a coating layer. Here, the coating layer of the present embodiment may be any material as long as it is a known coating layer for the positive electrode active material of the all solid state secondary battery. Examples of the coating layer, for example, Li 2 O-ZrO 2 or the like.

また、正極活物質が、NCAまたはNCMなどの三元系遷移金属酸化物のリチウム塩にて形成されており、正極活物質としてニッケル(Ni)を含む場合、全固体型二次電池1の容量密度を上昇させ、充電状態での正極活物質からの金属溶出を少なくすることができる。これにより、本実施形態に係る全固体型二次電池1は、充電状態での長期信頼性およびサイクル(cycle)特性を向上させることができる。   Further, when the positive electrode active material is formed of a lithium salt of a ternary transition metal oxide such as NCA or NCM and contains nickel (Ni) as the positive electrode active material, the capacity of the all solid state secondary battery 1 It is possible to increase the density and reduce metal elution from the positive electrode active material in the charged state. Thereby, the all-solid-state secondary battery 1 according to the present embodiment can improve long-term reliability and cycle characteristics in a charged state.

ここで、正極活物質の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、正極活物質の粒径は特に制限されず、従来の全固体型二次電池の正極活物質に適用可能な範囲であれば良い。なお、正極層10における正極活物質の含有量も特に制限されず、従来の全固体型二次電池の正極層に適用可能な範囲であれば良い。   Here, examples of the shape of the positive electrode active material include particle shapes such as a true sphere and an oval sphere. The particle size of the positive electrode active material is not particularly limited, and may be in a range applicable to the positive electrode active material of a conventional all solid state secondary battery. The content of the positive electrode active material in the positive electrode layer 10 is not particularly limited as long as it is applicable to the positive electrode layer of a conventional all solid state secondary battery.

また、正極層10には、上述した正極活物質および固体電解質に加えて、例えば、導電剤、結着材が適宜配合されていてもよい。   In addition to the positive electrode active material and the solid electrolyte described above, for example, a conductive agent and a binder may be appropriately mixed in the positive electrode layer 10.

正極層10に配合可能な導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等を挙げることができる。また、正極層10に配合可能な結着剤としては、例えば、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリエチレン(polyethylene)等を挙げることができる。   Examples of the conductive agent that can be blended in the positive electrode layer 10 include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder that can be blended in the positive electrode layer 10 include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene.

(1−2.固体電解質層)
固体電解質層20は、正極層10および負極層30の間に形成され、固体電解質を含む。
(1-2. Solid electrolyte layer)
The solid electrolyte layer 20 is formed between the positive electrode layer 10 and the negative electrode layer 30 and includes a solid electrolyte.

固体電解質は、例えば硫化物系固体電解質材料で構成される。硫化物系固体電解質材料としては、例えば、LiS−P、LiS−P−LiX(Xはハロゲン元素、例えばI、Cl)、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、Li2−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(m、nは正の数、ZはGe、ZnまたはGaのいずれか)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(p、qは正の数、MはP、Si、Ge、B、Al、GaまたはInのいずれか)等を挙げることができる。ここで、硫化物系固体電解質材料は、出発原料(例えば、LiS、P等)を溶融急冷法やメカニカルミリング(mechanical milling)法等によって処理することで作製される。また、これらの処理の後にさらに熱処理を行っても良い。 The solid electrolyte is made of a sulfide-based solid electrolyte material, for example. Examples of the sulfide-based solid electrolyte material include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiX (X is a halogen element, such as I or Cl), Li 2 S—P 2 S 5, for example. -Li 2 O, Li 2 S- P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li2 S -SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n (m, n is any positive number, Z is Ge, and Zn, or Ga), Li 2 S-GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 - Li p MO q (p, q is a positive number, M is P, Si, Ge B, Al, either Ga or In), and the like. Here, the sulfide-based solid electrolyte material is produced by processing a starting material (for example, Li 2 S, P 2 S 5, etc.) by a melt quenching method, a mechanical milling method, or the like. Further, heat treatment may be further performed after these treatments.

また、固体電解質では、上記の硫化物固体電解質材料のうち、少なくとも構成元素として硫黄(S)、リン(P)およびリチウム(Li)を含むものを用いることが好ましく、特にLiS−Pを含むものを用いることがより好ましい。 In the solid electrolyte, it is preferable to use a material containing at least sulfur (S), phosphorus (P) and lithium (Li) as constituent elements among the above-mentioned sulfide solid electrolyte materials, and in particular Li 2 S—P 2. it is more preferable to use those containing S 5.

ここで、固体電解質を形成する硫化物系固体電解質材料としてLiS−Pを含むものを用いる場合、LiSとPとの混合モル比は、例えば、LiS:P=50:50〜90:10の範囲で選択されてもよい。 Here, the case of using those containing Li 2 S-P 2 S 5 as a sulfide-based solid electrolyte material to form a solid electrolyte, the mixing molar ratio of Li 2 S and P 2 S 5, for example, Li 2 S : P 2 S 5 = 50: 50 to 90:10 may be selected.

また、固体電解質の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、固体電解質の粒子径は、特に限定されず、従来の全固体型二次電池の固体電解質に適用可能な範囲であれば良い。   In addition, examples of the shape of the solid electrolyte include particle shapes such as a true sphere and an oval sphere. Further, the particle diameter of the solid electrolyte is not particularly limited as long as it is within a range applicable to the solid electrolyte of a conventional all solid state secondary battery.

(1−3.負極層)
図1に示すように、負極層30は、負極集電体40と、被覆層50とを備える。負極集電体40は、導電性の材料からなる板状あるいは箔状の部材である。負極集電体40を構成する材料としては、例えば、ステンレス鋼(SUS)、チタン(Ti)、ニッケル(Ni)等が挙げられる。
(1-3. Negative electrode layer)
As shown in FIG. 1, the negative electrode layer 30 includes a negative electrode current collector 40 and a coating layer 50. The negative electrode current collector 40 is a plate-like or foil-like member made of a conductive material. Examples of the material constituting the negative electrode current collector 40 include stainless steel (SUS), titanium (Ti), nickel (Ni), and the like.

被覆層50は、負極集電体40の表面(より具体的には、固体電解質に対向する表面)を被覆する。被覆層50は、充電時にリチウムの拡散が速い合金層を形成しその上に金属リチウムが析出する。本実施形態では、負極集電体40が被覆層50で被覆されているので、充電時には、被覆層50にリチウムの拡散が速い合金層を介して金属リチウムが生成するため、被覆層50の表面の広い領域に金属リチウムが略均一に析出する。   The coating layer 50 covers the surface of the negative electrode current collector 40 (more specifically, the surface facing the solid electrolyte). The coating layer 50 forms an alloy layer in which lithium is rapidly diffused during charging, and metallic lithium is deposited thereon. In the present embodiment, since the negative electrode current collector 40 is covered with the coating layer 50, since metal lithium is generated in the coating layer 50 through an alloy layer in which lithium is rapidly diffused during charging, the surface of the coating layer 50 Lithium metal is deposited almost uniformly over a wide area of the film.

具体的には、被覆層50は、リチウムと合金を形成可能な金属を含む。このような金属としては、例えば、亜鉛、ゲルマニウム、錫、アンチモン、白金、金、ビスマス、およびこれらの二種以上を含む合金等が挙げられる。被覆層50は、これらの1種または2種以上で構成されていても良い。これにより、被覆層50の表面のより広い領域に金属リチウムが析出する。つまり、金属リチウムは、全固体型二次電池1の厚さ方向に成長しにくくなり、その代わりに、被覆層50の表面のより広い領域から略均一に析出する。この結果、被覆層50の面方向に金属リチウム層が連続して形成されるので、放電時にデッドリチウムが生成しにくくなる。   Specifically, the coating layer 50 includes a metal capable of forming an alloy with lithium. Examples of such metals include zinc, germanium, tin, antimony, platinum, gold, bismuth, and alloys containing two or more of these. The coating layer 50 may be composed of one or more of these. As a result, metallic lithium is deposited in a wider area on the surface of the coating layer 50. That is, the lithium metal is less likely to grow in the thickness direction of the all-solid-state secondary battery 1, and instead deposits substantially uniformly from a wider region of the surface of the coating layer 50. As a result, since the metal lithium layer is continuously formed in the surface direction of the coating layer 50, it is difficult to generate dead lithium during discharge.

(1−4.充放電時の負極層の挙動)
ここで、本実施形態による効果を明確にするために、充放電時の負極層30の挙動について説明する。まず、比較のために、図2及び図3に基づいて、被覆層50を有していない負極層300の充放電時の挙動について説明する。まず、充電時には、図2に示すように、負極集電体40と固体電解質との接触部分にしか金属リチウム200が析出しない。また、接触していても析出の過電圧が大きいため局所的にしか金属リチウムが析出しない。そして、析出した金属リチウム200は、負極集電体40の面方向にはほとんど成長せず、全固体型二次電池の厚さ方向に成長する。矢印Aは金属リチウム200の成長方向を示す。このため、全固体型二次電池の厚さ方向に大きく成長した金属リチウム200が負極集電体40上に局所的に生成される。
(1-4. Behavior of negative electrode layer during charge / discharge)
Here, in order to clarify the effect of the present embodiment, the behavior of the negative electrode layer 30 during charging and discharging will be described. First, for comparison, the behavior during charging / discharging of the negative electrode layer 300 not having the coating layer 50 will be described with reference to FIGS. 2 and 3. First, at the time of charging, as shown in FIG. 2, the metallic lithium 200 is deposited only at the contact portion between the negative electrode current collector 40 and the solid electrolyte. Moreover, even if it contacts, since the overvoltage of precipitation is large, metallic lithium precipitates only locally. The deposited metal lithium 200 hardly grows in the surface direction of the negative electrode current collector 40 and grows in the thickness direction of the all solid state secondary battery. Arrow A indicates the growth direction of metallic lithium 200. For this reason, the metallic lithium 200 that has grown greatly in the thickness direction of the all solid state secondary battery is locally generated on the negative electrode current collector 40.

そして、放電時には、図3に示すように、金属リチウム200は、徐々にリチウムイオンとなって溶解し、矢印B方向に小さくなる。この過程において一部の金属リチウム200と固体電解質との導通が途切れてしまうことがある。このような金属リチウム200はもはや充放電には使用できないので、デッドリチウムと称される。図3の例では、金属リチウム200aと固体電解質との導通が途切れている。したがって、金属リチウム200aがデッドリチウムとなる。そして、金属リチウム200は、負極集電体40上に局所的に生成されるので、デッドリチウムが発生しやすい。このため、充放電の繰り返しにより容量が急激に低下するという問題がある。   At the time of discharging, as shown in FIG. 3, the metallic lithium 200 gradually dissolves as lithium ions and decreases in the arrow B direction. In this process, conduction between some of the metallic lithium 200 and the solid electrolyte may be interrupted. Such a metallic lithium 200 can no longer be used for charging and discharging, and is therefore referred to as dead lithium. In the example of FIG. 3, conduction between the metallic lithium 200a and the solid electrolyte is interrupted. Therefore, the metal lithium 200a becomes dead lithium. And since the metal lithium 200 is produced | generated locally on the negative electrode collector 40, dead lithium is easy to generate | occur | produce. For this reason, there exists a problem that a capacity | capacitance falls rapidly by repetition of charging / discharging.

つぎに、図4及び図5に基づいて、本実施形態に係る負極層30の充放電時の挙動について説明する。まず、充電時には、図4に示すように、被覆層50と固体電解質との接触部分からリチウムイオンが被覆層50内に進入し、被覆層50を構成する金属と合金化する。合金中のリチウム拡散は速いため、被覆層50の面方向に合金化が進む。つまり、被覆層50がリチウム合金層となる。したがって、リチウムイオンは、リチウム合金層となった領域の全域から析出可能となる。この結果、被覆層50の表面から金属リチウム200が略均一に析出する。すなわち、被覆層50の表面には、金属リチウム200からなる層、すなわち金属リチウム層が面方向に連続して形成される。矢印Aは、金属リチウム200の析出方向を示す。   Next, based on FIG. 4 and FIG. 5, the behavior during charging / discharging of the negative electrode layer 30 according to the present embodiment will be described. First, at the time of charging, as shown in FIG. 4, lithium ions enter the coating layer 50 from the contact portion between the coating layer 50 and the solid electrolyte and alloy with the metal constituting the coating layer 50. Since lithium diffusion in the alloy is fast, alloying proceeds in the surface direction of the coating layer 50. That is, the coating layer 50 becomes a lithium alloy layer. Therefore, lithium ions can be precipitated from the entire region that is the lithium alloy layer. As a result, the metallic lithium 200 is deposited substantially uniformly from the surface of the coating layer 50. That is, on the surface of the covering layer 50, a layer made of the metallic lithium 200, that is, a metallic lithium layer is continuously formed in the surface direction. Arrow A indicates the deposition direction of metallic lithium 200.

そして、放電時には、図5に示すように、金属リチウム200は、徐々にリチウムイオンとなって溶解し、矢印B方向に小さくなる。この過程において、金属リチウム200は、面方向に連続した金属リチウム層となっており、その厚さが略均一に小さくなっていくので、金属リチウムと固体電解質との接触を維持することができる。このため、デッドリチウムが生成しにくくなる。したがって、充放電の繰り返しても容量を維持することができる。すなわち、サイクル特性が向上する。   At the time of discharging, as shown in FIG. 5, the metallic lithium 200 gradually dissolves as lithium ions and decreases in the arrow B direction. In this process, the metal lithium 200 is a metal lithium layer that is continuous in the plane direction, and its thickness is reduced substantially uniformly, so that the contact between the metal lithium and the solid electrolyte can be maintained. For this reason, it becomes difficult to produce dead lithium. Therefore, the capacity can be maintained even after repeated charging and discharging. That is, cycle characteristics are improved.

ここで、被覆層50の厚みは特に制限されないが、薄すぎると金属リチウムが析出しにくくなる可能性がある。一方、被覆層50が厚すぎると被覆層50そのものが負極活物質となりうる。この場合、金属リチウムの析出量が減少するので、金属リチウムの高いエネルギー密度という特性を利用しにくくなる。また、合金化に伴う体積膨張が大きいため電極の割れが発生し、逆に効率が低下するという問題がある。このため、被覆層50の厚みは1nm以上100nm未満であることが好ましい。厚みの上限値は95nm以下であることがより好ましく、90nm以下であることがより好ましく、50nm以下であることがより好ましい。   Here, the thickness of the coating layer 50 is not particularly limited, but if it is too thin, metallic lithium may be difficult to precipitate. On the other hand, when the coating layer 50 is too thick, the coating layer 50 itself can be a negative electrode active material. In this case, the amount of metallic lithium deposited decreases, making it difficult to use the high energy density characteristic of metallic lithium. Moreover, since the volume expansion accompanying alloying is large, there is a problem that cracking of the electrode occurs, and conversely the efficiency is lowered. For this reason, it is preferable that the thickness of the coating layer 50 is 1 nm or more and less than 100 nm. The upper limit value of the thickness is more preferably 95 nm or less, more preferably 90 nm or less, and more preferably 50 nm or less.

このように、本実施形態では、被覆層50はあくまで金属リチウム200の析出領域を拡張するために使用されるのであって、負極活物質層として使用されるのではない。   Thus, in this embodiment, the coating layer 50 is used only to expand the deposition region of the metal lithium 200 and is not used as a negative electrode active material layer.

以上、本実施形態に係る全固体型二次電池1の構成について詳細に説明した。   Heretofore, the configuration of the all solid state secondary battery 1 according to the present embodiment has been described in detail.

<2.リチウムイオン二次電池の製造方法>
続いて、本実施形態に係る全固体型二次電池1の製造方法について説明する。本実施形態に係る全固体型二次電池1は、正極層10、負極層30、および固体電解質層20をそれぞれ製造した後、上記の各層を積層することにより製造することができる。
<2. Manufacturing method of lithium ion secondary battery>
Then, the manufacturing method of the all-solid-type secondary battery 1 which concerns on this embodiment is demonstrated. The all solid state secondary battery 1 according to the present embodiment can be manufactured by stacking the above layers after manufacturing the positive electrode layer 10, the negative electrode layer 30, and the solid electrolyte layer 20, respectively.

(正極層の作製)
正極活物質は、公知の方法で作製することができる。
(Preparation of positive electrode layer)
The positive electrode active material can be produced by a known method.

続いて、作製した正極活物質と、後述する方法で作製した固体電解質と、各種添加材とを混合し非極性溶媒に添加してスラリー(slurry)またはペースト(paste)を形成する。さらに、得られたスラリーまたはペーストを正極集電体上に塗布し、乾燥した後に、圧延することで、正極層10を得ることができる。   Subsequently, the produced positive electrode active material, a solid electrolyte produced by a method described later, and various additives are mixed and added to a nonpolar solvent to form a slurry or paste. Furthermore, the obtained slurry or paste is applied onto a positive electrode current collector, dried, and then rolled, whereby the positive electrode layer 10 can be obtained.

ここで、正極集電体を構成する材料はアルミニウム、ステンレス等が上げられる。正極集電体を用いずに、正極活物質と、各種添加剤との混合物をペレット(pellet)状に圧密化成形することで正極層10を作製してもよい。   Here, examples of the material constituting the positive electrode current collector include aluminum and stainless steel. The positive electrode layer 10 may be produced by compacting a mixture of a positive electrode active material and various additives into a pellet shape without using a positive electrode current collector.

(負極層の作製)
負極層30は、負極集電体40上に被覆層50を被覆することで作製される。ここで、負極集電体40上に被覆層50を被覆する方法は特に制限されないが、例えば、無電解めっき法、スパッタリング法、真空蒸着法等が挙げられる。このように、本実施形態では、負極活物質を用意する必要が無いので、負極層30を容易に作製することができる。さらには、金属リチウムを用いないことから露点管理や安全対策への製造設備にかかるコストを大幅に低減できる。
(Preparation of negative electrode layer)
The negative electrode layer 30 is produced by covering the negative electrode current collector 40 with a coating layer 50. Here, the method for coating the coating layer 50 on the negative electrode current collector 40 is not particularly limited, and examples thereof include an electroless plating method, a sputtering method, and a vacuum deposition method. Thus, in this embodiment, since it is not necessary to prepare a negative electrode active material, the negative electrode layer 30 can be produced easily. Furthermore, since metal lithium is not used, the cost of manufacturing equipment for dew point management and safety measures can be greatly reduced.

(固体電解質層の作製)
固体電解質層20は、硫化物系固体電解質材料にて形成された固体電解質により作製することができる。
(Preparation of solid electrolyte layer)
The solid electrolyte layer 20 can be made of a solid electrolyte formed of a sulfide-based solid electrolyte material.

まず、溶融急冷法やメカニカルミリング(mechanical milling)法により出発原料を処理する。   First, the starting material is processed by a melt quenching method or a mechanical milling method.

例えば、溶融急冷法を用いる場合、出発原料(例えば、LiS、P等)を所定量混合し、ペレット状にしたものを真空中で所定の反応温度で反応させた後、急冷することによって硫化物系固体電解質材料を作製することができる。なお、LiSおよびPの混合物の反応温度は、好ましくは400℃〜1000℃であり、より好ましくは800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間であり、より好ましくは1時間〜12時間である。さらに、反応物の急冷温度は、通常10℃以下であり、好ましくは0℃以下であり、急冷速度は、通常1℃/sec〜10000℃/sec程度であり、好ましくは1℃/sec〜1000℃/sec程度である。 For example, when the melt quenching method is used, a predetermined amount of starting materials (for example, Li 2 S, P 2 S 5, etc.) are mixed, and the pellets are reacted at a predetermined reaction temperature in a vacuum, and then rapidly cooled. By doing so, a sulfide-based solid electrolyte material can be produced. The reaction temperature of the mixture of Li 2 S and P 2 S 5 is preferably 400 ° C. to 1000 ° C., more preferably 800 ° C. to 900 ° C. Moreover, reaction time becomes like this. Preferably it is 0.1 to 12 hours, More preferably, it is 1 to 12 hours. Furthermore, the quenching temperature of the reaction product is usually 10 ° C. or less, preferably 0 ° C. or less, and the quenching rate is usually about 1 ° C./sec to 10000 ° C./sec, preferably 1 ° C./sec to 1000 ° C. It is about ° C / sec.

また、メカニカルミリング法を用いる場合、ボールミルなどを用いて出発原料(例えば、LiS、P等)を撹拌させて反応させることで、硫化物系固体電解質材料を作製することができる。なお、メカニカルミリング法における撹拌速度および撹拌時間は特に限定されないが、撹拌速度が速いほど硫化物系固体電解質材料の生成速度を速くすることができ、撹拌時間が長いほど硫化物系固体電解質材料への原料の転化率を高くすることができる。 In addition, when using the mechanical milling method, a sulfide-based solid electrolyte material can be produced by stirring and reacting starting materials (for example, Li 2 S, P 2 S 5, etc.) using a ball mill or the like. . In addition, although the stirring speed and stirring time in the mechanical milling method are not particularly limited, the faster the stirring speed, the faster the generation rate of the sulfide-based solid electrolyte material, and the longer the stirring time, the more the sulfide-based solid electrolyte material. The conversion rate of the raw material can be increased.

その後、溶融急冷法またはメカニカルミリング法により得られた混合原料を所定温度で熱処理した後、粉砕することにより粒子状の固体電解質を作製することができる。   Thereafter, the mixed raw material obtained by the melt quenching method or the mechanical milling method is heat-treated at a predetermined temperature and then pulverized to produce a particulate solid electrolyte.

続いて、上記の方法で得られた固体電解質を、例えば、エアロゾルデポジション(aerosol deposition)法、コールドスプレー(cold spray)法、スパッタ法等の公知の成膜法を用いて成膜することにより、固体電解質層20を作製することができる。なお、固体電解質層20は、固体電解質粒子単体を加圧することにより作製されてもよい。また、固体電解質層20は、固体電解質と、溶媒、バインダを混合し、塗布乾燥し加圧することにより固体電解質層20を作製してもよい。   Subsequently, the solid electrolyte obtained by the above method is formed by using a known film formation method such as an aerosol deposition method, a cold spray method, or a sputtering method. The solid electrolyte layer 20 can be produced. In addition, the solid electrolyte layer 20 may be produced by pressurizing solid electrolyte particles alone. Moreover, the solid electrolyte layer 20 may produce the solid electrolyte layer 20 by mixing a solid electrolyte, a solvent, and a binder, apply-drying, and pressurizing.

(リチウムイオン二次電池の製造)
さらに、上記の方法で作製した正極層10、固体電解質層20、及び負極層30を、正極層10と負極層30とで固体電解質層20を挟持するように積層し、加圧することにより、本実施形態に係る全固体型二次電池1を製造することができる。
(Manufacture of lithium ion secondary batteries)
Furthermore, the positive electrode layer 10, the solid electrolyte layer 20, and the negative electrode layer 30 manufactured by the above method are stacked so that the solid electrolyte layer 20 is sandwiched between the positive electrode layer 10 and the negative electrode layer 30, and then pressed. The all solid state secondary battery 1 according to the embodiment can be manufactured.

<1.サイクル特性評価>
まず、本実施形態による全固体型二次電池1のサイクル特性を評価するために、以下の試験を行った。
<1. Cycle characteristics evaluation>
First, in order to evaluate the cycle characteristics of the all solid state secondary battery 1 according to the present embodiment, the following tests were performed.

(1−1.実施例1)
実施例1では、まず、以下の工程により全固体型二次電池1を作製した。
(1-1. Example 1)
In Example 1, first, the all solid state secondary battery 1 was manufactured by the following steps.

(1−1−1.負極層の作製)
負極集電体40としてNi箔を用意し、無電解めっき法により錫を負極集電体40の表面に厚さ1nmでめっきした。これにより、錫からなる厚さ1nmの被覆層50を負極集電体40上に形成した。
(1-1-1. Production of negative electrode layer)
Ni foil was prepared as the negative electrode current collector 40, and tin was plated on the surface of the negative electrode current collector 40 with a thickness of 1 nm by an electroless plating method. As a result, a coating layer 50 made of tin and having a thickness of 1 nm was formed on the negative electrode current collector 40.

(1−1−2.全固体型二次電池の作製)
上記で作製した負極層30をφ13(mm)で打ち抜き、セル容器にセットした。その上に、LiS−P(モル比80:20)をメカニカルミリング処理(MM処理)したものを固体電解質粒子として70mg積層し、成型機で軽く表面を整えた。これにより、固体電解質層20を負極層30上に形成した.ついで、正極活物質としてLi(Ni、Mn、Co)Oと固体電解質粒子と、導電剤である気相成長カーボンファイバ(VGCF)とを60/35/5質量%の比率で混合したものを、正極層10として固体電解質層20の上に積層した。ついで、積層体を3t/cmの圧力で加圧することで、実施例1に係る試験用セルを作製した。
(1-1-2. Production of all solid state secondary battery)
The negative electrode layer 30 produced above was punched out with φ13 (mm) and set in a cell container. On top of that, 70 mg of Li 2 S—P 2 S 5 (molar ratio 80:20) subjected to mechanical milling (MM treatment) was laminated as solid electrolyte particles, and the surface was lightly adjusted with a molding machine. Thereby, the solid electrolyte layer 20 was formed on the negative electrode layer 30. Next, a mixture of Li (Ni, Mn, Co) O 2 as a positive electrode active material, solid electrolyte particles, and vapor grown carbon fiber (VGCF) as a conductive agent at a ratio of 60/35/5% by mass. The positive electrode layer 10 was laminated on the solid electrolyte layer 20. Next, the test cell according to Example 1 was manufactured by pressurizing the laminate with a pressure of 3 t / cm 2 .

(1−1−3.サイクル特性の評価)
試験用セルを25℃の恒温槽内に設置し、東洋システム製充放電評価装置TOSCAT−3100により、0.1C定電流充電、0.5C定電流放電、電圧範囲4.0V−3.0Vの条件下で充放電を行い、サイクル特性を評価した。結果を図6に示す。図6のグラフL1は実施例1のサイクル特性を示す。
(1-1-3. Evaluation of cycle characteristics)
A test cell was installed in a thermostatic bath at 25 ° C., and charge / discharge evaluation device TOSCAT-3100 manufactured by Toyo System Co., Ltd., 0.1C constant current charge, 0.5C constant current discharge, voltage range 4.0V-3.0V The battery was charged and discharged under the conditions, and the cycle characteristics were evaluated. The results are shown in FIG. The graph L1 in FIG. 6 shows the cycle characteristics of Example 1.

(1−2.実施例2)
実施例2では、負極層30を以下の工程により作製した他は実施例1と同様の処理を行った。結果を図6に示す。図6のグラフL2は実施例2のサイクル特性を示す。
(1-2. Example 2)
In Example 2, the same process as in Example 1 was performed except that the negative electrode layer 30 was produced by the following steps. The results are shown in FIG. The graph L2 in FIG. 6 shows the cycle characteristics of Example 2.

(1−2−1.負極層の作製)
負極集電体40としてNi箔を用意し、スパッタリング法により亜鉛を負極集電体40の表面に厚さ50nmで被覆した。これにより、亜鉛からなる厚さ50nmの被覆層50を負極集電体40上に形成した。
(1-2-1. Production of negative electrode layer)
Ni foil was prepared as the negative electrode current collector 40, and zinc was coated on the surface of the negative electrode current collector 40 to a thickness of 50 nm by a sputtering method. As a result, a coating layer 50 made of zinc and having a thickness of 50 nm was formed on the negative electrode current collector 40.

(1−3.実施例3)
実施例3では、負極層30を以下の工程により作製した他は実施例1と同様の処理を行った。結果を図6に示す。図6のグラフL3は実施例3のサイクル特性を示す。
(1-3. Example 3)
In Example 3, the same process as in Example 1 was performed except that the negative electrode layer 30 was produced by the following steps. The results are shown in FIG. A graph L3 in FIG. 6 shows the cycle characteristics of Example 3.

(1−3−1.負極層の作製)
負極集電体40としてNi箔を用意し、スパッタリング法によりビスマスを負極集電体40の表面に厚さ50nmで被覆した。これにより、ビスマスからなる厚さ50nmの被覆層50を負極集電体40上に形成した。
(1-3-1. Production of negative electrode layer)
Ni foil was prepared as the negative electrode current collector 40, and the surface of the negative electrode current collector 40 was coated with a thickness of 50 nm by sputtering. As a result, a coating layer 50 made of bismuth and having a thickness of 50 nm was formed on the negative electrode current collector 40.

(1−4.比較例1)
比較例1では、実施例1で使用したNi箔を負極層30とした他は実施例1と同様の処理を行った。結果を図6に示す。図6のグラフL4は比較例1のサイクル特性を示す。
(1-4. Comparative Example 1)
In Comparative Example 1, the same treatment as in Example 1 was performed except that the Ni foil used in Example 1 was used as the negative electrode layer 30. The results are shown in FIG. A graph L4 in FIG. 6 shows the cycle characteristics of Comparative Example 1.

(1−5.サイクル特性の評価)
図6から明らかな通り、実施例1〜3では、サイクル特性が良好であったのに対し、比較例1ではサイクル特性が初期の段階から急激に低下した。したがって、比較例1では、充放電にともなって大量のデッドリチウムが発生したと考えられる。これに対し、実施例1〜3では、被覆層50の表面に略均一に金属リチウム層が形成、消失されるので、デッドリチウムがほとんど生じなかったと考えられる。
(1-5. Evaluation of cycle characteristics)
As is clear from FIG. 6, in Examples 1 to 3, the cycle characteristics were good, whereas in Comparative Example 1, the cycle characteristics rapidly decreased from the initial stage. Therefore, in Comparative Example 1, it is considered that a large amount of dead lithium was generated along with charge / discharge. On the other hand, in Examples 1 to 3, since the metal lithium layer was formed and disappeared substantially uniformly on the surface of the coating layer 50, it is considered that almost no dead lithium was generated.

<2.析出形態の確認>
充放電に伴う金属リチウム200の析出状態を確認するために、実施例3、比較例1のサイクル特性の評価試験を終了した後、これらの試験用セルを分解した。そして、負極層30の表面をSEMで観察した。図7は、比較例1のSEM写真を示し、図8は実施例3のSEM写真を示す。図7では、負極集電体40の表面に局所的に金属リチウム200が析出しており、その領域の一部にのみ固体電解質20aが付着していることがわかる。つまり、金属リチウム200が局所的に析出していることがわかる。これに対し、実施例3では、金属リチウム200が負極集電体40のほぼ全面に析出しており、固体電解質20aも負極集電体40の全面に分散して付着していることがわかる。
<2. Confirmation of precipitation form>
In order to confirm the deposition state of the metallic lithium 200 due to charging / discharging, after the cycle characteristics evaluation test of Example 3 and Comparative Example 1 was completed, these test cells were disassembled. And the surface of the negative electrode layer 30 was observed by SEM. FIG. 7 shows an SEM photograph of Comparative Example 1, and FIG. 8 shows an SEM photograph of Example 3. In FIG. 7, it can be seen that the metallic lithium 200 is locally deposited on the surface of the negative electrode current collector 40, and the solid electrolyte 20a is attached only to a part of the region. That is, it can be seen that the metallic lithium 200 is locally deposited. On the other hand, in Example 3, it can be seen that the metallic lithium 200 is deposited on almost the entire surface of the negative electrode current collector 40, and the solid electrolyte 20 a is also dispersed and adhered on the entire surface of the negative electrode current collector 40.

<3.被覆層の電気容量の評価>
上述したように、被覆層50は、金属リチウム200の析出領域を拡張するために使用されるのであって、負極活物質層として使用されるのではない。つまり、本実施形態では、充放電に伴って負極層30に金属リチウムが析出、溶解する。したがって、被覆層50の電気容量は全固体型二次電池1全体の電気容量に対して非常に低くなるはずである。そこで、この事実を確認するために、以下の試験を行った。
<3. Evaluation of capacitance of coating layer>
As described above, the coating layer 50 is used to expand the deposition region of the metallic lithium 200, and is not used as a negative electrode active material layer. That is, in this embodiment, metallic lithium precipitates and dissolves in the negative electrode layer 30 with charge / discharge. Therefore, the electric capacity of the coating layer 50 should be very low with respect to the electric capacity of the entire solid state secondary battery 1. In order to confirm this fact, the following test was conducted.

すなわち、本試験では、負極集電体40として複数のNi箔を用意し、錫、亜鉛、ビスマス、及び金を負極集電体40の各々の表面に厚さ1nmで被覆した。錫、及び金は無電解めっき法により、ゲルマニウム、アンチモン、亜鉛、及びビスマスはスパッタリング法により被覆した。これにより、被覆層50の種類の異なる複数の負極層30を作製した。ついで、これらの負極層30を用いて実施例1と同様に試験用セルを作製した。ただし、正極層20として、Li箔(厚み0.03mm)をφ13(mm)で打ち抜いたものを使用した。   That is, in this test, a plurality of Ni foils were prepared as the negative electrode current collector 40, and the surface of each of the negative electrode current collectors 40 was coated with tin, zinc, bismuth, and gold with a thickness of 1 nm. Tin and gold were coated by an electroless plating method, and germanium, antimony, zinc, and bismuth were coated by a sputtering method. Thereby, the some negative electrode layer 30 from which the kind of coating layer 50 differs was produced. Next, a test cell was produced using these negative electrode layers 30 in the same manner as in Example 1. However, as the positive electrode layer 20, a Li foil (thickness 0.03 mm) punched with φ13 (mm) was used.

ついで、各試験用セルを,25℃の恒温槽にセットし、ソーラトロン製ポテンショ/ガルバノスタット装置1470Eにより0.25mA/cmの電流密度で10分間被覆層へリチウムを挿入し、金属リチウムが析出する電位まで電位を下げた。これにより、各試験用セル全体の電気容量を測定した。一方で、被覆層50を構成する金属種の単位質量あたりの理論容量に基づいて、触媒層50の電気容量を測定した。そして、試験用セル全体の電気容量に対する触媒層50の電気容量の比率を算出した。結果を表1に示す。 Next, each test cell was set in a constant temperature bath at 25 ° C., and lithium was inserted into the coating layer at a current density of 0.25 mA / cm 2 for 10 minutes by a Solartron potentio / galvanostat apparatus 1470E to deposit metallic lithium. The potential was lowered to the potential. Thereby, the electric capacity of the whole test cell was measured. On the other hand, the electric capacity of the catalyst layer 50 was measured based on the theoretical capacity per unit mass of the metal species constituting the coating layer 50. And the ratio of the electric capacity of the catalyst layer 50 to the electric capacity of the whole test cell was calculated. The results are shown in Table 1.

表1によれば、被覆層50の電気容量は、試験用セル全体の電気容量に対して著しく低いので、被覆層50は負極活物質層としてではなく、金属リチウム200の析出領域を拡張するために使用されることが確認できた。言い換えれば、このように非常に薄い被覆層50によって非常に大きな電気容量の全固体型二次電池が実現できたことになる。   According to Table 1, since the electric capacity of the coating layer 50 is significantly lower than the electric capacity of the entire test cell, the coating layer 50 is not as a negative electrode active material layer, but extends the deposition region of the metallic lithium 200 It was confirmed that it was used for. In other words, an all solid state secondary battery having a very large electric capacity can be realized by such a very thin coating layer 50.

<3.負極活物質層の有無による負極の電位プロファイルの変化>
上述したように、被覆層50は、金属リチウム200の析出領域を拡張するために使用されるのであって、負極活物質層として使用されるのではない。つまり、本実施形態では、充放電に伴って負極層30に金属リチウムが析出、溶解する。したがって、例えば放電時の負極層30の電位は放電開始直後に0V(vs.Li/Li)に落ちるはずである。そこで、この事実を確認するために、以下の試験を行った。
<3. Change in potential profile of negative electrode with and without negative electrode active material layer>
As described above, the coating layer 50 is used to expand the deposition region of the metallic lithium 200, and is not used as a negative electrode active material layer. That is, in this embodiment, metallic lithium precipitates and dissolves in the negative electrode layer 30 with charge / discharge. Therefore, for example, the potential of the negative electrode layer 30 during discharge should drop to 0 V (vs. Li / Li + ) immediately after the start of discharge. In order to confirm this fact, the following test was conducted.

負極層30としてNi箔を使用した他は「3.被覆層の電気容量の評価」と同様の方法により試験用セルを作製した。この試験用セルは、本実施形態の挙動を確認するための試験用セルである。また、負極集電体40として2枚のNi箔を用意し、無電解めっき法により錫、及び金を負極集電体40の各々の表面に厚さ100nmでめっきした。これにより、負極層30を作製した。この方法により負極集電体40上に作製された金属層は、厚みが大きいので、負極活物質層として機能する。ついで、これらの負極層30を用いて「3.被覆層の電気容量の評価」と同様の方法により試験用セルを作製した。   A test cell was produced in the same manner as in “3. Evaluation of electric capacity of coating layer” except that Ni foil was used as negative electrode layer 30. This test cell is a test cell for confirming the behavior of this embodiment. Further, two Ni foils were prepared as the negative electrode current collector 40, and tin and gold were plated on each surface of the negative electrode current collector 40 with a thickness of 100 nm by an electroless plating method. Thereby, the negative electrode layer 30 was produced. Since the metal layer produced on the negative electrode current collector 40 by this method has a large thickness, it functions as a negative electrode active material layer. Then, using these negative electrode layers 30, test cells were produced in the same manner as in “3. Evaluation of electric capacity of coating layer”.

ついで、これらの試験用セルを25℃の恒温槽内にセットし、ソーラトロン製ポテンショ/ガルバノスタット装置1470Eにより0.05mA/cmの電流密度で試験用セルを60分間負極へリチウムを挿入した。これにより、負極層30の電位プロファイルを測定した。結果を図9に示す。図9のグラフL5は負極層30としてNi箔を使用した試験用セルの電位プロファイルを示す。グラフL6、L7はそれぞれ錫、金で負極活物質層を形成した試験用セルの電位プロファイルを示す。 Subsequently, these test cells were set in a thermostatic chamber at 25 ° C., and lithium was inserted into the negative electrode for 60 minutes at a current density of 0.05 mA / cm 2 using a potentio / galvanostat device 1470E manufactured by Solartron. Thereby, the potential profile of the negative electrode layer 30 was measured. The results are shown in FIG. A graph L5 in FIG. 9 shows a potential profile of a test cell using Ni foil as the negative electrode layer 30. Graphs L6 and L7 show potential profiles of test cells in which a negative electrode active material layer is formed of tin and gold, respectively.

図9によれば、負極層30としてNi箔を使用した試験用セルでは、放電開始直後に電位がほぼ0V(vs.Li/Li)に落ちた。したがって、負極層30には金属リチウムが析出していることがわかる。一方、錫、金で負極活物質層を形成した試験用セルでは、電位が比較的高い値を維持した。これらの値は、負極活物質層の電位に相当する。つまり、錫、金が負極活物質として使用されていることになる。したがって、この観点からも、被覆層50は、金属リチウム200の析出領域を拡張するために使用されることが確認できた。 According to FIG. 9, in the test cell using the Ni foil as the negative electrode layer 30, the potential dropped to almost 0 V (vs. Li / Li + ) immediately after the start of discharge. Therefore, it can be seen that metallic lithium is deposited on the negative electrode layer 30. On the other hand, in the test cell in which the negative electrode active material layer was formed of tin and gold, the potential was maintained at a relatively high value. These values correspond to the potential of the negative electrode active material layer. That is, tin and gold are used as the negative electrode active material. Therefore, it has been confirmed from this point of view that the coating layer 50 is used to expand the deposition region of the metallic lithium 200.

<4.負極活物質層の有無による充放電プロファイル>
被覆層50が負極活物質層として使用されるものではないことを確認するために、さらに以下の試験を行った。すなわち、負極集電体40としてNi箔を用意し、スパッタリング法により金、亜鉛、またはビスマスを負極集電体40の表面に厚さ50nmで被覆した。これにより、金、亜鉛、またはビスマスビスマスからなる厚さ50nmの被覆層50を負極集電体40上に形成した。このように形成した負極30を用いて、実施例1と同様の試験用セルを作製した。また、比較のために、Ni箔のみからなる負極30を用いて、実施例1と同様の試験用セルを作製した。ついで、これらの試験用セルを25℃の恒温槽内にセットし、東洋システム製充放電評価装置TOSCAT−3100により、0.05mA/cmの電流密度、電圧範囲4.0V−3.0Vの条件下で1回充放電を行った。この時の充放電プロファイルを図10に示す。グラフL8は、負極30がNi箔で構成される試験用セルの充放電プロファイルを示す。グラフL9は被覆層50が金で構成される試験用セルの充放電プロファイルを示す。グラフL10は被覆層50が亜鉛で構成される試験用セルの充放電プロファイルを示す。グラフL11は被覆層50がビスマスで構成される試験用セルの充放電プロファイルを示す。仮に被覆層50が負極活物質層として機能している場合、領域Aで囲まれる充電プロファイルに、金属種によって電位の異なる容量成分が見受けられるはずであるが、このような容量成分はほとんど観測されなかった。したがって、この点からも、被覆層50が負極活物質層として使用されているものではないことがわかった。なお、Ni箔を負極30として使用した試験用セルでは、充電が進行しても他の試験用セルに比べて電位の上昇量が小さい。Ni箔を負極30として使用した試験用セルでは、途中短絡が発生しているために、このような現象が発生していると推察される。すなわち、Ni箔を負極30として使用した試験用セルでは、リチウム析出サイズが大きく、電流集中により微小短絡が発生していると推察される。
<4. Charge / Discharge Profile with and without Negative Electrode Active Material Layer>
In order to confirm that the coating layer 50 is not used as the negative electrode active material layer, the following test was further performed. That is, Ni foil was prepared as the negative electrode current collector 40, and gold, zinc, or bismuth was coated on the surface of the negative electrode current collector 40 with a thickness of 50 nm by a sputtering method. Thereby, a 50 nm-thick coating layer 50 made of gold, zinc, or bismuth bismuth was formed on the negative electrode current collector 40. Using the negative electrode 30 formed in this manner, a test cell similar to that in Example 1 was produced. For comparison, a test cell similar to that of Example 1 was produced using the negative electrode 30 made of only Ni foil. Then, these test cells were set in a thermostatic chamber at 25 ° C., and a current density of 0.05 mA / cm 2 and a voltage range of 4.0 V to 3.0 V were measured by a charge / discharge evaluation apparatus TOSCAT-3100 manufactured by Toyo System. Charging / discharging was performed once under the conditions. The charge / discharge profile at this time is shown in FIG. A graph L8 shows a charge / discharge profile of a test cell in which the negative electrode 30 is made of Ni foil. A graph L9 shows a charge / discharge profile of a test cell in which the coating layer 50 is made of gold. A graph L10 shows a charge / discharge profile of a test cell in which the coating layer 50 is made of zinc. A graph L11 shows a charge / discharge profile of a test cell in which the coating layer 50 is made of bismuth. If the coating layer 50 functions as a negative electrode active material layer, capacitive components having different potentials depending on the metal species should be observed in the charging profile surrounded by the region A, but such capacitive components are almost observed. There wasn't. Therefore, also from this point, it was found that the coating layer 50 was not used as the negative electrode active material layer. In addition, in the test cell using Ni foil as the negative electrode 30, the amount of increase in potential is small compared to other test cells even when charging progresses. In the test cell using the Ni foil as the negative electrode 30, it is assumed that such a phenomenon occurs because a short circuit occurs midway. That is, in the test cell using Ni foil as the negative electrode 30, it is presumed that the lithium deposition size is large and a micro short-circuit occurs due to current concentration.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 全固体型二次電池
10 正極層
20 固体電解質層
30 負極層
40 負極集電体
50 被覆層
DESCRIPTION OF SYMBOLS 1 All-solid-state secondary battery 10 Positive electrode layer 20 Solid electrolyte layer 30 Negative electrode layer 40 Negative electrode collector 50 Covering layer

Claims (5)

負極集電体と、
前記負極集電体を被覆し、充電時にリチウム合金層を介して金属リチウムが析出可能な被覆層と、を備えることを特徴とする、全固体型二次電池用負極。
A negative electrode current collector;
An anode for an all-solid-state secondary battery, comprising: a coating layer that covers the anode current collector and that can deposit metallic lithium through a lithium alloy layer during charging.
前記被覆層は、リチウムと合金を形成可能な金属を含むことを特徴とする、請求項1記載の全固体型二次電池用負極。   The negative electrode for an all solid state secondary battery according to claim 1, wherein the coating layer includes a metal capable of forming an alloy with lithium. 前記被覆層は、亜鉛、ゲルマニウム、錫、アンチモン、白金、金、ビスマス、およびこれらの二種以上を含む合金からなる群から選択されるいずれか1種以上を含むことを特徴とする、請求項2記載の全固体型二次電池用負極。   The coating layer includes at least one selected from the group consisting of zinc, germanium, tin, antimony, platinum, gold, bismuth, and an alloy including two or more thereof. 2. The negative electrode for an all solid state secondary battery as described in 2. 前記被覆層の厚みは1nm以上100nm未満であることを特徴とする、請求項1〜3の何れか1項に記載の全固体型二次電池用負極。   4. The all-solid-state secondary battery negative electrode according to claim 1, wherein the coating layer has a thickness of 1 nm or more and less than 100 nm. 請求項1〜4の何れか1項に記載の全固体型二次電池用負極を含むことを特徴とする、全固体型二次電池。   An all solid state secondary battery comprising the negative electrode for an all solid state secondary battery according to any one of claims 1 to 4.
JP2017020721A 2017-02-07 2017-02-07 Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery Active JP7050419B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017020721A JP7050419B2 (en) 2017-02-07 2017-02-07 Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery
KR1020170094965A KR20180091678A (en) 2017-02-07 2017-07-26 Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
US15/890,472 US20180226633A1 (en) 2017-02-07 2018-02-07 Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
US17/471,250 US20210408522A1 (en) 2017-02-07 2021-09-10 Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
US17/471,268 US20210408523A1 (en) 2017-02-07 2021-09-10 Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
KR1020230014387A KR102651551B1 (en) 2017-02-07 2023-02-02 Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020721A JP7050419B2 (en) 2017-02-07 2017-02-07 Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2018129159A true JP2018129159A (en) 2018-08-16
JP7050419B2 JP7050419B2 (en) 2022-04-08

Family

ID=63174302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020721A Active JP7050419B2 (en) 2017-02-07 2017-02-07 Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP7050419B2 (en)
KR (1) KR20180091678A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123981A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Method of manufacturing lithium ion secondary battery
WO2019123980A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Lithium ion secondary cell
WO2020070932A1 (en) * 2018-10-03 2020-04-09 昭和電工株式会社 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020070933A1 (en) * 2018-10-03 2020-04-09 昭和電工株式会社 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
JP2020512663A (en) * 2017-03-30 2020-04-23 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Solid-state lithium-based battery and method of forming solid-state lithium-based battery
WO2020137449A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2020184407A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 All-solid battery
JP2021034199A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 All-solid battery
JP2021034200A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 All-solid battery
JP2021051866A (en) * 2019-09-24 2021-04-01 トヨタ自動車株式会社 All-solid battery
CN113544894A (en) * 2018-12-04 2021-10-22 太瓦技术公司 Anode-less solid-state battery cell with dendrite resistance and functional layer with controlled interfacial adhesion
JP2022501774A (en) * 2018-09-25 2022-01-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Nanoalloy interface layer for lithium metal solid-state batteries
KR20220020533A (en) 2020-08-12 2022-02-21 현대자동차주식회사 All solid state battery having precipitated lithium
DE102021124849A1 (en) 2020-09-30 2022-03-31 Toyota Jidosha Kabushiki Kaisha ANODE MATERIAL AND SOLID STATE BATTERY
WO2022065813A1 (en) * 2020-09-23 2022-03-31 주식회사 엘지에너지솔루션 Solid-state battery anode comprising polymer layer for preventing micro-short circuit, and solid-state battery comprising same
KR20220089300A (en) 2020-12-21 2022-06-28 현대자동차주식회사 All solid state battery comprising lithium storing layer with multi-layer and producing method thereof
WO2022163039A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
WO2022163037A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
WO2022163038A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
EP4177983A3 (en) * 2021-11-04 2023-05-24 Hyundai Motor Company All-solid-state battery having intermediate layer including metal and metal nitride and manufacturing method thereof
WO2023136088A1 (en) * 2022-01-13 2023-07-20 国立研究開発法人産業技術総合研究所 Negative electrode constituent member, negative electrode composite body, all-solid-state battery comprising these, and method for producing said all-solid-state battery
WO2024057052A1 (en) * 2022-09-15 2024-03-21 日産自動車株式会社 All-solid-state battery
EP4358169A2 (en) 2022-10-20 2024-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery and manufacturing method for the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424512B2 (en) 2018-11-02 2022-08-23 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
KR102312990B1 (en) * 2018-11-02 2021-10-13 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
KR20210113878A (en) * 2020-03-09 2021-09-17 삼성전자주식회사 All Solid secondary battery, and method for preparing all solid secondary battery
KR20210132416A (en) * 2020-04-27 2021-11-04 주식회사 엘지에너지솔루션 Anode for Lithium Secondary Battery Comprising Current Collector Coated with Primer and Manufacturing Method Thereof
KR20210132425A (en) * 2020-04-27 2021-11-04 주식회사 엘지에너지솔루션 Anode for Lithium Secondary Battery Comprising Oxidized Current Collector and Manufacturing Method Thereof
US20240105961A1 (en) * 2020-05-08 2024-03-28 Lg Energy Solution, Ltd. Negative electrode current collector, electrode assembly including the same, and lithium free battery
JP2023524699A (en) * 2020-07-06 2023-06-13 エルジー エナジー ソリューション リミテッド All-solid-state battery and manufacturing method thereof
US20230378476A1 (en) * 2020-11-05 2023-11-23 Lg Energy Solution, Ltd. Negative electrode including coating layer and ion transport layer, and lithium secondary battery including the same
KR20220063329A (en) 2020-11-10 2022-05-17 현대자동차주식회사 A negative electrode for an all-solid battery, an all-solid battery including the same, and a method for manufacturing a negative electrode for an all-solid battery
KR20220115754A (en) * 2021-02-10 2022-08-18 삼성에스디아이 주식회사 Negative electrode layer for all solid secondary battery, all solid secondary battery including the same, and preparing method of the all solid secondary battery
KR20220129767A (en) 2021-03-17 2022-09-26 현대자동차주식회사 A composite anode for all solid state battery without active material and manufacturing method thereof
KR20220135643A (en) 2021-03-31 2022-10-07 현대자동차주식회사 Anode for all solid state battery without active material and all solid state battery comprising the same
KR102557568B1 (en) 2021-05-04 2023-07-24 한국과학기술연구원 Anode-free all solid state battery comprising solid electrolyte having high ion conductivity and surface-roughened anode current collector
KR20220170627A (en) 2021-06-23 2022-12-30 현대자동차주식회사 Anodeless all solid state battery capable of operating at low temperature and manufacturing method thereof
KR20230027404A (en) 2021-08-19 2023-02-28 현대자동차주식회사 All solid state battery with improved durability and manufacturing method thereof
KR20230037178A (en) 2021-09-09 2023-03-16 현대자동차주식회사 All solid-state battery comprising protective layer including metal sulfide and manufacturing method thereof
KR20230084633A (en) 2021-12-06 2023-06-13 현대자동차주식회사 Anode current collector comprising double coating layer and all solid state battery comprising the same
KR20230096439A (en) 2021-12-23 2023-06-30 현대자동차주식회사 Lithium deposition type all solid state battery with high durability
KR20230111439A (en) 2022-01-18 2023-07-25 현대자동차주식회사 Anodless all solid state battery comprising protective layer and manufacturing method thereof
KR20240038463A (en) * 2022-09-16 2024-03-25 삼성에스디아이 주식회사 Positive electrode for all-solid rechargeable battery and all-solid rechargeable battery
WO2024090705A1 (en) * 2022-10-24 2024-05-02 삼성에스디아이 주식회사 Negative electrode for all-solid-state battery and all-solid-state battery including same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280073A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
JP2009054484A (en) * 2007-08-28 2009-03-12 Seiko Epson Corp All solid lithium secondary battery and its manufacturing method
JP2013080669A (en) * 2011-10-05 2013-05-02 Idemitsu Kosan Co Ltd Lithium-ion battery
WO2015029103A1 (en) * 2013-08-26 2015-03-05 富士通株式会社 All-solid secondary battery, method for manufacturing same, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280073A (en) * 2001-03-19 2002-09-27 Sony Corp Battery
JP2009054484A (en) * 2007-08-28 2009-03-12 Seiko Epson Corp All solid lithium secondary battery and its manufacturing method
JP2013080669A (en) * 2011-10-05 2013-05-02 Idemitsu Kosan Co Ltd Lithium-ion battery
WO2015029103A1 (en) * 2013-08-26 2015-03-05 富士通株式会社 All-solid secondary battery, method for manufacturing same, and electronic apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512663A (en) * 2017-03-30 2020-04-23 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Solid-state lithium-based battery and method of forming solid-state lithium-based battery
JP7059299B2 (en) 2017-03-30 2022-04-25 インターナショナル・ビジネス・マシーンズ・コーポレーション How to Form Solid Lithium Based Batteries and Solid Lithium Based Batteries
JP2019114407A (en) * 2017-12-22 2019-07-11 昭和電工株式会社 Method for manufacturing lithium ion secondary battery
JP7034704B2 (en) 2017-12-22 2022-03-14 昭和電工株式会社 Manufacturing method of lithium ion secondary battery
JP2019114406A (en) * 2017-12-22 2019-07-11 昭和電工株式会社 Lithium ion secondary battery
WO2019123981A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Method of manufacturing lithium ion secondary battery
WO2019123980A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Lithium ion secondary cell
JP7034703B2 (en) 2017-12-22 2022-03-14 昭和電工株式会社 Lithium ion secondary battery
JP7367007B2 (en) 2018-09-25 2023-10-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Nanoalloy interfacial layer for lithium metal solid-state batteries
JP2022501774A (en) * 2018-09-25 2022-01-06 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Nanoalloy interface layer for lithium metal solid-state batteries
WO2020070932A1 (en) * 2018-10-03 2020-04-09 昭和電工株式会社 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
WO2020070933A1 (en) * 2018-10-03 2020-04-09 昭和電工株式会社 Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery
CN113544894A (en) * 2018-12-04 2021-10-22 太瓦技术公司 Anode-less solid-state battery cell with dendrite resistance and functional layer with controlled interfacial adhesion
WO2020137449A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2020184407A (en) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 All-solid battery
JP7331443B2 (en) 2019-04-26 2023-08-23 トヨタ自動車株式会社 All-solid battery
JP2021034199A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 All-solid battery
JP2021034200A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 All-solid battery
JP7263977B2 (en) 2019-08-22 2023-04-25 トヨタ自動車株式会社 All-solid battery
JP7259639B2 (en) 2019-08-22 2023-04-18 トヨタ自動車株式会社 All-solid battery
JP7207248B2 (en) 2019-09-24 2023-01-18 トヨタ自動車株式会社 All-solid battery
JP2021051866A (en) * 2019-09-24 2021-04-01 トヨタ自動車株式会社 All-solid battery
KR20220020533A (en) 2020-08-12 2022-02-21 현대자동차주식회사 All solid state battery having precipitated lithium
WO2022065813A1 (en) * 2020-09-23 2022-03-31 주식회사 엘지에너지솔루션 Solid-state battery anode comprising polymer layer for preventing micro-short circuit, and solid-state battery comprising same
KR20220044115A (en) 2020-09-30 2022-04-06 도요타 지도샤(주) Anode material and solid-state battery
DE102021124849A1 (en) 2020-09-30 2022-03-31 Toyota Jidosha Kabushiki Kaisha ANODE MATERIAL AND SOLID STATE BATTERY
KR20220089300A (en) 2020-12-21 2022-06-28 현대자동차주식회사 All solid state battery comprising lithium storing layer with multi-layer and producing method thereof
WO2022163038A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
WO2022163037A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
WO2022163039A1 (en) * 2021-01-26 2022-08-04 パナソニックIpマネジメント株式会社 Battery
EP4177983A3 (en) * 2021-11-04 2023-05-24 Hyundai Motor Company All-solid-state battery having intermediate layer including metal and metal nitride and manufacturing method thereof
WO2023136088A1 (en) * 2022-01-13 2023-07-20 国立研究開発法人産業技術総合研究所 Negative electrode constituent member, negative electrode composite body, all-solid-state battery comprising these, and method for producing said all-solid-state battery
WO2024057052A1 (en) * 2022-09-15 2024-03-21 日産自動車株式会社 All-solid-state battery
EP4358169A2 (en) 2022-10-20 2024-04-24 Toyota Jidosha Kabushiki Kaisha Secondary battery and manufacturing method for the same

Also Published As

Publication number Publication date
KR20180091678A (en) 2018-08-16
JP7050419B2 (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP7050419B2 (en) Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery
KR102651551B1 (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
US11929463B2 (en) All-solid-state secondary battery and method of charging the same
JP7063653B2 (en) All-solid-state secondary battery
JP6438281B2 (en) Lithium ion secondary battery
KR20220050112A (en) Lithium secondary battery and preparation method thereof
KR102420008B1 (en) Lithium secondary battery and preparation method thereof
JP6242659B2 (en) Positive electrode of all solid lithium ion secondary battery and all solid lithium ion secondary battery
JP2018120705A (en) Positive electrode active material for all-solid type secondary battery, positive electrode active material layer for all-solid type secondary battery, and all-solid type secondary battery
US11121403B2 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP2016062683A (en) Lithium ion secondary battery
CN110783529B (en) Lithium metal cathode for secondary battery and preparation and application thereof
JP2018098161A (en) Method for manufacturing cathode active material
US20230275261A1 (en) All-solid-state secondary battery and manufacturing method therefor
JP7130911B2 (en) Positive electrode for all-solid secondary battery, and all-solid secondary battery including the same
JP2016024907A (en) Lithium ion secondary battery
JP2021150286A (en) Cathode for all-solid secondary battery and all-solid secondary battery including the same
CN115443558A (en) All-solid-state secondary battery
KR20180032988A (en) cathode active material, method of preparing the cathode active material, and all solid state battery comprising the same
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2020167146A (en) All-solid type secondary battery, and manufacturing method, using method and charging method thereof
JP2021034199A (en) All-solid battery
JP2013206739A (en) Nonaqueous electrolyte battery, manufacturing method therefor, and electric vehicle including this battery
JP2022125899A (en) All-solid secondary battery and charging method for the same
Uludag et al. Cr-and V-substituted LiMn 2 O 4 cathode electrode materials for high-rate battery applications

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220329

R150 Certificate of patent or registration of utility model

Ref document number: 7050419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150