WO2020067741A1 - Soc 추정 장치 및 방법 - Google Patents

Soc 추정 장치 및 방법 Download PDF

Info

Publication number
WO2020067741A1
WO2020067741A1 PCT/KR2019/012543 KR2019012543W WO2020067741A1 WO 2020067741 A1 WO2020067741 A1 WO 2020067741A1 KR 2019012543 W KR2019012543 W KR 2019012543W WO 2020067741 A1 WO2020067741 A1 WO 2020067741A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
value
processor
vehicle
Prior art date
Application number
PCT/KR2019/012543
Other languages
English (en)
French (fr)
Inventor
윤성준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/964,132 priority Critical patent/US20210033678A1/en
Priority to CN201980008725.6A priority patent/CN111655534B/zh
Priority to JP2020539716A priority patent/JP6989087B2/ja
Priority to EP19865502.9A priority patent/EP3756937B1/en
Publication of WO2020067741A1 publication Critical patent/WO2020067741A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles

Definitions

  • the present invention relates to an SOC estimating apparatus and method, and more particularly, to an SOC estimating apparatus and method for estimating an initial SOC when starting a vehicle of a Starting Lighting Ignition (SLI) battery provided in a vehicle.
  • SLI Starting Lighting Ignition
  • lithium secondary batteries are free of charge and discharge due to little memory effect compared to nickel-based secondary batteries. The self-discharge rate is very low, and it is spotlighted for its high energy density.
  • the battery is used for various mobile devices such as automobiles, and it is important to grasp the accurate information on the state of charge (SOC) of the battery because there is a limit to the use time.
  • SOC state of charge
  • the SOC is a measure of how long a battery can be used, so it is very important information for a user to use the device. Therefore, general battery-equipped devices such as laptops, mobile phones, and automobiles estimate SOC of a battery and provide information to the user by identifying information such as a battery's available time or usage amount.
  • the SLI battery may be continuously discharged by an electrical appliance (for example, a black box) while the vehicle is parked. Due to this phenomenon, the initial SOC at the time of starting the vehicle of the SLI battery may show a large difference from the SOC at the end of the vehicle starting.
  • an electrical appliance for example, a black box
  • the BMS Battery Management System
  • the BMS Battery Management System
  • the BMS may be switched to the sleep mode for efficient power operation when the vehicle is parked and the vehicle starts to stop. In this sleep mode, the BMS cannot measure the discharge current value of the battery for starting the vehicle, and as a result, it is difficult to estimate the initial SOC of the battery when the vehicle starts.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide an improved SOC estimation apparatus and method for estimating an initial SOC when starting a vehicle of a starting lighting ignition (SLI) battery provided in a vehicle.
  • SLI starting lighting ignition
  • the apparatus for estimating the SOC of the vehicle starting battery a current measuring unit configured to measure the discharge current of the battery; A voltage measuring unit configured to measure the voltage across the battery; And receiving the discharge current value and the voltage value of both ends of the battery from the current measuring unit and the voltage measuring unit, measuring the parking duration of the vehicle, determining the SOC estimation mode based on the parking duration, and determining Depending on the SOC estimation mode, the initial SOC of the battery is estimated when the vehicle starts based on the discharge current value during the parking duration, or both ends of the battery are based on the discharge current value when measuring the voltage across the battery. And a processor configured to estimate an initial SOC of the battery when the vehicle starts based on a voltage value that is corrected by correcting a voltage value.
  • the processor may be configured to measure the duration of the parking based on an elapsed time from when the vehicle starts to end to when the vehicle restarts.
  • the processor wakes up every predetermined period during the parking duration, and based on the discharge current value measured by the current measuring unit during wakeup. It can be configured to estimate the SOC of the battery.
  • the processor may be configured to estimate an SOC change amount during a period based on the discharge current value measured by the current measurement unit during wake-up, and to estimate the SOC of the battery based on the SOC change amount. have.
  • the processor corrects the SOC of the battery based on a value obtained by subtracting the SOC change amount estimated from the current period from the SOC of the battery estimated in the previous period, and the SOC of the battery for each wakeup period during the parking duration. It can be configured to update.
  • the processor determines the SOC estimation mode based on a predetermined reference time value of the parking duration, and the SOC estimation mode starts the vehicle based on the discharge current value of the battery during the parking duration.
  • SOC correction mode for estimating the initial SOC of the battery and correcting the voltage across the battery based on the discharge current value of the battery to compensate for the initial SOC of the battery during vehicle startup based on the corrected voltage across the battery. It may include an OCV estimation mode for estimating.
  • the processor may be configured to determine the SOC estimation mode as the SOC correction mode when the parking duration is less than a predetermined reference time value.
  • the processor may be configured to estimate the initial SOC of the battery when the vehicle starts based on the SOC of the battery updated every wakeup period.
  • the processor based on the discharge current value at the time of starting the vehicle, estimates the amount of SOC change after the previous wake-up period, and corrects the SOC of the battery updated in the previous wake-up period based on the SOC change amount It may be configured to estimate the initial SOC of the battery when the vehicle starts based on the calibrated SOC of the battery.
  • the processor may be configured to determine the SOC estimation mode as the OCV estimation mode when the parking duration is equal to or greater than a predetermined reference time value.
  • the SOC estimation apparatus may further include a temperature measuring unit configured to measure the temperature of the battery.
  • the processor receives the temperature measurement value of the battery from the temperature measurement unit, and when the SOC estimation mode is determined to be the OCV estimation mode, the voltage value of the both ends measured at the start of the vehicle and the discharge current value And estimating the OCV of the battery based on the temperature measurement, and estimating the initial SOC of the battery when the vehicle starts using the SOC-OCV lookup table based on the estimated OCV.
  • the processor calculates the internal resistance value of the battery based on the SOC and the temperature measurement value of the battery updated in the previous wake-up period, and calculates a multiplication value of the calculated internal resistance value and the discharge current value. It may be configured to estimate the OCV of the battery based on the difference between the voltage values across the ends.
  • the BMS according to an embodiment of the present invention for achieving the above object includes the SOC estimation apparatus according to the present invention.
  • the battery pack according to an embodiment of the present invention for achieving the above object includes the SOC estimation apparatus according to the present invention.
  • the SOC estimation method for achieving the above object, a method for estimating the SOC of the vehicle starting battery, the current measurement step of measuring the charge and discharge current of the battery; A voltage measurement step of measuring the voltage across the battery; And receiving the discharge current value and the voltage value across the battery from the current measurement step and the voltage measurement step, measure the parking duration of the vehicle, determine the SOC estimation mode based on the parking duration, and determine Depending on the SOC estimation mode, the initial SOC of the battery is estimated when the vehicle starts based on the discharge current value during the parking duration, or both ends of the battery are based on the discharge current value when measuring the voltage across the battery. And an SOC estimation step of estimating an initial SOC of the battery when the vehicle starts based on a voltage value that is corrected by correcting a voltage value.
  • the present invention may have various other effects, and other effects of the present invention may be understood by the following description, and may be more clearly understood by examples of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration in which an SOC estimation apparatus according to an embodiment of the present invention is provided in a battery pack.
  • FIG. 2 is a flowchart schematically illustrating an SOC estimation method according to an embodiment of the present invention.
  • the secondary battery includes a negative terminal and a positive terminal, and means one independent cell that is physically separable.
  • one pouch-type lithium polymer cell may be considered as a secondary battery.
  • the cell assembly may include at least one secondary battery connected in series and / or in parallel.
  • the SOC estimation apparatus may be an apparatus for estimating the SOC of a vehicle starting battery provided in a vehicle.
  • the vehicle starting battery may be a 12V SLI (Starting Lighting Ignition) battery.
  • a battery equipped with an SOC estimation apparatus may be electrically connected to the starting motor 50.
  • the processor 400 receives a vehicle start signal (eg, an ignition signal)
  • the battery may transmit power to the starting motor 50.
  • a battery equipped with an SOC estimation apparatus may be electrically connected to the vehicle electrical equipment 70, as shown in the configuration of FIG. 1.
  • the vehicle electrical equipment 70 may be an electric equipment provided in a vehicle, such as a cooling device, a preheating device, a fuel supply device, a lighting device, and an instrument device.
  • the battery may supply electric power to the vehicle electrical equipment 70 regardless of the end of the start of the vehicle in the driving mode in which the vehicle is driven and in the parking mode in which the vehicle is parked.
  • the SOC estimating apparatus according to an embodiment of the present invention may be an apparatus for estimating the SOC of the starting battery of a vehicle that always uses current regardless of the driving mode or parking mode of the vehicle.
  • FIG. 1 is a diagram schematically showing a configuration in which an SOC estimation apparatus according to an embodiment of the present invention is provided in a battery pack.
  • an SOC estimation apparatus may include a current measurement unit 100, a voltage measurement unit 200, and a processor 400.
  • the current measuring unit 100 is electrically connected to the current sensor 30 provided on the charge / discharge path connected to the cell assembly 10 to receive an electrical signal from the current sensor 30.
  • the current measurement unit 100 may be configured to measure the charge / discharge current flowing through the charge / discharge path based on the electrical signal received from the current sensor 30.
  • the current measuring unit 100 may be electrically connected to both ends of the current sensor 30.
  • the current sensor 30 may be electrically connected between the negative terminal of the cell assembly 10 and the negative terminal of the battery pack.
  • the current measuring unit 100 may measure the voltage across the current sensor 30 and measure the charging or discharging current flowing through the charge / discharge path based on the voltage across the current sensor 30.
  • the current measurement unit 100 may measure the current flowing through the charge / discharge path using Ohm's law based on the resistance value of the current sensor 30 and the voltage across the current sensor 30.
  • the current measuring unit 100 may be electrically connected to the processor 400 to send and receive electrical signals.
  • the current measurement unit 100 repeatedly measuring the size of the charging or discharging current of the cell assembly 10 at a time interval under the control of the processor 400, and a signal indicating the magnitude of the measured current processor 400 ).
  • the current sensor 30 may be implemented using a Hall sensor or sense resistor commonly used in the art.
  • the voltage measuring unit 200 may be electrically connected to both ends of the cell assembly 10.
  • the voltage measurement unit 200 may be electrically connected to both ends of the cell assembly 10 so as to send and receive electrical signals.
  • the voltage measuring unit 200 may be configured to measure the voltage across the cell assembly 10. More specifically, the voltage measuring unit 200 may measure the voltage at both ends of the cell assembly 10 based on the electrical signals received from both ends of the cell assembly 10. In addition, the voltage measuring unit 200 may be connected to the positive terminal of the cell assembly 10 and the negative terminal of the cell assembly 10, respectively, to measure the voltage across the cell assembly 10.
  • the voltage measuring unit 200 may be electrically connected to the processor 400 to send and receive electrical signals.
  • the voltage measurement unit 200 measures the potential difference between the positive terminal of the cell assembly 10 and the negative terminal of the cell assembly 10 at a time interval under the control of the processor 400 and measures the magnitude of the measured voltage.
  • the signal indicated may be output to the processor 400.
  • the voltage measurement unit 200 may be implemented using a voltage measurement circuit generally used in the art.
  • the processor 400 may receive a discharge current value and a voltage value across the battery from the current measurement unit 100 and the voltage measurement unit 200.
  • the processor 400 is electrically connected to the current measurement unit 100 and the voltage measurement unit 200 to measure the current measurement unit 100 and the voltage measurement unit 200 ), The discharge current value of the battery and the voltage value at both ends may be received.
  • the processor 400 may measure the parking duration of the vehicle and determine the SOC estimation mode based on the parking duration.
  • the processor 400 according to an embodiment of the present invention may measure the parking duration based on the elapsed time from when the vehicle starts to start to when the vehicle restarts.
  • the processor 400 according to an embodiment of the present invention may determine the SOC estimation mode based on the parking duration and a predetermined reference time value.
  • the predetermined reference time value may be 1 hour. Then, the processor 400 may determine the SOC estimation mode based on the result of comparing the parking duration with a predetermined reference time value.
  • the processor 400 may estimate the initial SOC of the battery when the vehicle starts based on the discharge current value during the parking duration according to the determined SOC estimation mode. For example, the processor 400 may estimate the initial SOC of the battery when the vehicle starts based on the discharge current value measured during the parking duration.
  • the processor 400 corrects the voltage value at both ends of the battery based on the discharge current value when measuring the voltage at both ends of the battery according to the determined SOC estimation mode, and starts the vehicle based on the voltage value at both ends of the corrected battery.
  • the initial SOC of the battery can be estimated.
  • the processor 400 when the vehicle is parked and the vehicle starts to be ignited, wakes up at a predetermined period during the parking duration, thereby measuring the current during the wake-up 100 Based on the discharge current value measured by), the SOC of the battery can be estimated. For example, the processor 400 wakes up every 256 seconds during the parking duration to measure the discharge current value, and calculates the discharge amount for 256 seconds using Equation 1 below based on the measured discharge current value. can do.
  • C dis, sleep is the discharge amount of one cycle during the parking duration
  • I dis, T-1 is the discharge current value of the immediately preceding cycle
  • I dis, T is the discharge current value of the current cycle
  • t T is one It can be a time value of the cycle.
  • the processor 400 may perform Equation 2 below. As described above, it can be calculated that the discharge amount during one cycle of 256 seconds is 0.005689 Ah.
  • the processor 400 estimates the SOC change amount during a cycle based on the discharge current value measured by the current measurement unit 100 during wake-up, and the SOC change amount The SOC of the battery can be estimated based on.
  • the processor 400 may estimate the SOC change amount based on the discharge amount of one cycle during the parking duration using Equation 3 below.
  • ⁇ SOC T is the amount of SOC change during one cycle
  • C dis is the discharge amount of one cycle during the parking duration
  • C B can be the capacity of the battery.
  • the processor 400 corrects the SOC of the battery based on a value obtained by subtracting the SOC change amount estimated from the current period from the SOC of the battery estimated in the previous period to continue parking.
  • the SOC of the battery may be updated at every wake-up period.
  • the processor 400 may update the SOC of the battery for each wakeup period during the parking duration using Equation 4 below.
  • SOC is the SOC of the updated battery
  • SOC prev is the SOC of the battery in the immediately preceding cycle
  • ⁇ SOC T may be the amount of SOC change during one cycle.
  • the SOC estimating apparatus has the advantage of continuously estimating the SOC during the parking duration by repeatedly repeating every predetermined period (for example, every 256 seconds). .
  • the processor 400 may determine the SOC estimation mode based on a result of comparing the parking duration with a predetermined reference time value. More specifically, SOC estimation mode may include SOC correction mode and OCV estimation mode.
  • the processor 400 when the parking duration is equal to or greater than a predetermined reference time value, may determine the SOC estimation mode as the OCV estimation mode. Further, preferably, the processor 400 according to an embodiment of the present invention may determine the SOC estimation mode as the SOC correction mode when the parking duration is less than a predetermined reference time value.
  • the processor 400 may determine the SOC estimation mode as the OCV estimation mode. Also, when the parking duration is less than 1 hour, the processor 400 may determine the SOC estimation mode as the SOC correction mode.
  • the SOC correction mode may be a mode for estimating the initial SOC of the battery when the vehicle starts based on the discharge current value of the battery during the parking duration.
  • the OCV estimation mode may be a mode of estimating the initial SOC of the battery when starting the vehicle based on the corrected voltage value of both ends of the battery by correcting the voltage value of both ends of the battery based on the discharge current value of the battery.
  • the processor 400 when the SOC estimation mode is determined to be the SOC correction mode, the initial SOC of the battery when the vehicle starts based on the updated SOC of the battery every wakeup period. Can be estimated. For example, when the parking duration measured when the vehicle starts is less than 1 hour, the processor 400 may determine the SOC estimation mode as the SOC correction mode. In addition, the processor 400 may estimate the initial SOC of the battery when the vehicle starts, based on the SOC of the battery updated every 256 seconds. For example, the processor 400 may estimate the SOC of the battery updated in the previous update cycle as the initial SOC of the battery when the vehicle starts.
  • the processor 400 estimates the SOC change amount after the immediately before wake-up period based on the discharge current value at the time of starting the vehicle, and the previous wake-up period based on the SOC change amount By correcting the updated SOC of the battery, the initial SOC of the battery may be estimated when the vehicle starts based on the calibrated SOC of the battery.
  • the SOC estimation apparatus may further include a temperature measuring unit 300.
  • the temperature measuring unit 300 may measure the measurement temperature of the cell assembly 10 adjacent to the cell assembly 10.
  • the temperature measuring unit 300 may be electrically connected to the cell assembly 10 adjacent to the cell assembly 10 so as to send and receive electrical signals.
  • the temperature measurement unit 300 may be mounted on the cell assembly 10 and electrically connected to the cell assembly 10. Through such a configuration, the temperature measuring unit 300 may measure the temperature of the cell assembly 10.
  • the temperature measuring unit 300 may be mounted on an integrated circuit board of a battery management system (BMS).
  • BMS battery management system
  • the temperature measuring unit 300 may be attached on an integrated circuit board.
  • the temperature measurement unit 300 may be an NTC thermistor (Negative Temperature Coefficient thermistor) mounted in a shouldered form on an integrated circuit board.
  • NTC thermistor Negative Temperature Coefficient thermistor
  • the temperature measurement unit 300 may be electrically coupled to the processor 400 to send and receive electrical signals.
  • the temperature measurement unit 300 may repeatedly measure the temperature of the cell assembly 10 at a time interval and output a signal indicating the measured size of the temperature to the processor 400.
  • the temperature measuring unit 300 may be implemented using a thermocouple generally used in the art.
  • the processor 400 receives the temperature measurement value of the battery from the temperature measurement unit 300, and when the SOC estimation mode is determined as the OCV estimation mode, when the vehicle starts up
  • the battery's OCV can be estimated based on the measured voltage value, discharge current value, and temperature measurement value, and the initial SOC of the battery when the vehicle starts can be estimated using the SOC-OCV lookup table based on the estimated OCV.
  • the processor 400 calculates the internal resistance value of the battery based on the SOC and temperature measurement values of the battery updated in the previous wake-up period, and the calculated internal resistance value And the difference between the multiplication value of the discharge current value and the voltage value at both ends, to estimate the OCV of the battery.
  • the processor 400 may estimate the OCV of the battery using Equation 5 below and estimate the initial SOC of the battery when the vehicle starts using the SOC-OCV lookup table based on the estimated OCV. .
  • V OCV is the OCV of the battery when the vehicle starts
  • V init is the voltage value across the battery measured when the vehicle starts
  • I init is the discharge current value of the battery measured when the vehicle starts
  • R (SOC, T) is It may be the internal resistance value of the battery.
  • the SOC estimating apparatus considers that the voltage across the battery measured at vehicle start-up does not immediately use as the OCV of the battery, and the current always flows in the case of the battery for vehicle start-up. Therefore, by estimating the OCV of the battery, there is an advantage of obtaining the exact battery OCV value.
  • the SOC estimation apparatus may further include a memory device 500, as shown in the configuration of FIG. 1.
  • the memory device 500 may store information necessary for the operation of the SOC estimation apparatus according to an embodiment of the present invention in advance. Also, the memory device 500 may be electrically connected to the processor 400 so as to send and receive electrical signals. For example, the memory device 500 may store the SOC of the battery updated every wakeup period. In addition, the memory device 500 may store in advance a table of internal resistance values of a battery that takes SOC and temperature measurement values of the battery as variables. Also, the memory device 500 may store the SOC-OCV lookup table in advance.
  • the processor 400 in order to perform the above-described operation, the processor 400, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, registers, communication modems and / or data known in the art It may be implemented in a form that selectively includes a processing device.
  • ASIC application-specific integrated circuit
  • the memory device 500 is not particularly limited in its type, as long as it is a storage medium capable of recording and erasing information.
  • the memory device 500 may be a RAM, ROM, register, hard disk, optical recording medium, or magnetic recording medium.
  • the memory device 500 may also be electrically connected to the processor 400 through, for example, a data bus or the like, so that each can be accessed by the processor 400.
  • the memory device 500 may also store and / or update and / or erase and / or transmit data generated when the control logic is executed, and / or programs including various control logic performed by the processor 400, respectively. have.
  • the SOC estimation apparatus can be applied to a BMS. That is, the BMS according to the present invention may include the SOC estimation device according to the present invention described above. In this configuration, at least a part of each component of the SOC estimation apparatus according to the present invention may be implemented by supplementing or adding a function of a configuration included in a conventional BMS.
  • the processor 400 and the memory device 500 of the SOC estimation apparatus according to the present invention may be implemented as components of a battery management system (BMS).
  • BMS battery management system
  • the SOC estimation apparatus may be provided in a battery pack. That is, the battery pack according to the present invention may include the SOC estimation device according to the present invention described above.
  • the battery pack may include one or more secondary batteries, the SOC estimating device, an electronic device (including a BMS, a relay, a fuse, etc.) and a case.
  • the SOC estimation method according to an embodiment of the present invention is performed in an SOC estimation apparatus and may include a current measurement step, a voltage measurement step, and an SOC estimation step.
  • the current measurement step is a step of measuring the charge and discharge current of the battery, and may be performed by the current measurement unit 100.
  • the voltage measurement step is a step of measuring the voltage across the battery, and may be performed by the voltage measurement unit 200.
  • the SOC estimation step is a step of estimating the initial SOC of the battery based on the results measured in the current measurement step and the voltage measurement step, and may be performed by the processor 400.
  • the processor 400 may receive the discharge current value and the voltage value across the battery from the current measurement step and the voltage measurement step.
  • the processor 400 may measure the parking duration of the vehicle, and determine the SOC estimation mode based on the parking duration. For example, the processor 400 may determine the SOC estimation mode as the SOC correction mode or the OCV estimation mode.
  • the processor 400 estimates the initial SOC of the battery when starting the vehicle based on the determined discharge current value during the parking duration according to the determined SOC estimation mode, or the discharge current value when measuring the voltage across the battery.
  • the initial SOC of the battery may be estimated when the vehicle starts based on the corrected voltage value of both ends of the battery by correcting the voltage value at both ends of the battery.
  • FIG. 2 is a flowchart schematically illustrating an SOC estimation method according to an embodiment of the present invention.
  • step S100 the processor 400 may wake up.
  • the processor 400 may wake up the BMS every predetermined period.
  • the operating mode of the BMS can be switched from the sleep mode to the wake-up mode every predetermined period.
  • step S105 the processor 400 may determine whether the vehicle is started. That is, the processor 400 may determine whether it belongs to a driving mode or a parking mode based on whether the vehicle is started or not.
  • the processor 400 may determine the vehicle mode as the driving mode. Then, the method can proceed to step S120.
  • the processor 400 may determine the vehicle mode as the parking mode. Then, the method can proceed to step S110.
  • the processor 400 may receive the discharge current value measured by the current measuring unit 100.
  • the processor 400 may wake up every predetermined period during the parking duration, and receive a discharge current value measured by the current measuring unit 100 during wakeup.
  • the processor 400 may estimate the SOC change amount based on the discharge amount of one cycle during the parking duration. For example, the processor 400 may estimate the SOC change amount using Equation 1 and Equation 3.
  • the processor 400 may estimate the SOC of the battery for each wakeup period during the parking duration. For example, the processor 400 may estimate the SOC of the battery using Equation 4 above.
  • the processor 400 may update the SOC of the battery for each wakeup period during the parking duration.
  • the processor 400 may update and store the estimated SOC of the battery in the memory device every wakeup period during the parking duration.
  • step S114 the processor 400 may switch the BMS to the sleep mode.
  • the operating mode of the BMS can be switched from a wake-up mode to a sleep mode.
  • the method may return to step S100.
  • the processor 400 may measure the duration of parking.
  • the processor 400 may measure the parking duration based on the elapsed time from when the vehicle starts to start to when the vehicle restarts.
  • step S125 the processor 400 may determine whether the parking duration is 1 hour or more, which is a predetermined time value. If the result of step S125 is "YES", the method may proceed to step S130. Otherwise, the method may proceed to step S140.
  • the processor 400 may receive a voltage value at both ends of the battery when the vehicle starts, a discharge current value of the battery when the vehicle starts, and a temperature measurement value of the battery when the vehicle starts.
  • the processor 400 may estimate the OCV of the battery using Equation 5 based on the voltage value across the both ends, the discharge current value, and the temperature measurement value.
  • step S132 the processor 400 may estimate the SOC using the SOC-OCV lookup table. Subsequently, the method can proceed to step S143.
  • the processor 400 may receive the discharge current value measured by the current measuring unit 100.
  • the processor 400 may receive a discharge current value measured by the current measuring unit 100 when the vehicle starts.
  • the processor 400 may estimate the SOC change amount based on the discharge amount measured when the vehicle starts. For example, the processor 400 may estimate the SOC change amount using Equation 1 and Equation 3.
  • the processor 400 may estimate the SOC of the battery when the vehicle starts and update the SOC of the battery.
  • the processor 400 may estimate the SOC of the battery using Equation 4 above.
  • the processor 400 may output the SOC of the estimated battery as the initial SOC of the battery when the vehicle starts.
  • the processor 400 may output the initial SOC of the battery to the electric control unit (ECU) of the vehicle as an external device when the vehicle starts.
  • ECU electric control unit
  • the processor may be implemented as a set of program modules.
  • the program module may be stored in the memory device and executed by the processor.
  • the various control logics of the processor is combined, and the combined control logics are written in a computer-readable code system, so that the computer-readable accessibility is not limited.
  • the recording medium includes at least one or more selected from the group comprising ROM, RAM, registers, CD-ROM, magnetic tape, hard disk, floppy disk, and optical data recording device.
  • the code system can be distributed and stored on a networked computer and executed.
  • functional programs, codes and segments for implementing the combined control logics can be easily inferred by programmers in the art to which the present invention pertains.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 SOC 추정 장치 및 방법에 관한 것으로서, 보다 상세하게는 차량에 구비되는 SLI(Starting Lighting Ignition) 배터리의 차량 시동 시 초기 SOC를 추정하는 SOC 추정 장치 및 방법에 관한 것이다. 본 발명의 일 측면에 따르면, 차량의 주행모드 또는 주차모드와는 상관없이 항상 전류를 사용하는 차량 시동용 배터리의 초기 SOC를 정확하게 추정할 수 있는 장점이 있다.

Description

SOC 추정 장치 및 방법
본 출원은 2018년 09월 27일자로 출원된 한국 특허 출원번호 제10-2018-0114990에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 SOC 추정 장치 및 방법에 관한 것으로서, 보다 상세하게는 차량에 구비되는 SLI(Starting Lighting Ignition) 배터리의 차량 시동 시 초기 SOC를 추정하는 SOC 추정 장치 및 방법에 관한 것이다.
근래에 들어서, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
특히, 최근에는 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 미국, 유럽, 일본, 한국을 비롯하여 전 세계적으로 하이브리드 자동차와 전기 자동차에 대한 수요가 점차 증가하고 있다. 이러한 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전 에너지를 이용하여 차량 구동력을 얻기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 많은 소비자들에게 좋은 반응을 얻고 있다. 따라서, 하이브리드 자동차나 전기 자동차의 핵심적 부품인 차량용 배터리에 보다 많은 관심과 연구가 집중되고 있다.
상기와 같이 배터리는 자동차와 같은 각종 이동성 장치에 사용되는 것으로, 사용 시간에 한계가 있기 때문에 배터리의 잔존량(SOC: State Of Charge)에 대한 정확한 정보를 파악하는 것이 중요하다. 이러한 SOC는 배터리가 어느 정도의 시간만큼 사용 가능한지 가늠하는 척도가 되므로 사용자가 해당 장치를 사용하는데 있어서 매우 중요한 정보이다. 때문에 노트북이나 휴대폰, 자동차 등의 일반적인 배터리 장착 장치들은 배터리의 SOC를 추정하고 그로부터 배터리의 사용 가능 시간이나 사용 가능량 등의 정보를 파악하여 사용자에게 제공한다.
일반적으로 차량의 시동용으로 사용되는 SLI 배터리의 경우, 차량이 주차되어 있는 동안에도 전장품(예를 들어, 블랙박스)에 의하여 SLI 배터리가 지속적으로 방전될 수 있다. 이와 같은 현상으로 인하여, SLI 배터리의 차량 시동 시 초기 SOC는, 차량 시동 종료 시의 SOC와 큰 차이를 보일 수 있다.
또한, BMS(Battery Management System)는, 차량이 주차되어 차량의 시동이 종료되는 경우, 효율적인 전력 운용을 위하여 슬립모드로 전환될 수 있다. 이러한 슬립모드 상태에서, BMS는 차량 시동용 배터리의 방전 전류값을 측정할 수 없고, 그 결과 차량 시동 시 배터리의 초기 SOC를 추정함에 어려움이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 차량에 구비되는 SLI(Starting Lighting Ignition) Battery의 차량 시동 시 초기 SOC를 추정하는 개선된 SOC 추정 장치 및 방법을 제공하는 것에 목적이 있다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 SOC 추정 장치는, 차량 시동용 배터리의 SOC를 추정하는 장치로서, 상기 배터리의 방전 전류를 측정하도록 구성된 전류 측정부; 상기 배터리의 양단 전압을 측정하도록 구성된 전압 측정부; 및 상기 전류 측정부 및 상기 전압 측정부로부터 상기 배터리의 방전 전류값 및 양단 전압값을 수신하며, 차량의 주차 지속 시간을 측정하고, 상기 주차 지속 시간을 기초로 SOC 추정 모드를 판단하며, 판단된 상기 SOC 추정 모드에 따라 상기 주차 지속 시간 동안의 상기 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하거나, 상기 배터리의 양단 전압 측정시의 상기 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성된 프로세서를 포함한다.
또한, 상기 프로세서는, 상기 차량의 시동 종료 시점부터 상기 차량의 재시동 시까지의 경과 시간을 기초로 상기 주차 지속 시간을 측정하도록 구성될 수 있다.
또한, 상기 프로세서는, 상기 차량이 주차되어 상기 차량의 시동이 종료된 경우, 상기 주차 지속 시간 동안 미리 결정된 주기마다 웨이크업 하여, 웨이크업 시 상기 전류 측정부에 의해 측정된 상기 방전 전류값을 기초로 상기 배터리의 SOC를 추정하도록 구성될 수 있다.
또한, 상기 프로세서는, 웨이크업 시 상기 전류 측정부에 의해 측정된 상기 방전 전류값을 기초로 한 주기 동안의 SOC 변화량을 추정하고, 상기 SOC 변화량을 기초로 상기 배터리의 SOC를 추정하도록 구성될 수 있다.
또한, 상기 프로세서는, 직전 주기에서 추정된 배터리의 SOC에서 현재 주기에서 추정된 SOC 변화량을 뺀 값을 기초로 상기 배터리의 SOC를 보정하여, 상기 주차 지속 시간 동안의 웨이크업 주기마다 상기 배터리의 SOC를 업데이트 하도록 구성될 수 있다.
또한, 상기 프로세서는, 상기 주차 지속 시간의 미리 결정된 기준 시간값을 기초로 상기 SOC 추정 모드를 판단하며, 상기 SOC 추정 모드는, 상기 주차 지속 시간 동안의 상기 배터리의 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 SOC 보정 모드 및 상기 배터리의 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 OCV 추정 모드를 포함할 수 있다.
또한, 상기 프로세서는, 상기 주차 지속 시간이 미리 결정된 기준 시간값 미만인 경우, 상기 SOC 추정 모드를 상기 SOC 보정 모드로 판단하도록 구성될 수 있다.
또한, 상기 프로세서는, 상기 SOC 추정 모드가 상기 SOC 보정 모드로 판단되면, 웨이크업 주기마다 업데이트된 상기 배터리의 SOC를 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성될 수 있다.
또한, 상기 프로세서는, 상기 차량 시동 시의 상기 방전 전류값을 기초로 직전 웨이크업 주기 이후의 SOC 변화량을 추정하고, 상기 SOC 변화량을 기초로 직전 웨이크업 주기에서 업데이트된 상기 배터리의 SOC를 보정하여 보정된 상기 배터리의 SOC를 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성될 수 있다.
또한, 상기 프로세서는, 상기 주차 지속 시간이 미리 결정된 기준 시간값 이상인 경우, 상기 SOC 추정 모드를 상기 OCV 추정 모드로 판단하도록 구성될 수 있다.
또한, 본 발명의 일 실시예에 따른 SOC 추정 장치는, 상기 배터리의 온도를 측정하도록 구성된 온도 측정부를 더 포함할 수 있다.
또한, 상기 프로세서는, 상기 온도 측정부로부터 상기 배터리의 온도 측정값을 수신하며, 상기 SOC 추정 모드가 상기 OCV 추정 모드로 판단되면, 상기 차량의 시동 시 측정된 상기 양단 전압값, 상기 방전 전류값 및 상기 온도 측정값을 기초로 상기 배터리의 OCV를 추정하고, 추정된 상기 OCV를 기초로 SOC-OCV 룩업테이블을 이용하여 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성될 수 있다.
또한, 상기 프로세서는, 직전 웨이크업 주기에서 업데이트된 상기 배터리의 SOC와 상기 온도 측정값을 기초로 상기 배터리의 내부 저항값을 연산하고, 연산된 상기 내부 저항값 및 상기 방전 전류값의 곱셈 값과 상기 양단 전압값 사이의 차이를 기초로 상기 배터리의 OCV를 추정하도록 구성될 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 BMS는, 본 발명에 따른 SOC 추정 장치를 포함한다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 본 발명에 따른 SOC 추정 장치를 포함한다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 SOC 추정 방법은, 차량 시동용 배터리의 SOC를 추정하는 방법으로서, 상기 배터리의 충방전 전류를 측정하는 전류 측정 단계; 상기 배터리의 양단 전압을 측정하는 전압 측정 단계; 및 상기 전류 측정 단계 및 상기 전압 측정 단계로부터 상기 배터리의 방전 전류값 및 양단 전압값을 수신하며, 차량의 주차 지속 시간을 측정하고, 상기 주차 지속 시간을 기초로 SOC 추정 모드를 판단하며, 판단된 상기 SOC 추정 모드에 따라 상기 주차 지속 시간 동안의 상기 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하거나, 상기 배터리의 양단 전압 측정시의 상기 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 SOC 추정 단계를 포함한다.
본 발명의 일 측면에 따르면, 차량의 주행모드 또는 주차모드와는 상관없이 항상 전류를 사용하는 차량 시동용 배터리의 초기 SOC를 정확하게 추정할 수 있는 장점이 있다.
본 발명의 또 다른 측면에 따르면, 차량의 주차 지속 시간 동안 미리 결정된 주기 마다 계속 반복하여 차량 시동용 배터리의 SOC를 지속적으로 추정할 수 있는 장점이 있다.
본 발명의 또 다른 측면에 따르면, 차량 시동 시 측정된 배터리 양단 전압을 곧바로 배터리의 OCV로 사용하지 않고, 차량 시동용 배터리의 경우 항시 전류가 흐른다는 점을 고려하여, 차량 시동용 배터리의 OCV를 정확하게 추정할 수 있는 장점이 있다.
이외에도 본 발명은 다른 다양한 효과를 가질 수 있으며, 이러한 본 발명의 다른 효과들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 SOC 추정 장치가 배터리 팩에 구비된 구성을 개략적으로 나타내는 도면이다.
도 2는, 본 발명의 일 실시예에 따른 SOC 추정 방법을 개략적으로 나타내는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판정되는 경우에는 그 상세한 설명은 생략한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 '프로세서'와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
본 명세서에서, 이차 전지는, 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 파우치형 리튬 폴리머 셀 하나가 이차 전지로 간주될 수 있다. 또한, 본 명세서에서, 셀 어셈블리는, 직렬 및/또는 병렬로 연결된 적어도 하나 이상의 이차 전지를 포함할 수 있다.
본 발명의 일 실시예에 따른 SOC 추정 장치는, 차량에 구비된 차량 시동용 배터리의 SOC를 추정하는 장치일 수 있다. 예를 들어, 상기 차량 시동용 배터리는, 12V SLI(Starting Lighting Ignition) 배터리일 수 있다. 예를 들어, 도 1의 구성에 도시된 바와 같이, 본 발명의 일 실시예에 따른 SOC 추정 장치가 구비된 배터리는, 스타팅 모터(50)와 전기적으로 연결될 수 있다. 예를 들어, 프로세서(400)가 차량 시동 신호(예를 들어, 이그니션 신호)를 수신하는 경우, 상기 배터리는, 스타팅 모터(50)로 전력을 전달할 수 있다.
또한, 본 발명의 일 실시예에 따른 SOC 추정 장치가 구비된 배터리는, 도 1의 구성에 도시된 바와 같이, 차량 전장품(70)과 전기적으로 연결될 수 있다. 예를 들어, 상기 차량 전장품(70)은, 냉각 장치, 예열 장치, 연료 공급 장치, 조명 장치, 계기 장치 등 차량에 구비된 전장 장치일 수 있다. 예를 들어, 상기 배터리는, 차량이 주행되는 주행모드와 차량이 주차되는 주차모드에서 차량의 시동 종료와는 관계없이 차량 전장품(70)에 전력을 공급할 수 있다. 즉, 본 발명의 일 실시예에 따른 SOC 추정 장치는, 차량의 주행모드 또는 주차모드와는 상관없이 항상 전류를 사용하는 차량의 시동용 배터리의 SOC를 추정하는 장치일 수 있다.
도 1은, 본 발명의 일 실시예에 따른 SOC 추정 장치가 배터리 팩에 구비된 구성을 개략적으로 나타내는 도면이다.
도 1을 참조하면, 본 발명이 일 실시예에 따른 SOC 추정 장치는, 전류 측정부(100), 전압 측정부(200) 및 프로세서(400)를 포함할 수 있다.
상기 전류 측정부(100)는, 셀 어셈블리(10)와 연결된 충방전 경로 상에 구비된 전류 센서(30)와 전기적으로 연결되어, 전류 센서(30)로부터 전기적 신호를 수신할 수 있다. 또한, 전류 측정부(100)는, 전류 센서(30)로부터 수신한 전기적 신호를 기초로 충방전 경로를 흐르는 충방전 전류를 측정하도록 구성될 수 있다.
예를 들어, 도 1의 구성에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전류 측정부(100)는, 전류 센서(30)의 양단과 전기적으로 연결될 수 있다. 여기서, 전류 센서(30)는, 셀 어셈블리(10)의 음극 단자와 배터리 팩의 음극 단자 사이에 전기적으로 연결될 수 있다. 또한, 전류 측정부(100)는, 전류 센서(30)의 양단 전압을 측정하고, 전류 센서(30)의 양단 전압을 기초로 충방전 경로를 흐르는 충전 전류 또는 방전 전류를 측정할 수 있다. 예를 들어, 전류 측정부(100)는, 전류 센서(30)의 저항값과 전류 센서(30)의 양단 전압을 기초로 옴의 법칙을 이용하여 충방전 경로를 흐르는 전류를 측정할 수 있다.
바람직하게는, 전류 측정부(100)는, 전기적 신호를 주고 받을 수 있도록 프로세서(400)와 전기적으로 연결될 수 있다. 또한, 전류 측정부(100)는, 프로세서(400)의 통제하에 시간 간격을 두고 셀 어셈블리(10)의 충전 전류 또는 방전 전류의 크기를 반복 측정하고 측정된 전류의 크기를 나타내는 신호를 프로세서(400)로 출력할 수 있다. 예를 들어, 전류 센서(30)는, 당업계에서 일반적으로 사용되는 홀 센서 또는 센스 저항을 이용하여 구현될 수 있다.
상기 전압 측정부(200)는, 셀 어셈블리(10)의 양단과 전기적으로 연결될 수 있다. 예를 들어, 도 1의 구성에 도시된 바와 같이, 전압 측정부(200)는, 전기적 신호를 주고 받을 수 있도록 셀 어셈블리(10)의 양단과 각각 전기적으로 연결될 수 있다.
또한, 전압 측정부(200)는, 셀 어셈블리(10)의 양단 전압을 측정하도록 구성될 수 있다. 보다 구체적으로, 전압 측정부(200)는, 셀 어셈블리(10)의 양단으로부터 수신한 전기적 신호를 기초로 셀 어셈블리(10)의 양단 전압을 측정할 수 있다. 또한, 전압 측정부(200)는, 셀 어셈블리(10)의 양극 단자 및 셀 어셈블리(10)의 음극 단자와 각각 연결되어 셀 어셈블리(10)의 양단 전압을 측정할 수 있다.
바람직하게는, 전압 측정부(200)는, 전기적 신호를 주고 받을 수 있도록 프로세서(400)와 전기적으로 연결될 수 있다. 또한, 전압 측정부(200)는, 프로세서(400)의 통제 하에 시간 간격을 두고 셀 어셈블리(10)의 양극 단자와 셀 어셈블리(10)의 음극 단자 사이의 전위차를 측정하고 측정된 전압의 크기를 나타내는 신호를 프로세서(400)로 출력할 수 있다. 예를 들어, 전압 측정부(200)는, 당업계에서 일반적으로 사용되는 전압 측정 회로를 이용하여 구현될 수 있다.
상기 프로세서(400)는, 전류 측정부(100) 및 전압 측정부(200)로부터 배터리의 방전 전류값 및 양단 전압값을 수신할 수 있다. 예를 들어, 도 1의 구성에 도시된 바와 같이, 프로세서(400)는, 전류 측정부(100) 및 전압 측정부(200)와 전기적으로 연결되어 전류 측정부(100) 및 전압 측정부(200)로부터 배터리의 방전 전류값 및 양단 전압값을 수신할 수 있다.
또한, 프로세서(400)는, 차량의 주차 지속 시간을 측정하고, 주차 지속 시간을 기초로 SOC 추정 모드를 판단할 수 있다. 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 차량의 시동 종료 시점부터 차량의 재시동 시까지의 경과 시간을 기초로 주차 지속 시간을 측정할 수 있다. 또한, 본 발명의 일 실시예에 따른 프로세서(400)는, 주차 지속 시간과 미리 결정된 기준 시간값을 기초로 SOC 추정 모드를 판단할 수 있다. 예를 들어, 상기 미리 결정된 기준 시간값은 1시간 일 수 있다. 그리고, 프로세서(400)는 주차 지속 시간과 미리 결정된 기준 시간값을 비교한 결과에 기반하여, SOC 추정 모드를 판단할 수 있다.
또한, 프로세서(400)는, 판단된 SOC 추정 모드에 따라 주차 지속 시간 동안의 방전 전류값을 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 주차 지속 시간 동안 측정된 방전 전류값을 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다.
또한, 프로세서(400)는, 판단된 SOC 추정 모드에 따라 배터리의 양단 전압 측정시의 방전 전류값을 기초로 배터리의 양단 전압값을 보정하고, 보정된 배터리의 양단 전압값을 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 차량이 주차되어 차량의 시동이 종료된 경우, 주차 지속 시간 동안 미리 결정된 주기마다 웨이크업하여, 웨이크업 시 전류 측정부(100)에 의해 측정된 방전 전류값을 기초로 배터리의 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 주차 지속 시간 동안 256초마다 웨이크업하여 방전 전류값을 측정하고, 측정된 방전 전류값을 기초로 하기 수학식 1을 이용하여 256초 동안의 방전량을 연산할 수 있다.
Figure PCTKR2019012543-appb-img-000001
여기서, C dis,sleep은 주차 지속 시간 동안 한 주기의 방전량이고, I dis,T-1은 직전 주기의 방전 전류값이고, I dis,T는 현재 주기의 방전 전류값이고, t T는 한 주기의 시간값일 수 있다.
예를 들어, 직전 주기인 256초 전에 측정된 방전 전류값이 100mA이고, 현재 주기에서 측정된 방전 전류값이 60mA이고, 한 주기의 시간은 256초인 경우, 프로세서(400)는, 하기 수학식 2와 같이, 256초인 한 주기 동안의 방전량이 0.005689Ah라고 연산할 수 있다.
Figure PCTKR2019012543-appb-img-000002
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 웨이크업 시 전류 측정부(100)에 의해 측정된 방전 전류값을 기초로 한 주기 동안의 SOC 변화량을 추정하고, SOC 변화량을 기초로 배터리의 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 하기 수학식 3을 이용하여 주차 지속 시간 동안 한 주기의 방전량을 기초로 SOC 변화량을 추정할 수 있다.
Figure PCTKR2019012543-appb-img-000003
여기서, ΔSOC T는 한 주기 동안의 SOC 변화량이고, C dis,sleep은 주차 지속 시간 동안 한 주기의 방전량이고, C B는 배터리의 용량일 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 직전 주기에서 추정된 배터리의 SOC에서 현재 주기에서 추정된 SOC 변화량을 뺀 값을 기초로 배터리의 SOC를 보정하여, 주차 지속 시간 동안의 웨이크업 주기마다 배터리의 SOC를 업데이트할 수 있다. 예를 들어, 프로세서(400)는, 하기 수학식 4를 이용하여 주차 지속 시간 동안의 웨이크업 주기마다 배터리의 SOC를 업데이트할 수 있다.
Figure PCTKR2019012543-appb-img-000004
여기서, SOC는 업데이트된 배터리의 SOC이고, SOC prev는 직전 주기의 배터리의 SOC이고, ΔSOC T는 한 주기 동안의 SOC 변화량일 수 있다.
이와 같은 구성을 통해 본 발명의 일 실시예에 따른 SOC 추정 장치는, 미리 결정된 주기 마다(예를 들어, 256초마다) 계속 반복하여 주차 지속 시간 동안의 SOC를 지속적으로 추정할 수 있는 장점이 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 주차 지속 시간과 미리 결정된 기준 시간값을 비교한 결과에 기초하여 SOC 추정 모드를 판단할 수 있다. 보다 구체적으로, SOC 추정 모드는, SOC 보정 모드 및 OCV 추정 모드를 포함할 수 있다.
바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 주차 지속 시간이 미리 결정된 기준 시간값 이상인 경우, SOC 추정 모드를 OCV 추정 모드로 판단할 수 있다. 또한, 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 주차 지속 시간이 미리 결정된 기준 시간값 미만인 경우, SOC 추정 모드를 SOC 보정 모드로 판단할 수 있다.
예를 들어, 프로세서(400)는, 주차 지속 시간이 1시간 이상인 경우, SOC 추정 모드를 OCV 추정 모드로 결정할 수 있다. 또한, 프로세서(400)는, 주차 지속 시간이 1시간 미만인 경우, SOC 추정 모드를 SOC 보정 모드로 결정할 수 있다.
상기 SOC 보정 모드는, 주차 지속 시간 동안의 배터리의 방전 전류값을 기초로 차량 시동 시 배터리의 초기 SOC를 추정하는 모드일 수 있다.
상기 OCV 추정 모드는, 배터리의 방전 전류값을 기초로 배터리의 양단 전압값을 보정하여 보정된 배터리의 양단 전압값을 기초로 차량 시동 시 배터리의 초기 SOC를 추정하는 모드일 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, SOC 추정 모드가 SOC 보정 모드로 판단되면, 웨이크업 주기마다 업데이트된 배터리의 SOC를 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 차량 시동 시 측정된 주차 지속 시간이 1시간 미만인 경우, SOC 추정 모드를 SOC 보정 모드로 판단할 수 있다. 또한, 프로세서(400)는, 256초 마다 업데이트된 배터리의 SOC를 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 직전 업데이트 주기에서 업데이트된 배터리의 SOC를 차량 시동 시 배터리의 초기 SOC로 추정할 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 차량 시동 시의 방전 전류값을 기초로 직전 웨이크업 주기 이후의 SOC 변화량을 추정하고, SOC 변화량을 기초로 직전 웨이크업 주기에서 업데이트된 배터리의 SOC를 보정하여 보정된 배터리의 SOC를 기초로 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 SOC 추정 장치는, 도 1의 구성에 도시된 바와 같이, 온도 측정부(300)를 더 포함할 수 있다.
상기 온도 측정부(300)는, 셀 어셈블리(10)에 인접하여 셀 어셈블리(10)의 측정 온도를 측정할 수 있다. 또한, 온도 측정부(300)는, 전기적 신호를 주고 받을 수 있도록 셀 어셈블리(10)에 인접하여 셀 어셈블리(10)와 전기적으로 연결될 수 있다. 또는, 온도 측정부(300)는, 셀 어셈블리(10)에 장착되어 셀 어셈블리(10)와 전기적으로 연결될 수 있다. 이와 같은 구성을 통해, 온도 측정부(300)는, 셀 어셈블리(10)의 온도를 측정할 수 있다.
바람직하게는, 상기 온도 측정부(300)는, BMS(Battery Management System)의 집적 회로 기판 상에 장착될 수 있다. 특히, 온도 측정부(300)는, 집적 회로 기판 상에 부착될 수 있다. 이를 테면, 온도 측정부(300)는 집적 회로 기판 상에 숄더링된 형태로 장착되는 NTC 써미스터(Negative Temperature Coefficient thermistor)일 수 있다.
바람직하게는, 온도 측정부(300)는, 전기적 신호를 주고 받을 수 있도록 프로세서(400)와 전기적으로 결합할 수 있다. 또한, 온도 측정부(300)는, 시간 간격을 두고 셀 어셈블리(10)의 온도를 반복 측정하고 측정된 온도의 크기를 나타내는 신호를 프로세서(400)로 출력할 수 있다. 예를 들어, 온도 측정부(300)는, 당업계에서 일반적으로 사용되는 열전대(thermocouple)를 이용하여 구현될 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 온도 측정부(300)로부터 배터리의 온도 측정값을 수신하며, SOC 추정 모드가 OCV 추정 모드로 판단되면, 차량의 시동 시 측정된 양단 전압값, 방전 전류값 및 온도 측정값을 기초로 배터리의 OCV를 추정하고, 추정된 OCV를 기초로 SOC-OCV 룩업테이블을 이용하여 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다.
더욱 바람직하게는, 본 발명의 일 실시예에 따른 프로세서(400)는, 직전 웨이크업 주기에서 업데이트된 배터리의 SOC와 온도 측정값을 기초로 배터리의 내부 저항값을 연산하고, 연산된 내부 저항값 및 방전 전류값의 곱셈 값과 양단 전압값 사이의 차이를 기초로 배터리의 OCV를 추정할 수 있다. 예를 들어, 프로세서(400)는, 하기 수학식 5를 이용하여 배터리의 OCV를 추정하고, 추정된 OCV를 기초로 SOC-OCV 룩업테이블을 이용하여 차량 시동 시 배터리의 초기 SOC를 추정할 수 있다.
Figure PCTKR2019012543-appb-img-000005
여기서, V OCV는 차량 시동 시 배터리의 OCV이고, V init는 차량 시동 시 측정된 배터리의 양단 전압값이고, I init는 차량 시동 시 측정된 배터리의 방전 전류값이고, R (SOC, T)는 배터리의 내부 저항값일 수 있다.
이와 같은 구성을 통해 본 발명의 일 실시예에 따른 SOC 추정 장치는, 차량 시동 시 측정된 배터리 양단 전압을 곧바로 배터리의 OCV로 사용하지 않고, 차량 시동용 배터리의 경우 항시 전류가 흐른다는 점을 고려하여, 배터리의 OCV를 추정함으로써 정확한 배터리의 OCV값을 구할 수 있는 장점이 있다.
바람직하게는, 본 발명의 일 실시예에 따른 SOC 추정 장치는, 도 1의 구성에 도시된 바와 같이, 메모리 디바이스(500)를 더 포함할 수 있다.
상기 메모리 디바이스(500)는, 본 발명의 일 실시예에 따른 SOC 추정 장치의 동작에 필요한 정보를 미리 저장할 수 있다. 또한, 메모리 디바이스(500)는, 전기적 신호를 주고 받을 수 있도록 프로세서(400)와 전기적으로 연결될 수 있다. 예를 들어, 메모리 디바이스(500)는, 웨이크업 주기마다 업데이트된 배터리의 SOC를 저장할 수 있다. 또한, 메모리 디바이스(500)는, 배터리의 SOC와 온도 측정값을 변수로 하는 배터리의 내부 저항값 테이블을 미리 저장할 수 있다. 또한, 메모리 디바이스(500)는, SOC-OCV 룩업테이블을 미리 저장할 수 있다.
한편, 프로세서(400)는, 상술한 바와 같은 동작을 수행하기 위해, 당업계에 알려진 프로세서(400), ASIC(Application-Specific Integrated Circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀 및/또는 데이터 처리 장치 등을 선택적으로 포함하는 형태로 구현될 수 있다.
한편, 메모리 디바이스(500)는, 정보를 기록하고 소거할 수 있는 저장 매체라면 그 종류에 특별한 제한이 없다. 예를 들어, 메모리 디바이스(500)는, RAM, ROM, 레지스터, 하드디스크, 광기록 매체 또는 자기기록 매체일 수 있다. 메모리 디바이스(500)는, 또한 프로세서(400)에 의해 각각 접근이 가능하도록 예컨대 데이터 버스 등을 통해 프로세서(400)와 각각 전기적으로 연결될 수 있다. 메모리 디바이스(500)는, 또한 프로세서(400)가 각각 수행하는 각종 제어 로직을 포함하는 프로그램, 및/또는 제어 로직이 실행될 때 발생되는 데이터를 저장 및/또는 갱신 및/또는 소거 및/또는 전송할 수 있다.
본 발명에 따른 SOC 추정 장치는, BMS에 적용될 수 있다. 즉, 본 발명에 따른 BMS는, 상술한 본 발명에 따른 SOC 추정 장치를 포함할 수 있다. 이러한 구성에 있어서, 본 발명에 따른 SOC 추정 장치의 각 구성요소 중 적어도 일부는, 종래 BMS에 포함된 구성의 기능을 보완하거나 추가함으로써 구현될 수 있다. 예를 들어, 본 발명에 따른 SOC 추정 장치의 프로세서(400) 및 메모리 디바이스(500)는, BMS(Battery Management System)의 구성요소로서 구현될 수 있다.
또한, 본 발명에 따른 SOC 추정 장치는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 본 발명에 따른 SOC 추정 장치를 포함할 수 있다. 여기서, 배터리 팩은, 하나 이상의 이차 전지, 상기 SOC 추정 장치, 전장품(BMS나 릴레이, 퓨즈 등 구비) 및 케이스 등을 포함할 수 있다.
본 발명의 일 실시예에 따른 SOC 추정 방법은 SOC 추정 장치에서 수행되는 것으로서, 전류 측정 단계, 전압 측정 단계 및 SOC 추정 단계를 포함할 수 있다.
전류 측정 단계는 배터리의 충방전 전류를 측정하는 단계로서, 전류 측정부(100)에 의해 수행될 수 있다.
전압 측정 단계는 상기 배터리의 양단 전압을 측정하는 단계로서, 전압 측정부(200)에 의해 수행될 수 있다.
SOC 추정 단계는 상기 전류 측정 단계 및 상기 전압 측정 단계에서 측정된 결과에 기반하여 상기 배터리의 초기 SOC를 추정하는 단계로서, 프로세서(400)에 의해 수행될 수 있다.
구체적으로, SOC 추정 단계에서 프로세서(400)는, 상기 전류 측정 단계 및 상기 전압 측정 단계로부터 상기 배터리의 방전 전류값 및 양단 전압값을 수신하할 수 있다.
그리고, 프로세서(400)는 차량의 주차 지속 시간을 측정하고, 상기 주차 지속 시간을 기초로 SOC 추정 모드를 판단할 수 있다. 예컨대, 프로세서(400)는 SOC 추정 모드를 SOC 보정 모드 또는 OCV 추정 모드로 판단할 수 있다.
프로세서(400)는 판단된 상기 SOC 추정 모드에 따라 상기 주차 지속 시간 동안의 상기 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하거나, 상기 배터리의 양단 전압 측정시의 상기 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정할 수 있다.
SOC 추정 방법에 대한 구체적인 내용은 도 2의 실시예를 참조하여 설명한다.
도 2는, 본 발명의 일 실시예에 따른 SOC 추정 방법을 개략적으로 나타내는 순서도이다.
단계 S100에서, 프로세서(400)는, 웨이크업할 수 있다. 예를 들어, 프로세서(400)는, 미리 결정된 주기마다 BMS를 웨이크업할 수 있다. 이 경우, BMS의 작동 모드는, 슬립모드에서 미리 결정된 주기마다 웨이크업모드로 전환될 수 있다.
이어서, 단계 S105에서, 프로세서(400)는, 차량의 시동이 켜졌는지 판단할 수 있다. 즉, 프로세서(400)는, 차량의 시동이 켜졌는지 여부를 기초로 주행모드와 주차모드 중 어느 모드에 속하는지 여부를 판단할 수 있다. 단계 S105에서 차량의 시동이 켜진 경우, 프로세서(400)는, 차량의 모드를 주행모드로 판단할 수 있다. 그리고, 본 방법은, 단계 S120으로 진행할 수 있다. 또한, 단계 S105에서 차량의 시동이 꺼져있는 경우, 프로세서(400)는, 차량의 모드를 주차모드로 판단할 수 있다. 그리고, 본 방법은, 단계 S110으로 진행할 수 있다.
이어서, 단계 S110에서, 프로세서(400)는, 전류 측정부(100)에 의해 측정된 방전 전류값을 수신할 수 있다. 예를 들어, 프로세서(400)는, 주차 지속 시간 동안 미리 결정된 주기마다 웨이크업 하여, 웨이크업 시 전류 측정부(100)에 의해 측정된 방전 전류값을 수신할 수 있다.
이어서, 단계 S111에서, 프로세서(400)는, 주차 지속 시간 동안 한 주기의 방전량을 기초로 SOC 변화량을 추정할 수 있다. 예를 들어, 프로세서(400)는, 상기 수학식 1 및 상기 수학식 3을 이용하여 SOC 변화량을 추정할 수 있다.
이어서, 단계 S112에서, 프로세서(400)는, 주차 지속 시간 동안의 웨이크업 주기마다 배터리의 SOC를 추정할 수 있다. 예를 들어, 프로세서(400)는, 상기 수학식 4를 이용하여 배터리의 SOC를 추정할 수 있다.
이어서, 단계 S113에서, 프로세서(400)는, 주차 지속 시간 동안의 웨이크업 주기마다 배터리의 SOC를 업데이트할 수 있다. 예를 들어, 프로세서(400)는, 주차 지속 시간 동안의 웨이크업 주기마다 추정된 배터리의 SOC를 메모리 디바이스에 업데이트하여 저장할 수 있다.
이어서, 단계 S114에서, 프로세서(400)는, BMS를 슬립모드로 전환 할 수 있다. 이 경우, BMS의 작동 모드는, 웨이크업모드에서 슬립모드로 전환될 수 있다. 이어서, 본 방법은 단계 S100으로 되돌아 갈 수 있다.
또한, 단계 S120에서, 프로세서(400)는, 주차 지속 시간을 측정할 수 있다. 예를 들어, 프로세서(400)는, 차량의 시동 종료 시점부터 차량의 재시동 시까지의 경과 시간을 기초로 주차 지속 시간을 측정할 수 있다.
이어서, 단계 S125에서, 프로세서(400)는, 주차 지속 시간이 미리 결정된 시간값인 1시간 이상인지 여부를 판단할 수 있다. 단계 S125의 결과가 "YES"이면, 본 방법은 단계 S130으로 진행할 수 있다. 그렇지 않으면, 본 방법은 단계 S140으로 진행할 수 있다.
이어서, 단계 S130에서, 프로세서(400)는, 차량 시동 시의 배터리의 양단 전압값, 차량 시동 시의 배터리의 방전 전류값, 차량 시동 시의 배터리의 온도 측정값을 수신할 수 있다.
이어서, 단계 S131에서, 프로세서(400)는, 상기 양단 전압값, 상기 방전 전류값 및 상기 온도 측정값을 기초로 상기 수학식 5를 이용하여 배터리의 OCV를 추정할 수 있다.
이어서, 단계 S132에서, 프로세서(400)는, SOC-OCV 룩업테이블을 이용하여 SOC를 추정할 수 있다. 이어서, 본 방법은, 단계 S143으로 진행할 수 있다.
또한, 단계 S140에서, 프로세서(400)는, 전류 측정부(100)에 의해 측정된 방전 전류값을 수신할 수 있다. 예를 들어, 프로세서(400)는, 차량 시동 시 전류 측정부(100)에 의해 측정된 방전 전류값을 수신할 수 있다.
이어서, 단계 S141에서, 프로세서(400)는, 차량 시동 시 측정된 방전량을 기초로 SOC 변화량을 추정할 수 있다. 예를 들어, 프로세서(400)는, 상기 수학식 1 및 상기 수학식 3을 이용하여 SOC 변화량을 추정할 수 있다.
이어서, 단계 S142에서, 프로세서(400)는, 차량 시동 시 배터리의 SOC를 추정하고 배터리의 SOC를 업데이트 할 수 있다. 예를 들어, 프로세서(400)는, 상기 수학식 4를 이용하여 배터리의 SOC를 추정할 수 있다.
이어서, 단계 S143에서, 프로세서(400)는, 추정된 배터리의 SOC를 차량 시동 시 배터리의 초기 SOC로 출력할 수 있다. 예를 들어, 프로세서(400)는, 차량 시동 시 배터리의 초기 SOC를 외부 장치인 차량의 ECU(Electric Control Unit)로 출력할 수 있다.
또한, 상기 제어 로직이 소프트웨어로 구현될 때, 프로세서는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리 장치에 저장되고 프로세서에 의해 실행될 수 있다.
또한, 프로세서의 다양한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 기록 매체는, ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다. 또한, 상기 코드 체계는 네트워크로 연결된 컴퓨터에 분산되어 저장되고 실행될 수 있다. 또한, 상기 조합된 제어 로직들을 구현하기 위한 기능적인 프로그램, 코드 및 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
(부호의 설명)
10: 셀 어셈블리
50: 스타팅 모터
30: 전류 센서
70: 차량 전장품
100: 전류 측정부
200: 전압 측정부
300: 온도 측정부
400: 프로세서
500: 메모리 디바이스

Claims (15)

  1. 차량 시동용 배터리의 SOC를 추정하는 장치에 있어서,
    상기 배터리의 방전 전류를 측정하도록 구성된 전류 측정부;
    상기 배터리의 양단 전압을 측정하도록 구성된 전압 측정부; 및
    상기 전류 측정부 및 상기 전압 측정부로부터 상기 배터리의 방전 전류값 및 양단 전압값을 수신하며, 차량의 주차 지속 시간을 측정하고, 상기 주차 지속 시간을 기초로 SOC 추정 모드를 판단하며, 판단된 상기 SOC 추정 모드에 따라 상기 주차 지속 시간 동안의 상기 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하거나, 상기 배터리의 양단 전압 측정시의 상기 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성된 프로세서를 포함하는 것을 특징으로 하는 SOC 추정 장치.
  2. 제1항에 있어서,
    상기 프로세서는, 상기 차량의 시동 종료 시점부터 상기 차량의 재시동 시까지의 경과 시간을 기초로 상기 주차 지속 시간을 측정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  3. 제1항에 있어서,
    상기 프로세서는, 상기 차량이 주차되어 상기 차량의 시동이 종료된 경우, 상기 주차 지속 시간 동안 미리 결정된 주기마다 웨이크업하여, 웨이크업 시 상기 전류 측정부에 의해 측정된 상기 방전 전류값을 기초로 상기 배터리의 SOC를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  4. 제3항에 있어서,
    상기 프로세서는, 웨이크업 시 상기 전류 측정부에 의해 측정된 상기 방전 전류값을 기초로 한 주기 동안의 SOC 변화량을 추정하고, 상기 SOC 변화량을 기초로 상기 배터리의 SOC를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  5. 제4항에 있어서,
    상기 프로세서는, 직전 주기에서 추정된 배터리의 SOC에서 현재 주기에서 추정된 SOC 변화량을 뺀 값을 기초로 상기 배터리의 SOC를 보정하여, 상기 주차 지속 시간 동안의 웨이크업 주기마다 상기 배터리의 SOC를 업데이트하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  6. 제5항에 있어서,
    상기 프로세서는, 상기 주차 지속 시간과 미리 결정된 기준 시간값을 기초로 상기 SOC 추정 모드를 판단하며,
    상기 SOC 추정 모드는, 상기 주차 지속 시간 동안의 상기 배터리의 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 SOC 보정 모드 및 상기 배터리의 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 OCV 추정 모드를 포함하는 것을 특징으로 하는 SOC 추정 장치.
  7. 제6항에 있어서,
    상기 프로세서는, 상기 주차 지속 시간이 미리 결정된 기준 시간값 미만인 경우, 상기 SOC 추정 모드를 상기 SOC 보정 모드로 판단하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  8. 제7항에 있어서,
    상기 프로세서는, 상기 SOC 추정 모드가 상기 SOC 보정 모드로 판단되면, 웨이크업 주기마다 업데이트된 상기 배터리의 SOC를 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  9. 제8항에 있어서,
    상기 프로세서는, 상기 차량 시동 시의 상기 방전 전류값을 기초로 직전 웨이크업 주기 이후의 SOC 변화량을 추정하고, 상기 SOC 변화량을 기초로 직전 웨이크업 주기에서 업데이트된 상기 배터리의 SOC를 보정하여 보정된 상기 배터리의 SOC를 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  10. 제6항에 있어서,
    상기 프로세서는, 상기 주차 지속 시간이 미리 결정된 기준 시간값 이상인 경우, 상기 SOC 추정 모드를 상기 OCV 추정 모드로 판단하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  11. 제10항에 있어서,
    상기 배터리의 온도를 측정하도록 구성된 온도 측정부를 더 포함하는 것을 특징으로 하는 SOC 추정 장치.
  12. 제11항에 있어서,
    상기 프로세서는, 상기 온도 측정부로부터 상기 배터리의 온도 측정값을 수신하며, 상기 SOC 추정 모드가 상기 OCV 추정 모드로 판단되면, 상기 차량의 시동 시 측정된 상기 양단 전압값, 상기 방전 전류값 및 상기 온도 측정값을 기초로 상기 배터리의 OCV를 추정하고, 추정된 상기 OCV를 기초로 SOC-OCV 룩업테이블을 이용하여 차량 시동 시 상기 배터리의 초기 SOC를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  13. 제12항에 있어서,
    상기 프로세서는, 직전 웨이크업 주기에서 업데이트된 상기 배터리의 SOC와 상기 온도 측정값을 기초로 상기 배터리의 내부 저항값을 연산하고, 연산된 상기 내부 저항값 및 상기 방전 전류값의 곱셈 값과 상기 양단 전압값 사이의 차이를 기초로 상기 배터리의 OCV를 추정하도록 구성된 것을 특징으로 하는 SOC 추정 장치.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 SOC 추정 장치를 포함하는 배터리 팩.
  15. 차량 시동용 배터리의 SOC를 추정하는 방법에 있어서,
    상기 배터리의 충방전 전류를 측정하는 전류 측정 단계;
    상기 배터리의 양단 전압을 측정하는 전압 측정 단계; 및
    상기 전류 측정 단계 및 상기 전압 측정 단계로부터 상기 배터리의 방전 전류값 및 양단 전압값을 수신하며, 차량의 주차 지속 시간을 측정하고, 상기 주차 지속 시간을 기초로 SOC 추정 모드를 판단하며, 판단된 상기 SOC 추정 모드에 따라 상기 주차 지속 시간 동안의 상기 방전 전류값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하거나, 상기 배터리의 양단 전압 측정시의 상기 방전 전류값을 기초로 상기 배터리의 양단 전압값을 보정하여 보정된 상기 배터리의 양단 전압값을 기초로 차량 시동 시 상기 배터리의 초기 SOC를 추정하는 SOC 추정 단계를 포함하는 것을 특징으로 하는 SOC 추정 방법.
PCT/KR2019/012543 2018-09-27 2019-09-26 Soc 추정 장치 및 방법 WO2020067741A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/964,132 US20210033678A1 (en) 2018-09-27 2019-09-26 Apparatus and method for estimating soc
CN201980008725.6A CN111655534B (zh) 2018-09-27 2019-09-26 用于估计soc的装置和方法
JP2020539716A JP6989087B2 (ja) 2018-09-27 2019-09-26 Soc推定装置及び方法
EP19865502.9A EP3756937B1 (en) 2018-09-27 2019-09-26 Apparatus and method for estimating soc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0114990 2018-09-27
KR1020180114990A KR102424295B1 (ko) 2018-09-27 2018-09-27 Soc 추정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2020067741A1 true WO2020067741A1 (ko) 2020-04-02

Family

ID=69950701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012543 WO2020067741A1 (ko) 2018-09-27 2019-09-26 Soc 추정 장치 및 방법

Country Status (6)

Country Link
US (1) US20210033678A1 (ko)
EP (1) EP3756937B1 (ko)
JP (1) JP6989087B2 (ko)
KR (1) KR102424295B1 (ko)
CN (1) CN111655534B (ko)
WO (1) WO2020067741A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
CN113060047B (zh) * 2021-04-28 2023-04-07 雅迪科技集团有限公司 电动车电池监测方法、装置、电子设备及存储介质
KR20240031660A (ko) 2022-09-01 2024-03-08 경북대학교 산학협력단 온도에 따르는 리튬 이온 배터리의 신경망 기반 충전상태 추정장치 및 방법
WO2024136225A1 (ko) * 2022-12-22 2024-06-27 주식회사 엘지에너지솔루션 배터리 데이터 관리 장치 및 그것의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325263A (ja) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd 電池の自己放電量検出装置
KR20110087569A (ko) * 2010-01-26 2011-08-03 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
KR20130015499A (ko) * 2011-08-03 2013-02-14 전자부품연구원 차량 배터리 잔존용량 추정 시스템 및 그 방법
KR20150126208A (ko) * 2014-05-02 2015-11-11 삼성에스디아이 주식회사 배터리 관리 장치
JP2018146416A (ja) * 2017-03-07 2018-09-20 株式会社Gsユアサ 電気化学素子の管理装置
KR20180114990A (ko) 2017-04-12 2018-10-22 이원기 [고구마튀김 샌드위치]

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642185B2 (ja) * 2000-06-16 2011-03-02 ソニー株式会社 バッテリーパック
US6876175B2 (en) * 2001-06-29 2005-04-05 Robert Bosch Gmbh Methods for determining the charge state and/or the power capacity of charge store
JP4304923B2 (ja) * 2002-06-17 2009-07-29 トヨタ自動車株式会社 二次電池の残存容量推定装置および残存容量推定方法
JP5077513B2 (ja) * 2005-12-26 2012-11-21 スズキ株式会社 車両用バッテリの開放電圧推定装置
JP2007269051A (ja) * 2006-03-30 2007-10-18 Auto Network Gijutsu Kenkyusho:Kk バッテリ状態管理装置
JP4715760B2 (ja) * 2006-07-28 2011-07-06 株式会社デンソー マイクロコンピュータ及び制御システム
US7545109B2 (en) * 2006-12-22 2009-06-09 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an electrical energy storage device
JP5163739B2 (ja) * 2008-03-28 2013-03-13 新神戸電機株式会社 電池状態検知システムおよびこれを備えた自動車
CN101966820B (zh) * 2010-08-26 2013-06-12 清华大学 一种自适应修正的锂离子电池荷电状态在线监控方法
US9054528B2 (en) * 2010-12-22 2015-06-09 Atmel Corporation Event system and timekeeping for battery management and protection system
CN102381210A (zh) * 2011-10-28 2012-03-21 清华大学 锂离子电池管理系统和方法
JP6155781B2 (ja) * 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
JP5874577B2 (ja) * 2012-08-09 2016-03-02 株式会社デンソー 組電池制御装置
JP6499075B2 (ja) * 2013-07-15 2019-04-10 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
JP6174146B2 (ja) * 2013-07-24 2017-08-02 日立オートモティブシステムズ株式会社 電池システム監視装置
US9108524B2 (en) * 2013-10-22 2015-08-18 GM Global Technology Operations LLC Battery SOC estimation with automatic correction
CN104977544B (zh) * 2015-07-10 2018-06-15 重庆长安汽车股份有限公司 纯电动汽车用电池组剩余可用能量的估算方法和装置
JP6769046B2 (ja) * 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法
CN106154176B (zh) * 2016-07-01 2019-06-04 宁德时代新能源科技股份有限公司 一种电池 soc 的检测方法及装置
JP6648709B2 (ja) * 2017-02-01 2020-02-14 トヨタ自動車株式会社 電池モジュールの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325263A (ja) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd 電池の自己放電量検出装置
KR20110087569A (ko) * 2010-01-26 2011-08-03 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
KR20130015499A (ko) * 2011-08-03 2013-02-14 전자부품연구원 차량 배터리 잔존용량 추정 시스템 및 그 방법
KR20150126208A (ko) * 2014-05-02 2015-11-11 삼성에스디아이 주식회사 배터리 관리 장치
JP2018146416A (ja) * 2017-03-07 2018-09-20 株式会社Gsユアサ 電気化学素子の管理装置
KR20180114990A (ko) 2017-04-12 2018-10-22 이원기 [고구마튀김 샌드위치]

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3756937A4

Also Published As

Publication number Publication date
EP3756937A1 (en) 2020-12-30
EP3756937B1 (en) 2024-04-17
US20210033678A1 (en) 2021-02-04
CN111655534B (zh) 2023-11-17
KR102424295B1 (ko) 2022-07-21
EP3756937A4 (en) 2021-06-02
CN111655534A (zh) 2020-09-11
KR20200035644A (ko) 2020-04-06
JP2021511505A (ja) 2021-05-06
JP6989087B2 (ja) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2020067741A1 (ko) Soc 추정 장치 및 방법
WO2013137672A1 (ko) 배터리 상태 추정 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2019050330A1 (ko) 배터리 충전 상태 추정 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
KR101041124B1 (ko) 배터리 관리 시스템 및 그 구동 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치
KR20070045135A (ko) 2차 전지의 충전 상태를 검출하기 위한 장치
JP2004271434A (ja) 二次電池の残存容量推定装置、二次電池の残存容量推定方法、および二次電池の残存容量推定方法による処理をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
WO2019199057A1 (ko) 배터리 진단 장치 및 방법
WO2019093627A1 (ko) 배터리 온도 추정 장치 및 방법
WO2019107976A1 (ko) 배터리 팩
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2015056846A1 (ko) 이차전지의 충전량 유지 장치 및 방법
WO2019124877A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템
WO2020080802A1 (ko) 배터리 모듈 밸런싱 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2019107982A1 (ko) 배터리 팩
WO2019107978A1 (ko) 배터리 팩
WO2019156403A1 (ko) 이차 전지 상태 추정 장치 및 방법
WO2019245215A1 (ko) 전류 측정 장치, 전류 측정 방법 및 상기 전류 측정 장치를 포함하는 배터리 팩
WO2021118312A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2020153625A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539716

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019865502

Country of ref document: EP

Effective date: 20200924

NENP Non-entry into the national phase

Ref country code: DE