JP2020167146A - All-solid type secondary battery, and manufacturing method, using method and charging method thereof - Google Patents

All-solid type secondary battery, and manufacturing method, using method and charging method thereof Download PDF

Info

Publication number
JP2020167146A
JP2020167146A JP2020013978A JP2020013978A JP2020167146A JP 2020167146 A JP2020167146 A JP 2020167146A JP 2020013978 A JP2020013978 A JP 2020013978A JP 2020013978 A JP2020013978 A JP 2020013978A JP 2020167146 A JP2020167146 A JP 2020167146A
Authority
JP
Japan
Prior art keywords
electrode active
active material
negative electrode
solid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020013978A
Other languages
Japanese (ja)
Inventor
直毅 鈴木
Naoki Suzuki
直毅 鈴木
矢代 将斉
Masanari Yashiro
将斉 矢代
相原 雄一
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to KR1020200026308A priority Critical patent/KR20200115126A/en
Priority to US16/829,349 priority patent/US11594717B2/en
Priority to CN202010228583.9A priority patent/CN111755741A/en
Publication of JP2020167146A publication Critical patent/JP2020167146A/en
Priority to US18/157,105 priority patent/US20230155109A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an all-solid type secondary battery superior in battery characteristics, especially cycle characteristic and discharge-rate characteristic, and a charging method thereof.SOLUTION: An all-solid type secondary battery comprises a positive electrode active material layer, a solid electrolyte layer, and a layer of a negative electrode active material which forms an alloy or compound in combination with lithium in this order, wherein the negative electrode active material layer contains amorphous carbon of 33 mass% or more, to a total mass of the negative electrode active material, which satisfies at least one of the requirements, (a) a nitrogen adsorption specific surface area of over 0 m2/g and 100 m2/g or less and (b) the DBP oil absorption of 150 ml/100 g or more; and the ratio of an initial charging capacity of the positive electrode active material layer and an initial charging capacity of the negative electrode active material layer satisfies a condition given by the following expression (1): 0.01<b/a<0.5 (1) (where "a" is an initial charging capacity (mAh) of the positive electrode active material layer and "b" is an initial charging capacity (mAh) of the negative electrode active material layer).SELECTED DRAWING: Figure 1

Description

本発明は、全固体二次電池、その製造方法、その使用方法及びその充電方法に関するものである。 The present invention relates to an all-solid-state secondary battery, a method for manufacturing the battery, a method for using the battery, and a method for charging the battery.

近年、電解質として固体電解質を使用した全固体二次電池が注目されている。このような全固体二次電池のエネルギー密度を高めるために、負極活物質としてリチウムを使用することが提案されている。リチウムの容量密度(単位質量当りの容量)は、負極活物質として一般的に使用される黒鉛の容量密度の10倍程度である。そのため、負極活物質としてリチウムを使用することにより、全固体二次電池を薄型化しつつも、その出力を高めることができる。 In recent years, an all-solid-state secondary battery using a solid electrolyte as an electrolyte has attracted attention. In order to increase the energy density of such an all-solid-state secondary battery, it has been proposed to use lithium as the negative electrode active material. The volume density (capacity per unit mass) of lithium is about 10 times the volume density of graphite generally used as a negative electrode active material. Therefore, by using lithium as the negative electrode active material, it is possible to increase the output of the all-solid-state secondary battery while reducing the thickness.

リチウムを負極活物質として使用する全固体二次電池として、負極活物質層を備えておらず、充電によって負極集電体と固体電解質との界面に金属リチウムを析出させ、この析出した金属リチウムを負極活物質として用いるものが提案されている。しかしながらこの種の全固体二次電池では、充放電を繰り返すと、析出した金属リチウムが固体電解質の隙間を縫うように樹枝状(デンドライト状)に成長する。樹枝状に成長した金属リチウムは、二次電池の短絡の原因となり得るだけでなく、充電容量低下の原因にもなり得るという問題がある。 As an all-solid-state secondary battery that uses lithium as the negative electrode active material, it does not have a negative electrode active material layer, and metallic lithium is precipitated at the interface between the negative electrode current collector and the solid electrolyte by charging, and the precipitated metallic lithium is deposited. Those used as a negative electrode active material have been proposed. However, in this type of all-solid-state secondary battery, when charging and discharging are repeated, the precipitated metallic lithium grows in a dendritic shape (dendrite shape) so as to sew the gaps between the solid electrolytes. There is a problem that metallic lithium grown in a dendritic shape can not only cause a short circuit of a secondary battery but also cause a decrease in charge capacity.

このような問題を解決するため、特許文献1には、リチウム又はリチウムと合金を形成する金属で構成される金属層を負極活物質層として使用し、かつ負極活物質層上に非晶質炭素からなる界面層を設けることが開示されている。これにより界面層内にリチウムイオンが分散するため、金属リチウムの析出及び成長を抑制できることが開示されている。 In order to solve such a problem, Patent Document 1 uses a metal layer composed of lithium or a metal forming an alloy with lithium as a negative electrode active material layer, and amorphous carbon on the negative electrode active material layer. It is disclosed to provide an interface layer composed of. It is disclosed that the precipitation and growth of metallic lithium can be suppressed because lithium ions are dispersed in the interface layer.

特開2011−086554号公報Japanese Unexamined Patent Publication No. 2011-086554 Naoki Suzuki等、「Synthesis and Electrochemical Properties of I4−−type Li1+2xZn1−xPS4 Solid Electrolyte」、Chemistry of Materials、2018年3月9日発行、No.30、2236−2244(2018)Naoki Suzuki et al., "Synthesis and Electrochemical Properties of I4-type Li1 + 2xZn1-xPS4 Solid Electrolyte", Chemistry of Materials, September 20, 2018. 30, 2236-2244 (2018)

しかしながら、上記した特許文献1に記載される全固体二次電池では、依然として各種の電池特性を十分に向上することができず、近年の要求を満足するには不十分であると考えられる。 However, the all-solid-state secondary battery described in Patent Document 1 described above still cannot sufficiently improve various battery characteristics, and is considered to be insufficient to satisfy recent demands.

そこで本発明は、電池特性に優れた、とりわけサイクル特性及び放電レート特性のいずれにも優れた全固体二次電池及びその充電方法を提供することを主たる課題とするものである。 Therefore, it is a main object of the present invention to provide an all-solid-state secondary battery having excellent battery characteristics, particularly excellent in both cycle characteristics and discharge rate characteristics, and a charging method thereof.

本発明者らは、鋭意検討した結果、正極活物質層と負極活物質層のそれぞれの初期充電容量の比を所定の範囲にするとともに、負極活物質層が、ストラクチャーが大きい無定形炭素、又は粒子径が大きい無定形炭素を負極活物質として所定量以上含有することにより、サイクル特性及び放電レート特性のいずれにも優れた全固体二次電池が得られることを見出した。すなわち、負極活物質層が、このような特性の無定形炭素を所定量以上含有することにより、炭素粒子間又は炭素粒子アグリゲート間の界面の数が減少し、負極活物質層内におけるリチウムの拡散が容易になり、サイクル特性及び放電レート特性のいずれにも優れた全固体二次電池を得られることを見出し、本発明に至ったのである。 As a result of diligent studies, the present inventors set the ratio of the initial charge capacities of the positive electrode active material layer and the negative electrode active material layer to a predetermined range, and the negative electrode active material layer is formed of amorphous carbon having a large structure, or It has been found that an all-solid secondary battery having excellent both cycle characteristics and discharge rate characteristics can be obtained by containing a predetermined amount or more of amorphous carbon having a large particle size as a negative electrode active material. That is, when the negative electrode active material layer contains a predetermined amount or more of amorphous carbon having such characteristics, the number of interfaces between carbon particles or between carbon particle aggregates is reduced, and lithium in the negative electrode active material layer is reduced. We have found that an all-solid-state secondary battery that facilitates diffusion and has excellent cycle characteristics and discharge rate characteristics can be obtained, and has reached the present invention.

すなわち、本発明の態様1は、正極活物質層と、固体電解質層と、リチウムと合金又は化合物を形成する負極活物質層とをこの順に有する全固体二次電池であって、前記負極活物質層が、(a)窒素吸着比表面積が0m/g超、100m/g以下、又は(b)DBP吸油量が150ml/100g以上、の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して33質量%以上含有し、前記正極活物質層の初期充電容量と前記負極活物質層の初期充電容量との比が、以下の式(1)を満たすことを特徴とする全固体リチウム二次電池である。
0.01<b/a<0.5 (1)
(ここで、aは前記正極活物質層の初期充電容量(mAh)であり、bは前記負極活物質層の初期充電容量(mAh)である)
That is, the first aspect of the present invention is an all-solid secondary battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer forming an alloy or compound with lithium in this order, and the negative electrode active material. The layer is composed of atypical carbon satisfying at least one of (a) a nitrogen adsorption specific surface area of more than 0 m 2 / g and 100 m 2 / g or less, or (b) a DBP oil absorption of 150 ml / 100 g or more. All solids containing 33% by mass or more with respect to the mass, and the ratio of the initial charge capacity of the positive electrode active material layer to the initial charge capacity of the negative electrode active material layer satisfies the following formula (1). It is a lithium secondary battery.
0.01 <b / a <0.5 (1)
(Here, a is the initial charge capacity (mAh) of the positive electrode active material layer, and b is the initial charge capacity (mAh) of the negative electrode active material layer).

本発明の態様2は、前記無定形炭素の窒素吸着比表面積が20m/g以上、100m/g以下である前記態様1の全固体二次電池である。 Aspect 2 of the present invention is the all-solid-state secondary battery of the aspect 1 in which the nitrogen adsorption specific surface area of the amorphous carbon is 20 m 2 / g or more and 100 m 2 / g or less.

本発明の態様3は、前記無定形炭素の窒素吸着比表面積が30m/g以上、100m/g以下である前記態様2の全固体二次電池である。 Aspect 3 of the present invention is the all-solid-state secondary battery of the aspect 2 in which the nitrogen adsorption specific surface area of the amorphous carbon is 30 m 2 / g or more and 100 m 2 / g or less.

本発明の態様4は、前記無定形炭素のDBP吸油量が150ml/100g以上、400ml/100g以下である前記態様1〜3のいずれかの全固体二次電池である。 Aspect 4 of the present invention is the all-solid-state secondary battery according to any one of the above-mentioned aspects 1 to 3 in which the DBP oil absorption of the amorphous carbon is 150 ml / 100 g or more and 400 ml / 100 g or less.

本発明の態様5は、前記無定形炭素のDBP吸油量が200ml/100g以下である前記態様4の全固体二次電池である。 Aspect 5 of the present invention is the all-solid-state secondary battery of the aspect 4 in which the DBP oil absorption of the amorphous carbon is 200 ml / 100 g or less.

本発明の態様6は、前記負極活物質層が、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛よりなる群から選択される少なくとも1種を更に含む、前記態様1〜5のいずれかの全固体二次電池である。 Aspect 6 of the present invention further comprises at least one selected from the group consisting of gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, indium and zinc in the negative electrode active material layer. It is an all-solid-state secondary battery according to any one of ~ 5.

本発明の態様7は、前記負極活物質層が、前記無定形炭素を、負極活物質総質量に対して合計で33質量%以上95質量%以下含有する前記態様1〜6のいずれかの全固体二次電池である。 In aspect 7 of the present invention, the negative electrode active material layer contains 33% by mass or more and 95% by mass or less in total of the amorphous carbon with respect to the total mass of the negative electrode active material. It is a solid-state secondary battery.

本発明の態様8は、前記無定形炭素が、カーボンブラックである、前記態様1〜7のいずれかの全固体二次電池である。 Aspect 8 of the present invention is an all-solid-state secondary battery according to any one of aspects 1 to 7, wherein the amorphous carbon is carbon black.

本発明の態様9は、前記カーボンブラックがファーネスブラック、アセチレンブラック及びケッチェンブラックよりなる群から選択される少なくとも1種である、前記態様1〜8のいずれかの全固体二次電池である。 Aspect 9 of the present invention is an all-solid-state secondary battery according to any one of aspects 1 to 8, wherein the carbon black is at least one selected from the group consisting of furnace black, acetylene black and ketjen black.

本発明の態様10は、前記態様1〜9のいずれか1項に記載の全固体二次電池を前記負極活物質層の初期充電容量を超えて充電することを特徴とする全固体二次電池の充電方法である。 Aspect 10 of the present invention is an all-solid-state secondary battery according to any one of aspects 1 to 9, wherein the all-solid-state secondary battery is charged in excess of the initial charge capacity of the negative electrode active material layer. It is a charging method of.

本発明の態様11は、充電量が前記負極活物質層の初期充電容量の2倍以上、100倍以下の間の値であること前記態様10の全固体二次電池の充電方法である。 Aspect 11 of the present invention is the method for charging an all-solid-state secondary battery according to the aspect 10, wherein the charge amount is a value between twice or more and 100 times or less the initial charge capacity of the negative electrode active material layer.

本発明によれば、サイクル特性及び放電レート特性のいずれにも優れた全固体二次電池及びその充電方法を提供することができる。 According to the present invention, it is possible to provide an all-solid-state secondary battery having excellent both cycle characteristics and discharge rate characteristics and a charging method thereof.

本発明の一実施形態に係る全固体二次電池の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically the schematic structure of the all-solid-state secondary battery which concerns on one Embodiment of this invention. 負極活物質層を過充電した後の同実施形態に係る全固体二次電池の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the all-solid-state secondary battery which concerns on the same embodiment after supercharging the negative electrode active material layer. 本発明の他の実施形態に係る全固体二次電池の変形例を示す断面図である。It is sectional drawing which shows the modification of the all-solid-state secondary battery which concerns on other embodiment of this invention. 本発明の他の実施形態に係る全固体二次電池の変形例を示す断面図である。It is sectional drawing which shows the modification of the all-solid-state secondary battery which concerns on other embodiment of this invention.

以下に本発明の全固体二次電池の一実施形態について説明する。なお以下に示す実施形態は、本発明の技術思想を具体化するための全固体二次電池を例示するものであり、本発明は以下のものに限定されない。また以下の説明では、全固体二次電池の各種の特性を向上できるメカニズムについて説明している場合がある。これらは本発明者らが現時点で得ている知見により考えたメカニズムであり、本発明の技術的範囲を限定するものではない。 An embodiment of the all-solid-state secondary battery of the present invention will be described below. The embodiments shown below exemplify an all-solid-state secondary battery for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, in the following description, a mechanism capable of improving various characteristics of the all-solid-state secondary battery may be described. These are mechanisms considered based on the findings obtained by the present inventors at present, and do not limit the technical scope of the present invention.

<1.全固体二次電池の構成>
本実施形態の全固体二次電池1は、正極と負極との間をリチウムイオンが移動することで充放電を行う、所謂リチウム二次電池である。具体的にこの全固体二次電池1は、図1に示すように、正極層10と、負極層20と、正極層10と負極層20の間に配置された固体電解質層30と備えている。
<1. Configuration of all-solid-state secondary battery>
The all-solid-state secondary battery 1 of the present embodiment is a so-called lithium secondary battery that charges and discharges by moving lithium ions between the positive electrode and the negative electrode. Specifically, as shown in FIG. 1, the all-solid-state secondary battery 1 includes a positive electrode layer 10, a negative electrode layer 20, and a solid electrolyte layer 30 arranged between the positive electrode layer 10 and the negative electrode layer 20. ..

(1)正極層
正極層10は、負極層20に向かって順に配置された正極集電体11及び正極活物質層12を有する。
(1) Positive Electrode Layer The positive electrode layer 10 has a positive electrode current collector 11 and a positive electrode active material layer 12 arranged in order toward the negative electrode layer 20.

正極集電体11は板状又は箔状をなすものである。正極集電体11は、例えば、インジウム、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、リチウムよりなる群から選択される1種の金属、又は2種以上の金属の合金からなるものである。 The positive electrode current collector 11 has a plate shape or a foil shape. The positive electrode current collector 11 is, for example, one kind of metal selected from the group consisting of indium, copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, and lithium, or two or more kinds of metals. It is made of a metal alloy.

正極活物質層12はリチウムイオンを可逆的に吸蔵及び放出するものである。具体的には、正極活物質層12は正極活物質と固体電解質とを含有する。 The positive electrode active material layer 12 reversibly occludes and releases lithium ions. Specifically, the positive electrode active material layer 12 contains a positive electrode active material and a solid electrolyte.

正極活物質の具体的な態様として、例えば、コバルト酸リチウム(以下、LCOと称する)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、NCAと称する)、ニッケルコバルトマンガン酸リチウム(以下、NCMと称する)、マンガン酸リチウム及びリン酸鉄リチウム等のリチウム塩、並びに硫化リチウム等を挙げることができる。正極活物質層12は、正極活物質として、これらの化合物から選択される1種のみを含んでよく、また2種以上を含んでいてもよい。 Specific embodiments of the positive electrode active material include, for example, lithium cobalt oxide (hereinafter referred to as LCO), lithium nickel oxide, lithium nickel cobalt oxide, lithium nickel cobalt aluminum oxide (hereinafter referred to as NCA), and lithium nickel cobalt manganate. (Hereinafter referred to as NCM), lithium salts such as lithium manganate and lithium iron oxide, lithium sulfide and the like can be mentioned. The positive electrode active material layer 12 may contain only one type selected from these compounds as the positive electrode active material, or may contain two or more types.

正極活物質は、上述したリチウム塩のうち、層状岩塩型構造を有する遷移金属酸化物のリチウム塩を含んで構成されることが好ましい。ここで「層状岩塩型構造」とは、立方晶岩塩型構造の<111>方向に酸素原子層と金属原子層とが交互に規則配列し、その結果それぞれの原子層が二次元平面を形成している構造である。また「立方晶岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことを意味する。具体的には、陽イオン及び陰イオンの各々が形成する面心立方格子が互いに単位格子の稜の1/2だけずれて配置された構造を表す。 The positive electrode active material is preferably composed of the above-mentioned lithium salts containing a lithium salt of a transition metal oxide having a layered rock salt type structure. Here, the "layered rock salt type structure" means that oxygen atomic layers and metal atomic layers are alternately regularly arranged in the <111> direction of the cubic rock salt structure, and as a result, each atomic layer forms a two-dimensional plane. It is a structure. Further, the "cubic rock salt type structure" means a sodium chloride type structure which is one kind of crystal structure. Specifically, it represents a structure in which face-centered cubic lattices formed by each of cations and anions are arranged so as to be offset from each other by 1/2 of the ridge of the unit cell.

このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩として、例えば、LiNiCoAl(NCA)、又はLiNiCoMn(NCM)(ただし、0<x<1、0<y<1、0<z<1、かつx+y+z=1)等の三元系遷移金属酸化物のリチウム塩が挙げられる。正極活物質層12が、このような層状岩塩型構造を有する三元系遷移金属酸化物のリチウム塩を正極活物質として含有することにより、全固体二次電池1のエネルギー密度及び熱安定性を向上させることができる。 As the lithium salt of a transition metal oxide having such a layered rock-salt structure, for example, LiNi x Co y Al z O 2 (NCA), or LiNi x Co y Mn z O 2 (NCM) ( however, 0 <x Examples thereof include lithium salts of ternary transition metal oxides such as <1, 0 <y <1, 0 <z <1, and x + y + z = 1). By containing the lithium salt of the ternary transition metal oxide having such a layered rock salt type structure as the positive electrode active material in the positive electrode active material layer 12, the energy density and thermal stability of the all-solid-state secondary battery 1 can be improved. Can be improved.

ここで、正極活物質の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、正極活物質の粒径は特に制限されず、従来の全固体二次電池の正極活物質に適用可能な範囲であればよい。なお、正極活物質層12における正極活物質の含有量も特に制限されず、従来の全固体二次電池の正極層に適用可能な範囲であればよい。 Here, examples of the shape of the positive electrode active material include particle shapes such as a true sphere and an elliptical sphere. The particle size of the positive electrode active material is not particularly limited as long as it is applicable to the positive electrode active material of the conventional all-solid-state secondary battery. The content of the positive electrode active material in the positive electrode active material layer 12 is not particularly limited as long as it is applicable to the positive electrode layer of the conventional all-solid-state secondary battery.

正極活物質は被覆層によって覆われていてもよい。この被覆層は全固体二次電池の正極活物質の被覆層として既知のものであってよい。被覆層の具体的な材料として、例えばLiO−ZrO等が挙げられる。 The positive electrode active material may be covered with a coating layer. This coating layer may be known as a coating layer for the positive electrode active material of the all-solid-state secondary battery. Specific examples of the material of the coating layer include Li 2 O-ZrO 2 .

正極活物質層12に含まれる固体電解質は、後述する固体電解質層30に含まれる固体電解質と同種のものであってもよく、異なるものであってもよい。 The solid electrolyte contained in the positive electrode active material layer 12 may be of the same type as or different from the solid electrolyte contained in the solid electrolyte layer 30 described later.

また正極活物質層12は、正極活物質及び固体電解質に加えて、例えば既知の導電助剤、結着剤(バインダ)、フィラー及び分散剤等を更に含有してもよい。 Further, the positive electrode active material layer 12 may further contain, for example, a known conductive auxiliary agent, a binder, a filler, a dispersant, or the like, in addition to the positive electrode active material and the solid electrolyte.

(2)負極層
負極層20は、正極層10に向かって順に配置された負極集電体21及び負極活物質層22を含む。
(2) Negative electrode layer The negative electrode layer 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22 arranged in order toward the positive electrode layer 10.

負極集電体21は板状又は箔状をなすものである。負極集電体21は、リチウムと反応しない、すなわち合金及び化合物のいずれも形成しない材料から構成されることが好ましい。負極集電体21を構成する材料としては、例えば、銅、ステンレス鋼、チタン、鉄、コバルト及びニッケル等を挙げることができる。負極集電体21は、これらの金属のいずれか1種で構成されていてもよいし、2種以上の金属の合金又はクラッド材で構成されていてもよい。 The negative electrode current collector 21 has a plate shape or a foil shape. The negative electrode current collector 21 is preferably made of a material that does not react with lithium, that is, does not form either an alloy or a compound. Examples of the material constituting the negative electrode current collector 21 include copper, stainless steel, titanium, iron, cobalt, nickel and the like. The negative electrode current collector 21 may be composed of any one of these metals, or may be composed of an alloy or clad material of two or more kinds of metals.

負極活物質層22は、リチウムと合金又は化合物を形成する負極活物質を含有する。負極活物質層22は、リチウムと合金又は化合物を形成する負極活物質として無定形炭素を含有する。無定形炭素の具体例として、例えば、アセチレンブラック、ファーネスブラック及びケッチェンブラック等のカーボンブラック、並びにグラフェン等が挙げられる。負極活物質層22は、これらから選択される無定形炭素を1種又は複数種含んでもよい。 The negative electrode active material layer 22 contains a negative electrode active material that forms an alloy or compound with lithium. The negative electrode active material layer 22 contains amorphous carbon as a negative electrode active material that forms an alloy or compound with lithium. Specific examples of the amorphous carbon include carbon blacks such as acetylene black, furnace black and Ketjen black, and graphene. The negative electrode active material layer 22 may contain one or more types of amorphous carbon selected from these.

本実施形態の全固体二次電池1は、負極活物質層22が、負極活物質として以下の(a)又は(b)の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して合計で33質量%以上含有することを特徴とする。
(a)窒素吸着比表面積が0m/g超、100m/g以下
(b)DBP吸油量が150ml/100g以上
In the all-solid-state secondary battery 1 of the present embodiment, the negative electrode active material layer 22 contains amorphous carbon satisfying at least one of the following (a) or (b) as the negative electrode active material with respect to the total negative electrode active material mass. It is characterized by containing 33% by mass or more in total.
(A) Nitrogen adsorption specific surface area is more than 0 m 2 / g, 100 m 2 / g or less (b) DBP oil absorption is 150 ml / 100 g or more

(窒素吸着比表面積が0m/g超、100m/g以下)
負極活物質として含有する無定形炭素の窒素吸着比表面積を100m/g以下にすることにより、炭素の粒径が大きくなり、リチウムが炭素粒子の粒界を伝導する回数が減少する。そのため負極活物質層22内においてリチウムの拡散が容易になる。その結果、放電中にリチウムが負極層内に孤立しにくくなり、全固体二次電池1のサイクル特性及び放電レート特性を向上させることができる。
(Nitrogen adsorption specific surface area is more than 0 m 2 / g, 100 m 2 / g or less)
By reducing the specific surface area of the amorphous carbon contained as the negative electrode active material to 100 m 2 / g or less, the particle size of carbon is increased and the number of times lithium conducts through the grain boundaries of carbon particles is reduced. Therefore, the diffusion of lithium in the negative electrode active material layer 22 becomes easy. As a result, lithium is less likely to be isolated in the negative electrode layer during discharge, and the cycle characteristics and discharge rate characteristics of the all-solid-state secondary battery 1 can be improved.

負極活物質として含有する無定形炭素の窒素吸着比表面積は、20m/g以上であることが好ましく、30m/g以上であることがより好ましく、40m/g以上であることがさらに好ましい。無定形炭素の窒素吸着比表面積の下限値がこのような範囲であれば、放電レート特性をより一層向上させることができる。 The nitrogen adsorption specific surface area of the amorphous carbon contained as the negative electrode active material is preferably 20 m 2 / g or more, more preferably 30 m 2 / g or more, and further preferably 40 m 2 / g or more. .. If the lower limit of the nitrogen adsorption specific surface area of amorphous carbon is in such a range, the discharge rate characteristics can be further improved.

ここで、負極活物質層22が負極活物質として含有する無定形炭素の「窒素吸着比表面積」とは、負極活物質層22が含有する無定形炭素が1種である場合は、当該1種の無定形炭素の窒素吸着比表面積である。また、負極活物質層22が含有する無定形炭素が複数種である場合は、複数種の無定形炭素のそれぞれの窒素吸着比表面積である。 Here, the "nitrogen adsorption specific surface area" of the amorphous carbon contained in the negative electrode active material layer 22 as the negative electrode active material is the type 1 when the amorphous carbon contained in the negative electrode active material layer 22 is one type. It is the specific surface area of nitrogen adsorption of amorphous carbon. When the negative electrode active material layer 22 contains a plurality of types of amorphous carbon, it is the nitrogen adsorption specific surface area of each of the plurality of types of amorphous carbon.

負極活物質層22が含有する無定形炭素の窒素吸着比表面積は、窒素吸着法(JIS K6217−2:2001)により測定することができる。具体的には、約300℃の高温で一度脱気した例えばカーボンブラック等の無定形炭素を、窒素雰囲気下で液体窒素温度に冷却する。そして平衡状態に達したのちのカーボン試料の質量増加(窒素吸着量)とその際の窒素雰囲気圧を測定し、BET(Brunauer−Emmett−Teller)の式に当てはめることにより窒素吸着比表面積の値を算出することができる。 The nitrogen adsorption specific surface area of the amorphous carbon contained in the negative electrode active material layer 22 can be measured by the nitrogen adsorption method (JIS K6217-2: 2001). Specifically, amorphous carbon such as carbon black, which has been degassed once at a high temperature of about 300 ° C., is cooled to a liquid nitrogen temperature in a nitrogen atmosphere. Then, after reaching the equilibrium state, the mass increase (nitrogen adsorption amount) of the carbon sample and the nitrogen atmospheric pressure at that time are measured, and the value of the nitrogen adsorption specific surface area is calculated by applying it to the formula of BET (Brunauer-Emmett-Teller). Can be calculated.

(DBP吸油量が150ml/100g以上)
負極活物質として含有する無定形炭素のDBP吸油量を150ml/100g以上にすることにより、炭素粒子のアグリゲート(一次凝集体)のサイズが大きくなり、アグリゲート内部を伝ったリチウムの拡散が容易になる。そのため負極活物質層22内においてリチウムの拡散が容易になり、放電中に負極層内にリチウムが孤立しにくくなり、全固体二次電池1のサイクル特性及び放電レート特性が向上する。
(DBP oil absorption is 150 ml / 100 g or more)
By increasing the DBP oil absorption of amorphous carbon contained as the negative electrode active material to 150 ml / 100 g or more, the size of the aggregate (primary aggregate) of the carbon particles becomes large, and the diffusion of lithium transmitted through the inside of the aggregate is easy. become. Therefore, the diffusion of lithium in the negative electrode active material layer 22 becomes easy, lithium is less likely to be isolated in the negative electrode layer during discharging, and the cycle characteristics and the discharge rate characteristics of the all-solid-state secondary battery 1 are improved.

負極活物質として含有する無定形炭素のDBP吸油量は、400ml/100g以下であることが好ましく、200ml/100g以下であることがより好ましい。無定形炭素のDBP吸油量の上限値がこのような範囲であれば、放電レート特性をより一層向上させることができる。 The amount of DBP oil absorbed by the amorphous carbon contained as the negative electrode active material is preferably 400 ml / 100 g or less, and more preferably 200 ml / 100 g or less. If the upper limit of the DBP oil absorption amount of amorphous carbon is in such a range, the discharge rate characteristic can be further improved.

ここで、負極活物質層22が負極活物質として含有する無定形炭素の「DBP吸油量」とは、負極活物質層22が含有する無定形炭素が1種である場合は、当該1種の無定形炭素のDBP吸油量である。また、負極活物質層22が含有する無定形炭素が複数種である場合は、複数種の無定形炭素のそれぞれのDBP吸油量である。 Here, the "DBP oil absorption amount" of the amorphous carbon contained in the negative electrode active material layer 22 as the negative electrode active material is the one type of amorphous carbon contained in the negative electrode active material layer 22. DBP oil absorption of amorphous carbon. When the negative electrode active material layer 22 contains a plurality of types of amorphous carbon, it is the DBP oil absorption amount of each of the plurality of types of amorphous carbon.

負極活物質層22が含有する無定形炭素のDBP吸油量は、JIS K6217−4:2008に準拠するDBP吸油量の測定により算出することができる。具体的には、回転翼によってかき混ぜられている試料にフタル酸ジブチル(DBP)を定速度ビュレットで滴定する。DBPを添加するにつれて,この混合物は自由に流動する粉体から、やや粘性をもつ塊へと変化する。粘性特性の変化によって発生するトルクが、設定値に達するか、又はトルク曲線から得られた最大トルクの一定割合に達した時点をこの測定の終点とする。終点時のDBPの体積(ml)を試料質量(g)で割り、100倍することにより、DBP吸油量(ml/100g)を求めることができる。 The DBP oil absorption amount of the amorphous carbon contained in the negative electrode active material layer 22 can be calculated by measuring the DBP oil absorption amount according to JIS K6217-4: 2008. Specifically, dibutyl phthalate (DBP) is titrated with a constant velocity burette on a sample stirred by a rotor. With the addition of DBP, the mixture changes from a freely flowing powder to a slightly viscous mass. The end point of this measurement is when the torque generated by the change in viscosity characteristics reaches a set value or a certain percentage of the maximum torque obtained from the torque curve. The DBP oil absorption amount (ml / 100 g) can be obtained by dividing the volume (ml) of DBP at the end point by the sample mass (g) and multiplying by 100.

負極活物質層22は、リチウムと合金又は化合物を形成する負極活物質として無定形炭素のみを含有してもよく、無定形炭素に加えて、例えば金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛よりなる群から選択される少なくとも1種を更に含有していてもよい。 The negative electrode active material layer 22 may contain only amorphous carbon as the negative electrode active material forming an alloy or compound with lithium, and in addition to the amorphous carbon, for example, gold, platinum, palladium, silicon, silver, aluminum, etc. It may further contain at least one selected from the group consisting of bismuth, tin, indium and zinc.

ここで、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛から選択される少なくとも1種を負極活物質として含有する場合、これらの負極活物質の粒径は4μm以下であることが好ましい。さらに100nm以下であることがより好ましい。このような粒径であれば、全固体二次電池1の出力特性、サイクル特性が更に向上する。ここで、負極活物質の粒径は、例えばレーザー式粒度分布系を用いて測定したメジアン径(いわゆるD50)を用いることができる。粒径の下限値は特に制限されないが、10nmであってもよい。当該効果は、負極活物質層22において、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛から選択される1種以上を、合計で5質量%以上含有することで得ることができる。 Here, when at least one selected from gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, indium and zinc is contained as the negative electrode active material, the particle size of these negative electrode active materials is 4 μm or less. It is preferable to have. Further, it is more preferably 100 nm or less. With such a particle size, the output characteristics and cycle characteristics of the all-solid-state secondary battery 1 are further improved. Here, as the particle size of the negative electrode active material, for example, the median diameter (so-called D 50 ) measured using a laser particle size distribution system can be used. The lower limit of the particle size is not particularly limited, but may be 10 nm. The effect is obtained by containing at least one selected from gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, indium and zinc in the negative electrode active material layer 22 in a total of 5% by mass or more. be able to.

(無定形炭素の含有量が合計で33質量%以上)
負極活物質層22における、上記した(a)又は(b)の条件を満たす無定形炭素の含有量が合計で33質量%未満であると、全固体二次電池1のサイクル特性及び放電レート特性を十分に向上することができない。それ故、負極活物質層22における、上記した(a)又は(b)の条件を満たす無定形炭素の含有量を合計で33質量%以上とする必要がある。
(The total content of amorphous carbon is 33% by mass or more)
When the total content of amorphous carbon satisfying the above conditions (a) or (b) in the negative electrode active material layer 22 is less than 33% by mass, the cycle characteristics and discharge rate characteristics of the all-solid-state secondary battery 1 Cannot be improved sufficiently. Therefore, the content of the amorphous carbon satisfying the above conditions (a) or (b) in the negative electrode active material layer 22 needs to be 33% by mass or more in total.

一方で、上記した(a)又は(b)の条件を満たす無定形炭素の含有量の上限は特に制限されないが、例えば95質量%以下であることが好ましい。 On the other hand, the upper limit of the content of amorphous carbon satisfying the above-mentioned conditions (a) or (b) is not particularly limited, but is preferably 95% by mass or less, for example.

ここで、負極活物質層22における無定形炭素の「含有量」とは、負極活物質層22に含まれる負極活物質の総質量を100質量%とし、これに対する上記した(a)又は(b)の条件を満たす1種又は複数種の無定形炭素の合計質量の比を意味する。 Here, the "content" of amorphous carbon in the negative electrode active material layer 22 means that the total mass of the negative electrode active material contained in the negative electrode active material layer 22 is 100% by mass, and the above-mentioned (a) or (b) with respect to this. ) Means the ratio of the total mass of one or more types of amorphous carbon.

負極活物質層22における上記した(a)又は(b)の条件を満たす無定形炭素の含有量は、例えば以下の方法によりにより測定することができる。まず燃焼法により負極活物質層22中の炭素の含有量を測定する。具体的には、負極活物質層22のサンプルを酸素を混合したヘリウム気流下で高温に加熱し、発生する二酸化炭素を定量することにより負極活物質層22中の炭素の含有量を測定する。さらにレーザー散乱法で粒度分布を見積もり、負極活物質層22中に何種類の無定形炭素が含有されているかを測定する。さらに透過型電子顕微鏡(TEM)を用いて、粒径とストラクチャーを観察する。上記の測定・観察結果を総合することにより、負極活物質層22中に含まれる無形系炭素の種類数、各種の無定形炭素の含有率、各種の無定形炭素の粒径及びストラクチャーについての情報を得て、これにより負極活物質層22における上記した(a)又は(b)の条件を満たす無定形炭素の含有量を測定することができる。なお当然ながら、負極活物質層22の製造条件(各種の無定形炭素の窒素吸着比表面積、DBP吸油量及び含有量、その他の負極活物質の含有量等)から、完成品である全固体二次電池1における、負極活物質層22中の上記した(a)又は(b)の条件を満たす無定形炭素の含有量を見積もることもできる。 The content of amorphous carbon satisfying the above conditions (a) or (b) in the negative electrode active material layer 22 can be measured by, for example, the following method. First, the carbon content in the negative electrode active material layer 22 is measured by a combustion method. Specifically, the carbon content in the negative electrode active material layer 22 is measured by heating the sample of the negative electrode active material layer 22 to a high temperature under a helium stream mixed with oxygen and quantifying the generated carbon dioxide. Further, the particle size distribution is estimated by the laser scattering method, and the number of types of amorphous carbon contained in the negative electrode active material layer 22 is measured. In addition, a transmission electron microscope (TEM) is used to observe the particle size and structure. By combining the above measurement and observation results, information on the number of types of intangible carbon contained in the negative electrode active material layer 22, the content of various amorphous carbons, the particle size and structure of various amorphous carbons. With this, the content of amorphous carbon satisfying the above-mentioned conditions (a) or (b) in the negative electrode active material layer 22 can be measured. As a matter of course, from the production conditions of the negative electrode active material layer 22 (nitrogen adsorption specific surface area of various amorphous carbons, DBP oil absorption and content, content of other negative electrode active materials, etc.), the finished all-solid rechargeable battery It is also possible to estimate the content of amorphous carbon in the negative electrode active material layer 22 in the next battery 1 that satisfies the above conditions (a) or (b).

負極活物質層22はバインダを更に含有していてもよい。バインダを含有することで、負極活物質層22を負極集電体21上で安定化させることができる。バインダを構成する材料としては、例えば、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等の樹脂材料が挙げられる。バインダは、これらの樹脂材料から選択される少なくとも1種から構成されてよい。 The negative electrode active material layer 22 may further contain a binder. By containing the binder, the negative electrode active material layer 22 can be stabilized on the negative electrode current collector 21. Examples of the material constituting the binder include resin materials such as styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. The binder may be composed of at least one selected from these resin materials.

また負極活物質層22には、従来の全固体二次電池で使用される添加剤、例えばフィラー、分散剤、イオン導電剤等が適宜配合されていてもよい。 Further, the negative electrode active material layer 22 may appropriately contain additives used in conventional all-solid-state secondary batteries, such as fillers, dispersants, and ionic conductive agents.

(3)固体電解質層
固体電解質層30は、正極層10と負極層20の間(具体的には、正極活物質層12と負極活物質層22の間)に配置されている。固体電解質層30は、イオンを移動させることができる固体電解質を含有する。
(3) Solid Electrolyte Layer The solid electrolyte layer 30 is arranged between the positive electrode layer 10 and the negative electrode layer 20 (specifically, between the positive electrode active material layer 12 and the negative electrode active material layer 22). The solid electrolyte layer 30 contains a solid electrolyte capable of transferring ions.

固体電解質は、例えば硫化物を主体とする固体電解質材料(以下、硫化物系固体電解質材料と称する)から構成される。硫化物系固体電解質材料としては、例えば、LiS−P、LiS−P−LiX(Xは例えばI、Cl等のハロゲン元素)、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(m及びnは正の数、ZはGe、Zn又はGaのいずれか)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(p及びqは正の数、MはP、Si、Ge、B、Al、Ga又はInのいずれか)等を挙げることができる。固体電解質は、これらの硫化物系固体電解質材料から選択される1種の材料により構成されてよく、2種以上の材料により構成されていてもよい。 The solid electrolyte is composed of, for example, a solid electrolyte material mainly composed of sulfide (hereinafter, referred to as a sulfide-based solid electrolyte material). The sulfide-based solid electrolyte material, for example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiX (X is for example I, a halogen element such as Cl), Li 2 S-P 2 S 5 -Li 2 O, Li 2 S -P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S- SiS 2- LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2- P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 S-P 2 S 5 -Z m S n (m and n are positive numbers, Z is either Ge, Zn or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2- Li p MO q (p and q are positive numbers, M is any of P, Si, Ge, B, Al, Ga or In) and the like can be mentioned. The solid electrolyte may be composed of one kind of material selected from these sulfide-based solid electrolyte materials, and may be composed of two or more kinds of materials.

固体電解質として、上記の硫化物固体電解質材料のうち、構成元素として硫黄(S)、リン(P)及びリチウム(Li)を含むものを用いることが好ましい。具体的には、LiS−Pを含むものを用いることがより好ましい。硫化物系固体電解質材料としてLiS−Pを含むものを用いる場合、LiSとPとの混合モル比は、例えば、LiS:P=50:50〜90:10の範囲で選択されることが好ましい。 As the solid electrolyte, among the above-mentioned sulfide solid electrolyte materials, those containing sulfur (S), phosphorus (P) and lithium (Li) as constituent elements are preferably used. Specifically, it is more preferable to use one containing Li 2 SP 2 S 5 . When a material containing Li 2 SP 2 S 5 is used as the sulfide-based solid electrolyte material, the mixed molar ratio of Li 2 S and P 2 S 5 is, for example, Li 2 S: P 2 S 5 = 50 :. It is preferably selected in the range of 50 to 90:10.

なお固体電解質は、非晶質の状態であってもよく、結晶質の状態であってもよい。また、非晶質及び結晶質が混ざった状態でもよい。 The solid electrolyte may be in an amorphous state or in a crystalline state. Further, it may be in a state where amorphous and crystalline are mixed.

固体電解質層30は、バインダを更に含有してもよい。当該バインダの材料として、例えば、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリル酸等の樹脂を挙げることができる。当該バインダの材料は、正極活物質層12及び負極活物質層22内のバインダを構成する材料と同じであってもよいし、異なっていてもよい。 The solid electrolyte layer 30 may further contain a binder. Examples of the binder material include resins such as styrene-butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and polyacrylic acid. The material of the binder may be the same as or different from the material constituting the binder in the positive electrode active material layer 12 and the negative electrode active material layer 22.

(4)初期充電容量比
本実施形態の全固体二次電池1は、負極活物質層22の初期充電容量に対して正極活物質層12の初期充電容量が過大になるように構成されている。後述するように、本実施形態では、全固体二次電池1を、負極活物質層22の初期充電容量を超えて充電(すなわち過充電)する。充電の初期には、負極活物質層22内にリチウムが吸蔵される。すなわち、負極活物質は、正極層10から移動してきたリチウムイオンと合金又は化合物を形成する。負極活物質層22の初期充電容量を超えて充電が行われると、図2に示すように、負極活物質層22の裏側、すなわち負極集電体21と負極活物質層22との間にリチウムが析出し、このリチウムによって金属層23が形成される。金属層23は主にリチウム(すなわち、金属リチウム)で構成される。このような現象は、負極活物質を特定の物質、すなわちリチウムと合金又は化合物を形成する物質で構成することで生じる。放電時には、負極活物質層22及び金属層23中のリチウムがイオン化し、正極層10側に移動する。したがって、全固体二次電池1では、リチウムを負極活物質として使用することができる。さらに、負極活物質層22は、金属層23を被覆するので、金属層23の保護層として機能するとともに、樹枝状の金属リチウムの析出及び成長を抑制することができる。これにより、全固体二次電池1の短絡及び容量低下が抑制され、ひいては、全固体二次電池1の特性が向上する。
(4) Initial Charge Capacity Ratio The all-solid-state secondary battery 1 of the present embodiment is configured such that the initial charge capacity of the positive electrode active material layer 12 becomes excessive with respect to the initial charge capacity of the negative electrode active material layer 22. .. As will be described later, in the present embodiment, the all-solid-state secondary battery 1 is charged (that is, overcharged) beyond the initial charge capacity of the negative electrode active material layer 22. At the initial stage of charging, lithium is occluded in the negative electrode active material layer 22. That is, the negative electrode active material forms an alloy or compound with the lithium ions that have moved from the positive electrode layer 10. When charging is performed in excess of the initial charge capacity of the negative electrode active material layer 22, lithium is formed on the back side of the negative electrode active material layer 22, that is, between the negative electrode current collector 21 and the negative electrode active material layer 22 as shown in FIG. Precipitates, and the metal layer 23 is formed by this lithium. The metal layer 23 is mainly composed of lithium (that is, metallic lithium). Such a phenomenon occurs when the negative electrode active material is composed of a specific substance, that is, a substance that forms an alloy or compound with lithium. At the time of discharge, lithium in the negative electrode active material layer 22 and the metal layer 23 is ionized and moves to the positive electrode layer 10. Therefore, in the all-solid-state secondary battery 1, lithium can be used as the negative electrode active material. Further, since the negative electrode active material layer 22 coats the metal layer 23, it can function as a protective layer of the metal layer 23 and suppress the precipitation and growth of dendritic metallic lithium. As a result, the short circuit and capacity decrease of the all-solid-state secondary battery 1 are suppressed, and the characteristics of the all-solid-state secondary battery 1 are improved.

具体的には、本実施形態の全固体二次電池1は、負極活物質層22の初期充電容量に対する正極活物質層12の初期充電容量の比、すなわち初期充電容量比は、以下の式(1)を満たす。
0.01<b/a<0.5 (1)
(ここで、aは正極活物質層12の初期充電容量(mAh)であり、bは負極活物質層22の初期充電容量(mAh)である)
Specifically, in the all-solid-state secondary battery 1 of the present embodiment, the ratio of the initial charge capacity of the positive electrode active material layer 12 to the initial charge capacity of the negative electrode active material layer 22, that is, the initial charge capacity ratio is expressed by the following formula ( 1) is satisfied.
0.01 <b / a <0.5 (1)
(Here, a is the initial charge capacity (mAh) of the positive electrode active material layer 12, and b is the initial charge capacity (mAh) of the negative electrode active material layer 22).

初期充電容量比が0.01以下である場合、全固体二次電池1の特性が低下する。この理由としては、負極活物質層22が保護層として十分機能しなくなることが挙げられる。例えば、負極活物質層22の厚さが非常に薄い場合、容量比が0.01以下となりうる。この場合、充放電の繰り返しによって負極活物質層22が崩壊し、樹枝状の金属リチウムが析出及び成長する可能性がある。この結果、全固体二次電池1の特性が低下する。そのため、初期充電容量比を0.01超とする。
一方で、初期充電容量比が0.5以上になると、負極におけるリチウムの析出量が減少するため電池容量が減ってしまう。そのため、初期充電容量比は0.5未満とする。
When the initial charge capacity ratio is 0.01 or less, the characteristics of the all-solid-state secondary battery 1 deteriorate. The reason for this is that the negative electrode active material layer 22 does not sufficiently function as a protective layer. For example, when the thickness of the negative electrode active material layer 22 is very thin, the volume ratio can be 0.01 or less. In this case, the negative electrode active material layer 22 may collapse due to repeated charging and discharging, and dendritic metallic lithium may precipitate and grow. As a result, the characteristics of the all-solid-state secondary battery 1 are deteriorated. Therefore, the initial charge capacity ratio is set to more than 0.01.
On the other hand, when the initial charge capacity ratio is 0.5 or more, the amount of lithium deposited on the negative electrode decreases, so that the battery capacity decreases. Therefore, the initial charge capacity ratio is set to less than 0.5.

(初期充電容量の測定方法)
正極活物質層12及び負極活物質層22のそれぞれの初期充電容量は、以下のようにして測定することができる。
(Measurement method of initial charge capacity)
The initial charge capacity of each of the positive electrode active material layer 12 and the negative electrode active material layer 22 can be measured as follows.

正極活物質層12の初期充電容量は、例えば、正極活物質の充電容量密度(mAh/g)に正極活物質層12中の正極活物質の質量を乗じることで得られる。正極活物質が複数種類使用される場合、正極活物質毎に充電容量密度×質量の値を算出し、これらの値の総和を正極活物質層12の初期充電容量とすればよい。 The initial charge capacity of the positive electrode active material layer 12 is obtained, for example, by multiplying the charge capacity density (mAh / g) of the positive electrode active material by the mass of the positive electrode active material in the positive electrode active material layer 12. When a plurality of types of positive electrode active materials are used, a value of charge capacity density × mass may be calculated for each positive electrode active material, and the sum of these values may be used as the initial charge capacity of the positive electrode active material layer 12.

負極活物質層22の初期充電容量も同様の方法で算出される。すなわち、負極活物質層22の初期充電容量は、例えば、負極活物質の充電容量密度(mAh/g)に負極活物質層22中の負極活物質の質量を乗じることで得られる。負極活物質が複数種類使用される場合、負極活物質毎に充電容量密度×質量の値を算出し、これらの値の総和を負極活物質層22の初期充電容量とすればよい。 The initial charge capacity of the negative electrode active material layer 22 is also calculated by the same method. That is, the initial charge capacity of the negative electrode active material layer 22 is obtained, for example, by multiplying the charge capacity density (mAh / g) of the negative electrode active material by the mass of the negative electrode active material in the negative electrode active material layer 22. When a plurality of types of negative electrode active materials are used, a value of charge capacity density × mass may be calculated for each negative electrode active material, and the sum of these values may be used as the initial charge capacity of the negative electrode active material layer 22.

ここで、正極活物質及び負極活物質の充電容量密度は、リチウム金属を対極に用いた全固体ハーフセルを用いて見積もられた容量である。 Here, the charge capacity densities of the positive electrode active material and the negative electrode active material are capacities estimated using an all-solid-state half cell using a lithium metal as a counter electrode.

正極活物質層12及び負極活物質層22の初期充電容量は、全固体ハーフセルを用いた測定により直接測定してもよい。初期充電容量を直接測定する具体的な方法としては、以下の様な方法を挙げることができる。 The initial charge capacity of the positive electrode active material layer 12 and the negative electrode active material layer 22 may be directly measured by measurement using an all-solid-state half cell. Specific methods for directly measuring the initial charge capacity include the following methods.

まず正極活物質層12の初期充電容量は、正極活物質層12を作用極、Liを対極として使用した全固体ハーフセルを作製し、OCV(開放電圧)から上限充電電圧までCC−CV充電を行うことで測定する。上限充電電圧とは、JIS C 8712:2015の規格で定められたものであり、リチウムコバルト酸系の正極に対しては4.25V、それ以外の正極についてはJIS C 8712:2015のA.3.2.3(異なる上限充電電圧を適用する場合の安全要求事項)の規定を適用して求められる電圧を指す。負極活物質層22の初期充電容量については、負極活物質層22を作用極、Liを対極として使用した全固体ハーフセルを作製し、OCV(開放電圧)から0.01VまでCC−CV充電を行うことで測定する。 First, for the initial charge capacity of the positive electrode active material layer 12, an all-solid-state half cell using the positive electrode active material layer 12 as the working electrode and Li as the counter electrode is produced, and CC-CV charging is performed from OCV (open circuit voltage) to the upper limit charging voltage. To measure. The upper limit charging voltage is defined by the JIS C 8712: 2015 standard, and is 4.25 V for lithium cobalt oxide-based positive electrodes, and JIS C 8712: 2015 A. for other positive electrodes. Refers to the voltage required by applying the provisions of 3.2.3 (Safety requirements when applying different upper limit charging voltages). Regarding the initial charge capacity of the negative electrode active material layer 22, an all-solid-state half cell using the negative electrode active material layer 22 as the working electrode and Li as the counter electrode is produced, and CC-CV charging is performed from OCV (open circuit voltage) to 0.01 V. To measure.

前述した全固体ハーフセルについては、例えば、次のような方法で作製することができる。初期充電容量を測定したい正極活物質層12又は負極活物質層22を直径13mmの円板状に打ち抜く。全固体二次電池1に用いるものと同じ固体電解質粉末200gを40MPaで固めて、直径:13mm、厚み:約1.5mmのペレット状にする。内径が13mmの筒の内部にこのペレットを入れて、その片側から円板状に打ち抜いた正極活物質層12又は負極活物質層22を入れ、反対側から直径13mm厚みが0.03mmのリチウム箔を入れる。さらに両側からステンレス鋼の円板を1つずつ入れて、全体を筒の軸方向に300MPa以上1000MPa以下の圧力で一分間加圧して内容物を一体化させる。一体化させるときに加える圧力を300MPa以上とすることによって、内容物を互いに密着させやすくなるので好ましい。また、この圧力は1000MPaより大きくしてもそれ以上は効果が横ばいになるので、1000MPa以下にすることが好ましい。
これを、常時22MPaの圧力がかかるようにケース内に封入して全固体ハーフセルとすることができる。
The above-mentioned all-solid-state half cell can be produced, for example, by the following method. The positive electrode active material layer 12 or the negative electrode active material layer 22 whose initial charge capacity is to be measured is punched into a disk shape having a diameter of 13 mm. 200 g of the same solid electrolyte powder used for the all-solid-state secondary battery 1 is solidified at 40 MPa to form pellets having a diameter of 13 mm and a thickness of about 1.5 mm. This pellet is placed inside a cylinder with an inner diameter of 13 mm, and a positive electrode active material layer 12 or a negative electrode active material layer 22 punched out in a disk shape from one side thereof is placed, and a lithium foil having a diameter of 13 mm and a thickness of 0.03 mm is placed from the opposite side. Put in. Further, stainless steel disks are inserted one by one from both sides, and the whole is pressurized in the axial direction of the cylinder at a pressure of 300 MPa or more and 1000 MPa or less for one minute to integrate the contents. It is preferable that the pressure applied at the time of integration is 300 MPa or more because the contents can be easily brought into close contact with each other. Further, even if this pressure is made larger than 1000 MPa, the effect becomes flat above that, so it is preferable to make it 1000 MPa or less.
This can be sealed in a case so that a pressure of 22 MPa is constantly applied to form an all-solid-state half cell.

<2.全固体二次電池の製造方法>
次に、前記した全固体二次電池1の製造方法について説明する。本実施形態に係る全固体二次電池1は、正極層10、負極層20、及び固体電解質層30をそれぞれ作製した後、上記の各層を積層することにより得ることができる。
<2. Manufacturing method of all-solid-state secondary battery>
Next, the method for manufacturing the all-solid-state secondary battery 1 described above will be described. The all-solid-state secondary battery 1 according to the present embodiment can be obtained by forming the positive electrode layer 10, the negative electrode layer 20, and the solid electrolyte layer 30, respectively, and then laminating each of the above layers.

(1)正極層作製工程
まず、正極活物質層12を構成する材料(正極活物質、バインダ等)を非極性溶媒に添加して、スラリー(ペーストであってもよい)を作製する。ついで、得られたスラリーを、準備した正極集電体11上に塗布する。これを乾燥させることにより積層体を得る。次いで得られた積層体を、例えば静水圧を用いて加圧することで、正極層10が得られる。なお加圧工程は省略されてもよい。
(1) Positive Electrode Layer Preparation Step First, a material (positive electrode active material, binder, etc.) constituting the positive electrode active material layer 12 is added to a non-polar solvent to prepare a slurry (which may be a paste). Then, the obtained slurry is applied onto the prepared positive electrode current collector 11. A laminate is obtained by drying this. Next, the positive electrode layer 10 is obtained by pressurizing the obtained laminate using, for example, hydrostatic pressure. The pressurizing step may be omitted.

(2)負極層作製工程
まず、負極活物質層22を構成する材料(負極活物質、バインダ等)を極性溶媒又は非極性溶媒に添加することで、スラリー(ペーストであってもよい)を作製する。ついで、得られたスラリーを準備した負極集電体21上に塗布する。これを乾燥させることにより積層体を得る。次いで、得られた積層体を例えば静水圧を用いて加圧することで、負極層20を作製する。なお加圧工程は省略されてもよい。
(2) Negative electrode layer manufacturing step First, a slurry (which may be a paste) is prepared by adding a material (negative electrode active material, binder, etc.) constituting the negative electrode active material layer 22 to a polar solvent or a non-polar solvent. To do. Then, the obtained slurry is applied onto the prepared negative electrode current collector 21. A laminate is obtained by drying this. Next, the negative electrode layer 20 is produced by pressurizing the obtained laminate using, for example, hydrostatic pressure. The pressurizing step may be omitted.

(3)固体電解質層作製工程
固体電解質層30は、硫化物系固体電解質材料から形成された固体電解質により作製することができる。
(3) Solid Electrolyte Layer Preparation Step The solid electrolyte layer 30 can be made of a solid electrolyte formed from a sulfide-based solid electrolyte material.

まず、溶融急冷法やメカニカルミリング法により出発原料(例えば、LiS、P等)を処理することで、硫化物系固体電解質材料を得る。 First, a sulfide-based solid electrolyte material is obtained by treating a starting material (for example, Li 2 S, P 2 S 5, etc.) by a melt quenching method or a mechanical milling method.

例えば、溶融急冷法を用いる場合、出発原料を所定量混合し、ペレット状にしたものを真空中で所定の反応温度で反応させた後、急冷することによって硫化物系固体電解質材料を作製することができる。なお、LiS及びPの混合物の反応温度は、好ましくは400℃〜1000℃であり、より好ましくは800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間であり、より好ましくは1時間〜12時間である。さらに、反応物の急冷温度は、通常10℃以下であり、好ましくは0℃以下であり、急冷速度は、通常1℃/sec〜10000℃/sec程度であり、好ましくは1℃/sec〜1000℃/sec程度である。 For example, when the melt quenching method is used, a sulfide-based solid electrolyte material is prepared by mixing a predetermined amount of starting materials, reacting the pellets in a vacuum at a predetermined reaction temperature, and then quenching. Can be done. The reaction temperature of the mixture of Li 2 S and P 2 S 5 is preferably 400 ° C. to 1000 ° C., more preferably 800 ° C. to 900 ° C. The reaction time is preferably 0.1 hour to 12 hours, and more preferably 1 hour to 12 hours. Further, the quenching temperature of the reaction product is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the quenching rate is usually about 1 ° C./sec to 10000 ° C./sec, preferably 1 ° C./sec to 1000 ° C. It is about ° C./sec.

また、メカニカルミリング法を用いる場合、ボールミルなどを用いて出発原料を撹拌させて反応させることで、硫化物系固体電解質材料を作製することができる。なお、メカニカルミリング法における撹拌速度及び撹拌時間は特に限定されないが、撹拌速度が速いほど硫化物系固体電解質材料の生成速度を速くすることができ、撹拌時間が長いほど硫化物系固体電解質材料への原料の転化率を高くすることができる。 Further, when the mechanical milling method is used, a sulfide-based solid electrolyte material can be produced by stirring and reacting the starting raw materials with a ball mill or the like. The stirring speed and stirring time in the mechanical milling method are not particularly limited, but the faster the stirring speed, the faster the production rate of the sulfide-based solid electrolyte material, and the longer the stirring time, the more the sulfide-based solid electrolyte material. The conversion rate of the raw material of the above can be increased.

その後、得られた混合原料(硫化物系固体電解質材料)を所定温度で熱処理した後、これを粉砕することにより粒子状の固体電解質を作製することができる。固体電解質がガラス転移点を持つ場合は、熱処理によって非晶質から結晶質に変わる場合がある。 Then, the obtained mixed raw material (sulfide-based solid electrolyte material) is heat-treated at a predetermined temperature and then pulverized to produce a particulate solid electrolyte. If the solid electrolyte has a glass transition point, it may change from amorphous to crystalline by heat treatment.

続いて、上記の方法で得られた固体電解質を、例えば、エアロゾルデポジション法、コールドスプレー法、スパッタリング法等の既知の成膜法を用いて成膜することにより、固体電解質層30を作製することができる。なお、固体電解質層30は、固体電解質粒子単体を加圧することにより作製されてもよい。また、固体電解質層30は、固体電解質と、溶媒、バインダを混合し、塗布乾燥し加圧することにより固体電解質層30を作製してもよい。 Subsequently, the solid electrolyte layer 30 is produced by forming a solid electrolyte obtained by the above method using a known film forming method such as an aerosol deposition method, a cold spray method, or a sputtering method. be able to. The solid electrolyte layer 30 may be formed by pressurizing the solid electrolyte particles alone. Further, the solid electrolyte layer 30 may be formed by mixing the solid electrolyte with a solvent and a binder, applying, drying and pressurizing the solid electrolyte layer 30.

(4)積層工程
正極層10と負極層20とで固体電解質層30を挟むように配置し、これを例えば静水圧等を用いて加圧することにより、本実施形態に係る全固体二次電池1を得ることができる。
(4) Laminating Step The all-solid-state secondary battery 1 according to the present embodiment is arranged so that the solid electrolyte layer 30 is sandwiched between the positive electrode layer 10 and the negative electrode layer 20, and is pressurized by using, for example, hydrostatic pressure. Can be obtained.

なお上記の方法で作製した全固体二次電池1を動作させ充放電する際に、全固体二次電池1に圧力をかけた状態で行ってもよい。上記圧力は、0.5MPa以上、10MPa以下であってもよい。また圧力の印加は、ステンレス、真鍮、アルミニウム、ガラスなどの2枚の硬い板の間に全固体電池1を挟み、この2枚の板の間をねじで締めるなどの方法で行ってもよい。本実施形態に係る全固体電池においては、充放電を繰り返すと、界面層と負極活物質層との間に析出した金属リチウムがイオン化して溶解することにより空隙が生じる恐れがある。そこで、前記圧力を0.5MPa以上にすることによって、前述した空隙の発生を抑えて、電池出力の低下を抑えやすくすることができる。また、前記圧力を大きくしすぎると、電池の短絡が生じやすくなる傾向になる。そのため、前記圧力は10MPa以下にすることが好ましい。 When the all-solid-state secondary battery 1 produced by the above method is operated and charged / discharged, the all-solid-state secondary battery 1 may be under pressure. The pressure may be 0.5 MPa or more and 10 MPa or less. Further, the pressure may be applied by sandwiching the all-solid-state battery 1 between two hard plates such as stainless steel, brass, aluminum, and glass, and tightening the screws between the two plates. In the all-solid-state battery according to the present embodiment, when charging and discharging are repeated, the metallic lithium precipitated between the interface layer and the negative electrode active material layer may be ionized and dissolved to form voids. Therefore, by setting the pressure to 0.5 MPa or more, it is possible to suppress the generation of the above-mentioned voids and to easily suppress the decrease in battery output. Further, if the pressure is increased too much, a short circuit of the battery tends to occur easily. Therefore, the pressure is preferably 10 MPa or less.

<3.全固体二次電池の充電方法>
次に、全固体二次電池1の充電方法について説明する。
<3. How to charge all-solid-state secondary battery>
Next, a method of charging the all-solid-state secondary battery 1 will be described.

本実施形態の全固体二次電池1の充電方法は、全固体二次電池1を、負極活物質層22の充電容量を超えて充電(すなわち過充電)することを特徴とする。 The method for charging the all-solid-state secondary battery 1 of the present embodiment is characterized in that the all-solid-state secondary battery 1 is charged (that is, overcharged) in excess of the charging capacity of the negative electrode active material layer 22.

充電の初期には、負極活物質層22内にリチウムが吸蔵される。負極活物質層22の充電容量を超えて充電が行われると、図2に示すように、負極活物質層22の裏側、すなわち負極集電体21と負極活物質層22との間にリチウムが析出し、このリチウムによって製造時には存在していなかった金属層23が形成される。放電時には、負極活物質層22及び金属層23中のリチウムがイオン化し、正極層10側に移動する。したがって、全固体二次電池1では、リチウムを負極活物質として使用することができる。さらに、負極活物質層22は、金属層23を被覆するので、金属層23の保護層として機能するとともに、樹枝状の金属リチウムの析出及び成長を抑制することができる。これにより、全固体二次電池1の短絡及び容量低下が抑制され、ひいては、全固体二次電池1の特性が向上する。なお、本実施形態では、金属層23は予め形成されていないので、全固体二次電池1の製造コストを低減できる。 At the initial stage of charging, lithium is occluded in the negative electrode active material layer 22. When charging is performed in excess of the charging capacity of the negative electrode active material layer 22, lithium is generated on the back side of the negative electrode active material layer 22, that is, between the negative electrode current collector 21 and the negative electrode active material layer 22, as shown in FIG. It precipitates, and this lithium forms a metal layer 23 that did not exist at the time of production. At the time of discharge, lithium in the negative electrode active material layer 22 and the metal layer 23 is ionized and moves to the positive electrode layer 10. Therefore, in the all-solid-state secondary battery 1, lithium can be used as the negative electrode active material. Further, since the negative electrode active material layer 22 coats the metal layer 23, it can function as a protective layer of the metal layer 23 and suppress the precipitation and growth of dendritic metallic lithium. As a result, the short circuit and capacity decrease of the all-solid-state secondary battery 1 are suppressed, and the characteristics of the all-solid-state secondary battery 1 are improved. In this embodiment, since the metal layer 23 is not formed in advance, the manufacturing cost of the all-solid-state secondary battery 1 can be reduced.

全固体二次電池1の充電量が負極活物質層22の初期充電容量の2倍未満であると、負極層20におけるリチウムの析出量が減って、電池容量が減ってしまうことがある。そのため、全固体二次電池1の充電量が負極活物質層22の初期充電容量の2倍以上が好ましい。
一方で、全固体二次電池1の充電量が負極活物質層22の初期充電容量の100倍超であると、負極層20の厚さが不十分となり、充放電の繰り返しによって負極層20が崩壊し、デンドライトが析出及び成長することがある。そのため、全固体二次電池1の充電量が負極活物質層22の初期充電容量の100倍以下であることが好ましい。
If the charge amount of the all-solid-state secondary battery 1 is less than twice the initial charge capacity of the negative electrode active material layer 22, the amount of lithium precipitated in the negative electrode layer 20 may decrease, and the battery capacity may decrease. Therefore, the charge amount of the all-solid-state secondary battery 1 is preferably twice or more the initial charge capacity of the negative electrode active material layer 22.
On the other hand, if the charge amount of the all-solid-state secondary battery 1 is more than 100 times the initial charge capacity of the negative electrode active material layer 22, the thickness of the negative electrode layer 20 becomes insufficient, and the negative electrode layer 20 becomes insufficient due to repeated charging and discharging. It may disintegrate and deposit and grow dendrites. Therefore, the charge amount of the all-solid-state secondary battery 1 is preferably 100 times or less the initial charge capacity of the negative electrode active material layer 22.

なお金属層23は、図2に示すように負極集電体21と負極活物質層22との間に形成されるものに限らず、図3に示すように、負極活物質層22の内部に形成されてもよい。さらに、図4に示すように、金属層23が、負極集電体21と負極活物質層22との間及び負極活物質層22の内部の両方に形成されてもよい。 The metal layer 23 is not limited to the one formed between the negative electrode current collector 21 and the negative electrode active material layer 22 as shown in FIG. 2, but is inside the negative electrode active material layer 22 as shown in FIG. It may be formed. Further, as shown in FIG. 4, the metal layer 23 may be formed both between the negative electrode current collector 21 and the negative electrode active material layer 22 and inside the negative electrode active material layer 22.

全固体二次電池1を充電することにより、負極集電体21と負極活物質層22との間、又は負極活物質層22の内部にリチウムが層状に析出するので、充放電によって全固体二次電池1内部でのボイドの発生を抑えることができる。これにより、リチウムが層状に析出しない場合に比べて、充放電による全固体二次電池1の内部の圧力上昇を抑えることができる。 By charging the all-solid-state secondary battery 1, lithium is deposited in layers between the negative electrode current collector 21 and the negative electrode active material layer 22 or inside the negative electrode active material layer 22, so that the all-solid-state secondary battery is charged and discharged. It is possible to suppress the generation of voids inside the next battery 1. As a result, it is possible to suppress an increase in pressure inside the all-solid-state secondary battery 1 due to charging / discharging, as compared with the case where lithium does not precipitate in layers.

なお上記したように、負極活物質層22が、無定形炭素と、必要に応じて金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛よりなる群から選択される1種以上とを負極活物質として含有しているので、過充電した場合に、負極活物質層22の固体電解質層30側の表面におけるリチウムの析出を抑制することができる。その結果、樹枝状の金属リチウムの析出及び成長を抑制することができる。これにより、全固体二次電池の短絡および容量低下が抑制され、ひいては、全固体二次電池の特性が向上する。 As described above, the negative electrode active material layer 22 is one selected from the group consisting of amorphous carbon and, if necessary, gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, indium and zinc. Since the above is contained as the negative electrode active material, it is possible to suppress the precipitation of lithium on the surface of the negative electrode active material layer 22 on the solid electrolyte layer 30 side when overcharged. As a result, the precipitation and growth of dendritic metallic lithium can be suppressed. As a result, the short circuit and capacity reduction of the all-solid-state secondary battery are suppressed, and the characteristics of the all-solid-state secondary battery are improved.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by the following examples, and it is possible to carry out modifications to the extent that it can be adapted to the above-mentioned purpose, and all of them are included in the technical scope of the present invention. Will be done.

(実施例1)
<1.サンプル作製>
まず以下の手順により、負極活物質層として無定形炭素を含有する全固体二次電池のサンプル(No.1〜12)を作製した。なお、全固体二次電池の各サンプルは、負極活物質層が含有する無定形炭素の種類がそれぞれ異なる以外は、同一の構成となるようにした。
(Example 1)
<1. Sample preparation>
First, a sample (No. 1 to 12) of an all-solid-state secondary battery containing amorphous carbon as a negative electrode active material layer was prepared by the following procedure. Each sample of the all-solid-state secondary battery had the same configuration except that the type of amorphous carbon contained in the negative electrode active material layer was different.

(1)正極層の作製
正極活物質としてLiNi0.8Co0.15Al0.05(NCA)を準備した。この正極活物質に対し、非特許文献1に書かれている方法により、LiO−ZrOで被覆を行った。また固体電解質として、Argyrodite型結晶であるLiPSClを準備した。また、バインダとして、ポリテトラフルオロエチレン(デュポン社製テフロン(登録商標)バインダ)を準備した。また、導電助剤としてカーボンナノファイバー(CNF)を準備した。ついで、これらの材料を、正極活物質:固体電解質:導電助剤:バインダ=88:12:2:1の質量比で混合した。混合物をシート状に引き伸ばして、正極活物質シートを作製した。そしてこの正極活物質シートを約1.7cm角に成形し、18μm厚のアルミ箔からなる正極集電体に圧着することにより、正極層を作製した。
(1) Preparation of Positive Electrode Layer LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) was prepared as the positive electrode active material. This positive electrode active material was coated with Li 2 O-ZrO 2 by the method described in Non-Patent Document 1. Further, as a solid electrolyte, Li 6 PS 5 Cl, which is an Argyrodite type crystal, was prepared. In addition, as a binder, polytetrafluoroethylene (Teflon (registered trademark) binder manufactured by DuPont) was prepared. In addition, carbon nanofiber (CNF) was prepared as a conductive auxiliary agent. Then, these materials were mixed in a mass ratio of positive electrode active material: solid electrolyte: conductive auxiliary agent: binder = 88: 12: 2: 1. The mixture was stretched into a sheet to prepare a positive electrode active material sheet. Then, this positive electrode active material sheet was molded into a square of about 1.7 cm and pressed against a positive electrode current collector made of 18 μm thick aluminum foil to prepare a positive electrode layer.

(2)負極層の作製
負極活物質として銀粒子と無定形炭素とを含有する負極層を次のようにして作成した。
まず、無定形炭素(カーボンブラック)6gと銀粒子(平均粒径約60nm、表1において“Ag”と表記)2gとを容器に入れ、そこへバインダ(クレハ社製#9300)を7.77質量%含むN−メチルピロリドン(NMP)溶液を5.1g加えた。ついで、この混合溶液にNMPを少しずつ加えながら撹拌することで、スラリーを作製した。このスラリーを、10μm厚のSUS304箔から成る負極集電体上に、ブレードコーターを用いて塗布した。そして、空気中で約80℃で約20分間乾燥させたのち、100℃で約12時間真空乾燥した。この積層体を約2cm角で打ち抜き、負極層とした。ただし、この負極層には、突出部があり、後述するように電池の負極用端子として用いる。このようにして、サンプルNo.1〜12に用いる負極層を作製した。
(2) Preparation of Negative Electrode Layer A negative electrode layer containing silver particles and amorphous carbon as a negative electrode active material was prepared as follows.
First, 6 g of amorphous carbon (carbon black) and 2 g of silver particles (average particle size of about 60 nm, indicated as "Ag" in Table 1) are placed in a container, and a binder (# 9300 manufactured by Kureha) is placed therein. 5.1 g of N-methylpyrrolidone (NMP) solution containing mass% was added. Then, a slurry was prepared by stirring the mixed solution while adding NMP little by little. This slurry was applied to a negative electrode current collector made of SUS304 foil having a thickness of 10 μm using a blade coater. Then, it was dried in air at about 80 ° C. for about 20 minutes and then vacuum dried at 100 ° C. for about 12 hours. This laminate was punched out at an approximately 2 cm square to form a negative electrode layer. However, this negative electrode layer has a protruding portion, and is used as a negative electrode terminal of a battery as described later. In this way, the sample No. The negative electrode layers used for 1 to 12 were prepared.

ここで、サンプルNo.1〜12のそれぞれに用いる負極層は、窒素吸着比表面積及びDBP吸油量が表1に示す値となる1種類の無定形炭素を用いて作製した。サンプルNo.1〜No.10の負極層の作製において使用した無定形炭素はファーネスブラック(表1において“FB”と表記)である。No.11とNo.12の負極層の作成において使用した無定形炭素は、それぞれアセチレンブラックとケッチェンブラック(表1においてそれぞれ、“AB”、“KB”と表記)である。負極活物質が含有する無定形炭素の窒素吸着比表面積、DBP吸油量及び負極活物質層における無定形炭素の含有量が、表1に示す値になるようにそれぞれ作製した。製造した全固体二次電池のサンプルにおいても、負極活物質層に含まれる無定形炭素の窒素吸着比表面積及びDBP吸油量が表1に示す値になることを、前記した測定方法によって確認した。また、サンプルNo.1〜12のそれぞれに用いる負極層は、負極活物質層における無定形炭素の含有量が表1に示す値になるように作製した。 Here, the sample No. The negative electrode layer used for each of 1 to 12 was prepared using one type of amorphous carbon having a nitrogen adsorption specific surface area and DBP oil absorption as shown in Table 1. Sample No. 1-No. The amorphous carbon used in the preparation of the negative electrode layer of No. 10 is furnace black (denoted as “FB” in Table 1). No. 11 and No. The amorphous carbons used in the preparation of the negative electrode layer of 12 are acetylene black and Ketjen black (denoted as “AB” and “KB”, respectively in Table 1). The nitrogen adsorption specific surface area of the amorphous carbon contained in the negative electrode active material, the DBP oil absorption amount, and the content of the amorphous carbon in the negative electrode active material layer were prepared so as to be the values shown in Table 1, respectively. It was confirmed by the above-mentioned measuring method that the nitrogen adsorption specific surface area and the DBP oil absorption amount of the amorphous carbon contained in the negative electrode active material layer also became the values shown in Table 1 in the produced sample of the all-solid-state secondary battery. In addition, sample No. The negative electrode layers used for each of 1 to 12 were prepared so that the content of amorphous carbon in the negative electrode active material layer had the values shown in Table 1.

(3)固体電解質層の作製
前記したLiPSCl固体電解質に、当該固体電解質の質量に対して1質量%のゴム系バインダ(ZEON社製A334)を加えた。この混合物にキシレンとジエチルベンゼンを加えながら撹拌することで、スラリーを作製した。このスラリーを不織布の上にブレードコーターを用いて塗布し、空気中で40℃で乾燥させた。これにより得られた積層体を40℃で12時間真空乾燥した。この積層体を約2.2cm角で打ち抜き、固体電解質層を作製した。
(3) Preparation of Solid Electrolyte Layer To the above-mentioned Li 6 PS 5 Cl solid electrolyte, 1% by mass of a rubber binder (A334 manufactured by ZEON) was added to the mass of the solid electrolyte. A slurry was prepared by stirring while adding xylene and diethylbenzene to this mixture. This slurry was applied onto the non-woven fabric using a blade coater and dried in air at 40 ° C. The resulting laminate was vacuum dried at 40 ° C. for 12 hours. This laminate was punched out at a square of about 2.2 cm to prepare a solid electrolyte layer.

(4)全固体二次電池の作製
作製した正極層、固体電解質層及び負極層をこの順で重ねて、真空中でラミネートフィルムに封じることにより全固体二次電池のサンプルNo.1〜12を作製した。ここで、正極集電体と負極集電体のそれぞれ一部を、電池の真空を破らないようにラミネートフィルムから外に突出させた。これらの突出部を正極層及び負極層の端子とした。さらに、この全固体二次電池を490MPaで30分間静水圧処理した。さらにこの全固体二次電池を、その積層方向の両側から厚さ約1cmの2枚のステンレス板で挟んだ。2枚のステンレス板にはそれぞれ同じ箇所に4つの穴が開いており、全固体二次電池はその4つの穴が作る四角形の内側に収まるようになっている。この状態で、前記2枚のステンレス板の外側から前記2枚のステンレス板を貫通するように、前記4つの穴にそれぞれ一本ずつボルトを通した。その後、2枚のステンレス板を外側から押さえ込むように、前記4つのボルトをそれぞれナットで締めこむことによって、全固体二次電池に約4MPaの圧力を印加した。
(4) Preparation of All-Solid-State Secondary Battery The prepared positive electrode layer, solid electrolyte layer, and negative electrode layer are stacked in this order and sealed in a laminated film in a vacuum to obtain a sample No. of the all-solid-state secondary battery. 1 to 12 were prepared. Here, each part of the positive electrode current collector and the negative electrode current collector was projected outward from the laminated film so as not to break the vacuum of the battery. These protrusions were used as terminals for the positive electrode layer and the negative electrode layer. Further, this all-solid-state secondary battery was hydrostatically treated at 490 MPa for 30 minutes. Further, this all-solid-state secondary battery was sandwiched between two stainless steel plates having a thickness of about 1 cm from both sides in the stacking direction. Each of the two stainless steel plates has four holes in the same place, and the all-solid-state secondary battery fits inside the square formed by the four holes. In this state, one bolt was passed through each of the four holes so as to penetrate the two stainless steel plates from the outside of the two stainless steel plates. After that, a pressure of about 4 MPa was applied to the all-solid-state secondary battery by tightening the four bolts with nuts so as to press the two stainless steel plates from the outside.

<2.初期充電容量>
作製した全固体二次電池のサンプルNo.1〜12に対して、正極活物質層の初期充電容量(mAh)及び負極活物質層の初期充電容量(mAh)を次のようにして測定した。
具体的には、前記した段落[0067]〜[0068]の方法により全固体ハーフセルを作製する。そして、正極活物質層を作用極、Liを対極として、OCV(開放電圧)から上限充電電圧(具体的には4.25V)までCC−CV充電を行うことで、正極活物質層の初期充電容量を測定した。また、負極活物質層を作用極、Liを対極として使用した全固体ハーフセルを作製し、OCV(開放電圧)から0.01VまでCC−CV充電を行うことで、負極活物質層を測定した。測定により得られた各サンプルにおける正極活物質層及び負極活物質層の初期充電容量(mAh)、並びに初期充電容量比を表1に示す。
<2. Initial charge capacity>
Sample No. of the prepared all-solid-state secondary battery. The initial charge capacity (mAh) of the positive electrode active material layer and the initial charge capacity (mAh) of the negative electrode active material layer were measured with respect to 1 to 12 as follows.
Specifically, an all-solid-state half cell is produced by the methods described in paragraphs [0067] to [0068] above. Then, by performing CC-CV charging from OCV (open circuit voltage) to the upper limit charging voltage (specifically, 4.25V) with the positive electrode active material layer as the working electrode and Li as the counter electrode, the initial charging of the positive electrode active material layer is performed. The capacity was measured. Further, an all-solid-state half cell using the negative electrode active material layer as the working electrode and Li as the counter electrode was prepared, and the negative electrode active material layer was measured by performing CC-CV charging from OCV (open circuit voltage) to 0.01 V. Table 1 shows the initial charge capacity (mAh) of the positive electrode active material layer and the negative electrode active material layer, and the initial charge capacity ratio in each sample obtained by the measurement.

<3.特性評価>
作製したサンプルNo.1〜12の全固体二次電池に対して、以下のように充放電サイクル試験を行い、その電池特性を評価した。
<3. Characterization>
Prepared sample No. The charge / discharge cycle test was performed on all solid-state secondary batteries 1 to 12 as follows, and the battery characteristics were evaluated.

(1)充放電サイクル試験
全固体二次電池を60℃の恒温槽に入れて、充放電サイクル試験を行った。第1サイクルでは、電池電圧が4.25Vになるまで0.5mA/cmの定電流で充電を行い、電流が0.2mAになるまで4.25Vの定電圧で充電を行った。その後電池電圧が2.5Vになるまで0.5mA/cmの定電流で放電を行った。第2、第3サイクルでは、第1サイクルと同条件で充電を行い、それぞれ1.67mA/cm、5.0mA/cmの定電流で、電池電圧が2.5Vになるまで放電した。第4サイクル以降では、0.5mA/cmの定電流で充放電を行い、これを105サイクル以上繰り返し、各サンプルの電池特性を評価した。
(1) Charge / discharge cycle test An all-solid-state secondary battery was placed in a constant temperature bath at 60 ° C. to perform a charge / discharge cycle test. In the first cycle, charging was performed at a constant current of 0.5 mA / cm 2 until the battery voltage reached 4.25 V, and charging was performed at a constant voltage of 4.25 V until the current reached 0.2 mA. After that, the battery was discharged at a constant current of 0.5 mA / cm 2 until the battery voltage reached 2.5 V. Second, third cycle, the charging is performed for the first cycle and the same conditions, respectively 1.67mA / cm 2, at a constant current of 5.0 mA / cm 2, and then discharged until the battery voltage reached 2.5V. From the 4th cycle onward, charging and discharging were performed with a constant current of 0.5 mA / cm 2 , and this was repeated for 105 cycles or more to evaluate the battery characteristics of each sample.

(2)サイクル特性
全固体二次電池のサイクル特性を、充放電サイクル試験における容量維持率により評価した。具体的には、充放電サイクル試験における、第5サイクルでの放電容量(mAh)に対する第105サイクルでの放電容量(mAh)の比を「容量維持率(%)」とした。容量維持率が88%以上のサンプルを、“サイクル特性に優れる”と評価した。各サンプルにおける容量維持率の測定結果を表1に示す。
(2) Cycle characteristics The cycle characteristics of the all-solid-state secondary battery were evaluated by the capacity retention rate in the charge / discharge cycle test. Specifically, in the charge / discharge cycle test, the ratio of the discharge capacity (mAh) in the 105th cycle to the discharge capacity (mAh) in the 5th cycle was defined as the “capacity retention rate (%)”. Samples with a capacity retention rate of 88% or more were evaluated as having "excellent cycle characteristics". Table 1 shows the measurement results of the volume retention rate in each sample.

(3)放電レート特性
全固体二次電池の放電レート特性を、充放電サイクル試験における放電容量比により評価した。具体的には、充放電サイクル試験における、第2サイクルでの放電容量(mAh)に対する第3サイクルでの放電容量(mAh)の比(%)を「放電容量比(%)」とした。放電容量比が92%以上のサンプルを、“放電レート特性に優れる”と評価した。各サンプルにおける放電容量比の測定結果を表1に示す。
(3) Discharge rate characteristics The discharge rate characteristics of the all-solid-state secondary battery were evaluated by the discharge capacity ratio in the charge / discharge cycle test. Specifically, in the charge / discharge cycle test, the ratio (%) of the discharge capacity (mAh) in the third cycle to the discharge capacity (mAh) in the second cycle was defined as the “discharge capacity ratio (%)”. Samples with a discharge capacity ratio of 92% or more were evaluated as having "excellent discharge rate characteristics". Table 1 shows the measurement results of the discharge capacity ratio in each sample.

<4.評価>
表1に示すように、サンプルNo.1、2、4〜7及び10〜12は、いずれも本発明で規定する要件((a)窒素吸着比表面積が0m/g超、100m/g以下、又は(b)DBP吸油量が150ml/100g以上、の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して33質量%以上含有する)を満たす実施例たる全固体二次電池である。これらの全固体二次電池のサンプルはいずれも容量維持率が88%以上、かつ放電容量比が92%以上であり、サイクル特性及び放電レート特性のいずれにも優れていることを確認できた。窒素吸着比表面積が30m/g以上であって、且つ100m/g以下である無定形炭素を、負極活物質総質量に対して33質量%以上含むサンプルNo.1、4、5、7及び11は、窒素吸着比表面積が30m/g未満であるサンプルNo.10に比べて、放電容量比が高くなっており、放電レート特性がより一層向上していることがわかった。また、DBP吸油量が150ml/100g以上、200ml/100g以下であるサンプルNo.1、2及び6は、DBP吸油量が200ml/100g超であるサンプルNo.4に比べて、容量維持率及び放電容量比がいずれも高くなっていた。これにより、含有する無定形炭素の種類が同じであれば、DBP吸油量を200ml/100g以下にすることにより、サイクル特性及び放電レート特性をより一層向上できることがわかった。
<4. Evaluation >
As shown in Table 1, sample No. All of 1, 2, 4 to 7 and 10 to 12 are requirements specified in the present invention ((a) nitrogen adsorption specific surface area is more than 0 m 2 / g, 100 m 2 / g or less, or (b) DBP oil absorption is It is an all-solid-state secondary battery as an example that satisfies (containing 33% by mass or more of amorphous carbon satisfying at least one of 150 ml / 100 g or more with respect to the total mass of the negative electrode active material). It was confirmed that all of these samples of the all-solid-state secondary battery had a capacity retention rate of 88% or more and a discharge capacity ratio of 92% or more, and were excellent in both cycle characteristics and discharge rate characteristics. Sample No. containing 33% by mass or more of amorphous carbon having a nitrogen adsorption specific surface area of 30 m 2 / g or more and 100 m 2 / g or less with respect to the total mass of the negative electrode active material. Sample Nos. 1, 4, 5, 7 and 11 have a nitrogen adsorption specific surface area of less than 30 m 2 / g. It was found that the discharge capacity ratio was higher than that of 10, and the discharge rate characteristics were further improved. Further, the sample No. having a DBP oil absorption amount of 150 ml / 100 g or more and 200 ml / 100 g or less. Sample Nos. 1, 2 and 6 have a DBP oil absorption of more than 200 ml / 100 g. Compared with No. 4, both the capacity retention rate and the discharge capacity ratio were higher. From this, it was found that if the types of amorphous carbon contained are the same, the cycle characteristics and the discharge rate characteristics can be further improved by reducing the DBP oil absorption amount to 200 ml / 100 g or less.

これに対して、サンプルNo.3、8及び9は、本発明で規定するいずれかの要件(窒素吸着比表面積、DBP吸油量)を満たしていない比較例たる全固体二次電池である。これらのサンプルでは、サイクル特性又は放電レート特性との少なくともいずれかが劣っていた。 On the other hand, sample No. Reference numerals 3, 8 and 9 are all-solid-state secondary batteries as comparative examples that do not meet any of the requirements (nitrogen adsorption specific surface area, DBP oil absorption amount) specified in the present invention. These samples were inferior in at least either the cycle characteristics or the discharge rate characteristics.

具体的には、サンプルNo.3、8及び9はいずれも、窒素吸着比表面積が100m/g超であるとともに、DBP吸油量が150ml/100g未満であり、サイクル特性が劣っていた。サイクル特性が劣る理由としては、粒径が小さく、またアグリゲートも小さいため、リチウムが負極層を拡散するために多数の粒界やアグリゲートの界面を超えて拡散する必要があるためであると考えられる。すなわち、放電中に活物質と固体電解質との界面までリチウムが到達することが難しくなり、負極層内に孤立するリチウムが多くなるためであると考えられる。 Specifically, sample No. All of 3, 8 and 9 had a nitrogen adsorption specific surface area of more than 100 m 2 / g and a DBP oil absorption of less than 150 ml / 100 g, and were inferior in cycle characteristics. The reason for the poor cycle characteristics is that the particle size is small and the aggregate is also small, so lithium needs to diffuse beyond a large number of grain boundaries and the interface of the aggregate in order to diffuse the negative electrode layer. Conceivable. That is, it is considered that it becomes difficult for lithium to reach the interface between the active material and the solid electrolyte during discharge, and the amount of lithium isolated in the negative electrode layer increases.

(実施例2)
実施例2では、以下の手順により、負極活物質層が含有する無定形炭素の含有量を変化させた全固体二次電池のサンプル(No.13〜16)を作製した。
(Example 2)
In Example 2, a sample (No. 13 to 16) of an all-solid-state secondary battery in which the content of amorphous carbon contained in the negative electrode active material layer was changed was prepared by the following procedure.

具体的には、窒素吸着比表面積及びDBP吸油量が表2に示す値となる1種類の無定形炭素(ファーネスブラック)と、銀粒子(平均粒径約60nm)とを負極活物質として準備した。そして、負極活物質層における負極活物質の全質量に対する無定形炭素の含有量が表2に示す値となるように無定形炭素と銀粒子を混合し、実施例1と同じ方法で負極層を作製した。 Specifically, one type of amorphous carbon (furness black) having a nitrogen adsorption specific surface area and DBP oil absorption as shown in Table 2 and silver particles (average particle size of about 60 nm) were prepared as negative electrode active materials. .. Then, the amorphous carbon and the silver particles are mixed so that the content of the amorphous carbon with respect to the total mass of the negative electrode active material in the negative electrode active material layer becomes the value shown in Table 2, and the negative electrode layer is formed by the same method as in Example 1. Made.

また実施例1と同じ方法で、正極層及び固体電解質層を作製し、これらと負極層とを積層して、全固体二次電池のサンプルNo.13〜16を作製した。そして、作製したサンプルに対して、実施例1と同じ方法で、各種の電池特性の評価を行った。その結果を表2に示す。 Further, a positive electrode layer and a solid electrolyte layer were prepared by the same method as in Example 1, and these and a negative electrode layer were laminated to obtain a sample No. 1 of an all-solid secondary battery. 13 to 16 were prepared. Then, various battery characteristics were evaluated for the prepared sample by the same method as in Example 1. The results are shown in Table 2.

表2に示すように、サンプルNo.13〜18は、いずれも本発明で規定する要件((a)窒素吸着比表面積が0m/g超、100m/g以下、又は(b)DBP吸油量が150ml/100g以上、の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して33質量%以上含有する)を満たす実施例たる全固体二次電池である。これらの全固体二次電池のサンプルは、いずれも容量維持率が88%以上、かつ放電容量比が92%以上であり、サイクル特性及び放電レート特性のいずれにも優れていることを確認できた。なお、サンプル13については、105サイクルを待たずに短絡がおこってしまったが、短絡が起こらない限りは、サイクル特性及び放電レート特性がともに高く、十分使用に耐えうるものであった。
これらサンプルNo.13〜18の結果から、負極活物質総量に対しての無定形炭素の含有量は33質量%以上95質量%以下とすることが好ましく、は、負極活物質総質量に対して33質量%以上、87.5質量%以下とすることがより好ましいと考えられる。
As shown in Table 2, sample No. 13 to 18 are at least one of the requirements specified in the present invention ((a) nitrogen adsorption specific surface area of more than 0 m 2 / g, 100 m 2 / g or less, or (b) DBP oil absorption of 150 ml / 100 g or more. It is an all-solid-state secondary battery which is an example of satisfying (containing 33% by mass or more of amorphous carbon with respect to the total mass of the negative electrode active material). It was confirmed that all of these samples of the all-solid-state secondary battery had a capacity retention rate of 88% or more and a discharge capacity ratio of 92% or more, and were excellent in both cycle characteristics and discharge rate characteristics. .. The sample 13 was short-circuited without waiting for 105 cycles, but as long as the short-circuit did not occur, both the cycle characteristics and the discharge rate characteristics were high, and it was sufficiently usable.
These sample Nos. From the results of 13 to 18, the content of amorphous carbon with respect to the total amount of the negative electrode active material is preferably 33% by mass or more and 95% by mass or less, and is 33% by mass or more with respect to the total amount of the negative electrode active material. , 87.5% by mass or less is considered to be more preferable.

(実施例3)
実施例3では、以下の手順により、負極活物質層として無定形炭素を含有する全固体二次電池のサンプル(No.19〜20)を作製した。
(Example 3)
In Example 3, a sample (No. 19 to 20) of an all-solid-state secondary battery containing amorphous carbon as the negative electrode active material layer was prepared by the following procedure.

具体的には、窒素吸着比表面積及びDBP吸油量が表3に示す値となる1種類の無定形炭素(ケッチェンブラック)と、白金粒子(平均粒径約1μm)とを負極活物質として準備した。そして、負極活物質層における負極活物質の全質量に対する無定形炭素の含有量が表3に示す値となるように無定形炭素と白金粒子を混合し、実施例1と同じ方法で負極層を作製した。 Specifically, one type of amorphous carbon (Ketjen black) having a nitrogen adsorption specific surface area and DBP oil absorption as shown in Table 3 and platinum particles (average particle size of about 1 μm) are prepared as negative electrode active materials. did. Then, the amorphous carbon and the platinum particles are mixed so that the content of the amorphous carbon with respect to the total mass of the negative electrode active material in the negative electrode active material layer becomes the value shown in Table 3, and the negative electrode layer is formed by the same method as in Example 1. Made.

また実施例1と同じ方法で、正極層及び固体電解質層を作製し、これらと負極層とを積層して、全固体二次電池のサンプルNo.19及び20を作製した。そして、作製したサンプルに対して、実施例1と同じ方法で、各種の電池特性の評価を行った。その結果を表3に示す。 Further, a positive electrode layer and a solid electrolyte layer were prepared by the same method as in Example 1, and these and a negative electrode layer were laminated to obtain a sample No. 1 of an all-solid secondary battery. 19 and 20 were made. Then, various battery characteristics were evaluated for the prepared sample by the same method as in Example 1. The results are shown in Table 3.

表3に示すように、サンプルNo.19及び20は、いずれも本発明で規定する要件((a)窒素吸着比表面積が0m/g超、100m/g以下、又は(b)DBP吸油量が150ml/100g以上、の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して33質量%以上含有する)を満たす実施例たる全固体二次電池である。これらの全固体二次電池のサンプルは、いずれも容量維持率が88%以上、かつ放電容量比が92%以上であり、サイクル特性及び放電レート特性のいずれにも優れていることを確認できた。この結果から、負極活物質として無定形炭素と白金との混合物を用いることによっても、本発明の効果が得られることを確認できた。 As shown in Table 3, sample No. 19 and 20 are at least one of the requirements specified in the present invention ((a) nitrogen adsorption specific surface area of more than 0 m 2 / g, 100 m 2 / g or less, or (b) DBP oil absorption of 150 ml / 100 g or more. It is an all-solid-state secondary battery as an example that satisfies the above condition (containing 33% by mass or more of amorphous carbon with respect to the total mass of the negative electrode active material). It was confirmed that all of these samples of the all-solid-state secondary battery had a capacity retention rate of 88% or more and a discharge capacity ratio of 92% or more, and were excellent in both cycle characteristics and discharge rate characteristics. .. From this result, it was confirmed that the effect of the present invention can be obtained even by using a mixture of amorphous carbon and platinum as the negative electrode active material.

1 全固体二次電池
10 正極層
11 正極集電体
12 正極活物質層
20 負極層
21 負極集電体
22 負極活物質層
23 金属層
30 固体電解質層
1 All-solid secondary battery 10 Positive electrode layer 11 Positive electrode current collector 12 Positive electrode active material layer 20 Negative electrode layer 21 Negative electrode current collector 22 Negative electrode active material layer 23 Metal layer 30 Solid electrolyte layer

Claims (17)

正極活物質層と、固体電解質層と、リチウムと合金又は化合物を形成する負極活物質層とをこの順に有する全固体二次電池であって、
前記負極活物質層が、
(a)窒素吸着比表面積が0m/g超、100m/g以下、又は
(b)DBP吸油量が150ml/100g以上、
の少なくとも一方を満たす無定形炭素を、負極活物質総質量に対して33質量%以上含有し、
前記正極活物質層の初期充電容量と前記負極活物質層の初期充電容量との比が、以下の式(1)を満たすことを特徴とする全固体二次電池。
0.01<b/a<0.5 (1)
(ここで、aは前記正極活物質層の初期充電容量(mAh)であり、bは前記負極活物質層の初期充電容量(mAh)である)
An all-solid-state secondary battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer forming an alloy or compound with lithium in this order.
The negative electrode active material layer
(A) Nitrogen adsorption specific surface area is more than 0 m 2 / g, 100 m 2 / g or less, or (b) DBP oil absorption is 150 ml / 100 g or more.
Amorphous carbon satisfying at least one of the above is contained in an amount of 33% by mass or more based on the total mass of the negative electrode active material.
An all-solid-state secondary battery characterized in that the ratio of the initial charge capacity of the positive electrode active material layer to the initial charge capacity of the negative electrode active material layer satisfies the following formula (1).
0.01 <b / a <0.5 (1)
(Here, a is the initial charge capacity (mAh) of the positive electrode active material layer, and b is the initial charge capacity (mAh) of the negative electrode active material layer).
前記無定形炭素の窒素吸着比表面積が20m/g以上、100m/g以下である請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the amorphous carbon has a nitrogen adsorption specific surface area of 20 m 2 / g or more and 100 m 2 / g or less. 前記無定形炭素の窒素吸着比表面積が30m/g以上、100m/g以下である請求項2に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 2, wherein the amorphous carbon has a nitrogen adsorption specific surface area of 30 m 2 / g or more and 100 m 2 / g or less. 前記無定形炭素のDBP吸油量が150ml/100g以上、400ml/100g以下である請求項1〜3のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the DBP oil absorption of the amorphous carbon is 150 ml / 100 g or more and 400 ml / 100 g or less. 前記無定形炭素のDBP吸油量が200ml/100g以下である請求項1〜3のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the amount of DBP oil absorbed by the amorphous carbon is 200 ml / 100 g or less. 前記負極活物質層が、金、白金、パラジウム、ケイ素、銀、アルミニウム、ビスマス、錫、インジウム及び亜鉛よりなる群から選択される少なくとも1種を更に含む請求項1〜5のいずれか1項に記載の全固体二次電池。 The one according to any one of claims 1 to 5, wherein the negative electrode active material layer further contains at least one selected from the group consisting of gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, indium and zinc. The all-solid-state secondary battery described. 前記負極活物質層が、前記無定形炭素を、負極活物質総質量に対して合計で33質量%以上95質量%以下含有する請求項1〜6のいずれか1項に記載の全固体二次電池。 The all-solid secondary according to any one of claims 1 to 6, wherein the negative electrode active material layer contains the amorphous carbon in a total amount of 33% by mass or more and 95% by mass or less with respect to the total mass of the negative electrode active material. battery. 前記無定形炭素が、カーボンブラックである請求項1〜7のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 7, wherein the amorphous carbon is carbon black. 前記カーボンブラックが、ファーネスブラック、アセチレンブラック及びケッチェンブラックよりなる群から選択される少なくとも1種である請求項8に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 8, wherein the carbon black is at least one selected from the group consisting of furnace black, acetylene black and Ketjen black. 前記負極活物質層の前記固体電解質層とは反対側の面に積層された負極集電体をさらに備え、該負極集電体がステンレス鋼からなる箔状のものであることを特徴とする請求項1乃至9に記載の全固体二次電池。 A claim characterized by further comprising a negative electrode current collector laminated on a surface of the negative electrode active material layer opposite to the solid electrolyte layer, and the negative electrode current collector being a foil-like material made of stainless steel. Item 2. The all-solid-state secondary battery according to Items 1 to 9. 前記正極活物質層と前記固体電解質層と前記負極活物質層とが、ラミネートフィルムによって封じられていることを特徴とする請求項1乃至10のいずれか一項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 10, wherein the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are sealed by a laminated film. 請求項1乃至11のいずれか一項に記載の全固体二次電池を製造する方法であって、
正極活物質層と固体電解質層と負極活部層をこの順で積層した状態で、静水圧を用いて加圧することを特徴とする全固体二次電池の製造方法。
The method for manufacturing an all-solid-state secondary battery according to any one of claims 1 to 11.
A method for manufacturing an all-solid-state secondary battery, characterized in that a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active part layer are laminated in this order and then pressurized using hydrostatic pressure.
前記加圧が、300Mpa以上の圧力で行われることを特徴とする請求項12記載の全固体二次電池の製造方法。 The method for manufacturing an all-solid-state secondary battery according to claim 12, wherein the pressurization is performed at a pressure of 300 Mpa or more. 請求項11記載の全固体二次電池を2枚の硬い板の間に挟んだ状態で加圧しながら充放電することを特徴とする全固体二次電池の使用方法。 The method for using an all-solid-state secondary battery according to claim 11, wherein the all-solid-state secondary battery is charged and discharged while being pressurized while being sandwiched between two hard plates. 前記加圧が、0.5Mpa以上10Mpa以下の圧力で行われることを特徴とする請求項14記載の全固体二次電池の使用方法。 The method for using an all-solid-state secondary battery according to claim 14, wherein the pressurization is performed at a pressure of 0.5 Mpa or more and 10 Mpa or less. 請求項1〜11のいずれか1項に記載の全固体二次電池を前記負極活物質層の初期充電容量を超えて充電することを特徴とする全固体二次電池の充電方法。 A method for charging an all-solid-state secondary battery according to any one of claims 1 to 11, wherein the all-solid-state secondary battery is charged in excess of the initial charge capacity of the negative electrode active material layer. 充電量が前記負極活物質層の初期充電容量の2倍以上、100倍以下の間の値である請求項16に記載の全固体二次電池の充電方法。 The method for charging an all-solid-state secondary battery according to claim 16, wherein the charge amount is a value between twice or more and 100 times or less the initial charge capacity of the negative electrode active material layer.
JP2020013978A 2019-03-29 2020-01-30 All-solid type secondary battery, and manufacturing method, using method and charging method thereof Pending JP2020167146A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200026308A KR20200115126A (en) 2019-03-29 2020-03-03 All Solid lithium secondary battery, and charging method thereof
US16/829,349 US11594717B2 (en) 2019-03-29 2020-03-25 All-solid lithium secondary battery, manufacturing method thereof, method of use thereof, and charging method thereof
CN202010228583.9A CN111755741A (en) 2019-03-29 2020-03-27 All-solid-state lithium secondary battery, method for producing same, method for using same, and method for charging same
US18/157,105 US20230155109A1 (en) 2019-03-29 2023-01-20 All-solid lithium secondary battery, manufacturing method thereof, method of use thereof, and charging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066886 2019-03-29
JP2019066886 2019-03-29

Publications (1)

Publication Number Publication Date
JP2020167146A true JP2020167146A (en) 2020-10-08

Family

ID=72717412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013978A Pending JP2020167146A (en) 2019-03-29 2020-01-30 All-solid type secondary battery, and manufacturing method, using method and charging method thereof

Country Status (2)

Country Link
JP (1) JP2020167146A (en)
KR (1) KR20200115999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022067647A (en) * 2020-10-20 2022-05-06 三星エスディアイ株式会社 Bipolar stack unit cell structure and all-solid secondary battery including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086554A (en) 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022067647A (en) * 2020-10-20 2022-05-06 三星エスディアイ株式会社 Bipolar stack unit cell structure and all-solid secondary battery including the same

Also Published As

Publication number Publication date
KR20200115999A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP2019096610A (en) All-solid type secondary battery and charging method thereof
JP2019145299A (en) All-solid type secondary battery
WO2018193994A1 (en) All-solid lithium ion secondary battery
US11682791B2 (en) Solid electrolyte, electrochemical battery including the solid electrolyte, and method of preparing the solid electrolyte
JP2018120705A (en) Positive electrode active material for all-solid type secondary battery, positive electrode active material layer for all-solid type secondary battery, and all-solid type secondary battery
US11594717B2 (en) All-solid lithium secondary battery, manufacturing method thereof, method of use thereof, and charging method thereof
JP6738121B2 (en) Lithium ion secondary battery
JP7321769B2 (en) All-solid lithium secondary battery
US20230275261A1 (en) All-solid-state secondary battery and manufacturing method therefor
JP2021039876A (en) All-solid battery
JP2019117768A (en) All-solid secondary battery
JP2016173962A (en) Positive electrode active material powder for sodium ion secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2021136239A (en) All-solid secondary battery
US20200194829A1 (en) Solid electrolyte layer and all-solid-state battery
JP2020167146A (en) All-solid type secondary battery, and manufacturing method, using method and charging method thereof
JP2020113415A (en) All-solid type secondary battery and charging method thereof
JP2022041968A (en) Sulfurized solid electrolyte for all-solid-state secondary battery, manufacturing method of sulfurized solid electrolyte, and all-solid-state secondary battery including sulfurized solid electrolyte
JP2023517545A (en) Solid electrolyte, electrochemical battery containing the same, and method for producing solid electrolyte
JP2021131992A (en) Positive electrode active material for all-solid-state lithium-ion secondary battery, all-solid-state lithium-ion secondary battery, and manufacturing method of positive electrode active material for all-solid-state lithium-ion secondary battery
US20220263065A1 (en) Material for negative electrode active material layer, all-solid-state rechargeable battery including the same, and charging method of the battery
US20230170524A1 (en) Solid ion conductor compound, electrochemical cell comprising the same, and preparation method thereof
WO2024096110A1 (en) Negative electrode material, negative electrode, and battery
WO2023032473A1 (en) Positive electrode material and battery
US20230106063A1 (en) Solid-state battery and method for producing solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305