WO2020070793A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置

Info

Publication number
WO2020070793A1
WO2020070793A1 PCT/JP2018/036849 JP2018036849W WO2020070793A1 WO 2020070793 A1 WO2020070793 A1 WO 2020070793A1 JP 2018036849 W JP2018036849 W JP 2018036849W WO 2020070793 A1 WO2020070793 A1 WO 2020070793A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
economizer
target value
expansion valve
circuit
Prior art date
Application number
PCT/JP2018/036849
Other languages
English (en)
French (fr)
Inventor
駿 岡田
雅浩 神田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP18936213.0A priority Critical patent/EP3862649A4/en
Priority to JP2020550979A priority patent/JP6987269B2/ja
Priority to PCT/JP2018/036849 priority patent/WO2020070793A1/ja
Publication of WO2020070793A1 publication Critical patent/WO2020070793A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a refrigeration cycle device having a refrigerant circuit through which a refrigerant circulates.
  • the refrigerating device disclosed in Patent Literature 1 includes an economizer circuit that injects a part of the refrigerant flowing out of the condenser into the compressor via an intermediate heat exchanger, and an economizer expansion valve provided in the economizer circuit.
  • a temperature-type automatic expansion valve is used as an economizer expansion valve, and the opening of the economizer expansion valve is controlled so that the degree of superheat of the intermediate heat exchanger is constant.
  • the opening degree of the economizer expansion valve is controlled so that the degree of superheat of the intermediate heat exchanger is constant, so that the period efficiency, which is an evaluation index of the annual coefficient of performance, is improved. Can not expect.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus that improves the period efficiency.
  • the refrigeration cycle device a compressor, a condenser, an intercooler, a main expansion valve and an evaporator are connected by refrigerant piping, a refrigerant circuit in which refrigerant circulates, the intercooler and the main expansion valve, Or an economizer circuit branched from between the condenser and the intercooler and connected to the compressor via the intercooler, an economizer expansion valve provided in the economizer circuit, and the economizer.
  • An intermediate pressure sensor that is provided in a circuit and detects an intermediate pressure of the refrigerant injected into the compressor; a temperature sensor that is provided in the economizer circuit and detects a temperature of the refrigerant injected into the compressor; Calculate the economizer superheat degree which is a difference between the saturated gas temperature of the intermediate pressure detected by the pressure sensor and the detection value of the temperature sensor, Calculating means for obtaining a target value of the economizer superheat degree based on the operating state of the refrigerant circuit; and opening the economizer expansion valve so that the economizer superheat degree matches the target value obtained by the calculation means.
  • Control means for controlling the flow rate.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a condenser, an intercooler, a main expansion valve, and an evaporator are connected by a refrigerant pipe and a refrigerant circulates, the intercooler, and the main expansion.
  • An economizer circuit branched from a valve or from between the condenser and the intercooler, and connected to the compressor via the intercooler, an economizer expansion valve provided in the economizer circuit, An intermediate pressure sensor that is provided in the economizer circuit and detects an intermediate pressure of refrigerant injected into the compressor; and an intermediate pressure sensor that is provided between the intermediate cooler and the main expansion valve in the refrigerant circuit and detects a temperature of the refrigerant.
  • An intercooler high-pressure outlet temperature sensor, a saturated gas temperature of the intermediate pressure detected by the intermediate pressure sensor, and the intercooler high-pressure outlet temperature sensor Calculating means for calculating a main refrigerant liquid approach temperature that is a difference from the detected value, and calculating a target value of the main refrigerant liquid approach temperature based on an operation state of the refrigerant circuit; Flow rate control means for controlling the opening of the economizer expansion valve so as to match the target value obtained by the above.
  • the target value to be monitored is set so that the coefficient of performance is increased at the operating load actually operated, so that the economizer expansion is reduced compared to the case where the target value is set to be constant.
  • the opening degree of the valve is appropriately controlled, and the period efficiency can be improved.
  • FIG. 2 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle device according to Embodiment 1 of the present invention.
  • FIG. 2 is a functional block diagram illustrating a configuration example of a control device illustrated in FIG. 1.
  • FIG. 4 is an image diagram of a graph showing an example of a method of determining a target value to be monitored from an operating state of a refrigerant circuit in the economizer flow rate control according to the first embodiment of the present invention.
  • 2 is a flowchart illustrating an operation procedure of the refrigeration cycle device illustrated in FIG. 1.
  • FIG. 4 is a refrigerant circuit diagram illustrating another configuration example of the refrigeration cycle device according to Embodiment 1 of the present invention.
  • FIG. 7 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle device according to Embodiment 2 of the present invention. It is a schematic diagram for explaining the main refrigerant liquid approach temperature to be monitored in the economizer flow rate control according to the second embodiment of the present invention. 7 is a flowchart showing an operation procedure of the refrigeration cycle apparatus shown in FIG.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 1 includes a compressor 2, a condenser 3, an intercooler 4, a main expansion valve 5, an evaporator 6, an economizer circuit 11, and a control device 10.
  • the intercooler 4 has a high-pressure section 4a and a low-pressure section 4b.
  • the compressor 2, the condenser 3, the high-pressure section 4a of the intercooler 4, the main expansion valve 5, and the evaporator 6 are connected by a refrigerant pipe, and a refrigerant circuit 12 in which the refrigerant circulates is configured.
  • An evaporation pressure sensor 8a is provided on the refrigerant outlet side of the evaporator 6.
  • the evaporation pressure sensor 8a detects the evaporation pressure of the refrigerant flowing out of the evaporator 6.
  • a condensation pressure sensor 8b is provided on the refrigerant inlet side of the condenser 3.
  • the condensing pressure sensor 8b detects the condensing pressure of the refrigerant flowing into the condenser 3.
  • the compressor 2 compresses and discharges the refrigerant to be sucked.
  • the compressor 2 is an inverter type compressor whose capacity can be changed by controlling the rotation frequency.
  • the compressor 2 is, for example, a single screw compressor or a twin screw compressor.
  • the type of the compressor 2 is not limited to these compressors, and may be any type as long as the economizer circuit 11 can be connected.
  • the condenser 3 is a heat exchanger that exchanges heat with the gas refrigerant discharged from the compressor 2 with air or water, and cools and condenses the gas refrigerant.
  • the evaporator 6 is a heat exchanger that causes the refrigerant flowing out of the main expansion valve 5 to exchange heat with air, water, brine, or the like, and evaporates the refrigerant.
  • the condenser 3 and the evaporator 6 are, for example, fin tube type, plate type or shell and tube type heat exchangers.
  • the main expansion valve 5 decompresses and expands the refrigerant flowing from the intercooler 4.
  • the main expansion valve 5 is, for example, an electronic expansion valve.
  • the economizer circuit 11 branches from the intercooler 4 and the main expansion valve 5, and is provided in the economizer pipe 9 and the economizer pipe 9 connected to the compressor 2 via the low-pressure section 4 b of the intercooler 4.
  • Economizer expansion valve 7. The economizer expansion valve 7 is provided between the branch 15 between the intercooler 4 and the main expansion valve 5 and the intercooler 4.
  • the economizer expansion valve 7 is, for example, an electronic expansion valve.
  • a temperature sensor 13 and an intermediate pressure sensor 8c are provided between the intercooler 4 and the compressor 2 in the economizer pipe 9.
  • the intercooler 4 has the high-pressure section 4a and the low-pressure section 4b as described above.
  • the high-pressure side refrigerant which is the high-pressure side refrigerant between the condenser 3 and the main expansion valve 5, flows through the high-pressure part 4a.
  • the low-pressure section 4b is circulated with a refrigerant in which a part of the high-pressure side refrigerant is decompressed by the economizer expansion valve 7.
  • the refrigerant flowing out of the low-pressure section 4b becomes an intermediate-pressure refrigerant that is an intermediate-pressure refrigerant in the entire refrigeration cycle.
  • the intercooler 4 exchanges heat between the high-pressure refrigerant and the intermediate-pressure refrigerant to cool the high-pressure refrigerant.
  • the temperature sensor 13 detects the temperature of the refrigerant injected into the compressor 2.
  • the intermediate pressure sensor 8c detects an intermediate pressure of the refrigerant injected into the compressor 2.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the control device illustrated in FIG. 1.
  • the control device 10 includes a memory 31 that stores a program, and a CPU (Central Processing Unit) 32 that executes processing according to the program.
  • the CPU 32 executes the program
  • the refrigeration cycle control unit 33, the calculation unit 34, and the flow rate control unit 35 are configured in the refrigeration cycle apparatus 1, as shown in FIG.
  • the refrigeration cycle control means 33 controls the rotation frequency of the compressor 2 and the opening of the main expansion valve 5 based on the detection values of the evaporation pressure sensor 8a and the condensation pressure sensor 8b.
  • the calculating means 34 calculates an economizer superheat degree ⁇ Tesh which is a difference between the saturated gas temperature Tesa at the intermediate pressure and the refrigerant temperature Te detected by the temperature sensor 13 as a monitoring target of the economizer flow rate control. Further, the calculating means 34 determines a target value of the economizer superheat degree ⁇ Tesh based on the operating state of the refrigerant circuit 12.
  • the calculating unit 34 determines the target value based on the compression ratio of the compressor 2 as the operating state of the refrigerant circuit 12, but the calculation unit 34 determines the operating state of the refrigerant circuit 12 based on the determination of the target value.
  • the operation state is not limited to the compression ratio.
  • the calculating unit 34 compresses the target value based on the evaporation pressure detected by the evaporation pressure sensor 8a and the condensation pressure detected by the condensation pressure sensor 8b.
  • the compression ratio of the machine 2 is calculated.
  • the compression ratio is an index indicating the operating load.
  • the flow control means 35 controls the opening of the economizer expansion valve 7 so that the monitored economizer superheat degree ⁇ Tesh matches the target value.
  • the target value to be monitored for economizer flow control will be described.
  • a coefficient of performance under rated conditions has been mainly used.
  • the rated condition is an operating condition where the operating load is 100%.
  • period efficiency has been attracting attention as an index close to actual operating conditions.
  • the period efficiency for example, there is a period performance coefficient IPLV (Integrated Part Load Load Value).
  • Equation (1) The American Refrigeration and Air Conditioning Industry Association defines Equation (1) as a calculation equation for the period performance coefficient IPLV US .
  • IPLV US 0.01 ⁇ A + 0.42 ⁇ B + 0.45 ⁇ C + 0.12 ⁇ D (1)
  • A is a COP under a 100% load
  • B is a COP under a 75% load
  • C is a COP under a 50% load
  • D is a COP under a 25% load.
  • the period performance coefficient is calculated by combining a plurality of performance coefficients corresponding to a plurality of types of operating loads.
  • the coefficient of each term indicates a ratio of the annual operation time. For example, assuming that the annual operation time is Tz, the operation time at the operation load of 100% is 0.01 ⁇ Tz [hour].
  • Each coefficient is a weight of the operation load with respect to the annual operation time. Referring to equation (1), 75% load accounts for 42% of the annual operating time, and 50% load accounts for 45% of the annual operating time. In equation (1), the weight under these two operating conditions is large.
  • IPLV US the Japan Refrigeration and Air Conditioning Industry Association
  • Formula (2) is a calculation formula indicating a period performance coefficient determined by the Japan Refrigeration and Air Conditioning Industry Association.
  • IPLV 0.01 ⁇ A + 0.47 ⁇ B + 0.37 ⁇ C + 0.15 ⁇ D
  • A is a COP at 100% load
  • B is a COP at 75% load
  • C is a COP at 50% load
  • D is a COP at 25% load.
  • Equation (2) the weighting differs for each operating load, similarly to the period performance coefficient IPLV US by the American Refrigeration and Air Conditioning Industry Association.
  • the expressions (1) and (2) are compared, there is a case where the weighting values are different even for the same operation load.
  • the 75% load accounts for 47% of the annual operating time, and has the highest weight.
  • the operation time under the rated conditions is very short throughout the year, and 90% or more of the operation time throughout the year is operated by the partial load operation.
  • the partial load mainly occupies 75 to 50% of the total load.
  • the refrigerant circulation flow rate and the operation compression ratio are different, and the coefficient of performance also changes. Attention has been paid to the above-mentioned period performance coefficient in consideration of such an actual driving situation. That is, the period performance coefficient is an index that emphasizes the performance coefficient under the partial load condition.
  • a target value that maximizes the period performance coefficient calculated by the calculation formula shown in Expression (2) is determined in advance. Can be considered. Referring to equation (2), among the four types of operating loads, 75% load accounts for 47% of the annual operating time, and has the largest weight. Therefore, it is conceivable to pay attention to the operating load having the maximum weight.
  • the operating condition to be noted is not limited to the operating load having the maximum weight, but may be two or more operating loads in descending order of the weight.
  • the operating condition of interest may be all of the four types of operating loads that constitute Expression (2).
  • the number of operating conditions of interest is not limited.
  • the calculation means 34 calculates the compression ratio of the compressor 2 when the value at which the coefficient of performance is maximized is set under each operating condition, and monitors the compression ratio. The target value of the target may be obtained. Then, the calculating unit 34 stores information indicating the relationship between the compression ratio and the target value to be monitored in the memory 31.
  • the calculating means 34 obtains the compression ratio of the compressor 2 and the target value to be monitored for each compression ratio for the four types of operating conditions corresponding to the four types of operating loads included in the calculation formula (2). May be. In this case, regarding the compression ratio and the target value for the operating conditions other than the four types of operating conditions, the calculating unit 34 can infer from the relationship between the compression ratio and the target value obtained under the four operating conditions.
  • FIG. 3 is an image diagram of a graph showing an example of a method for determining a target value to be monitored from the operating state of the refrigerant circuit in the economizer flow rate control according to the first embodiment of the present invention.
  • FIG. 3 shows a case where the reference for determining the target value is the compression ratio in the operation state of the refrigerant circuit 12.
  • the horizontal axis of the graph in FIG. 3 is the compression ratio, and the vertical axis is the target value to be monitored.
  • the vertical axis in FIG. 3 is the target value of the economizer superheat degree ⁇ Tesh.
  • FIG. 3 plots points indicating target values of the economizer superheat degree ⁇ Tesh corresponding to the compression ratios under the four conditions.
  • the four conditions are a condition Cond1 that maximizes the coefficient of performance at 100% load, a condition Cond2 that maximizes the coefficient of performance at 75% load, a condition Cond3 that maximizes the coefficient of performance at 50% load, and 25%. This is the condition Cond4 that maximizes the coefficient of performance under load.
  • An approximate curve connecting the four plots is indicated by a broken line. From this approximation curve, the calculation means 34 can also estimate the target value for the compression ratios that do not correspond to the four plots. If there is data of the target value to be monitored corresponding to at least two conditions, the calculating means 34 can draw an approximate curve as shown in FIG.
  • the calculation means 34 may determine the target values other than the four types of operating conditions corresponding to the four types of operating loads included in the calculation formula of the formula (2) as follows.
  • the calculating means 34 calculates the compression ratio from the relationship between the compression ratio and the target value obtained under the four types of operating conditions so that each of the four compression ratio values corresponding to the four types of operating conditions is included in each region. The range of the ratio is divided into four regions. Then, the calculation means 34 sets the values of the four compression ratios corresponding to the four types of operating conditions as target values of the compression ratio in each region.
  • the calculation unit 34 specifies the region to which the calculated compression ratio belongs among the plurality of regions divided for the compression ratio, and sets the region to the specified region.
  • the target value is determined as the target value of the compression ratio.
  • the operating state of the refrigerant circuit 12, which is the basis for determining the target value, may be a parameter other than the compression ratio.
  • the operating state of the refrigerant circuit 12 may be a differential pressure Pd (condensation pressure-evaporation pressure) between high pressure and low pressure in the refrigerant circuit 12 instead of the compression ratio.
  • the calculating means 34 determines a target value to be monitored based on the differential pressure Pd.
  • the memory 31 stores target determination information for specifying a target value at which the period performance coefficient IPLV is an optimum value for the range of the condensing pressure and the range of the evaporation pressure, and the calculating means 34 refers to the target determination information.
  • the target value may be determined from the detected condensation pressure and the detected evaporation pressure.
  • the rotation frequency may be used for determining the target value.
  • FIG. 4 is a flowchart showing an operation procedure of the refrigeration cycle apparatus shown in FIG.
  • the control device 10 reads the detection values of various sensors at regular intervals.
  • the calculating means 34 calculates the economizer superheat degree ⁇ Tesh from the refrigerant temperature Te detected by the temperature sensor 13 and the saturated gas temperature Tesa at the intermediate pressure detected by the intermediate pressure sensor 8c.
  • the calculation means 34 calculates the compression ratio using the evaporation pressure detected by the evaporation pressure sensor 8a and the condensation pressure detected by the condensation pressure sensor 8b.
  • the calculation means 34 determines a target value Tset1 of the economizer superheat degree ⁇ Tesh based on the calculated compression ratio (step S101). For example, the calculating unit 34 determines the target value Tset1 from the graph shown in FIG. The graph shown in FIG. 3 is stored in the memory 31.
  • the flow control unit 35 compares the calculated economizer superheat degree ⁇ Tesh with the target value Tset1 (step S102). As a result of the comparison in step S102, when the economizer superheat degree ⁇ Tesh is smaller than the target value Tset1, the flow control unit 35 reduces the opening degree of the economizer expansion valve 7 (step S103).
  • the opening degree of the economizer expansion valve 7 decreases, the intermediate pressure decreases, and the flow rate of the refrigerant flowing through the economizer circuit 11 decreases. As a result, the gas temperature of the refrigerant to be injected increases, so that the economizer superheat degree ⁇ Tesh increases and approaches the target value Tset1.
  • step S102 when the economizer superheat degree ⁇ Tesh is larger than the target value Tset1, the flow control unit 35 increases the opening degree of the economizer expansion valve 7 in order to reduce the economizer superheat degree ⁇ Tesh (step S102).
  • step S104 When the opening degree of the economizer expansion valve 7 increases, the intermediate pressure increases, and the flow rate of the refrigerant flowing through the economizer circuit 11 increases. As a result, the gas temperature of the injected refrigerant decreases, so that the economizer superheat degree ⁇ Tesh decreases to approach the target value Tset1.
  • step S102 when the economizer superheat degree ⁇ Tesh is equal to the target value Tset1, the flow control unit 35 maintains the opening of the economizer expansion valve 7 (step S105). In this way, the amount and temperature of the refrigerant injected into the compressor 2 are automatically controlled to the optimal values at which the coefficient of performance increases according to the operating load.
  • FIG. 5 is a refrigerant circuit diagram illustrating another configuration example of the refrigeration cycle device according to Embodiment 1 of the present invention.
  • the economizer circuit 11 branches from between the intercooler 4 and the condenser 3, and flows to the compressor 2 via the economizer expansion valve 7 and the low-pressure section 4b of the intercooler 4. It is connected.
  • the economizer expansion valve 7 is provided between the intercooler 4 and a branch portion 15 a between the intercooler 4 and the condenser 3.
  • the refrigeration cycle apparatus 1 of the first embodiment calculates the economizer superheat degree ⁇ Tesh as a monitoring target. Then, the refrigeration cycle apparatus 1 obtains a target value of the economizer superheat degree ⁇ Tesh based on the operation state of the refrigerant circuit 12, and controls the opening degree of the economizer expansion valve 7 so that the economizer superheat degree ⁇ Tesh matches the target value.
  • the target value of the superheat degree of the economizer to be monitored is set so that the coefficient of performance becomes large at the actual operating load, the target value is set to be constant.
  • the opening of the economizer expansion valve is appropriately controlled, and the period efficiency can be improved.
  • the calculating means 34 sets the value at which the coefficient of performance becomes maximum at the operating load corresponding to the frequency and the compression ratio as the target value.
  • the calculating means 34 may estimate the target value corresponding to the compression ratio from a plurality of types of operating loads constituting the calculation formula for calculating the period performance coefficient. In this case, the calculating means 34 can determine the estimated optimum target value of the monitoring target also for operating conditions other than the plurality of types of operating loads shown in the calculation formula.
  • the calculating means 34 divides the compression ratio into a plurality of regions based on the compression ratios of a plurality of types of operating loads constituting the calculation formula for calculating the period performance coefficient, and May be determined.
  • the calculating means 34 may pay attention to the operating load with the largest weight, or may pay attention to two or more operating loads with the larger weight among the plurality of types of operating loads. . In this case, the calculation unit 34 can determine the target value to be monitored more quickly because the number of operating loads on which the target value of the compression ratio is determined is small.
  • Embodiment 2 FIG. Embodiment 1 has been described with respect to the economizer flow rate control in the case where the economizer superheat degree is used, but Embodiment 2 illustrates a case where attention is paid to the temperature of the refrigerant at the high-pressure side refrigerant outlet of the intercooler.
  • the same components as those of the refrigeration cycle device of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • part of the refrigerant flowing through the refrigerant circuit 12 is diverted to the economizer circuit 11 and flows through the low-pressure section 4 b of the intercooler 4.
  • the refrigerant flowing through the low-pressure section 4b of the intercooler 4 cools the refrigerant flowing through the high-pressure section 4a of the intercooler 4. Therefore, the refrigerant flowing through the economizer circuit 11 lowers the temperature of the refrigerant flowing through the high-pressure section 4 a of the intercooler 4.
  • the opening degree of the economizer expansion valve 7 is controlled by detecting the temperature and pressure of the refrigerant flowing through the economizer circuit 11.
  • a change in the refrigerant temperature at the high pressure side refrigerant outlet of the intercooler 4 is detected, and the opening of the economizer expansion valve 7 is controlled.
  • FIG. 6 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle device according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 1b according to the second embodiment includes an intercooler high-pressure outlet temperature sensor 14 provided at the high-pressure refrigerant outlet of the intercooler 4.
  • the temperature sensor 13 shown in FIG. 1 is not provided.
  • the intercooler high-pressure-side outlet temperature sensor 14 is provided between the branch portion 15 and the main expansion valve 5.
  • the intercooler high-pressure outlet temperature sensor 14 detects the temperature of the liquid refrigerant flowing through the refrigerant circuit 12 and flowing out of the intercooler 4.
  • the calculating means 34 calculates the main refrigerant liquid approach temperature ⁇ Tsca, which is the difference between the refrigerant temperature Tm detected by the intercooler high-pressure outlet temperature sensor 14 and the saturated gas temperature Tesa at the intermediate pressure.
  • the monitoring target used for the economizer flow rate control is the main refrigerant liquid approach temperature ⁇ Tsca.
  • FIG. 7 is a schematic diagram for explaining a main refrigerant liquid approach temperature to be monitored in the economizer flow control according to the second embodiment of the present invention.
  • FIG. 7 is a ph diagram showing the pressure on the vertical axis and the specific enthalpy on the horizontal axis.
  • FIG. 7 schematically shows the main refrigerant liquid approach temperature ⁇ Tsca.
  • FIG. 8 is a flowchart showing an operation procedure of the refrigeration cycle apparatus shown in FIG. Also in the second embodiment, a graph that determines a target value when the monitoring target is the main refrigerant liquid approach temperature ⁇ Tsca is stored in the memory 31.
  • the graph is, for example, the graph shown in FIG.
  • the control device 10 reads the detection values of various sensors at regular intervals.
  • the calculating means 34 calculates the main refrigerant liquid approach temperature ⁇ Tsca from the refrigerant temperature Tm detected by the intermediate cooler high pressure side outlet temperature sensor 14 and the saturated gas temperature Tesa at the intermediate pressure detected by the intermediate pressure sensor 8c.
  • the calculation means 34 calculates the compression ratio using the detection values of the evaporation pressure sensor 8a and the condensation pressure sensor 8b.
  • the calculating means 34 determines a target value Tset2 of the main refrigerant liquid approach temperature ⁇ Tsca based on the calculated compression ratio (step S201).
  • the calculating means 34 determines the target value Tset2 from the graph shown in FIG.
  • the flow control unit 35 compares the calculated main refrigerant liquid approach temperature ⁇ Tsca with the target value Tset2 (step S202). As a result of the comparison in step S202, when the main refrigerant liquid approach temperature ⁇ Tsca is lower than the target value Tset2, the flow control unit 35 reduces the opening of the economizer expansion valve 7 (step S203).
  • the opening degree of the economizer expansion valve 7 decreases, the intermediate pressure decreases, and the flow rate of the refrigerant flowing through the economizer circuit 11 decreases.
  • the amount of heat exchange between the high-pressure refrigerant and the low-pressure refrigerant in the intercooler decreases, and the refrigerant temperature Tm increases. Therefore, the main refrigerant liquid approach temperature ⁇ Tsca increases and approaches the target value Tset2.
  • step S202 when the main refrigerant liquid approach temperature ⁇ Tsca is higher than the target value Tset2, the flow control unit 35 sets the opening degree of the economizer expansion valve 7 to reduce the main refrigerant liquid approach temperature ⁇ Tsca. It is increased (step S204).
  • the opening degree of the economizer expansion valve 7 increases, the intermediate pressure increases, and the flow rate of the refrigerant flowing through the economizer circuit 11 increases.
  • the amount of heat exchange between the high-pressure side refrigerant and the low-pressure side refrigerant in the intercooler increases, and the refrigerant temperature Tm decreases. Therefore, the main refrigerant liquid approach temperature ⁇ Tsca decreases and approaches the target value Tset2.
  • step S202 when the main refrigerant liquid approach temperature ⁇ Tsca is equal to the target value Tset2, the flow control unit 35 maintains the opening of the economizer expansion valve 7 (step S205). In this way, the amount and temperature of the refrigerant injected into the compressor 2 are automatically controlled to the optimal values at which the coefficient of performance increases according to the operating load.
  • the target value of the main refrigerant liquid approach temperature ⁇ Tsca is not limited to the graph shown in FIG.
  • the target value of the main refrigerant liquid approach temperature ⁇ Tsca may be obtained from the relationship between the coefficient of performance of the four types of operating loads and the compression ratio of the compressor 2 that constitute the calculation formula of Expression (2).
  • the coefficient of performance that is the basis for determining the target value may be the coefficient of performance having the largest weight among the four types of operating loads constituting the calculation formula of equation (2). It may be estimated from one or more performance coefficients.
  • the refrigeration cycle apparatus 1b of the second embodiment calculates the main refrigerant liquid approach temperature ⁇ Tsca, obtains a target value of the main refrigerant liquid approach temperature ⁇ Tsca based on the compression ratio, and the main refrigerant liquid approach temperature ⁇ Tsca matches the target value.
  • the opening degree of the economizer expansion valve 7 is controlled in such a manner as to perform the above operation.
  • the target value of the main refrigerant liquid approach temperature so that the coefficient of performance becomes large at the operating load actually operated
  • the target value is set to be constant.
  • the opening of the economizer expansion valve is appropriately controlled, and the period efficiency can be improved.
  • connection configuration of the economizer circuit 11 has been described with reference to the configuration shown in FIG. 1, but the connection configuration of the economizer circuit 11 may be the configuration shown in FIG.
  • the form of each component described in the first and second embodiments is an example, and is not limited to the configuration described in the description of the embodiment and the drawings.
  • the level of the pressure is not determined particularly in relation to an absolute value, but means that the level is relatively determined in the state and operation of the refrigeration cycle apparatus.
  • 1, 1a, 1b refrigeration cycle device 2 compressor, 3 condenser, 4 intercooler, 4a high pressure section, 4b low pressure section, 5 main expansion valve, 6 evaporator, 7 economizer expansion valve, 8a evaporating pressure sensor, 8b Condensing pressure sensor, 8c intermediate pressure sensor, 9 economizer piping, 10 controller, 11 economizer circuit, 12 refrigerant circuit, 13 temperature sensor, 14 intermediate cooler high-pressure outlet temperature sensor, 15, 15a branch, 31 memory, 32 CPU , 33 ° refrigeration cycle control means, 34 ° calculation means, 35 ° flow rate control means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍サイクル装置は、冷媒が循環する冷媒回路と、中間冷却器と主膨張弁との間または凝縮器と中間冷却器との間から分岐し、中間冷却器を介して圧縮機に接続されるエコノマイザ回路と、エコノマイザ回路に設けられたエコノマイザ膨張弁と、圧縮機にインジェクションされる冷媒の中間圧力を検出する中間圧力センサと、圧縮機にインジェクションされる冷媒の温度を検出する温度センサと、検出された中間圧力の飽和ガス温度と温度センサの検出値との差であるエコノマイザ過熱度を算出し、冷媒回路の運転状態に基づいてエコノマイザ過熱度の目標値を求める算出手段と、エコノマイザ過熱度が目標値に一致するようにエコノマイザ膨張弁の開度を制御する流量制御手段と、を有するものである。

Description

冷凍サイクル装置
 本発明は、冷媒が循環する冷媒回路を有する冷凍サイクル装置に関するものである。
 従来、冷凍能力および成績係数(COP=冷凍能力/圧縮機消費電力)の向上を目的として、冷凍サイクルに中間熱交換器が設けられた冷凍装置が知られている(例えば、特許文献1参照)。
 特許文献1に開示された冷凍装置は、凝縮器から流出する冷媒の一部を、中間熱交換器を介して圧縮機にインジェクションするエコノマイザ回路と、エコノマイザ回路に設けられたエコノマイザ膨張弁とを有する。この冷凍装置は、エコノマイザ膨張弁として温度式自動膨張弁が用いられ、中間熱交換器の過熱度が一定になるようにエコノマイザ膨張弁の開度を制御する。
特許第5463192号公報
 特許文献1に開示された冷凍装置では、中間熱交換器の過熱度が一定になるようにエコノマイザ膨張弁の開度を制御しているため、年間の成績係数の評価指標である期間効率の向上が期待できない。
 本発明は、上記のような課題を解決するためになされたもので、期間効率を向上させる冷凍サイクル装置を提供するものである。
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、中間冷却器、主膨張弁および蒸発器が冷媒配管で接続され、冷媒が循環する冷媒回路と、前記中間冷却器と前記主膨張弁との間または前記凝縮器と前記中間冷却器との間から分岐し、前記中間冷却器を介して前記圧縮機に接続されるエコノマイザ回路と、前記エコノマイザ回路に設けられたエコノマイザ膨張弁と、前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の中間圧力を検出する中間圧力センサと、前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の温度を検出する温度センサと、前記中間圧力センサによって検出された前記中間圧力の飽和ガス温度と前記温度センサの検出値との差であるエコノマイザ過熱度を算出し、前記冷媒回路の運転状態に基づいて前記エコノマイザ過熱度の目標値を求める算出手段と、前記エコノマイザ過熱度が前記算出手段によって求められた前記目標値に一致するように前記エコノマイザ膨張弁の開度を制御する流量制御手段と、を有するものである。
 また、本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、中間冷却器、主膨張弁および蒸発器が冷媒配管で接続され、冷媒が循環する冷媒回路と、前記中間冷却器と前記主膨張弁との間または前記凝縮器と前記中間冷却器との間から分岐し、前記中間冷却器を介して前記圧縮機に接続されるエコノマイザ回路と、前記エコノマイザ回路に設けられたエコノマイザ膨張弁と、前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の中間圧力を検出する中間圧力センサと、前記冷媒回路において前記中間冷却器および前記主膨張弁の間に設けられ、冷媒の温度を検出する中間冷却器高圧側出口温度センサと、前記中間圧力センサによって検出された前記中間圧力の飽和ガス温度と前記中間冷却器高圧側出口温度センサの検出値との差である主冷媒液アプローチ温度を算出し、前記冷媒回路の運転状態に基づいて前記主冷媒液アプローチ温度の目標値を求める算出手段と、前記主冷媒液アプローチ温度が前記算出手段によって求められた前記目標値に一致するように前記エコノマイザ膨張弁の開度を制御する流量制御手段と、を有するものであってもよい。
 本発明によれば、監視対象の目標値を実際に運転される運転負荷において成績係数が大きくなるように設定することで、目標値が一定となるように設定される場合に比べて、エコノマイザ膨張弁の開度が適切に制御され、期間効率を向上させることができる。
本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。 図1に示した制御装置の一構成例を示す機能ブロック図である。 本発明の実施の形態1のエコノマイザ流量制御において、冷媒回路の運転状態から監視対象の目標値を決定する方法の一例を示すグラフのイメージ図である。 図1に示した冷凍サイクル装置の動作手順を示すフローチャートである。 本発明の実施の形態1に係る冷凍サイクル装置の別の構成例を示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の一例を示す冷媒回路図である。 本発明の実施の形態2のエコノマイザ流量制御において、監視対象の主冷媒液アプローチ温度を説明するための模式図である。 図6に示した冷凍サイクル装置の動作手順を示すフローチャートである。
実施の形態1.
 本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷媒回路図である。冷凍サイクル装置1は、圧縮機2と、凝縮器3と、中間冷却器4と、主膨張弁5と、蒸発器6と、エコノマイザ回路11と、制御装置10とを有する。中間冷却器4は、高圧部4aおよび低圧部4bを有する。圧縮機2、凝縮器3、中間冷却器4の高圧部4a、主膨張弁5および蒸発器6が冷媒配管で接続され、冷媒が循環する冷媒回路12が構成される。
 蒸発器6の冷媒出口側に蒸発圧力センサ8aが設けられている。蒸発圧力センサ8aは、蒸発器6を流出する冷媒の蒸発圧力を検出する。凝縮器3の冷媒入口側に凝縮圧力センサ8bが設けられている。凝縮圧力センサ8bは、凝縮器3に流入する冷媒の凝縮圧力を検出する。
 圧縮機2は、吸入する冷媒を圧縮して吐出する。圧縮機2は、回転周波数を制御することで容量を変えることができるインバータ式圧縮機である。圧縮機2は、例えば、シングルスクリュー圧縮機およびツインスクリュー圧縮機などである。圧縮機2の種類は、これらの圧縮機に限定されず、エコノマイザ回路11を接続できるものであればよい。凝縮器3は、圧縮機2から吐出されるガス冷媒を空気または水等と熱交換させ、ガス冷媒を冷却して凝縮させる熱交換器である。蒸発器6は、主膨張弁5を流出する冷媒を空気、水またはブライン等と熱交換させ、冷媒を蒸発させる熱交換器である。凝縮器3および蒸発器6は、例えば、フィンチューブ式、プレート式またはシェルアンドチューブ式熱交換器である。主膨張弁5は、中間冷却器4から流入する冷媒を減圧して膨張させる。主膨張弁5は、例えば、電子膨張弁である。
 エコノマイザ回路11は、中間冷却器4および主膨張弁5の間から分岐して、中間冷却器4の低圧部4bを介して圧縮機2に接続されるエコノマイザ配管9と、エコノマイザ配管9に設けられたエコノマイザ膨張弁7とを有する。エコノマイザ膨張弁7は、中間冷却器4と主膨張弁5との間の分岐部15と中間冷却器4との間に設けられている。エコノマイザ膨張弁7は、例えば、電子膨張弁である。エコノマイザ配管9において中間冷却器4と圧縮機2との間には、温度センサ13および中間圧力センサ8cが設けられている。
 中間冷却器4は、上述したように、高圧部4aおよび低圧部4bを有する。高圧部4aには、凝縮器3と主膨張弁5との間の高圧側の冷媒である高圧側冷媒が流通する。低圧部4bには、高圧側冷媒の一部をエコノマイザ膨張弁7で減圧した冷媒が流通する。低圧部4bから流出する冷媒は、冷凍サイクル全体における中間圧力の冷媒である中間圧冷媒となる。中間冷却器4は、高圧側冷媒と中間圧冷媒とを熱交換させて高圧側冷媒を冷却する。温度センサ13は、圧縮機2にインジェクションされる冷媒の温度を検出する。中間圧力センサ8cは、圧縮機2にインジェクションされる冷媒の中間圧力を検出する。
 図1に示した制御装置10の構成を説明する。図2は、図1に示した制御装置の一構成例を示す機能ブロック図である。図1に示すように、制御装置10は、プログラムを記憶するメモリ31と、プログラムにしたがって処理を実行するCPU(Cenral Processing Unit)32とを有する。CPU32がプログラムを実行することで、図2に示すように、冷凍サイクル制御手段33、算出手段34および流量制御手段35が冷凍サイクル装置1に構成される。
 冷凍サイクル制御手段33は、蒸発圧力センサ8aおよび凝縮圧力センサ8bの検出値に基づいて、圧縮機2の回転周波数および主膨張弁5の開度を制御する。算出手段34は、エコノマイザ流量制御の監視対象として、中間圧力の飽和ガス温度Tesaと温度センサ13が検出する冷媒温度Teとの差であるエコノマイザ過熱度ΔTeshを算出する。また、算出手段34は、エコノマイザ過熱度ΔTeshの目標値を冷媒回路12の運転状態に基づいて決定する。エコノマイザ過熱度ΔTeshは、ΔTesh=(Te-Tesa)の式で算出される。
 本実施の形態1では、算出手段34は冷媒回路12の運転状態として圧縮機2の圧縮比に基づいて目標値を決定する場合で説明するが、目標値の決定の基となる冷媒回路12の運転状態は圧縮比に限らない。冷媒回路12の運転状態として圧縮機2の圧縮比に基づいて目標値を決定する場合、算出手段34は、蒸発圧力センサ8aが検出する蒸発圧力と凝縮圧力センサ8bが検出する凝縮圧力とから圧縮機2の圧縮比を算出する。圧縮比は、圧縮比=(凝縮圧力/蒸発圧力)の式で算出される。圧縮比が大きいと、圧縮仕事が増加し、運転負荷が大きくなる。圧縮比が小さいと、圧縮仕事が減少し、運転負荷が小さくなる。圧縮比は運転負荷を示す指標となる。流量制御手段35は、監視対象のエコノマイザ過熱度ΔTeshが目標値に一致するようにエコノマイザ膨張弁7の開度を制御する。
 ここで、エコノマイザ流量制御のための、監視対象の目標値について説明する。冷凍サイクル装置の省エネルギの指標として、従来、定格条件での成績係数を用いることが主流であった。定格条件とは、運転負荷が100%の運転条件である。近年、実際の運転条件に近い指標として期間効率が注目されている。期間効率として、例えば、期間成績係数IPLV(Integrated Part Load Value)がある。
 米国冷凍空調工業会では、期間成績係数IPLVUSの計算式として、式(1)を定めている。
 IPLVUS=0.01×A+0.42×B+0.45×C+0.12×D・・・(1)
 式(1)において、Aは100%負荷時のCOPであり、Bは75%負荷時のCOPであり、Cは50%負荷時のCOPであり、Dは25%負荷時のCOPである。
 式(1)に示すように、期間成績係数は、複数種の運転負荷に対応する複数の成績係数の合成により算出される。式(1)において、各項の係数は、年間の運転時間に占める割合を示す。例えば、年間の運転時間をTzとすると、100%の運転負荷で運転する時間は、0.01×Tz[時間]になる。各係数は、年間の運転時間に対する運転負荷の重み付けとなっている。式(1)を参照すると、75%負荷時は年間の運転時間の42%を占め、50%負荷時は年間の運転時間の45%を占めている。式(1)では、この2つの運転条件における重みが大きくなっている。
 一方、日本冷凍空調工業会においても、期間成績係数について、米国の期間成績係数IPLVUSと同様な指標が定められている。式(2)は、日本冷凍空調工業会において、定められた期間成績係数を示す計算式である。
 IPLV=0.01×A+0.47×B+0.37×C+0.15×D ・・・(2)
 式(2)において、Aは100%負荷時のCOPであり、Bは75%負荷時のCOPであり、Cは50%負荷時のCOPであり、Dは25%負荷時のCOPである。
 式(2)を参照すると、米国冷凍空調工業会による期間成績係数IPLVUSと同様に、運転負荷毎に重み付けが異なっている。ただし、式(1)および式(2)を比較すると、同じ運転負荷でも、重み付けの値が異なるところがある。例えば、式(2)において、75%負荷は年間の運転時間の47%を占めており、重み付けが最も大きい。
 一般的な冷凍サイクル装置では、年間を通じて定格条件で運転される時間は非常に短く、年間を通した運転時間のうち9割以上が部分負荷運転で運転されている。そして、部分負荷は全負荷のうち、特に75~50%負荷での運転がその大半を占める。全負荷運転と部分負荷運転では、冷媒循環流量および運転圧縮比が異なり、成績係数も変化する。このような実運転の状況を考慮した、上記の期間成績係数が注目されている。つまり、期間成績係数は部分負荷条件での成績係数を重視した指標となっている。
 本実施の形態1において、エコノマイザ流量制御の監視対象であるエコノマイザ過熱度ΔTeshについて、式(2)に示した計算式で算出される期間成績係数が最も大きくなる目標値を事前に求めておくことが考えられる。式(2)を参照すると、4種類の運転負荷のうち、75%負荷は年間の運転時間の47%を占めており、重み付けが最も大きい。そこで、重み付けが最大値の運転負荷に注目することが考えられる。
 注目する運転条件は、重み付けが最大値となる運転負荷の場合に限らず、重み付けが大きい方から2以上の運転負荷であってもよい。注目する運転条件は、式(2)を構成する4種類の運転負荷の全部であってもよい。注目する運転条件の数は限定されない。例えば、冷凍サイクル装置1の試運転期間など事前に、算出手段34が、各運転条件において、成績係数が最も大きくなる値を設定したときの圧縮機2の圧縮比を算出し、各圧縮比に対する監視対象の目標値を求めてもよい。そして、算出手段34は、圧縮比と監視対象の目標値との関係を示す情報をメモリ31に記憶させておく。
 算出手段34は、式(2)の計算式に含まれる4種類の運転負荷に対応する4種類の運転条件について、圧縮機2の圧縮比と各圧縮比に対する監視対象の目標値を求めておいてもよい。この場合、4種類の運転条件以外の運転条件についての圧縮比および目標値については、算出手段34は、4つの運転条件で求めた、圧縮比および目標値の関係から推測することができる。
 図3は、本発明の実施の形態1のエコノマイザ流量制御において、冷媒回路の運転状態から監視対象の目標値を決定する方法の一例を示すグラフのイメージ図である。図3は、目標値を決定する基準を冷媒回路12の運転状態のうち、圧縮比とした場合である。図3のグラフの横軸は圧縮比であり、縦軸は監視対象の目標値である。本実施の形態1では、図3の縦軸はエコノマイザ過熱度ΔTeshの目標値である。
 図3は、4つの条件について、圧縮比に対応する、エコノマイザ過熱度ΔTeshの目標値を示す点がプロットされている。4つの条件とは、100%負荷時の成績係数が最大となる条件Cond1、75%負荷時の成績係数が最大となる条件Cond2、50%負荷時の成績係数が最大となる条件Cond3および25%負荷時の成績係数が最大となる条件Cond4である。そして、4つのプロットを結ぶ近似曲線が破線で示されている。この近似曲線から、4つのプロットに該当しない圧縮比についても、算出手段34は、目標値を推定できる。少なくとも2つの条件に対応して監視対象の目標値のデータがあれば、算出手段34は、図3に示すように近似曲線を引くことができる。
 また、式(2)の計算式に含まれる4種類の運転負荷に対応する4種類の運転条件以外の目標値について、算出手段34は、次のように決定してもよい。算出手段34は、4種類の運転条件で求めた圧縮比および目標値の関係から、上記4種類の運転条件に対応する4つの圧縮比の値が各領域に1つずつ含まれるように、圧縮比の範囲を4つの領域に分ける。そして、算出手段34は、上記4種類の運転条件に対応する4つの圧縮比の値を、各領域の圧縮比の目標値に設定する。この場合、算出手段34は、算出した圧縮比の目標値が未知である場合、圧縮比について分割した複数の領域のうち、算出した圧縮比が属する領域を特定し、特定した領域に設定された目標値を、圧縮比の目標値に決定する。ここでは、4種類の運転条件の場合で説明したが、注目する運転条件の数は限定されない。
 なお、目標値を決定する基になる冷媒回路12の運転状態は、圧縮比以外のパラメータであってもよい。例えば、冷媒回路12の運転状態は、圧縮比の代わりに、冷媒回路12における高圧と低圧との差圧Pd(凝縮圧力-蒸発圧力)であってもよい。算出手段34は、差圧Pdに基づいて監視対象の目標値を決定する。また、凝縮圧力の範囲と蒸発圧力の範囲とに対して期間成績係数IPLVが最適値になる目標値が特定される目標決定情報をメモリ31が記憶し、算出手段34は、目標決定情報を参照し、検出される凝縮圧力と検出される蒸発圧力とから目標値を決定してもよい。また、回転周波数を目標値の決定に用いてもよい。
 次に、本実施の形態1の冷凍サイクル装置1の動作を説明する。図4は、図1に示した冷凍サイクル装置の動作手順を示すフローチャートである。冷凍サイクル装置1の運転中に、制御装置10は、各種センサの検出値を一定の周期で読み取る。算出手段34は、温度センサ13が検出した冷媒温度Teと中間圧力センサ8cが検出した中間圧力の飽和ガス温度Tesaとからエコノマイザ過熱度ΔTeshを算出する。
 続いて、算出手段34は、蒸発圧力センサ8aが検出した蒸発圧力と凝縮圧力センサ8bが検出した凝縮圧力とを用いて圧縮比を算出する。算出手段34は、算出した圧縮比を基に、エコノマイザ過熱度ΔTeshの目標値Tset1を決定する(ステップS101)。例えば、算出手段34は、図3に示したグラフから目標値Tset1を決定する。図3に示すグラフは、メモリ31に記憶されている。
 そして、流量制御手段35は、算出されたエコノマイザ過熱度ΔTeshと目標値Tset1とを比較する(ステップS102)。ステップS102の比較の結果、エコノマイザ過熱度ΔTeshが目標値Tset1よりも小さい場合、流量制御手段35は、エコノマイザ膨張弁7の開度を小さくする(ステップS103)。エコノマイザ膨張弁7の開度が小さくなると、中間圧力が下がり、かつ、エコノマイザ回路11を流通する冷媒の流量が減少する。その結果、インジェクションされる冷媒のガス温度が上昇するので、エコノマイザ過熱度ΔTeshが上昇して目標値Tset1に近づく。
 一方、ステップS102の比較の結果、エコノマイザ過熱度ΔTeshが目標値Tset1よりも大きい場合、流量制御手段35は、エコノマイザ過熱度ΔTeshを小さくするために、エコノマイザ膨張弁7の開度を大きくする(ステップS104)。エコノマイザ膨張弁7の開度が大きくなると、中間圧力が上がり、かつ、エコノマイザ回路11を流通する冷媒の流量が増加する。その結果、インジェクションされる冷媒のガス温度が低下するので、エコノマイザ過熱度ΔTeshが低下して目標値Tset1に近づく。
 また、ステップS102の比較の結果、エコノマイザ過熱度ΔTeshが目標値Tset1と同等である場合、流量制御手段35は、エコノマイザ膨張弁7の開度を維持する(ステップS105)。このようにして、圧縮機2にインジェクションされる冷媒の量および温度が、運転負荷に対応して成績係数が大きくなる最適な値に自動的に制御される。
 なお、本実施の形態1の冷凍サイクル装置1において、エコノマイザ回路11の接続構成は、図1に示す構成に限らない。図5は、本発明の実施の形態1に係る冷凍サイクル装置の別の構成例を示す冷媒回路図である。図5に示す冷凍サイクル装置1aでは、エコノマイザ回路11は、中間冷却器4および凝縮器3の間から分岐して、エコノマイザ膨張弁7および中間冷却器4の低圧部4bを介して圧縮機2に接続されている。エコノマイザ膨張弁7は、中間冷却器4と凝縮器3との間の分岐部15aと中間冷却器4との間に設けられている。
 本実施の形態1の冷凍サイクル装置1は、監視対象としてエコノマイザ過熱度ΔTeshを算出する。そして、冷凍サイクル装置1は、冷媒回路12の運転状態に基づいてエコノマイザ過熱度ΔTeshの目標値を求め、エコノマイザ過熱度ΔTeshが目標値に一致するようにエコノマイザ膨張弁7の開度を制御する。
 本実施の形態1では、監視対象のエコノマイザ過熱度の目標値を実際に運転される運転負荷において成績係数が大きくなるように設定することで、目標値が一定となるように設定される場合に比べて、エコノマイザ膨張弁の開度が適切に制御され、期間効率を向上させることができる。
 また、本実施の形態1では、算出手段34は、周波数および圧縮比などに対応する運転負荷で成績係数が最大になる値を目標値に設定している。実際の運転負荷に応じて成績係数が大きくなるようにエコノマイザ流量制御を行うことで、冷凍サイクル装置1は期間成績係数を向上させることができる。
 この場合、算出手段34は、目標値を決める方法として、期間成績係数を算出する計算式を構成する複数種の運転負荷から圧縮比に対応する目標値を推定してもよい。この場合、算出手段34は、計算式に示す複数種の運転負荷以外の運転条件についても、監視対象の推定された最適な目標値を決めることができる。
 また、算出手段34は、目標値を決める方法として、期間成績係数を算出する計算式を構成する複数種の運転負荷における圧縮比を基に圧縮比を複数の領域に分け、領域毎に目標値を決定してもよい。
 また、算出手段34は、目標値を決める際、重み付けが最も大きい運転負荷に注目してもよく、複数種の運転負荷のうち、重み付けが大きい方の2以上の運転負荷に注目してもよい。この場合、算出手段34は、圧縮比の目標値を決める基となる運転負荷の数が少ないので、監視対象の目標値の決定をより早く行うことができる。
実施の形態2.
 エコノマイザ流量制御に関して、実施の形態1はエコノマイザ過熱度を用いる場合で説明したが、本実施の形態2は、中間冷却器の高圧側冷媒出口の冷媒の温度に注目する場合について例示する。本実施の形態2では、実施の形態1の冷凍サイクル装置と同様な構成については同一の符号を付し、その詳細な説明を省略する。
 図1に示した冷媒回路において、冷媒回路12を流通する冷媒の一部がエコノマイザ回路11に分流し、中間冷却器4の低圧部4bを流通する。中間冷却器4の低圧部4bを流通する冷媒は中間冷却器4の高圧部4aを流通する冷媒を冷却する。そのため、エコノマイザ回路11を流通する冷媒は、中間冷却器4の高圧部4aを流れる冷媒の温度を低下させる。実施の形態1は、エコノマイザ回路11を流通する冷媒の温度および圧力を検出してエコノマイザ膨張弁7の開度を制御するものである。これに対して、本実施の形態2は、中間冷却器4の高圧側冷媒出口の冷媒温度の変化を検出し、エコノマイザ膨張弁7の開度を制御するものである。
 本実施の形態2の冷凍サイクル装置の構成を説明する。図6は、本発明の実施の形態2に係る冷凍サイクル装置の一例を示す冷媒回路図である。本実施の形態2の冷凍サイクル装置1bは、中間冷却器4の高圧側冷媒出口に設けられた中間冷却器高圧側出口温度センサ14を有する。図6に示す冷凍サイクル装置1bでは、図1に示した温度センサ13が設けられていない。図6に示す構成例では、中間冷却器高圧側出口温度センサ14は、分岐部15と主膨張弁5との間に設けられている。中間冷却器高圧側出口温度センサ14は、冷媒回路12を流通する冷媒であって、中間冷却器4を流出した液冷媒の温度を検出する。
 本実施の形態2では、算出手段34は、中間冷却器高圧側出口温度センサ14が検出する冷媒温度Tmと中間圧力の飽和ガス温度Tesaとの差である主冷媒液アプローチ温度ΔTscaを算出する。主冷媒液アプローチ温度ΔTscaは、主冷媒液アプローチ温度ΔTsca=(Tm-Tesa)の式で算出される。本実施の形態2では、エコノマイザ流量制御に用いられる監視対象は主冷媒液アプローチ温度ΔTscaである。
 図7は、本発明の実施の形態2のエコノマイザ流量制御において、監視対象の主冷媒液アプローチ温度を説明するための模式図である。図7は、縦軸が圧力を示し、横軸が比エンタルピを示すp-h線図である。図7に主冷媒液アプローチ温度ΔTscaを模式的に示す。
 次に、本実施の形態2の冷凍サイクル装置1bの動作を説明する。図8は、図6に示した冷凍サイクル装置の動作手順を示すフローチャートである。本実施の形態2においても、監視対象が主冷媒液アプローチ温度ΔTscaである場合の目標値を決めるグラフがメモリ31に記憶されている。グラフは、例えば、図3に示したグラフである。
 冷凍サイクル装置1bの運転中に、制御装置10は、各種センサの検出値を一定の周期で読み取る。算出手段34は、中間冷却器高圧側出口温度センサ14が検出した冷媒温度Tmと中間圧力センサ8cが検出した中間圧力の飽和ガス温度Tesaとから主冷媒液アプローチ温度ΔTscaを算出する。算出手段34は、蒸発圧力センサ8aおよび凝縮圧力センサ8bの検出値を用いて圧縮比を算出する。算出手段34は、算出した圧縮比を基に、主冷媒液アプローチ温度ΔTscaの目標値Tset2を決定する(ステップS201)。算出手段34は、図3に示したグラフから目標値Tset2を決定する。
 そして、流量制御手段35は、算出された主冷媒液アプローチ温度ΔTscaと目標値Tset2とを比較する(ステップS202)。ステップS202の比較の結果、主冷媒液アプローチ温度ΔTscaが目標値Tset2よりも小さい場合、流量制御手段35は、エコノマイザ膨張弁7の開度を小さくする(ステップS203)。エコノマイザ膨張弁7の開度が小さくなると、中間圧力が下がり、かつ、エコノマイザ回路11を流通する冷媒の流量が減少する。その結果、中間冷却器内で高圧側冷媒と低圧側冷媒の熱交換量が減少し、冷媒温度Tmが上昇する。そのため、主冷媒液アプローチ温度ΔTscaが増加して目標値Tset2に近づく。
 一方、ステップS202の比較の結果、主冷媒液アプローチ温度ΔTscaが目標値Tset2よりも大きい場合、流量制御手段35は、主冷媒液アプローチ温度ΔTscaを小さくするために、エコノマイザ膨張弁7の開度を大きくする(ステップS204)。エコノマイザ膨張弁7の開度が大きくなると、中間圧力が上がり、かつ、エコノマイザ回路11を流通する冷媒の流量が増加する。その結果、中間冷却器内で高圧側冷媒と低圧側冷媒の熱交換量が増加し、冷媒温度Tmが低下する。そのため、主冷媒液アプローチ温度ΔTscaは減少して、目標値Tset2に近づく。
 また、ステップS202の比較の結果、主冷媒液アプローチ温度ΔTscaが目標値Tset2と同等である場合、流量制御手段35は、エコノマイザ膨張弁7の開度を維持する(ステップS205)。このようにして、圧縮機2にインジェクションされる冷媒の量および温度が、運転負荷に対応して成績係数が大きくなる最適な値に自動的に制御される。
 なお、本実施の形態2においても、主冷媒液アプローチ温度ΔTscaの目標値は、図3に示したグラフに限定されない。主冷媒液アプローチ温度ΔTscaの目標値は、式(2)の計算式を構成する4種類の運転負荷の成績係数と圧縮機2の圧縮比との関係から求められてもよい。また、目標値を決める基になる成績係数は、式(2)の計算式を構成する4種類の運転負荷のうち、重み付けが最大値の成績係数であってもよく、重み付けが大きい方から2つ以上の成績係数から推定されるものであってもよい。
 本実施の形態2の冷凍サイクル装置1bは、主冷媒液アプローチ温度ΔTscaを算出し、圧縮比に基づいて主冷媒液アプローチ温度ΔTscaの目標値を求め、主冷媒液アプローチ温度ΔTscaが目標値に一致するようにエコノマイザ膨張弁7の開度を制御する。
 本実施の形態2においても、主冷媒液アプローチ温度の目標値を実際に運転される運転負荷において成績係数が大きくなるように設定することで、目標値が一定となるように設定される場合に比べて、エコノマイザ膨張弁の開度が適切に制御され、期間効率を向上させることができる。
 なお、本実施の形態2において、エコノマイザ回路11の接続構成が図1に示した構成の場合で説明したが、エコノマイザ回路11の接続構成は図5に示した構成であってもよい。また、本実施の形態1および2で説明した各構成要素の形態は、一例であって、実施の形態の説明および図面に示す構成に限定されるものではない。また、圧力の高低は、特に絶対的な値との関係で高低が定まるものではなく、冷凍サイクル装置における状態および動作等において相対的に定まることを意味する。
 1、1a、1b 冷凍サイクル装置、2 圧縮機、3 凝縮器、4 中間冷却器、4a 高圧部、4b 低圧部、5 主膨張弁、6 蒸発器、7 エコノマイザ膨張弁、8a 蒸発圧力センサ、8b 凝縮圧力センサ、8c 中間圧力センサ、9 エコノマイザ配管、10 制御装置、11 エコノマイザ回路、12 冷媒回路、13 温度センサ、14 中間冷却器高圧側出口温度センサ、15、15a 分岐部、31 メモリ、32 CPU、33 冷凍サイクル制御手段、34 算出手段、35 流量制御手段。

Claims (7)

  1.  圧縮機、凝縮器、中間冷却器、主膨張弁および蒸発器が冷媒配管で接続され、冷媒が循環する冷媒回路と、
     前記中間冷却器と前記主膨張弁との間または前記凝縮器と前記中間冷却器との間から分岐し、前記中間冷却器を介して前記圧縮機に接続されるエコノマイザ回路と、
     前記エコノマイザ回路に設けられたエコノマイザ膨張弁と、
     前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の中間圧力を検出する中間圧力センサと、
     前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の温度を検出する温度センサと、
     前記中間圧力センサによって検出された前記中間圧力の飽和ガス温度と前記温度センサの検出値との差であるエコノマイザ過熱度を算出し、前記冷媒回路の運転状態に基づいて前記エコノマイザ過熱度の目標値を求める算出手段と、
     前記エコノマイザ過熱度が前記算出手段によって求められた前記目標値に一致するように前記エコノマイザ膨張弁の開度を制御する流量制御手段と、
    を有する冷凍サイクル装置。
  2.  圧縮機、凝縮器、中間冷却器、主膨張弁および蒸発器が冷媒配管で接続され、冷媒が循環する冷媒回路と、
     前記中間冷却器と前記主膨張弁との間または前記凝縮器と前記中間冷却器との間から分岐し、前記中間冷却器を介して前記圧縮機に接続されるエコノマイザ回路と、
     前記エコノマイザ回路に設けられたエコノマイザ膨張弁と、
     前記エコノマイザ回路に設けられ、前記圧縮機にインジェクションされる冷媒の中間圧力を検出する中間圧力センサと、
     前記冷媒回路において前記中間冷却器および前記主膨張弁の間に設けられ、冷媒の温度を検出する中間冷却器高圧側出口温度センサと、
     前記中間圧力センサによって検出された前記中間圧力の飽和ガス温度と前記中間冷却器高圧側出口温度センサの検出値との差である主冷媒液アプローチ温度を算出し、前記冷媒回路の運転状態に基づいて前記主冷媒液アプローチ温度の目標値を求める算出手段と、
     前記主冷媒液アプローチ温度が前記算出手段によって求められた前記目標値に一致するように前記エコノマイザ膨張弁の開度を制御する流量制御手段と、
    を有する冷凍サイクル装置。
  3.  前記算出手段は、
     前記冷媒回路の運転状態に対応する運転負荷において成績係数が最大になる値を前記目標値に設定する、請求項1または2に記載の冷凍サイクル装置。
  4.  前記算出手段は、
     複数種の運転負荷に対応する複数の成績係数で算出される期間成績係数の計算式において、前記複数種の運転負荷から前記冷媒回路の運転状態に対応する前記目標値を推定する、請求項3に記載の冷凍サイクル装置。
  5.  前記算出手段は、
     複数種の運転負荷に対応する複数の成績係数で算出される期間成績係数の計算式において、前記複数種の運転負荷に対応する前記冷媒回路の運転状態を複数の領域に分け、前記複数の領域毎に前記目標値を決定する、請求項3に記載の冷凍サイクル装置。
  6.  前記算出手段は、
     複数種の運転負荷に対応する複数の成績係数で算出される期間成績係数の計算式において、前記複数種の運転負荷のうち、重み付けが最も大きい運転負荷を選択して前記目標値を推定する、または前記複数種の運転負荷のうち、重み付けが大きい方の2以上の運転負荷から前記目標値を推定する、請求項3に記載の冷凍サイクル装置。
  7.  前記蒸発器の冷媒出口側に設けられ、冷媒の蒸発圧力を検出する蒸発圧力センサと、
     前記凝縮器の冷媒入口側に設けられ、冷媒の凝縮圧力を検出する凝縮圧力センサと、をさらに有し、
     前記算出手段は、
     前記蒸発圧力センサによって検出される前記蒸発圧力と前記凝縮圧力センサによって検出される前記凝縮圧力とを用いて前記冷媒回路の運転状態を算出する、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2018/036849 2018-10-02 2018-10-02 冷凍サイクル装置 WO2020070793A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18936213.0A EP3862649A4 (en) 2018-10-02 2018-10-02 REFRIGERATION CIRCUIT DEVICE
JP2020550979A JP6987269B2 (ja) 2018-10-02 2018-10-02 冷凍サイクル装置
PCT/JP2018/036849 WO2020070793A1 (ja) 2018-10-02 2018-10-02 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036849 WO2020070793A1 (ja) 2018-10-02 2018-10-02 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020070793A1 true WO2020070793A1 (ja) 2020-04-09

Family

ID=70055705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036849 WO2020070793A1 (ja) 2018-10-02 2018-10-02 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3862649A4 (ja)
JP (1) JP6987269B2 (ja)
WO (1) WO2020070793A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465105A (zh) * 2021-06-21 2021-10-01 青岛海尔空调电子有限公司 用于空调器的补气增焓控制方法
CN115200177A (zh) * 2022-05-27 2022-10-18 宁波奥克斯电气股份有限公司 补气增焓控制方法、装置及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353383B (zh) * 2021-12-10 2024-04-19 青岛海尔空调电子有限公司 空气源热泵机组控制方法及空气源热泵机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593548A (ja) * 1991-04-08 1993-04-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2007205612A (ja) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp 冷凍サイクル装置
JP5463192B2 (ja) 2010-04-20 2014-04-09 三菱重工業株式会社 エコノマイザ回路付き冷凍装置
JP2015038388A (ja) * 2009-11-25 2015-02-26 ダイキン工業株式会社 コンテナ用冷凍装置
WO2016046908A1 (ja) * 2014-09-24 2016-03-31 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
WO2013160965A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 空気調和装置
EP3124897B1 (en) * 2015-07-27 2018-02-21 Honeywell spol s.r.o. Methods and apparatus for vapor compression circuit control
CN105973626B (zh) * 2016-05-25 2018-11-30 深圳达实智能股份有限公司 中央空调系统主机运行能效评估及预测方法以及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593548A (ja) * 1991-04-08 1993-04-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2007205612A (ja) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp 冷凍サイクル装置
JP2015038388A (ja) * 2009-11-25 2015-02-26 ダイキン工業株式会社 コンテナ用冷凍装置
JP5463192B2 (ja) 2010-04-20 2014-04-09 三菱重工業株式会社 エコノマイザ回路付き冷凍装置
WO2016046908A1 (ja) * 2014-09-24 2016-03-31 三菱電機株式会社 スクリュー圧縮機および冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3862649A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465105A (zh) * 2021-06-21 2021-10-01 青岛海尔空调电子有限公司 用于空调器的补气增焓控制方法
CN115200177A (zh) * 2022-05-27 2022-10-18 宁波奥克斯电气股份有限公司 补气增焓控制方法、装置及空调器

Also Published As

Publication number Publication date
JP6987269B2 (ja) 2021-12-22
EP3862649A4 (en) 2022-01-12
JPWO2020070793A1 (ja) 2021-06-03
EP3862649A1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
US9951974B2 (en) Flash tank economizer cycle control
CN102884382B (zh) 热源侧热交换器用风扇的控制方法及空调装置
JP5921712B2 (ja) 空気調和機及びその運転制御方法
JP5352512B2 (ja) 空気調和機
JP4036288B2 (ja) 空気調和装置
JPH06265232A (ja) 空気調和装置
CN111486574B (zh) 空调系统及其防凝露控制方法和装置、存储介质
EP1856458A1 (en) Control of a refrigeration circuit with an internal heat exchanger
WO2020070793A1 (ja) 冷凍サイクル装置
AU2010238051B2 (en) Heat source unit
JP5220045B2 (ja) 冷却装置
JP4418936B2 (ja) 空気調和装置
JP2012220042A (ja) 空気調和装置
WO2020208714A1 (ja) 冷凍装置
US9851134B2 (en) Air-conditioning apparatus
JP2010060179A (ja) 制御装置、空気調和機及び冷凍装置
CN111503854B (zh) 空调系统及其防凝露控制方法和装置、存储介质
US20210063042A1 (en) Air conditioner and control method thereof
JP4730318B2 (ja) 冷凍装置
JP2011027314A (ja) 空気調和装置
JP6373475B2 (ja) 冷媒量異常検知装置及び冷凍装置
US10823474B2 (en) Perturbation of expansion valve in vapor compression system
WO2017094172A1 (ja) 空気調和装置
JP5340348B2 (ja) 冷凍装置
WO2019008660A1 (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936213

Country of ref document: EP

Effective date: 20210503