JP6738121B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6738121B2
JP6738121B2 JP2014147024A JP2014147024A JP6738121B2 JP 6738121 B2 JP6738121 B2 JP 6738121B2 JP 2014147024 A JP2014147024 A JP 2014147024A JP 2014147024 A JP2014147024 A JP 2014147024A JP 6738121 B2 JP6738121 B2 JP 6738121B2
Authority
JP
Japan
Prior art keywords
particles
positive electrode
active material
electrode active
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147024A
Other languages
Japanese (ja)
Other versions
JP2016024907A (en
Inventor
好伸 山田
好伸 山田
相原 雄一
雄一 相原
松田 泰明
泰明 松田
雅樹 松井
雅樹 松井
誠之 今西
誠之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2014147024A priority Critical patent/JP6738121B2/en
Priority to KR1020150053140A priority patent/KR102568786B1/en
Priority to US14/800,907 priority patent/US9608288B2/en
Publication of JP2016024907A publication Critical patent/JP2016024907A/en
Priority to US15/449,092 priority patent/US9843038B2/en
Application granted granted Critical
Publication of JP6738121B2 publication Critical patent/JP6738121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Description

本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池は、大きな充放電容量、高い作動電位、優れた充放電サイクル(cycle)特性を有するため、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーター(motor)を動力源とする自動二輪車、電気自動車、ハイブリッド(hybrid)電気自動車等の用途への需要が増大している。リチウムイオン二次電池では、電解質として、有機溶媒にリチウム塩を溶解させた非水電解液が用いられているが、このような非水電解液は、その発火のし易さや電解液の漏れ等の問題から、安全性が懸念されている。そのため、近年、リチウムイオン二次電池の安全性の向上を目的として、不燃材料である無機材料からなる固体電解質を用いた全固体型リチウムイオン二次電池(以下、「全固体二次電池」とも称する。)の研究が盛んに行われている。 Lithium-ion secondary batteries have large charge/discharge capacity, high operating potential, and excellent charge/discharge cycle characteristics, so they can be used to power portable information terminals, portable electronic devices, household small power storage devices, and motors. There is an increasing demand for applications such as motorcycles, electric vehicles, hybrid electric vehicles, and the like. In a lithium ion secondary battery, a non-aqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as an electrolyte, but such a non-aqueous electrolytic solution is easy to ignite and leaks of the electrolytic solution. From the problem of, there is concern about safety. Therefore, in recent years, for the purpose of improving the safety of the lithium-ion secondary battery, an all-solid-state lithium-ion secondary battery (hereinafter, also referred to as “all-solid-state secondary battery”) using a solid electrolyte made of an inorganic material that is an incombustible material. Research is being actively conducted.

全固体二次電池の固体電解質としては硫化物や酸化物等を使用できるが、リチウムイオン伝導性の観点から硫化物系の固体電解質が最も期待できる材料である。ところが、硫化物系の固体電解質を使用した場合には、充電の際に正極活物質粒子と固体電解質粒子との界面で反応が起こり、この界面に抵抗成分が生成することにより、正極活物質粒子と固体電解質粒子との界面をリチウムイオンが移動する際の抵抗(以下、「界面抵抗」とも称する。)が増大しやすくなる。この界面抵抗の増大により、リチウムイオン伝導性が低下するため、リチウムイオン二次電池の出力が低下する、という問題があった。 Although sulfides, oxides, and the like can be used as the solid electrolyte of the all-solid secondary battery, the sulfide-based solid electrolyte is the most promising material from the viewpoint of lithium ion conductivity. However, when a sulfide-based solid electrolyte is used, a reaction occurs at the interface between the positive electrode active material particles and the solid electrolyte particles during charging, and a resistance component is generated at this interface, which results in positive electrode active material particles. The resistance (hereinafter, also referred to as “interface resistance”) when lithium ions move at the interface between the solid electrolyte particles and the solid electrolyte particles is likely to increase. Due to this increase in interfacial resistance, the lithium ion conductivity is reduced, and there is a problem that the output of the lithium ion secondary battery is reduced.

このような問題に対して、LiCoO(以下、「LCO」とも称する。)等の正極活物質粒子の表面を他の物質で被覆処理して界面抵抗を減少させることが検討されている。 For such a problem, it has been studied to coat the surface of positive electrode active material particles such as LiCoO 2 (hereinafter, also referred to as “LCO”) with another substance to reduce the interface resistance.

例えば、非特許文献1では、LCOにSiOやLiSiOを被覆する技術が、非特許文献2では、LCOにLiTiを被覆する技術が開示されている。また、特許文献1及び特許文献2では、LCO等の正極活物質粒子にZrOを被覆する技術が開示されている。さらに、特許文献3には、正極活物質粒子の表面を酸化アルミニウム(aluminium)、酸化ジルコニウム(zirconium)、酸化チタン(titanium)、酸化ホウ素(boron)、酸化ケイ素(silicon)等の酸化物で被覆する技術が開示されている。 For example, Non-Patent Document 1 discloses a technique of coating LCO with SiO 2 or Li 2 SiO 3 , and Non-Patent Document 2 discloses a technique of coating LCO with Li 2 Ti 2 O 5 . Further, Patent Documents 1 and 2 disclose a technique of coating particles of a positive electrode active material such as LCO with ZrO 2 . Further, in Patent Document 3, the surface of the positive electrode active material particles is coated with an oxide such as aluminum oxide (aluminium), zirconium oxide (zirconium), titanium oxide (titanium), boron oxide (boron), or silicon oxide (silicon). Techniques for doing so are disclosed.

また、特許文献4及び特許文献5では、正極活物質の粒子表面を被覆するのではなく、正極層と硫化物系固体電解質層との間に、これら両層の界面近傍におけるリチウムイオンの偏りを緩衝する緩衝層や両層間の相互拡散を抑制する中間層を設ける技術が開示されている。 Further, in Patent Documents 4 and 5, instead of coating the particle surface of the positive electrode active material, the deviation of lithium ions in the vicinity of the interface between the positive electrode layer and the sulfide-based solid electrolyte layer is prevented. A technique of providing a buffer layer for buffering and an intermediate layer for suppressing mutual diffusion between both layers is disclosed.

特表2009−541938号公報Japanese Patent Publication No. 2009-541938 特表2011−519139号公報Special table 2011-515139 gazette 特開2008−103204号公報JP, 2008-103204, A 特開2010−40439号公報JP, 2010-40439, A 特開2011−44368号公報JP, 2011-44368, A

J.Power sources,189,pp.527−530,2009J. Power sources, 189, pp. 527-530, 2009 J.Power sources,195,pp.599−603,2010J. Power sources, 195, pp. 599-603, 2010

しかしながら、上記非特許文献1〜2や特許文献1〜5に開示された技術のように、正極活物質粒子の表面をSiO等の酸化物で被覆処理したり、正極層と固体電解質層との間に緩衝層や中間層を設けたりするだけでは、正極活物質粒子と固体電解質粒子との界面での反応を抑制するには不十分であり、より一層の抵抗成分の低減が望まれている。 However, as in the technologies disclosed in Non-Patent Documents 1 and 2 and Patent Documents 1 to 5, the surface of the positive electrode active material particles is coated with an oxide such as SiO 2, or the positive electrode layer and the solid electrolyte layer are formed. It is not enough to suppress the reaction at the interface between the positive electrode active material particles and the solid electrolyte particles simply by providing a buffer layer or an intermediate layer between them, and further reduction of the resistance component is desired. There is.

そこで、本発明は、上記現状に鑑みてなされたものであり、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能なリチウムイオン二次電池を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and provides a lithium ion secondary battery capable of further suppressing the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles. The purpose is to do.

上記課題を解決するために、本発明のある観点によれば、正極活物質粒子及び正極活物質粒子を覆う被覆層を備える被覆粒子と、被覆粒子に接触する硫化物系固体電解質粒子と、を備え、被覆層は、リチウム及び酸素以外の元素のうち、正極活物質粒子中の遷移金属元素よりも硫化物系固体電解質粒子との反応性が高い高反応性元素を含み、被覆層の層厚と正極活物質粒子の直径との比(被覆層の層厚を正極活物質粒子の直径で除算した値)は0.0010〜0.25であることを特徴とする、リチウムイオン二次電池が提供される。好ましくは、0.0016〜0.1である。更に好ましくは、0.0016〜0.01である。 In order to solve the above problems, according to an aspect of the present invention, a coating particle including a coating layer that covers the positive electrode active material particles and the positive electrode active material particles, and a sulfide-based solid electrolyte particle that contacts the coating particles, The coating layer includes, of the elements other than lithium and oxygen, a highly reactive element having a higher reactivity with the sulfide-based solid electrolyte particles than the transition metal element in the positive electrode active material particles, and the layer thickness of the coating layer. And a diameter of the positive electrode active material particles (a value obtained by dividing the layer thickness of the coating layer by the diameter of the positive electrode active material particles) is 0.0010 to 0.25. Provided. It is preferably 0.0016 to 0.1. More preferably, it is 0.0016 to 0.01.

この観点によれば、被覆層中の高反応性元素が硫化物系固体電解質粒子中の硫黄元素と優先的に反応するので、正極活物質粒子中の遷移金属元素と硫黄元素との反応(副反応)を抑制することができる。すなわち、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, since the highly reactive element in the coating layer reacts preferentially with the sulfur element in the sulfide-based solid electrolyte particles, the reaction between the transition metal element and the sulfur element in the positive electrode active material particles (sub-element) Reaction) can be suppressed. That is, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

ここで、高反応性元素は、正極活物質粒子中の遷移金属元素よりも硫化物標準生成エンタルピーが低くてもよい。 Here, the highly reactive element may have a lower standard enthalpy of sulfide formation than the transition metal element in the positive electrode active material particles.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、高反応性元素の硫化物標準生成エンタルピー(enthalpy)は、−80kJ/molより小さくてもよい。 The standard enthalpy of sulfide formation of highly reactive elements may be less than -80 kJ/mol.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、被覆粒子と硫化物系固体電解質粒子とを1:1の質量比で混合し加熱する第1のDSC試験を行う一方で、被覆層で覆われていない正極活物質粒子と硫化物系固体電解質粒子とを1:1の質量比で混合し加熱する第2のDSC試験を行った場合に、第1のDSC試験における発熱反応の開始温度は、第2のDSC試験における発熱反応の開始温度よりも高くてもよい。 In addition, while performing the first DSC test in which the coated particles and the sulfide-based solid electrolyte particles are mixed and heated at a mass ratio of 1:1, the positive electrode active material particles and the sulfide-based solid particles not covered with the coating layer are performed. When the second DSC test in which the electrolyte particles are mixed at a mass ratio of 1:1 and heated is performed, the starting temperature of the exothermic reaction in the first DSC test is the starting temperature of the exothermic reaction in the second DSC test. May be higher than.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、第1のDSC試験における発熱反応の開始温度は、250℃より高くてもよい。 The starting temperature of the exothermic reaction in the first DSC test may be higher than 250°C.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、第1のDSC試験における発熱量が最大となる温度は、330℃より高くてもよい。 The temperature at which the amount of heat generated in the first DSC test is maximum may be higher than 330°C.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、高反応性元素の一部は、正極活物質粒子に固溶していてもよい。 Further, some of the highly reactive elements may be solid-dissolved in the positive electrode active material particles.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、高反応性元素は、アルミニウム、コバルト(cobalt)、マンガン(manganese)、及びマグネシウム(magnesium)からなる群から選択される少なくとも1種であってもよい。 Further, the highly reactive element may be at least one selected from the group consisting of aluminum, cobalt, manganese, and magnesium.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

また、硫化物系固体電解質粒子はリン(phosphorus)を含んでいてもよい。 In addition, the sulfide-based solid electrolyte particles may contain phosphorus.

この観点によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 From this viewpoint, it becomes possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

以上説明したように本発明によれば、正極活物質粒子と硫化物系固体電解質粒子との界面での反応をより一層抑制することが可能となる。 As described above, according to the present invention, it is possible to further suppress the reaction at the interface between the positive electrode active material particles and the sulfide-based solid electrolyte particles.

本発明の好適な実施形態に係るリチウムイオン二次電池の構成を模式的に示す説明図である。It is an explanatory view showing typically composition of a lithium ion secondary battery concerning a preferred embodiment of the present invention. 正極活物質粒子と硫化物系固体電解質粒子との混合物を示差走査熱量測定(DSC)することで得られたグラフ(graph)である。3 is a graph obtained by performing differential scanning calorimetry (DSC) on a mixture of positive electrode active material particles and sulfide-based solid electrolyte particles. 実施例及び比較例のインピーダンス(impedance)の評価結果を示すグラフである。It is a graph which shows the evaluation result of the impedance (impedance) of an Example and a comparative example. 従来の全固体型リチウムイオン二次電池における界面抵抗の増大の様子を示す説明図である。It is explanatory drawing which shows a mode that the interface resistance in the conventional all-solid-state lithium ion secondary battery increases.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals, and a duplicate description will be omitted.

<1.固体電解質を用いた場合の問題点>
まず、図4を参照しながら、本発明の好適な実施形態に係るリチウムイオン二次電池について説明する前に、固体電解質を用いた場合の問題点について説明する。図4は、従来のリチウムイオン二次電池100の概略構成を示す説明図である。
<1. Problems when using a solid electrolyte>
First, with reference to FIG. 4, before describing the lithium-ion secondary battery according to the preferred embodiment of the present invention, problems in the case of using a solid electrolyte will be described. FIG. 4 is an explanatory diagram showing a schematic configuration of a conventional lithium ion secondary battery 100.

リチウムイオン二次電池100は、正極層110、負極層120、及び固体電解質層130が積層された構造を有する。正極層110は、正極活物質粒子111と硫化物系固体電解質粒子131(以下、「固体電解質粒子131」とも称する)とを混合した混合粒子で構成される。同様に、負極層120は、負極活物質粒子121と固体電解質粒子131とを混合した混合粒子で構成される。固体電解質層130は、正極層110と負極層120との間に設けられる。固体電解質層130は、固体電解質粒子131で構成される。 The lithium-ion secondary battery 100 has a structure in which a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte layer 130 are laminated. The positive electrode layer 110 is composed of mixed particles in which positive electrode active material particles 111 and sulfide-based solid electrolyte particles 131 (hereinafter, also referred to as “solid electrolyte particles 131”) are mixed. Similarly, the negative electrode layer 120 is composed of mixed particles obtained by mixing the negative electrode active material particles 121 and the solid electrolyte particles 131. The solid electrolyte layer 130 is provided between the positive electrode layer 110 and the negative electrode layer 120. The solid electrolyte layer 130 is composed of solid electrolyte particles 131.

硫化物系固体電解質を用いたリチウムイオン二次電池100では、正極活物質及び電解質が固体であるため、電解質として有機電解液を用いた場合よりも電解質が正極活物質の内部へ浸透しにくく、正極活物質と電解質との界面の面積が減少しやすいことから、リチウムイオン及び電子の移動経路を十分に確保することが困難である。そのため、図4に示すように、正極活物質粒子111と硫化物系固体電解質粒子131とを混合した混合粒子で正極層110を構成し、負極活物質粒子121と硫化物系固体電解質粒子131とを混合した混合粒子で負極層120を構成するようにしている。これにより、活物質と固体電解質との界面の面積を増大させている。 In the lithium-ion secondary battery 100 using the sulfide-based solid electrolyte, since the positive electrode active material and the electrolyte are solid, the electrolyte is less likely to penetrate into the positive electrode active material than in the case of using the organic electrolytic solution as the electrolyte, Since the area of the interface between the positive electrode active material and the electrolyte tends to decrease, it is difficult to secure a sufficient migration path for lithium ions and electrons. Therefore, as shown in FIG. 4, the positive electrode layer 110 is constituted by mixed particles obtained by mixing the positive electrode active material particles 111 and the sulfide-based solid electrolyte particles 131, and the negative electrode active material particles 121 and the sulfide-based solid electrolyte particles 131 are formed. The negative electrode layer 120 is constituted by mixed particles obtained by mixing the above. This increases the area of the interface between the active material and the solid electrolyte.

しかしながら、上述したように、充電の際に正極活物質粒子111と固体電解質粒子131との界面で反応が起こり、高抵抗層150が形成される。具体的には、高抵抗層150は、正極活物質粒子111の表面に存在する遷移金属元素と固体電解質粒子131の表面に存在する硫黄元素とが反応することで生成される。ここで、「高抵抗層150」とは、正極活物質粒子111と固体電解質粒子131との界面に形成される抵抗成分からなる層であって、正極活物質粒子111の内部や硫化物系固体電解質粒子131よりも、リチウムイオンが移動する際の抵抗が大きくなる層を意味する。このため、正極活物質粒子111と固体電解質粒子131との界面抵抗が増大しやすくなる。そして、正極活物質粒子111と固体電解質粒子131との界面の面積を増大させると、リチウムイオン及び電子の移動経路を確保することができる反面、高抵抗層150が形成されやすくなる。このため、正極活物質粒子111から固体電解質粒子131へのリチウムイオンの移動が高抵抗層150により阻害される。この結果、リチウムイオン伝導性が低下するため、リチウムイオン二次電池100の出力が低下する。 However, as described above, a reaction occurs at the interface between the positive electrode active material particles 111 and the solid electrolyte particles 131 during charging, and the high resistance layer 150 is formed. Specifically, the high resistance layer 150 is generated by the reaction between the transition metal element existing on the surface of the positive electrode active material particles 111 and the sulfur element existing on the surface of the solid electrolyte particles 131. Here, the “high resistance layer 150 ”is a layer composed of a resistance component formed at the interface between the positive electrode active material particles 111 and the solid electrolyte particles 131, and the inside of the positive electrode active material particles 111 and the sulfide-based solid. It means a layer having a higher resistance when lithium ions move than the electrolyte particles 131. Therefore, the interface resistance between the positive electrode active material particles 111 and the solid electrolyte particles 131 is likely to increase. When the area of the interface between the positive electrode active material particles 111 and the solid electrolyte particles 131 is increased, the movement paths of lithium ions and electrons can be secured, but the high resistance layer 150 is easily formed. Therefore, the high resistance layer 150 inhibits the movement of lithium ions from the positive electrode active material particles 111 to the solid electrolyte particles 131. As a result, the lithium ion conductivity is reduced, so that the output of the lithium ion secondary battery 100 is reduced.

<2.本発明者による検討>
高抵抗層150は、正極活物質粒子111中のリチウムイオンと固体電解質粒子131中のリチウムイオンとの化学ポテンシャル(potential)の差によって生成されると考えられていた。しかし、これまで、高抵抗層150の生成を十分に抑制できる技術が確立されていなかった。
<2. Examination by the Inventor>
It was thought that the high resistance layer 150 was generated due to a difference in chemical potential between lithium ions in the positive electrode active material particles 111 and lithium ions in the solid electrolyte particles 131. However, until now, a technique capable of sufficiently suppressing the formation of the high resistance layer 150 has not been established.

そこで、本発明者は、高抵抗層150の生成に影響を与える要因がリチウムイオンの化学ポテンシャル差以外にも存在するのではないかと考え、各種金属硫化物の熱力学的なデータを調査した。その結果、本発明者は、正極活物質粒子111に含まれる金属元素と固体電解質粒子131に含まれる硫黄元素との反応性が高抵抗層150の生成に大きな影響を与えることを見出した。 Therefore, the present inventor considered that there may be factors other than the difference in the chemical potential of lithium ions that affect the formation of the high resistance layer 150, and investigated thermodynamic data of various metal sulfides. As a result, the present inventor has found that the reactivity between the metal element contained in the positive electrode active material particles 111 and the sulfur element contained in the solid electrolyte particles 131 has a great influence on the formation of the high resistance layer 150.

そして、本発明者は、固体電解質粒子131に含まれる硫黄元素との反応性(以下、単に「固体電解質粒子131との反応性」とも称する)が正極活物質粒子111中の遷移金属元素よりも高い金属元素(以下、このような金属元素を「高反応性元素」とも称する)で正極活物質粒子11を被覆することで、高抵抗層150の生成が大きく抑制されることを見出した。 Then, the present inventor has found that the reactivity with the sulfur element contained in the solid electrolyte particles 131 (hereinafter, also simply referred to as “reactivity with the solid electrolyte particles 131”) is higher than that of the transition metal element in the positive electrode active material particles 111. It has been found that by coating the positive electrode active material particles 11 with a high metal element (hereinafter, such a metal element is also referred to as “highly reactive element”), the generation of the high resistance layer 150 is significantly suppressed.

この現象について、本発明者は、高反応性元素が正極活物質粒子111中の遷移金属元素よりも固体電解質粒子131中の硫黄元素と優先的に反応することで、遷移金属元素と硫黄元素との反応が抑制されると考えている。 With respect to this phenomenon, the present inventor preferentially reacts the highly reactive element with the sulfur element in the solid electrolyte particles 131 rather than the transition metal element in the positive electrode active material particles 111, so that the transition metal element and the sulfur element I think that the reaction of is suppressed.

さらに、本発明者は、固体電解質粒子131との反応性が高い金属元素(すなわち高反応性元素)と低い金属元素とを分類する指標について検討したところ、金属元素の硫化物標準生成エンタルピーが指標になることを見出した。すなわち、本発明者は、金属元素の硫化物標準生成エンタルピーが低い(負方向に大きい)ほど、その金属元素と硫化物系固体電解質粒子13との反応性が高いことを見出した。 Further, the present inventor has examined an index for classifying a metal element having high reactivity with the solid electrolyte particles 131 (that is, a highly reactive element) and a metal element having low reactivity, and the sulfide standard formation enthalpy of the metal element is an index. I found that. That is, the present inventor has found that the lower the sulfide standard enthalpy of formation of a metal element (the larger the negative enthalpy), the higher the reactivity of the metal element with the sulfide-based solid electrolyte particles 13.

本発明者は、上記の知見に基づいて、本実施形態に係るリチウムイオン二次電池に想到するに至った。図1に示すように、本実施形態に係るリチウムイオン二次電池1では、高反応性元素を含む被覆層12で正極活物質粒子11を覆うことで、高抵抗層の生成を抑制することができる。以下、本実施形態に係るリチウムイオン二次電池1について詳細に説明する。 The present inventor has arrived at the lithium-ion secondary battery according to the present embodiment based on the above findings. As shown in FIG. 1, in the lithium-ion secondary battery 1 according to the present embodiment, by covering the positive electrode active material particles 11 with the coating layer 12 containing a highly reactive element, generation of a high resistance layer can be suppressed. it can. Hereinafter, the lithium-ion secondary battery 1 according to this embodiment will be described in detail.

<3.リチウムイオン二次電池の構成>
続いて、図1を参照しながら、本発明の好適な実施形態に係るリチウムイオン二次電池の構成について詳細に説明する。図1は、本実施形態に係るリチウムイオン二次電池1の構成を模式的に示す説明図である。
<3. Lithium-ion secondary battery configuration>
Subsequently, the configuration of the lithium-ion secondary battery according to the preferred embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is an explanatory diagram schematically showing the configuration of the lithium-ion secondary battery 1 according to this embodiment.

図1に示すように、本実施形態に係るリチウムイオン二次電池1は、全固体型のリチウムイオン二次電池であり、正極層10と、負極層20と、正極層10及び負極層20の間に設けられる固体電解質層30とが積層された構造を有する。 As shown in FIG. 1, the lithium-ion secondary battery 1 according to the present embodiment is an all-solid-state lithium-ion secondary battery, and includes a positive electrode layer 10, a negative electrode layer 20, a positive electrode layer 10 and a negative electrode layer 20. It has a structure in which a solid electrolyte layer 30 provided therebetween is laminated.

(2.1.正極層10)
正極層10は、被覆粒子10aと硫化物系固体電解質粒子31(以下、「固体電解質粒子31」とも称する)とを混合した混合粒子を含む。被覆粒子10aは、正極活物質粒子11と、正極活物質粒子11の表面を覆う被覆層12とを有する。したがって、被覆層12が固体電解質粒子31に接触する。上述したように、固体電解質粒子131を使用したリチウムイオン二次電池100は、正極活物質粒子111と固体電解質粒子131との界面での反応により界面抵抗が上昇し、電池の出力が低下するという問題がある。しかし、本実施形態に係る全固体型のリチウムイオン二次電池1によれば、正極活物質粒子11の表面が高反応性元素を含む被覆層12で被覆されていることにより、当該被覆層12が固体電解質粒子31中の硫黄元素と正極活物質粒子11中の遷移金属元素との反応(副反応)を防ぐことができる。このため、正極活物質粒子11と固体電解質粒子31との界面で抵抗成分(高抵抗層)が生成しにくくなる。
(2.1. Positive electrode layer 10)
The positive electrode layer 10 contains mixed particles obtained by mixing the coated particles 10a and the sulfide-based solid electrolyte particles 31 (hereinafter, also referred to as “solid electrolyte particles 31”). The coated particle 10 a includes a positive electrode active material particle 11 and a coating layer 12 that covers the surface of the positive electrode active material particle 11. Therefore, the coating layer 12 contacts the solid electrolyte particles 31. As described above, in the lithium ion secondary battery 100 using the solid electrolyte particles 131, the interface resistance increases due to the reaction at the interface between the positive electrode active material particles 111 and the solid electrolyte particles 131, and the battery output decreases. There's a problem. However, according to the all-solid-state lithium ion secondary battery 1 according to the present embodiment, since the surface of the positive electrode active material particles 11 is covered with the coating layer 12 containing the highly reactive element, the coating layer 12 concerned. Can prevent the reaction (side reaction) between the sulfur element in the solid electrolyte particles 31 and the transition metal element in the positive electrode active material particles 11. Therefore, the resistance component (high resistance layer) is less likely to be generated at the interface between the positive electrode active material particles 11 and the solid electrolyte particles 31.

なお、正極活物質粒子11は、その表面の少なくとも一部が被覆層12で被覆されていればよい。すなわち、正極活物質粒子11の表面全体が被覆層12で被覆されていてもよく、正極活物質粒子11の表面が部分的に被覆層12で被覆されていてもよい。 At least a part of the surface of the positive electrode active material particles 11 may be covered with the coating layer 12. That is, the entire surface of the positive electrode active material particles 11 may be covered with the coating layer 12, or the surface of the positive electrode active material particles 11 may be partially covered with the coating layer 12.

また、正極活物質粒子11の粒子表面に高反応性元素を含む被覆層12が形成されていることは、例えば、正極活物質粒子11と被覆層12との構造上の差異に起因するコントラストの違いを利用した、顕微鏡画像(電界放出形走査電子顕微鏡(FE−SEM)や透過型電子顕微鏡(TEM)の画像)解析等の方法により確認することができる。以下、正極層10に含まれる正極活物質粒子11及び被覆層12について詳述する。 In addition, the fact that the coating layer 12 containing a highly reactive element is formed on the particle surface of the positive electrode active material particles 11 may cause a difference in contrast due to a structural difference between the positive electrode active material particles 11 and the coating layer 12, for example. The difference can be confirmed by a method such as a microscope image analysis (field emission scanning electron microscope (FE-SEM) or transmission electron microscope (TEM) image) analysis. Hereinafter, the positive electrode active material particles 11 and the coating layer 12 included in the positive electrode layer 10 will be described in detail.

(正極活物質粒子11)
正極活物質粒子11を構成する正極活物質としては、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、コバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、「NCA」と称する場合もある。)、ニッケルコバルトマンガン酸リチウム(以下、「NCM」と称する場合もある。)、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。
(Cathode active material particles 11)
The positive electrode active material forming the positive electrode active material particles 11 is not particularly limited as long as it is a substance capable of reversibly occluding and releasing lithium ions, and examples thereof include lithium cobalt oxide (LCO) and lithium nickel oxide. Lithium nickel cobalt oxide, lithium nickel cobalt aluminum oxide (hereinafter sometimes referred to as “NCA”), lithium nickel cobalt manganate (hereinafter sometimes referred to as “NCM”), lithium manganate, iron phosphate Examples thereof include lithium, nickel sulfide, copper sulfide, sulfur, iron oxide and vanadium oxide. These positive electrode active materials may be used alone or in combination of two or more kinds.

正極活物質粒子11は、上記に挙げた正極活物質の例のうち、特に、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。ここでいう「層状」とは、薄いシート状の形状のことを意味し、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことであり、陽イオン及び陰イオンのそれぞれが形成する面心立方格子が、互いに単位格子の稜の1/2だけずれた構造を指す。このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、Li2−x−y−zNiCoAl(NCA)またはLi2−x−y−zNiCoMn(NCM)(0<x<1、0<y<1、0<z<1、かつx+y+zが1以下)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。 Among the examples of the positive electrode active material mentioned above, the positive electrode active material particles 11 are particularly preferably a lithium salt of a transition metal oxide having a layered rock salt structure. The term "layered" as used herein means a thin sheet-like shape, and the "rock salt type structure" means a sodium chloride type structure which is one of the crystal structures, and is composed of cations and anions. The face-centered cubic lattices formed by each point are shifted from each other by ½ of the edge of the unit lattice. Examples of the lithium salt of the transition metal oxide having such a layered rock salt type structure include, for example, Li 2−x−y−z Ni x Co y Al z O 2 (NCA) or Li 2−x−y−z Ni. Lithium salt of ternary transition metal oxide represented by x Co y Mn z O 2 (NCM) (0<x<1, 0<y<1, 0<z<1, and x+y+z is 1 or less) Are listed.

このように、正極活物質粒子11として上記3元系の遷移金属酸化物のリチウム塩を用いることにより、エネルギー密度と熱安定性に優れる全固体型リチウムイオン電池を得ることができる。また、NCAやNCM等の3元系の遷移金属酸化物のリチウム塩の粒子(1次粒子の凝集体として存在)は、例えば、LCO等の粒子よりも粒径よりも小さく、比表面積が大きい(約10倍)。したがって、正極活物質粒子11と固体電解質粒子31との接触面積が大きくなり、リチウムイオン伝導性が向上するため、電池の出力が上昇する。また、正極活物質粒子11の構成元素としてNiを含むことにより、リチウムイオン二次電池1の容量密度を上昇させ、また、充電状態での金属溶出が少ないため充電状態でのリチウムイオン二次電池1の長期信頼性を向上させることができる。 As described above, by using the lithium salt of the ternary transition metal oxide as the positive electrode active material particles 11, an all-solid-state lithium ion battery having excellent energy density and thermal stability can be obtained. Further, particles of a lithium salt of a ternary transition metal oxide such as NCA or NCM (present as aggregates of primary particles) are smaller than the particle size and larger in specific surface area than particles such as LCO. (About 10 times). Therefore, the contact area between the positive electrode active material particles 11 and the solid electrolyte particles 31 is increased and the lithium ion conductivity is improved, so that the output of the battery is increased. Further, by including Ni as a constituent element of the positive electrode active material particles 11, the capacity density of the lithium ion secondary battery 1 is increased, and since the metal elution in the charged state is small, the lithium ion secondary battery in the charged state is small. The long term reliability of 1 can be improved.

(被覆層12)
被覆層12は、上述したように、高反応性元素を含む層である。好ましくは、被覆層12は、高反応性元素のみで構成される。高反応性元素は、リチウム及び酸素以外の元素のうち、正極活物質粒子11中の遷移金属元素よりも固体電解質粒子31中の硫黄元素との反応性(以下、単に「固体電解質粒子31との反応性」とも称する)が高い元素である。より具体的には、高反応性元素は、リチウム及び酸素以外の元素のうち、正極活物質粒子11中の遷移金属元素よりも硫化物標準生成エンタルピーが低い元素である。正極活物質粒子11が複数種類の遷移金属元素を含む場合、高反応性元素は、正極活物質粒子11に含まれる全ての遷移金属元素(正極活物質粒子11に高反応性元素が含まれる場合、高反応性元素を除く)よりも硫化物標準生成エンタルピーが低い。また、高反応性元素から複数種類の硫化物が生成可能な場合、全ての硫化物の標準生成エンタルピーが上記の条件を満たすことが好ましい。また、複数種類の高反応性元素が被覆層12に含まれていてもよい。
(Coating layer 12)
The coating layer 12 is a layer containing a highly reactive element as described above. Preferably, the coating layer 12 is composed only of a highly reactive element. Among the elements other than lithium and oxygen, the highly reactive element is more reactive with the sulfur element in the solid electrolyte particles 31 than the transition metal element in the positive electrode active material particles 11 (hereinafter, simply referred to as “solid electrolyte particles 31 It is an element having a high reactivity). More specifically, the highly reactive element is an element having a lower standard enthalpy of sulfide formation than the transition metal element in the positive electrode active material particles 11 among the elements other than lithium and oxygen. When the positive electrode active material particles 11 include a plurality of types of transition metal elements, the highly reactive elements are all transition metal elements included in the positive electrode active material particles 11 (when the positive active material particles 11 include highly reactive elements). , Except for highly reactive elements), has a lower standard enthalpy of sulfide formation. Further, when a plurality of types of sulfides can be produced from highly reactive elements, it is preferable that the standard enthalpies of formation of all sulfides satisfy the above conditions. Further, the coating layer 12 may include a plurality of types of highly reactive elements.

具体的には、高反応性元素の硫化物標準生成エンタルピーの値は、−80.0kJ/mol以下であることが好ましく、−250kJ/molであることが好ましい。高反応性元素の硫化物標準生成エンタルピーの値がこれらの範囲内の値となる場合に、高抵抗層の生成がより確実に抑制される。なお、上述したように、高反応性元素は、正極活物質粒子11に含まれる全ての遷移金属元素よりも硫化物標準生成エンタルピーが低いことを要する。したがって、高反応性元素の硫化物標準生成エンタルピーは、この条件を満たしつつ、上記の数値範囲内の値であることが好ましい。 Specifically, the value of the sulfide standard enthalpy of formation of the highly reactive element is preferably -80.0 kJ/mol or less, and preferably -250 kJ/mol. When the value of the sulfide standard enthalpy of formation of the highly reactive element is within these ranges, the formation of the high resistance layer is more reliably suppressed. As described above, the highly reactive element needs to have a lower standard enthalpy of sulfide formation than all transition metal elements contained in the positive electrode active material particles 11. Therefore, the sulfide standard enthalpy of formation of the highly reactive element is preferably a value within the above numerical range while satisfying this condition.

このような被覆層12で正極活物質粒子11を覆うことで、正極活物質粒子11と硫化物固体電解質粒子31との反応が抑制される。当該反応が抑制されたことは、例えば以下に説明するDSC試験によって確認することができる。言い換えれば、ある金属元素が高反応性元素であるか否かを以下のDSC試験の結果に基づいて判定できる。 By covering the positive electrode active material particles 11 with such a coating layer 12, the reaction between the positive electrode active material particles 11 and the sulfide solid electrolyte particles 31 is suppressed. The suppression of the reaction can be confirmed by, for example, the DSC test described below. In other words, whether or not a certain metal element is a highly reactive element can be determined based on the results of the following DSC test.

具体的には、被覆粒子10aと固体電解質粒子31とを1:1の質量比で混合し加熱する第1のDSC試験を行う。同様に、被覆層12で被覆されていない正極活物質粒子11と硫化物系固体電解質粒子31とを1:1の質量比で混合し加熱する第2のDSC試験を行う。この結果、第1のDSCにおける発熱反応の開始温度は、第2のDSC試験における発熱反応の開始温度よりも高くなる。 Specifically, the first DSC test in which the coated particles 10a and the solid electrolyte particles 31 are mixed and heated at a mass ratio of 1:1 is performed. Similarly, the second DSC test is performed in which the positive electrode active material particles 11 not covered with the coating layer 12 and the sulfide-based solid electrolyte particles 31 are mixed and heated at a mass ratio of 1:1. As a result, the starting temperature of the exothermic reaction in the first DSC becomes higher than the starting temperature of the exothermic reaction in the second DSC test.

すなわち、上記発熱反応は、正極活物質粒子11中の遷移金属元素と固体電解質粒子31中の硫黄元素との反応、すなわち副反応である。したがって、この発熱反応の開始温度が高いほど、副反応が起こりにくくなっているといえる。第1のDSC試験における発熱反応の開始温度は、250℃より高いことが好ましい。発熱反応の開始温度がこの範囲内の値となる場合に、高抵抗層の生成がより確実に抑制される。 That is, the exothermic reaction is a reaction between the transition metal element in the positive electrode active material particles 11 and the sulfur element in the solid electrolyte particles 31, that is, a side reaction. Therefore, it can be said that the higher the starting temperature of this exothermic reaction, the less likely the side reaction occurs. The onset temperature of the exothermic reaction in the first DSC test is preferably higher than 250°C. When the starting temperature of the exothermic reaction has a value within this range, the formation of the high resistance layer is more reliably suppressed.

さらに、第1のDSC試験における発熱量(発熱反応の発熱量)が最大となる温度、いわゆる発熱反応のピーク温度は、330℃より高いことが好ましく、350℃より高いことがより好ましい。発熱反応のピーク温度がこれらの範囲内の値となる場合に、高抵抗層の生成がより確実に抑制される。表1に、高反応性元素の例、高反応性元素の硫化物、及び硫化物標準生成エンタルピーを示す。参考までに、ニッケル元素の硫化物標準生成エンタルピーは−53kJ/molである。したがって、表1に列挙した元素は、いずれもニッケル元素よりも固体電解質粒子31との反応性が高い。 Further, the temperature at which the heat generation amount (heat generation amount of exothermic reaction) in the first DSC test is maximum, that is, the peak temperature of so-called exothermic reaction is preferably higher than 330°C, more preferably higher than 350°C. When the peak temperature of the exothermic reaction has a value within these ranges, the formation of the high resistance layer is more reliably suppressed. Table 1 shows examples of highly reactive elements, sulfides of highly reactive elements, and standard enthalpies of formation of sulfides. For reference, the sulfide standard formation enthalpy of nickel element is -53 kJ/mol. Therefore, all of the elements listed in Table 1 have higher reactivity with the solid electrolyte particles 31 than the nickel element.

Figure 0006738121
Figure 0006738121

被覆層12は、正極活物質粒子11の直径に対して厚すぎても薄すぎても効果を発揮できない。被覆層12の層厚と正極活物質粒子11の直径(1次粒子の球相当径)との比(以下、単に「直径層厚比」とも称する)は、0.0010〜0.25である。好ましくは、0.0016〜0.1である。更に好ましくは、0.0016〜0.01である。なお、直径層厚比は、例えば、被覆層12の層厚の算術平均値を正極活物質粒子11のD50(メジアン径)で除算することで得られる。層厚の算術平均値は、以下の方法で算出される。すなわち、被覆粒子10aをいくつかサンプリングする。そして、サンプリングされた被覆粒子10a毎に、被覆層12の層厚を算出する。具体的には、被覆層12上にいくつかの測定点を設定し、この測定点での層厚を測定する。そして、各測定点での層厚を算術平均することで、被覆層12の層厚を測定する。そして、被覆粒子10a毎に測定された層厚を算術平均することで、被覆層12の層厚の算術平均値を算出(測定)する。後述する実施例では、この方法により層厚の算術平均値を測定した。なお、各測定点での層厚は、電界放出形走査電子顕微鏡(例えば株式会社日立ハイテクノロジー製S−4800)による被覆粒子10aの断面観察とエネルギー分散型X線分析(例えば株式会社堀場製作所製EMAX ENERGY E−350)による元素分析の結果とに基づいて測定可能である。また、正極活物質粒子11のD50は、レーザー回折・散乱式粒子径分布測定装置(例えば、日機装株式会社製マイクロトラックMT−3000II)によって測定可能である。 The coating layer 12 cannot exert its effect if it is too thick or too thin with respect to the diameter of the positive electrode active material particles 11. The ratio between the layer thickness of the coating layer 12 and the diameter of the positive electrode active material particles 11 (the equivalent spherical diameter of the primary particles) (hereinafter, also simply referred to as “diameter layer thickness ratio”) is 0.0010 to 0.25. .. It is preferably 0.0016 to 0.1. More preferably, it is 0.0016 to 0.01. The diameter layer thickness ratio is obtained, for example, by dividing the arithmetic average value of the layer thickness of the coating layer 12 by D50 (median diameter) of the positive electrode active material particles 11. The arithmetic mean value of the layer thickness is calculated by the following method. That is, some of the coated particles 10a are sampled. Then, the layer thickness of the coating layer 12 is calculated for each sampled coated particle 10a. Specifically, some measurement points are set on the coating layer 12, and the layer thickness at this measurement point is measured. Then, the layer thickness of the coating layer 12 is measured by arithmetically averaging the layer thickness at each measurement point. Then, the arithmetical mean value of the layer thickness of the coating layer 12 is calculated (measured) by arithmetically averaging the layer thickness measured for each coated particle 10a. In Examples described later, the arithmetic mean value of the layer thickness was measured by this method. The layer thickness at each measurement point is the cross-sectional observation of the coated particles 10a by a field emission scanning electron microscope (for example, S-4800 manufactured by Hitachi High Technology Co., Ltd.) and energy dispersive X-ray analysis (for example, manufactured by Horiba Ltd.). It can be measured based on the result of elemental analysis by EMAX ENERGY E-350). The D50 of the positive electrode active material particles 11 can be measured by a laser diffraction/scattering particle size distribution measuring device (for example, Microtrack MT-3000II manufactured by Nikkiso Co., Ltd.).

また、高反応性元素の一部は、正極活物質粒子11内に固溶していてもよい。すなわち、高反応性元素は正極活物質粒子11の構成元素であってもよい。ただし、高反応性元素の被覆層12中の濃度は、正極活物質粒子11中の濃度よりも大きい。なお、高反応性元素が正極活物質粒子11内に固溶していること、及び高反応性元素の濃度はX線光電子分光分析(XPS)あるいは、二次イオン質量分析(SIMS)によって測定可能である。高反応性元素が正極活物質粒子11内に固溶している場合、被覆粒子10aは、被覆粒子10aの表面から順に被覆層12、高反応性元素が正極活物質に固溶した層、正極活物質からなる層(粒子)で構成される。このため、硫化物との反応性が高い元素を表面側に高濃度で配置することができる。 Further, some of the highly reactive elements may be solid-solved in the positive electrode active material particles 11. That is, the highly reactive element may be a constituent element of the positive electrode active material particles 11. However, the concentration of the highly reactive element in the coating layer 12 is higher than the concentration in the positive electrode active material particles 11. It should be noted that the highly reactive element is dissolved in the positive electrode active material particles 11 and the concentration of the highly reactive element can be measured by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS). Is. When the high-reactivity element is solid-solved in the positive electrode active material particles 11, the coated particles 10a include a coating layer 12 in order from the surface of the coated particles 10a, a layer in which the high-reactivity element is solid-solved in the positive electrode active material, and a positive electrode It is composed of layers (particles) made of an active material. Therefore, an element having high reactivity with sulfide can be arranged at a high concentration on the surface side.

このように、高反応性元素は正極活物質粒子11内に固溶していてもよいが、必ず正極活物質粒子11の表面に偏在している必要がある。全固体型のリチウムイオン二次電池1では、電解質は固体、すなわち電解質粒子31であるため、正極活物質粒子11内に侵入しない。したがって、電解質粒子31と正極活物質粒子11との副反応は、固体電解質粒子31と正極活物質粒子11との界面、すなわち正極活物質粒子11の表面で起こる。したがって、正極活物質粒子11の表面をケアする必要がある。このため、本実施形態では、正極活物質粒子11の表面に高反応性元素を偏在させる(具体的には、正極活物質粒子11の表面を高反応性元素で覆う)。 As described above, the highly reactive element may be dissolved in the positive electrode active material particles 11 as a solid solution, but it is necessary that the highly reactive element is necessarily unevenly distributed on the surface of the positive electrode active material particles 11. In the all-solid-state lithium-ion secondary battery 1, since the electrolyte is solid, that is, the electrolyte particles 31, it does not enter the positive electrode active material particles 11. Therefore, the side reaction between the electrolyte particles 31 and the positive electrode active material particles 11 occurs at the interface between the solid electrolyte particles 31 and the positive electrode active material particles 11, that is, the surface of the positive electrode active material particles 11. Therefore, it is necessary to care for the surface of the positive electrode active material particles 11. Therefore, in this embodiment, the highly reactive element is unevenly distributed on the surface of the positive electrode active material particles 11 (specifically, the surface of the positive electrode active material particles 11 is covered with the highly reactive element).

(その他の添加剤)
正極層10には、被覆粒子10aに加えて、例えば、導電剤、結着剤、電解質、フィラー、分散剤、イオン導電剤等の添加剤が適宜選択され配合されていてもよい。
(Other additives)
In the positive electrode layer 10, in addition to the coated particles 10a, for example, additives such as a conductive agent, a binder, an electrolyte, a filler, a dispersant, and an ion conductive agent may be appropriately selected and blended.

上記導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉等が挙げられ、上記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等が挙げられる。上記電解質としては、後述する硫化物系固体電解質等が挙げられる。また、上記フィラー、分散剤、イオン導電剤等としては、通常リチウムイオン二次電池の電極に用いられる公知の物質を用いることができる。 Examples of the conductive agent include graphite, carbon black, acetylene black, Ketjen black, carbon fiber, and metal powder. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Are listed. Examples of the electrolyte include a sulfide-based solid electrolyte described below. As the filler, the dispersant, the ionic conductive agent, etc., known substances that are usually used for electrodes of lithium ion secondary batteries can be used.

(2.2.負極層20)
(負極活物質粒子21)
本実施形態に係る負極層20に含まれる負極活物質粒子21としては、リチウムとの合金化、又は、リチウムの可逆的な吸蔵及び放出が可能な物質であれば特に限定されず、例えば、リチウム、インジウム、スズ、アルミ、ケイ素等の金属及びこれらの合金や、Li4/3Ti5/3、SnO等の遷移金属酸化物や、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等の炭素材料などが挙げられる。これらの負極活物質粒子21は、単独で用いられてもよく、2種以上が併用されてもよい。
(2.2. Negative electrode layer 20)
(Negative electrode active material particles 21)
The negative electrode active material particles 21 included in the negative electrode layer 20 according to the present embodiment are not particularly limited as long as they can be alloyed with lithium or a material capable of reversibly occluding and releasing lithium, for example, lithium , Metals such as indium, tin, aluminum, and silicon and alloys thereof, transition metal oxides such as Li 4/3 Ti 5/3 O 4 , SnO, artificial graphite, graphite carbon fiber, resin-fired carbon, and thermal decomposition Vapor grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin fired carbon, polyacene, pitch carbon fiber, vapor grown carbon fiber, carbon materials such as natural graphite and non-graphitizable carbon, etc. To be These negative electrode active material particles 21 may be used alone or in combination of two or more kinds.

(その他の添加剤)
なお、負極層20には、負極活物質粒子21の粒子に加えて、例えば、導電剤、結着剤、電解質、フィラー、分散剤、イオン導電剤等の添加剤が適宜選択され配合されていてもよい。これらの具体例としては、上述した正極層10と同様の物質が挙げられる。
(Other additives)
The negative electrode layer 20 contains, in addition to the particles of the negative electrode active material particles 21, additives such as a conductive agent, a binder, an electrolyte, a filler, a dispersant, and an ion conductive agent, which are appropriately selected and mixed. Good. Specific examples of these include the same substances as those of the positive electrode layer 10 described above.

(2.3.固体電解質層30)
本実施形態に係る固体電解質層30は、固体電解質粒子31を含む。固体電解質粒子31は、硫化物系の固体電解質粒子であれば特に制限されない。固体電解質粒子31は、LiとPとSを少なくとも含む硫化物系固体電解質粒子であることが好ましい。この硫化物系固体電解質は、リチウムイオン伝導性が他の無機化合物より高いことが知られており、LiSとPの他に、SiS、GeS、B等の硫化物を含んでいてもよい。また、固体電解質粒子31には、適宜、LiPOやハロゲン、ハロゲン化合物等を添加されていてもよい。
(2.3. Solid electrolyte layer 30)
The solid electrolyte layer 30 according to this embodiment includes solid electrolyte particles 31. The solid electrolyte particles 31 are not particularly limited as long as they are sulfide-based solid electrolyte particles. The solid electrolyte particles 31 are preferably sulfide-based solid electrolyte particles containing at least Li, P and S. It is known that this sulfide-based solid electrolyte has higher lithium ion conductivity than other inorganic compounds, and in addition to Li 2 S and P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3, and the like. It may contain a sulfide. Further, Li 3 PO 4 , halogen, halogen compound, or the like may be added to the solid electrolyte particles 31 as appropriate.

(3.リチウムイオン二次電池の製造方法)
以上、本発明の好適な実施形態に係るリチウムイオン二次電池1の構成について詳細に説明したが、続いて、上述した構成を有するリチウムイオン二次電池1の製造方法について説明する。リチウムイオン二次電池1は、正極層10、負極層20及び固体電解質層30を作製した後に、これらの各層を積層することにより製造することができる。以下、各工程について詳述する。
(3. Method for manufacturing lithium-ion secondary battery)
The configuration of the lithium-ion secondary battery 1 according to the preferred embodiment of the present invention has been described above in detail. Next, a method for manufacturing the lithium-ion secondary battery 1 having the above-described configuration will be described. The lithium ion secondary battery 1 can be manufactured by forming the positive electrode layer 10, the negative electrode layer 20, and the solid electrolyte layer 30, and then stacking these layers. Hereinafter, each step will be described in detail.

(3.1.被覆粒子10aの作製)
まず、被覆粒子10aの作製方法を説明する。この例では、いわゆる共沈法により被覆粒子10aを作製する。もちろん、被覆粒子10aの作製方法はこの例に限られず、正極活物質粒子に高反応性元素を被覆できる方法であればどのような方法であってもよい。
(3.1. Preparation of coated particles 10a)
First, a method for producing the coated particles 10a will be described. In this example, the coated particles 10a are produced by the so-called coprecipitation method. Of course, the method for producing the coated particles 10a is not limited to this example, and any method may be used as long as it can coat the positive active material particles with the highly reactive element.

まず、高反応性元素の硝酸塩水溶液に尿素水溶液を添加し、さらに、この水溶液に正極活物質の原料となる遷移金属水酸化物を分散させる。 First, an aqueous urea solution is added to a nitrate aqueous solution of a highly reactive element, and a transition metal hydroxide that is a raw material of a positive electrode active material is dispersed in the aqueous solution.

ついで、遷移金属分散液を窒素雰囲気下で100℃に保持することで、尿素を分解させる。これにより、遷移金属分散液中のpHが上昇するので、遷移金属水酸化物粒子表面に、高反応性元素の水酸化物が析出する。 Next, urea is decomposed by maintaining the transition metal dispersion liquid at 100° C. in a nitrogen atmosphere. As a result, the pH in the transition metal dispersion liquid rises, so that the hydroxide of the highly reactive element is deposited on the surface of the transition metal hydroxide particles.

得られた試料を乾燥し、その後、試料を水酸化リチウム粉末と混合する。ついで、混合物を大気中で焼成する。焼成温度は特に制限されないが、例えば1000℃程度であればよい。以上の工程により、被覆粒子10aを作製する。ここで、被覆層12の層厚は、高反応性元素の硝酸塩水溶液の濃度を固定して、当該硝酸塩水溶液に投入する遷移金属水酸化物の質量及び反応時間のうち、少なくとも一方を調整するか、あるいは、焼成時間を調整することで調整される。遷移金属水酸化物の質量及び反応時間のうち、少なくとも一方と、焼成時間との両方を調整してもよい。また、焼成によって被覆層10a中の高反応性元素の一部が正極活物質粒子11内に固溶する場合がある。焼成温度が高いほど、また、焼成時間が長いほど、多くの高反応性元素が正極活物質粒子11内に固溶する。ただし、この作製方法では、被覆層12は高反応性元素のみで構成されるので、被覆層12中の高反応性元素の濃度は、正極活物質粒子11中の高反応性元素の濃度より高い。 The sample obtained is dried and then the sample is mixed with lithium hydroxide powder. The mixture is then fired in air. The firing temperature is not particularly limited, but may be about 1000° C., for example. The coated particles 10a are manufactured by the above steps. Here, the layer thickness of the coating layer 12 is adjusted by fixing at least the concentration of the nitrate aqueous solution of the highly reactive element and adjusting at least one of the mass and the reaction time of the transition metal hydroxide added to the nitrate aqueous solution. Alternatively, it is adjusted by adjusting the firing time. At least one of the mass and the reaction time of the transition metal hydroxide and the firing time may be adjusted. In addition, a part of the highly reactive element in the coating layer 10a may be solid-dissolved in the positive electrode active material particles 11 due to firing. The higher the calcination temperature and the longer the calcination time, the more highly reactive elements will form a solid solution in the positive electrode active material particles 11. However, in this manufacturing method, since the coating layer 12 is composed only of the highly reactive element, the concentration of the highly reactive element in the coating layer 12 is higher than the concentration of the highly reactive element in the positive electrode active material particles 11. ..

(3.2.固体電解質粒子31の作製)
固体電解質粒子31の作製方法は特に制限されず、従来の方法が任意に適用可能である。例えば、固体電解質粒子31は、溶融急冷法やメカニカルミリング法(MM法)によって作製可能である。以下、固体電解質粒子31の作製方法の一例として、LiS及びPを含む固体電解質粒子31の作製方法について説明する。
(3.2. Preparation of solid electrolyte particles 31)
The method for producing the solid electrolyte particles 31 is not particularly limited, and any conventional method can be applied. For example, the solid electrolyte particles 31 can be produced by a melt quenching method or a mechanical milling method (MM method). Hereinafter, as an example of a method for producing the solid electrolyte particles 31, a method for producing the solid electrolyte particles 31 containing Li 2 S and P 2 S 5 will be described.

溶融急冷法による場合には、LiSとPとを所定量混合しペレット状にしたものを、真空中で所定の反応温度で反応させた後、急冷することにより、硫化物系固体電解質を得ることができる。この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。さらに、上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は、通常1〜10000K/sec程度、好ましくは1〜1000K/secである。 In the case of the melt-quenching method, a mixture of a predetermined amount of Li 2 S and P 2 S 5 in the form of pellets is reacted at a predetermined reaction temperature in vacuum and then rapidly cooled to obtain a sulfide-based compound. A solid electrolyte can be obtained. The reaction temperature at this time is preferably 400°C to 1000°C, more preferably 800°C to 900°C. The reaction time is preferably 0.1 hours to 12 hours, more preferably 1 to 12 hours. Further, the quenching temperature of the above reaction product is usually 10° C. or lower, preferably 0° C. or lower, and the cooling rate thereof is usually about 1 to 10000 K/sec, preferably 1 to 1000 K/sec.

MM法による場合には、LiSとPとを所定量混合し、メカニカルミリング法にて所定時間反応させることで、硫化物系固体電解質を得ることができる。上記原料を用いたメカニカルミリング法は、室温で反応を行うことができるという利点がある。MM法によれば、室温で固体電解質を製造できるため、原料の熱分解が起こらず、仕込み組成の固体電解質を得ることができる。MM法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど固体電解質の生成速度が速くなり、回転時間が長いほど固体電解質ヘの原料の転化率が高くなる。 In the case of using the MM method, a sulfide-based solid electrolyte can be obtained by mixing a predetermined amount of Li 2 S and P 2 S 5 and reacting them by a mechanical milling method for a predetermined time. The mechanical milling method using the above raw materials has an advantage that the reaction can be performed at room temperature. According to the MM method, since the solid electrolyte can be produced at room temperature, the raw material is not thermally decomposed and the solid electrolyte having the charged composition can be obtained. The rotation speed and rotation time of the MM method are not particularly limited, but the faster the rotation speed, the faster the production rate of the solid electrolyte, and the longer the rotation time, the higher the conversion rate of the raw material into the solid electrolyte.

その後、得られた固体電解質を所定の温度で熱処理した後に、粉砕して固体電解質粒子31とする。LiSとPを含む硫化物との混合比は、モル比で、通常50:50〜80:20、好ましくは60:40〜75:25である。 Then, the obtained solid electrolyte is heat-treated at a predetermined temperature and then pulverized to obtain solid electrolyte particles 31. The mixing ratio of Li 2 S and sulfide containing P 2 S 5 is usually 50:50 to 80:20, and preferably 60:40 to 75:25 in terms of molar ratio.

(3.3.正極層10の作製)
被覆粒子10a、固体電解質粒子31、及び各種添加剤との混合物を溶媒に添加することで、スラリー又はペースト状の正極合剤を作製する。ここで、溶媒は、正極合剤の作製に使用可能なものであれば特に制限されないが、非極性溶媒が特に好ましい。非極性溶媒は固体電解質粒子31と反応しにくいからである。ついで、得られた正極合剤をドクターブレード等を用いて集電体に塗布し、乾燥する。ついで、集電体及び正極合剤層を圧延ロール等で圧密化することで、正極層10を得る。
(3.3. Preparation of positive electrode layer 10)
A mixture of the coated particles 10a, the solid electrolyte particles 31, and various additives is added to the solvent to prepare a slurry or paste positive electrode mixture. Here, the solvent is not particularly limited as long as it can be used for producing the positive electrode mixture, but a nonpolar solvent is particularly preferable. This is because the nonpolar solvent does not easily react with the solid electrolyte particles 31. Then, the obtained positive electrode mixture is applied to a current collector using a doctor blade or the like and dried. Next, the current collector and the positive electrode material mixture layer are consolidated with a rolling roll or the like to obtain the positive electrode layer 10.

このとき用いることができる集電体としては、例えば、ステンレス鋼、チタン、アルミニウム、又は、これらの合金等からなる板状体や箔状体等が挙げられる。なお、集電体を用いずに、正極合剤をペレット状に圧密化成形して正極層10としてもよい。 Examples of the current collector that can be used at this time include plate-shaped bodies and foil-shaped bodies made of stainless steel, titanium, aluminum, or alloys thereof. Note that the positive electrode mixture may be compacted into pellets to form the positive electrode layer 10 without using the current collector.

(3.4.負極層20の作製)
負極層20の作製方法は以下の通りである。例えば、上記負極活物質粒子21、固体電解質粒子31及び各種添加剤との混合物を溶媒に添加することで、スラリー又はペースト状の負極合剤を作製する。ここで、溶媒は、負極合剤の作製に使用可能なものであれば特に制限されないが、非極性溶媒が特に好ましい。非極性溶媒は固体電解質粒子31と反応しにくいからである。ついで、得られた負極合剤をドクターブレード等を用いて集電体に塗布し、乾燥する。ついで、集電体及び負極合剤層を圧延ロール等で圧密化することで、負極層20を得る。
(3.4. Fabrication of Negative Electrode Layer 20)
The method for producing the negative electrode layer 20 is as follows. For example, a mixture of the negative electrode active material particles 21, the solid electrolyte particles 31, and various additives is added to the solvent to prepare a slurry or paste negative electrode mixture. Here, the solvent is not particularly limited as long as it can be used for preparing the negative electrode mixture, but a nonpolar solvent is particularly preferable. This is because the nonpolar solvent does not easily react with the solid electrolyte particles 31. Then, the obtained negative electrode mixture is applied to a current collector using a doctor blade or the like and dried. Next, the current collector and the negative electrode mixture layer are consolidated with a rolling roll or the like to obtain the negative electrode layer 20.

このとき用いることができる集電体としては、例えば、銅、ステンレス鋼、ニッケル又は、これらの合金等からなる板状体や箔状体等が挙げられる。なお、集電体を用いずに、上記負極活物質粒子21と各種添加剤との混合物をペレット状に圧密化成形して負極層20としてもよい。また、負極活物質粒子21として金属又はその合金を使用する場合、金属シート(箔)をそのまま使用してもよい。 Examples of the current collector that can be used at this time include a plate-shaped body or a foil-shaped body made of copper, stainless steel, nickel, or an alloy thereof. The negative electrode layer 20 may be formed by compacting a mixture of the negative electrode active material particles 21 and various additives into a pellet without using a current collector. When a metal or an alloy thereof is used as the negative electrode active material particles 21, a metal sheet (foil) may be used as it is.

(3.5.固体電解質層30の作製)
固体電解質層30の作製方法は以下の通りである。固体電解質粒子31を、例えば、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法(CVD)、溶射法等の公知の製膜方法を用いて製膜することにより、固体電解質層30を作製できる。また、固体電解質粒子31と溶媒やバインダー(結着材や高分子化合物等)を混合した溶液を塗布した後、溶媒を除去し製膜化する方法を用いてもよい。また、固体電解質粒子31自体や固体電解質粒子31とバインダー(結着材や高分子化合物等)や支持体(固体電解質層30の強度を補強させたり、固体電解質粒子31自体の短絡を防ぐための材料や化合物等)を混合した電解質をプレスすることで製膜することもできる。
(3.5. Preparation of solid electrolyte layer 30)
The method for producing the solid electrolyte layer 30 is as follows. The solid electrolyte particles 31 are formed into a solid by forming the solid electrolyte particles 31 by a known film forming method such as a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor phase growth method (CVD), and a thermal spray method. The electrolyte layer 30 can be produced. Alternatively, a method of applying a solution in which the solid electrolyte particles 31 and a solvent or binder (binder, polymer compound, etc.) are mixed and then removing the solvent to form a film may be used. In addition, the solid electrolyte particles 31 themselves or the solid electrolyte particles 31 and the binder (binder, polymer compound, etc.) or the support (solid electrolyte layer 30 to strengthen the strength, or to prevent the short circuit of the solid electrolyte particles 31 itself. It is also possible to form a film by pressing an electrolyte mixed with materials and compounds.

(3.6.各層の積層)
以上のようにして得られた正極層10、固体電解質層30及び負極層20をこの順で積層し、プレス等することにより、本実施形態に係るリチウムイオン二次電池1を製造することができる。
(3.6. Lamination of each layer)
By stacking the positive electrode layer 10, the solid electrolyte layer 30, and the negative electrode layer 20 obtained as described above in this order and pressing, the lithium ion secondary battery 1 according to the present embodiment can be manufactured. ..

次に、本実施形態の実施例について説明する。もちろん、本発明は、以下の実施例のみに限定されるわけではない。 Next, examples of this embodiment will be described. Of course, the present invention is not limited to the following examples.

(1.被覆粒子の作製例1)
被覆粒子の作製例1では、以下の工程により被覆粒子10aを作製した。0.15mol/Lの硝酸アルミニウム水溶液100mlに0.16mol/Lの尿素溶液100mlを添加した。ついで、この水溶液に活物質の原料となる遷移金属水酸化物((Mn,Co,Ni)1/3(OH))60gを分散させた。
(1. Preparation example 1 of coated particles)
In Production Example 1 of coated particles, coated particles 10a were produced by the following steps. 100 ml of 0.16 mol/L urea solution was added to 100 ml of 0.15 mol/L aluminum nitrate aqueous solution. Then, 60 g of a transition metal hydroxide ((Mn, Co, Ni) 1/3 (OH) 2 ) as a raw material of the active material was dispersed in this aqueous solution.

ついで、この分散液を窒素雰囲気下で100℃に保持する。これにより、尿素を分解させた。この結果、分散液中のpHが上昇し、遷移金属水酸化物粒子表面に、水酸化アルミニウムが析出した。 Then, this dispersion is kept at 100° C. under a nitrogen atmosphere. Thereby, urea was decomposed. As a result, the pH in the dispersion liquid increased, and aluminum hydroxide was deposited on the surface of the transition metal hydroxide particles.

得られた試料を乾燥後水酸化リチウム粉末と混合し,大気中1000℃で10時間焼成した。これにより、作製例1に係る被覆粒子10a(以下、「被覆粒子10a−1」とも称する)を得た。被覆粒子10a−1の正極活物質粒子11は、LiNi1/3Co1/3Mn1/3(NCM333)で構成され、被覆粒子10a−1の被覆層12はアルミニウムで構成される。 The obtained sample was dried, mixed with lithium hydroxide powder, and baked in the atmosphere at 1000° C. for 10 hours. As a result, coated particles 10a according to Preparation Example 1 (hereinafter, also referred to as "coated particles 10a-1") were obtained. The positive electrode active material particles 11 of the coated particles 10a-1 are composed of LiNi 1/3 Co 1/3 Mn 1/3 0 2 (NCM333), and the coating layer 12 of the coated particles 10a-1 is composed of aluminum.

日機装株式会社製マイクロトラックMT−3000IIを用いて正極活物質粒子11のD50(メジアン径)を測定したところ、5.0μmであった。また、被覆粒子10aの層厚の算術平均値を上述した方法により測定したところ、8.0nmであった。ここで、各測定点での層厚は、電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジー製S−4800)による被覆粒子10aの断面観察とエネルギー分散型X線分析(株式会社堀場製作所製EMAX ENERGY E−350)による元素分析の結果とに基づいて測定した。したがって、直径層厚比は、0.0016であった。また、被覆層12の一部が正極活物質粒子11に固溶していることをXPSで確認した。 When D50 (median diameter) of the positive electrode active material particles 11 was measured using Microtrack MT-3000II manufactured by Nikkiso Co., Ltd., it was 5.0 μm. Further, the arithmetic mean value of the layer thickness of the coated particles 10a was measured by the above-mentioned method and was found to be 8.0 nm. Here, the layer thickness at each measurement point is the cross-sectional observation of the coated particles 10a by a field emission scanning electron microscope (S-4800 manufactured by Hitachi High Technology Co., Ltd.) and energy dispersive X-ray analysis (EMAX manufactured by Horiba Ltd.). It measured based on the result of the elemental analysis by ENERGY E-350). Therefore, the diameter layer thickness ratio was 0.0016. Moreover, it was confirmed by XPS that a part of the coating layer 12 was solid-dissolved in the positive electrode active material particles 11.

(2.被覆粒子の作製例2)
被覆粒子の作製例1において遷移金属水酸化物の使用量を10gとした他は被覆粒子の作製例1と同様の処理を行うことで、作製例2に係る被覆粒子10a(以下、「被覆粒子10a−2」とも称する)を作製した。また、被覆粒子10a−2の直径層厚比を作製例1と同様に測定したところ、0.01であった。
(2. Production Example 2 of Coated Particles)
By performing the same treatment as in Production Example 1 of coated particles except that the amount of the transition metal hydroxide used in Production Example 1 of coated particles was 10 g, the coated particles 10a according to Production Example 2 (hereinafter, "coated particles") will be described. 10a-2”). Further, the diameter layer thickness ratio of the coated particles 10a-2 was measured in the same manner as in Preparation Example 1, and it was 0.01.

(3.被覆粒子の作製例3)
被覆粒子の作製例1において遷移金属水酸化物の使用量を2.5gとした他は被覆粒子の作製例1と同様の処理を行うことで、作製例3に係る被覆粒子10a(以下、「被覆粒子10a−3」とも称する)を作製した。また、直径層厚比を作製例1と同様に測定したところ、0.10であった。
(3. Preparation Example 3 of Coated Particles)
The coated particles 10a according to Preparation Example 3 (hereinafter, referred to as "Coated Particle Preparation Example 1") were subjected to the same treatment as in Coated Particle Preparation Example 1 except that the amount of the transition metal hydroxide used was 2.5 g. Coated particles 10a-3" were also prepared). Further, the diameter layer thickness ratio was measured in the same manner as in Preparation Example 1, and was 0.10.

(4.被覆粒子の作製例4)
被覆粒子の作製例1において遷移金属水酸化物の使用量を2.5gとし、焼成時間を24時間とした他は被覆粒子の作製例1と同様の処理を行うことで、作製例4に係る被覆粒子10a(以下、「被覆粒子10a−4」とも称する)を作製した。また、直径層厚比を作製例1と同様に測定したところ、0.25であった。
(4. Production Example 4 of Coated Particles)
According to Production Example 4, the same treatment as in Production Example 1 of coated particles was performed except that the amount of the transition metal hydroxide used was 2.5 g and the firing time was 24 hours in Production Example 1 of coated particles. A coated particle 10a (hereinafter, also referred to as "coated particle 10a-4") was produced. Further, the diameter layer thickness ratio was measured in the same manner as in Production Example 1, and it was 0.25.

(5.被覆粒子の作製例5)
被覆粒子の作製例1において遷移金属水酸化物の使用量を80gとした他は被覆粒子の作製例1と同様の処理を行うことで、作製例5に係る被覆粒子10a(以下、「被覆粒子10a−5」とも称する)を作製した。また、直径層厚比を作製例1と同様に測定したところ、0.0010であった。
(5. Preparation Example 5 of Coated Particles)
The coated particles 10a according to Preparation Example 5 (hereinafter, referred to as “coated particles”) are the same as in Preparation Example 1 of coated particles except that the amount of the transition metal hydroxide used in Preparation Example 1 of coated particles is 80 g. 10a-5"). Further, the diameter layer thickness ratio was measured in the same manner as in Preparation Example 1, and it was 0.0010.

(6.被覆粒子の作製例6)
0.15mol/Lの硝酸アルミニウム水溶液を、硝酸アルミニウム及び硝酸マグネシウムがいずれも0.075mol/Lで溶解した混合溶液とし、遷移金属水酸化物の使用量を10gとした他は、被覆粒子の作製例1と同様の処理を行うことで、作製例6に係る被覆粒子10a(以下、「被覆粒子10a−6」とも称する)を作製した。被覆粒子の作製例6の被覆層12は、アルミニウム及びマグネシウムのみで構成される。被覆層12を構成するアルミニウムとマグネシウムとのモル比は1:1である。直径層厚比を作製例1と同様によって測定したところ、0.010であった。
(6. Preparation Example 6 of Coated Particles)
Preparation of coated particles except that a 0.15 mol/L aluminum nitrate aqueous solution was used as a mixed solution in which both aluminum nitrate and magnesium nitrate were dissolved at 0.075 mol/L and the amount of transition metal hydroxide used was 10 g. By performing the same treatment as in Example 1, coated particles 10a according to Production Example 6 (hereinafter, also referred to as "coated particles 10a-6") were produced. The coating layer 12 of Production Example 6 of coated particles is composed only of aluminum and magnesium. The molar ratio of aluminum and magnesium forming the coating layer 12 is 1:1. The diameter layer thickness ratio was measured in the same manner as in Production Example 1, and it was 0.010.

(7.被覆粒子の作製例7)
被覆粒子の作製例1において、0.15mol/L硝酸アルミニウム水溶液を0.15mol/L硝酸コバルト水溶液に変更し、遷移金属水酸化物を水酸化ニッケルに変更し、遷移金属水酸化物の使用量を10gとした他は、被覆粒子の作製例1と同様の処理を行うことで、作製例7に係る被覆粒子10a(以下、「被覆粒子10a−7」とも称する)を作製した。正極活物質粒子11はニッケル酸リチウムで構成され、被覆層12はコバルトで構成される。直径層厚比を作製例1と同様によって測定したところ、0.009であった。
(7. Preparation Example 7 of Coated Particles)
In Preparation Example 1 of coated particles, the 0.15 mol/L aluminum nitrate aqueous solution was changed to a 0.15 mol/L cobalt nitrate aqueous solution, the transition metal hydroxide was changed to nickel hydroxide, and the amount of the transition metal hydroxide used The coated particles 10a according to Production Example 7 (hereinafter, also referred to as "coated particles 10a-7") were produced by performing the same treatment as in Production Example 1 of coated particles except that the amount was 10 g. The positive electrode active material particles 11 are made of lithium nickel oxide, and the coating layer 12 is made of cobalt. The diameter layer thickness ratio was measured in the same manner as in Preparation Example 1, and it was 0.009.

(8.被覆粒子の作製例8)
被覆粒子の作製例1において遷移金属水酸化物の使用量を100gとし、焼成時間を2時間とした他は被覆粒子の作製例1と同様の処理を行うことで、作製例8に係る被覆粒子10a(以下、「被覆粒子10a−8」とも称する)を作製した。また、直径層厚比を作製例1と同様に測定したところ、0.0010よりも小さい値であった。
(8. Preparation Example 8 of Coated Particles)
Coated particles according to Production Example 8 were the same as in Production Example 1 of coated particles except that the amount of the transition metal hydroxide used was 100 g and the firing time was 2 hours in Production Example 1 of coated particles. 10a (hereinafter, also referred to as "coated particles 10a-8") was produced. When the diameter layer thickness ratio was measured in the same manner as in Preparation Example 1, it was less than 0.0010.

(9.被覆粒子の作製例9)
被覆粒子の作製例1において遷移金属水酸化物の使用量を2.5gとし、焼成時間を50時間とした他は被覆粒子の作製例1と同様の処理を行うことで、作製例9に係る被覆粒子10a(以下、「被覆粒子10a−9」とも称する)を作製した。また、直径層厚比を作製例1と同様に測定したところ、0.25よりも大きな値であった。
(9. Production Example 9 of Coated Particles)
According to Production Example 9, the same treatment as in Production Example 1 of coated particles was performed except that the amount of the transition metal hydroxide used was 2.5 g and the firing time was 50 hours in Production Example 1 of coated particles. A coated particle 10a (hereinafter, also referred to as "coated particle 10a-9") was produced. Moreover, when the diameter layer thickness ratio was measured in the same manner as in Preparation Example 1, it was a value larger than 0.25.

(8.DSC評価)
(8.1.作製例1、6のDSC試験)
つぎに、被覆粒子10a−1、10a−6と固体電解質粒子31との反応性を評価するために、以下に説明するDSC試験を行った。すなわち、固体電解質粒子31として、LiS−P(80−20mol%)をメカニカルミリング処理(MM処理)したものを用意した。そして、被覆粒子10a−1と固体電解質粒子31とをグローブボックス内で質量比1:1となるように混合した。そして、示差走査熱量計(株式会社リガク製THERMO plus EVO II/DSC8230)を用いて、混合物の発熱反応が開始する温度を評価した。被覆粒子10a−6についても同様の評価を行った。また、被覆層12で覆われていないNCM333粒子(正極活物質粒子11)を用意し、同様の評価を行った。結果を図2に示す。図2の横軸は温度、縦軸は熱流を示す。図2の「Li(Ni,Mn,Co)O+Al」は被覆粒子10a−1を示し、「Li(Ni,Mn,Co)O+Al/Mg」は被覆粒子10a−6を示す。「Li(Ni,Mn,Co)O」はNCM333(被覆層12で覆われていない正極活物質粒子11)を示す。
(8. DSC evaluation)
(8.1. DSC test of Preparation Examples 1 and 6)
Next, in order to evaluate the reactivity between the coated particles 10a-1 and 10a-6 and the solid electrolyte particles 31, a DSC test described below was performed. That is, as the solid electrolyte particles 31, those obtained by subjecting Li 2 S—P 2 S 5 (80-20 mol%) to mechanical milling (MM treatment) were prepared. Then, the coated particles 10a-1 and the solid electrolyte particles 31 were mixed in the glove box at a mass ratio of 1:1. Then, the temperature at which the exothermic reaction of the mixture started was evaluated using a differential scanning calorimeter (THERMO plus EVO II/DSC8230 manufactured by Rigaku Corporation). The same evaluation was performed on the coated particles 10a-6. In addition, NCM333 particles (positive electrode active material particles 11) not covered with the coating layer 12 were prepared, and the same evaluation was performed. The results are shown in Figure 2. The horizontal axis of FIG. 2 represents temperature and the vertical axis represents heat flow. In FIG. 2, “Li(Ni,Mn,Co)O 2 +Al” indicates the coated particle 10a-1, and “Li(Ni,Mn,Co)O 2 +Al/Mg” indicates the coated particle 10a-6. “Li(Ni,Mn,Co)O 2 ”denotes NCM333 (the positive electrode active material particles 11 not covered with the coating layer 12).

図2から明らかな通り、被覆粒子10a−1、10a−6の発熱反応の開始温度は、NCM333粒子の発熱反応の開始温度よりも高いことがわかった。具体的には、被覆粒子10a−1、10a−6の発熱反応の開始温度は290℃程度であるのに対し、NCM333粒子の発熱反応の開始温度は210℃程度であった。さらに、被覆粒子10a−1、10a−6の発熱反応のピーク温度は、350〜380℃程度であるのに対し、NCM333粒子の発熱反応のピーク温度は310℃であった。 As is clear from FIG. 2, the starting temperature of the exothermic reaction of the coated particles 10a-1 and 10a-6 was higher than the starting temperature of the exothermic reaction of the NCM333 particles. Specifically, the starting temperature of the exothermic reaction of the coated particles 10a-1 and 10a-6 was about 290°C, whereas the starting temperature of the exothermic reaction of the NCM333 particles was about 210°C. Further, the peak temperature of the exothermic reaction of the coated particles 10a-1 and 10a-6 was about 350 to 380°C, while the peak temperature of the exothermic reaction of the NCM333 particles was 310°C.

そして、発熱反応は、正極活物質粒子11中の遷移金属と固体電解質粒子31中の硫黄元素との反応、すなわち副反応である。したがって、被覆粒子10a−1、10a−6は、被覆層12で覆われていない正極活物質粒子11(すなわちNCM333粒子)よりも副反応を起こしにくい。この結果、正極活物質粒子11を高反応性元素からなる被覆層12で覆うことで、副反応が起こりにくくなる(すなわち、高抵抗層の生成が抑制される)ことが確認できた。 The exothermic reaction is a reaction between the transition metal in the positive electrode active material particles 11 and the sulfur element in the solid electrolyte particles 31, that is, a side reaction. Therefore, the coated particles 10a-1 and 10a-6 are less likely to cause a side reaction than the positive electrode active material particles 11 (that is, NCM333 particles) not covered with the coating layer 12. As a result, it was confirmed that by covering the positive electrode active material particles 11 with the coating layer 12 made of a highly reactive element, a side reaction is less likely to occur (that is, generation of a high resistance layer is suppressed).

(8.2.作製例2〜5のDSC試験)
8.1.の被覆粒子10a−1を被覆粒子10a−2〜10a−5に変更して同様のDSC試験を行った。この結果、8.1.と同様の結果が得られた。
(8.2. DSC test of Production Examples 2 to 5)
8.1. The same DSC test was performed by changing the coated particles 10a-1 of Example 1 to the coated particles 10a-2 to 10a-5. As a result, 8.1. Similar results were obtained.

(8.3.作製例7のDSC評価)
被覆粒子10a−7と8.1.で用意した固体電解質粒子31とを質量比1:1となるように混合した。そして、8.1.と同様の評価を行った。さらに、被覆層12で覆われていないニッケル酸リチウム粒子(正極活物質粒子11)を用意し、8.1.と同様の評価を行った。この結果、8.1.と同様の結果が得られた。
(8.3. DSC evaluation of Preparation Example 7)
Coated particles 10a-7 and 8.1. The solid electrolyte particles 31 prepared in 1. were mixed in a mass ratio of 1:1. And 8.1. The same evaluation as was done. Further, lithium nickel oxide particles (positive electrode active material particles 11) not covered with the coating layer 12 are prepared, and 8.1. The same evaluation as was done. As a result, 8.1. Similar results were obtained.

(9.実施例1)
以下の工程により、全固体型のリチウムイオン二次電池1を作製した。負極層20として使用するLi箔(厚み0.03mm)をφ13(mm)で打ち抜き、セル容器にセットした。その上に、8.1.で用意した固体電解質粒子31を80mg積層し、成型機で軽く表面を整えた。これにより、電解質層30を形成した。ついで、被覆粒子10a−1と、8.1.で用意した固体電解質粒子31と、導電剤である気相成長カーボンファイバ(VGCF)とを60/35/5質量%の比率で混合したものを、正極合剤としてSEの上に積層した。ついで、積層体を3t/cmの圧力で加圧することで、ペレットを作製した。すなわち、実施例1に係る試験用セルを得た。
(9. Example 1)
The all-solid-state lithium ion secondary battery 1 was produced by the following steps. Li foil (thickness 0.03 mm) used as the negative electrode layer 20 was punched out with a diameter of 13 mm and set in a cell container. On top of that, 8.1. 80 mg of the solid electrolyte particles 31 prepared in 1. was laminated, and the surface was lightly conditioned with a molding machine. Thereby, the electrolyte layer 30 was formed. Then, the coated particles 10a-1 and 8.1. A mixture of the solid electrolyte particles 31 prepared in 1 above and vapor-grown carbon fiber (VGCF) as a conductive agent in a ratio of 60/35/5 mass% was laminated on SE as a positive electrode mixture. Then, the stack was pressed at a pressure of 3 t/cm 2 to prepare pellets. That is, the test cell according to Example 1 was obtained.

得られた試験用セルを25℃の温度下で、0.02Cの定電流で上限電圧4.0Vまで充電し、放電終止電圧2.5Vまで0.1Cで放電する充放電サイクルを30サイクル行った。その後、リチウムイオン二次電池1のインピーダンスを測定し、その結果から界面抵抗を算出した。インピーダンスは、交流インピーダンス法で測定した。 The obtained test cell was charged at a constant current of 0.02 C to an upper limit voltage of 4.0 V at a temperature of 25° C., and the discharge end voltage of 2.5 V was discharged at 0.1 C for 30 charge/discharge cycles. It was Then, the impedance of the lithium ion secondary battery 1 was measured, and the interface resistance was calculated from the result. The impedance was measured by the AC impedance method.

(10.実施例2〜7)
実施例1の被覆粒子10a−1を被覆粒子10a−2〜10a−7に変えた他は、実施例1と同様の処理を行った。
(10. Examples 2 to 7)
The same treatment as in Example 1 was carried out except that the coated particles 10a-1 in Example 1 were changed to the coated particles 10a-2 to 10a-7.

(11.比較例1〜4)
実施例1の被覆粒子10a−1を被覆粒子10a−8、10a−9、NCM333粒子、ニッケル酸リチウム粒子に変えた他は、実施例1と同様の処理を行った。
(11. Comparative Examples 1 to 4)
The same treatment as in Example 1 was performed except that the coated particles 10a-1 of Example 1 were changed to coated particles 10a-8, 10a-9, NCM333 particles, and lithium nickelate particles.

(12.界面抵抗の評価)
実施例1〜7、比較例1〜4の直径層厚比及び界面抵抗を表2にまとめて示す。
(12. Evaluation of interface resistance)
Table 2 collectively shows the diameter layer thickness ratio and the interface resistance of Examples 1 to 7 and Comparative Examples 1 to 4.

Figure 0006738121
Figure 0006738121

表2によれば、実施例1〜6の界面抵抗は、いずれも比較例1〜3の界面抵抗よりも低くなっていた。したがって、実施例1〜6では、比較例1〜3よりも高抵抗層の生成が抑制されていることが確認できた。図3に、実施例6のインピーダンス(「Li(Ni,Mn,Co)O+Al/Mg」と表記)と比較例3のインピーダンス(「Li(Ni,Mn,Co)O」と表記)とを対比して示す。図3の横軸はインピーダンスの実数部を示し、縦軸は虚数部を示す。すなわち、図3は複素インピーダンスプロット図(ナイキスト線図)である。図3から明らかな通り、実施例6の界面抵抗は、比較例3の界面抵抗よりも低くなっている。さらに、実施例1、2と実施例3〜5とを比較すると、実施例1、2の界面抵抗は、実施例3〜5の界面抵抗よりも低くなっていた。さらに、実施例3と実施例4、5とを比較すると、実施例3の界面抵抗は、実施例4、5よりも小さくなっていた。したがって、直径層厚比の好ましい範囲は0.0016〜0.1であること、さらに好ましい範囲は0.0016〜0.01であることがわかった。 According to Table 2, the interface resistances of Examples 1 to 6 were lower than the interface resistances of Comparative Examples 1 to 3. Therefore, in Examples 1 to 6, it was confirmed that the generation of the high resistance layer was suppressed more than in Comparative Examples 1 to 3. FIG. 3 shows the impedance of Example 6 (expressed as “Li(Ni,Mn,Co)O 2 +Al/Mg”) and the impedance of Comparative Example 3 (expressed as “Li(Ni,Mn,Co)O 2 ”). And contrasted with. The horizontal axis of FIG. 3 represents the real part of the impedance, and the vertical axis represents the imaginary part. That is, FIG. 3 is a complex impedance plot diagram (Nyquist diagram). As is clear from FIG. 3, the interface resistance of Example 6 is lower than the interface resistance of Comparative Example 3. Furthermore, comparing Examples 1 and 2 with Examples 3 to 5, the interface resistance of Examples 1 and 2 was lower than the interface resistance of Examples 3 to 5. Further, comparing Example 3 with Examples 4 and 5, the interface resistance of Example 3 was smaller than that of Examples 4 and 5. Therefore, it was found that the preferable range of the diameter layer thickness ratio is 0.0016 to 0.1, and the more preferable range is 0.0016 to 0.01.

また、実施例7のインピーダンスと比較例4のインピーダンスとを比較したところ、実施例7のインピーダンスは、比較例4のインピーダンスよりも低くなっていた。したがって、実施例7では、比較例4よりも高抵抗層の生成が抑制されていることが確認できた。 Further, when the impedance of Example 7 and the impedance of Comparative Example 4 were compared, the impedance of Example 7 was lower than the impedance of Comparative Example 4. Therefore, in Example 7, it was confirmed that generation of the high resistance layer was suppressed as compared with Comparative Example 4.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, but the present invention is not limited to these examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 リチウムイオン二次電池
10 正極層
10a 被覆粒子
11 正極活物質粒子
12 被覆層
20 負極層
21 負極活物質粒子
30 電解質層
31 固体電解質粒子
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 10 Positive electrode layer 10a Coated particles 11 Positive electrode active material particles 12 Coating layer 20 Negative electrode layer 21 Negative electrode active material particles 30 Electrolyte layer 31 Solid electrolyte particles

Claims (6)

正極活物質粒子及び前記正極活物質粒子を覆う被覆層を備える被覆粒子と、前記被覆粒子に接触する硫化物系固体電解質粒子と、を備え、
前記被覆層は、リチウム及び酸素以外の元素のうち、前記正極活物質粒子中の遷移金属元素よりも前記硫化物系固体電解質粒子との反応性が高い高反応性元素を含み、
前記被覆層の層厚と前記正極活物質粒子の直径との比は0.0010〜0.25であり、
前記被覆粒子と前記硫化物系固体電解質粒子とを1:1の質量比で混合し加熱する第1のDSC試験を行う一方で、前記被覆層で覆われていない正極活物質粒子と前記硫化物系固体電解質粒子とを1:1の質量比で混合し加熱する第2のDSC試験を行った場合に、前記第1のDSC試験における発熱反応の開始温度は、前記第2のDSC試験における発熱反応の開始温度よりも高いことを特徴とし、
前記高反応性元素は、アルミニウム、コバルト、マンガン、及びマグネシウムからなる群から選択される少なくとも1種であり、
前記高反応性元素の一部は、前記正極活物質粒子に固溶していることを特徴とする、リチウムイオン二次電池。
Coated particles having a coating layer that covers the positive electrode active material particles and the positive electrode active material particles, and sulfide-based solid electrolyte particles that contact the coated particles,
Among the elements other than lithium and oxygen, the coating layer contains a highly reactive element having a higher reactivity with the sulfide-based solid electrolyte particles than the transition metal element in the positive electrode active material particles,
The ratio of the diameter of the layer thickness of the coating layer the positive active material particles Ri from 0.0010 to 0.25 der,
While conducting a first DSC test in which the coating particles and the sulfide-based solid electrolyte particles are mixed and heated at a mass ratio of 1:1, the positive electrode active material particles not covered with the coating layer and the sulfide are carried out. When the second DSC test in which the system solid electrolyte particles are mixed and heated at a mass ratio of 1:1 is performed, the starting temperature of the exothermic reaction in the first DSC test is the exothermic reaction in the second DSC test. Characterized by being higher than the starting temperature of the reaction,
The highly reactive element is at least one selected from the group consisting of aluminum, cobalt, manganese, and magnesium,
A part of the highly reactive element is solid-dissolved in the positive electrode active material particles, wherein the lithium ion secondary battery is characterized.
前記高反応性元素は、前記正極活物質粒子中の遷移金属元素よりも硫化物標準生成エンタルピーが低いことを特徴とする、請求項1記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the highly reactive element has a lower standard enthalpy of sulfide formation than the transition metal element in the positive electrode active material particles. 前記高反応性元素の硫化物標準生成エンタルピーは、−80kJ/molより小さいことを特徴とする、請求項2記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 2, wherein the standard enthalpy of sulfide formation of the highly reactive element is less than -80 kJ/mol. 前記第1のDSC試験における発熱反応の開始温度は、250℃より高いことを特徴とする、請求項記載のリチウムイオン二次電池。 The onset temperature of the exothermic reaction in the first DSC test, being higher than 250 ° C., a lithium ion secondary battery according to claim 1, wherein. 前記第1のDSC試験における発熱量が最大となる温度は、330℃より高いことを特徴とする、請求項記載のリチウムイオン二次電池。 The temperature at which the heat generation amount is maximum in the first DSC test, being higher than 330 ° C., a lithium ion secondary battery according to claim 1, wherein. 前記硫化物系固体電解質粒子はリンを含むことを特徴とする、請求項1〜のいずれか1項に記載のリチウムイオン二次電池。 The sulfide-based solid electrolyte particles is characterized by containing a phosphorus, lithium ion secondary battery according to any one of claims 1-5.
JP2014147024A 2014-07-17 2014-07-17 Lithium ion secondary battery Active JP6738121B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014147024A JP6738121B2 (en) 2014-07-17 2014-07-17 Lithium ion secondary battery
KR1020150053140A KR102568786B1 (en) 2014-07-17 2015-04-15 Cathode for lithium ion secondary battery, and lithium ion secondary battery
US14/800,907 US9608288B2 (en) 2014-07-17 2015-07-16 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US15/449,092 US9843038B2 (en) 2014-07-17 2017-03-03 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147024A JP6738121B2 (en) 2014-07-17 2014-07-17 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016024907A JP2016024907A (en) 2016-02-08
JP6738121B2 true JP6738121B2 (en) 2020-08-12

Family

ID=55271521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147024A Active JP6738121B2 (en) 2014-07-17 2014-07-17 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6738121B2 (en)
KR (1) KR102568786B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217785B2 (en) 2017-01-24 2022-01-04 Samsung Electronics Co., Ltd. Composite cathode active material and secondary battery including the same
JP6952467B2 (en) 2017-01-24 2021-10-20 三星電子株式会社Samsung Electronics Co.,Ltd. Positive active material for all-solid-state secondary batteries, positive-positive active material layer for all-solid-state secondary batteries, and all-solid-state secondary batteries
KR102263467B1 (en) * 2017-07-19 2021-06-11 주식회사 엘지에너지솔루션 Electrode without Electrode Current Collector and Secondary Battery Having the Same
JP7086800B2 (en) * 2018-09-19 2022-06-20 株式会社東芝 Electrodes, laminates, lithium-ion secondary batteries, battery packs and vehicles
JP7156048B2 (en) * 2019-01-17 2022-10-19 トヨタ自動車株式会社 Sulfide solid electrolyte particles and all-solid battery
US11532813B2 (en) 2020-02-20 2022-12-20 Samsung Electronics Co., Ltd. Composite cathode active material, preparation method thereof, cathode layer including the same, and all-solid secondary battery including the cathode layer
KR20210111950A (en) 2020-03-03 2021-09-14 삼성에스디아이 주식회사 Positive electrode for all solid secondary battery, and all solid secondary battery including the same
KR20210111951A (en) 2020-03-03 2021-09-14 삼성에스디아이 주식회사 Positive electrode for all solid secondary battery, and all solid secondary battery including the same
CN114520317B (en) * 2021-12-28 2023-08-15 国联汽车动力电池研究院有限责任公司 High-compaction composite positive electrode material for solid-state battery and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172388B2 (en) * 1995-02-27 2001-06-04 三洋電機株式会社 Lithium secondary battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
US8911903B2 (en) * 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008103204A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Cathode active material and secondary battery using it
JP4849093B2 (en) * 2008-04-28 2011-12-28 トヨタ自動車株式会社 Resistive layer formation inhibiting coating layer coated positive electrode active material and all solid lithium secondary battery using the same
JP5551880B2 (en) * 2009-02-20 2014-07-16 三星電子株式会社 All solid state secondary battery
DE112011101681T5 (en) * 2010-05-17 2013-05-23 Sumitomo Electric Industries, Ltd. Non-aqueous electrolyte battery positive electrode body, process for producing the same, and non-aqueous electrolyte battery
JP2013206739A (en) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery, manufacturing method therefor, and electric vehicle including this battery
KR101488296B1 (en) * 2012-12-27 2015-01-30 현대자동차주식회사 The Structure of Lithium secondary Battery Cell

Also Published As

Publication number Publication date
KR20160010296A (en) 2016-01-27
JP2016024907A (en) 2016-02-08
KR102568786B1 (en) 2023-08-21

Similar Documents

Publication Publication Date Title
JP6738121B2 (en) Lithium ion secondary battery
JP6438281B2 (en) Lithium ion secondary battery
JP7209169B2 (en) solid electrolyte materials, electrode materials, positive electrodes, and batteries
KR102272556B1 (en) Solid-state battery
JP6952467B2 (en) Positive active material for all-solid-state secondary batteries, positive-positive active material layer for all-solid-state secondary batteries, and all-solid-state secondary batteries
JP5601157B2 (en) Positive electrode active material, positive electrode active material layer, all-solid battery, and method for producing positive electrode active material
JP6667985B2 (en) Lithium ion secondary battery
JP5551880B2 (en) All solid state secondary battery
JP2016062683A (en) Lithium ion secondary battery
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
US20120021298A1 (en) All-solid lithium ion secondary battery and electrode therefor
JP5682318B2 (en) All solid battery
JP2012028231A (en) Solid lithium ion secondary battery
JP2011187370A (en) All solid battery
WO2020174868A1 (en) Positive electrode material, and battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP7402711B2 (en) Cathode active material for all-solid lithium ion secondary batteries, all-solid lithium ion secondary batteries, and method for producing cathode active materials for all-solid lithium ion secondary batteries
JP2017157473A (en) Lithium ion secondary battery
JP2012048838A (en) Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of active material for nonaqueous electrolyte secondary battery
JP2017098181A (en) All-solid-state battery
Qu et al. Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@ LiAlO2 composites
CN113614948A (en) Positive electrode material and battery
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof
WO2022259797A1 (en) Coated positive electrode active substance, positive electrode material, and battery
WO2022259820A1 (en) Coated positive electrode active substance, positive electrode material, and battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R150 Certificate of patent or registration of utility model

Ref document number: 6738121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250