WO2020067482A1 - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
WO2020067482A1
WO2020067482A1 PCT/JP2019/038284 JP2019038284W WO2020067482A1 WO 2020067482 A1 WO2020067482 A1 WO 2020067482A1 JP 2019038284 W JP2019038284 W JP 2019038284W WO 2020067482 A1 WO2020067482 A1 WO 2020067482A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotating electric
voltage
current
torque
Prior art date
Application number
PCT/JP2019/038284
Other languages
English (en)
French (fr)
Inventor
滝川由浩
波多野龍
大嶋篤哉
谷山善大
久富夏規
小野田将紀
渡邉一史
▲高▼木賢太郎
池亀透
Original Assignee
アイシン・エィ・ダブリュ株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, 国立大学法人名古屋大学 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2020067482A1 publication Critical patent/WO2020067482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to a rotating electric machine control device having a vibration damping function for reducing transmitted torque vibration, which is torque vibration transmitted to a rotating shaft of a permanent magnet type AC rotating electric machine.
  • Japanese Patent Application Laid-Open No. 2012-200128 discloses a control device that outputs to a rotating electric machine a torque for canceling torque vibration transmitted from a mechanical system to which the rotating electric machine is drivingly connected to a rotating shaft of the rotating electric machine.
  • a rotation speed vibration corresponding to the frequency of the torque vibration is extracted from the rotation speed of the rotating electric machine, and a torque vibration frequency that is the frequency of the torque vibration is calculated based on the rotation speed of the rotating electric machine.
  • the control device calculates a phase-lag rotation speed vibration obtained by delaying the rotation speed vibration by a predetermined phase at the torque vibration frequency based on the rotation speed vibration and the torque vibration frequency, and calculates a vibration suppression torque (a command value of the canceling torque vibration). ) Is calculated.
  • this method there is a problem that sufficient vibration damping performance cannot be obtained in the vicinity of a resonance point where a phase delay is remarkable with respect to a change in the rotation speed (angular speed) of the rotating electric machine.
  • the rotating electrical machine control device includes, as one aspect, a vibration damping function that reduces a transmission torque vibration that is a torque vibration transmitted to a rotating shaft of a permanent magnet type AC rotating electrical machine, and generates a permanent magnet.
  • a rotating electric machine control device for controlling the rotating electric machine in a dq-axis vector coordinate system of a d-axis which is a direction of a magnetic field to be applied and a q-axis orthogonal to the d-axis, wherein each of the d-axis and the q-axis
  • a feedback controller that calculates a voltage command for the rotating electric machine and performs feedback control on the rotating electric machine, and damps the transmission torque vibration based on a back electromotive force of the rotating electric machine generated by the transmission torque vibration.
  • the gain of the feedback controller of the q-axis is set so as to calculate the voltage command that outputs the following.
  • ⁇ ⁇ Transmission torque vibration which is vibration due to disturbance, causes a back electromotive force in the rotating electric machine.
  • the gain of the q-axis feedback controller is set such that a voltage command for outputting a damping torque for attenuating the transmission torque vibration is calculated based on the back electromotive force. That is, the vibration damping function can be incorporated in the feedback controller. That is, according to this configuration, a vibration damping function for reducing transmission torque vibration transmitted to the rotating electric machine can be appropriately incorporated in the rotating electric machine control device that controls the rotating electric machine.
  • FIG. 2 is a schematic block diagram illustrating a configuration example of a rotating electrical machine control device that performs vector control Block diagram schematically showing a configuration example of a current control unit Block diagram schematically showing another configuration example of the current control unit. Block diagram schematically showing another configuration example of the current control unit. Block diagram schematically showing another configuration example of the current control unit.
  • Block diagram schematically showing a comparative example of the current control unit Block diagram schematically showing a comparative example of the current control unit Block diagram schematically showing the principle of proportional integral control
  • Equivalent circuit diagram schematically showing the principle of the electromagnetic shunt circuit A block diagram schematically illustrating a configuration example of a non-interference voltage control unit. Illustration of the specifications of the low-pass filter in the non-interference voltage control unit Block diagram schematically showing another configuration example of the current control unit.
  • the rotating electric machine 80 is drivingly connected to the wheels W via a power transmission device such as a transmission 90 (TA).
  • a transmission 90 TA
  • an internal combustion engine 70 (EG) is drivingly connected to the rotating electric machine 80 is illustrated. That is, for example, the vehicle drive device 100 is drivingly connected to the internal combustion engine 70, the rotating electric machine 80, the transmission 90, and the wheels W in the order of the power transmission path.
  • the internal combustion engine 70 and the rotary electric machine 80 are connected via a clutch 75, and the state where the internal combustion engine 70 and the rotary electric machine 80 are drivingly connected and the internal combustion engine 70 and the rotary electric machine 80 are disconnected. State.
  • the wheels W are driven by a state driven by the torque of the rotating electric machine 80, a state driven by the torque of the internal combustion engine 70 and the torque of the rotating electric machine 80, and a state driven by the torque of the internal combustion engine 70.
  • the rotating electric machine 80 is driven to rotate by the torque of the internal combustion engine 70, so that the rotating electric machine 80 can perform a regenerative operation by the torque of the internal combustion engine 70.
  • the internal combustion engine 70 is controlled by the internal combustion engine control device 71 (EG-CTRL), and the transmission 90 is controlled by the transmission control device 91 (TA-CTRL).
  • the rotating electric machine 80 is controlled by the rotating electric machine control device 10.
  • the rotating electric machine control device 10, the internal combustion engine control device 71, and the transmission control device 91 are respectively controlled based on commands (control commands based on torque, running speed, gear ratio, etc.) from the vehicle control device 20 (VHC-CTRL). Control the device.
  • the rotating electric machine 80 is drivingly connected to wheels W via a power transmission device such as a transmission 90 (TA), and the rotating shaft of the rotating electric machine 80 is It receives the disturbance torque Tn (see FIG. 3 and the like).
  • This disturbance torque Tn corresponds to torque vibration (transmitted torque vibration) transmitted to the rotating shaft of rotating electric machine 80.
  • the rotating electrical machine control device 10 also has a vibration damping function for reducing such disturbance torque Tn. That is, the rotating electrical machine control device 10 has a vibration damping function of reducing transmission torque vibration (disturbance torque Tn), which is torque vibration transmitted to the rotating shaft of the permanent magnet type AC rotating electrical machine 80.
  • the driving of the rotating electric machine 80 is controlled in a dq-axis vector coordinate system of a d-axis which is a direction of a magnetic field generated by the permanent magnet and a q-axis orthogonal to the d-axis.
  • the rotating electrical machine control device 10 includes a torque control unit 11, a current control unit 12, an inverter control unit 13, and a current feedback unit 14.
  • the torque control unit 11 calculates a current command I * (Id * , Iq * ) based on a command (for example, a torque command T * (target torque)) from the vehicle control device 20.
  • the current control unit 12 calculates a voltage command V * (Vd * , Vq * ) based on a deviation between the current command I * and a feedback current I (Id, Iq) described later.
  • the current control unit 12 is configured with the feedback controller 1 (FB) as a core.
  • the inverter control unit 13 performs coordinate conversion from the dq-axis vector coordinate system to the three-phase coordinate system of the rotating electric machine 80 to generate a switching signal of a switching element included in the inverter 30.
  • the current feedback unit 14 performs coordinate conversion on three-phase currents (currents in a three-phase coordinate system: Iu, Iv, Iw) flowing through a three-phase stator coil 81 (coil) of the rotating electric machine 80, and performs dq-axis vector coordinate system coordinate conversion.
  • the current current in the vector coordinate system: I (Id, Iq)
  • the three-phase currents (Iu, Iv, Iw) are detected by the current sensor 85.
  • the rotation (rotation angle (mechanical angle and electrical angle), rotation speed) of the rotor of the rotating electric machine 80 for coordinate conversion is detected by a rotation sensor 87 such as a resolver. Since the vector control is well known, a detailed description will be omitted.
  • the rotating electrical machine control device 10 of the present embodiment has a vibration damping function of reducing transmitted torque vibration (disturbance torque Tn).
  • This vibration suppression function is incorporated in the current control unit 12.
  • the block diagram of FIG. 3 shows an example of the configuration of the current control unit 12 with a focus on the relationship between the models (8, 9) of the vehicle drive device 100 including the rotating electric machine 80 and the current control unit 12.
  • Reference numeral “8” is an electric system model 8 (MG (ELE)) of the rotating electric machine 80
  • reference numeral “9” is a mechanical system model 9 (MECH) of the vehicle drive device 100 including the rotating electric machine 80.
  • the disturbance torque Tn is added to the torque T output based on the electric system model 8 of the rotating electric machine 80, and the rotating shaft is rotated via the mechanical system model 9.
  • the current control unit 12 includes a feedback controller 1 (FB), a non-interference voltage compensator 2 (DCPL), and a feedforward control unit 5.
  • FB feedback controller 1
  • DCPL non-interference voltage compensator 2
  • feedforward control unit 5 includes a feedforward voltage compensator 3 and a current command regulator 4. This embodiment is more suitable than the general current controller 12P shown in the block diagram of FIG. 7 as a comparative example so that (A) the feedback controller 1 (proportional-integral controller) can obtain a damping function.
  • the current control unit 12 does not include the feedforward control unit 5 but includes a feedback controller 1 and a non-interference voltage compensator 2 as illustrated in FIG. Is also good.
  • the feedback controller 1 is appropriately adjusted so as to obtain the damping function
  • the non-interference voltage compensator 2 has the damping function. The difference is that they are properly adjusted to obtain
  • a general current control unit 12P having no vibration suppression function includes the non-interference voltage compensator 2, but as illustrated in FIG. In some cases, the general current control unit 12P does not include the non-interference voltage compensator 2. In the case where such a current control unit 12P is provided with a vibration suppression function, the current control unit 12 does not include the non-interference voltage compensator 2 and the feedforward control unit 5, and as shown in FIG. It may be configured to include the feedback controller 1 appropriately adjusted so as to obtain the vibration function. That is, this embodiment is different from the comparative example of FIG. 8 in that (A) the feedback controller 1 is appropriately adjusted so as to obtain the vibration damping function.
  • the current controller 12 may include the feedback controller 1 and the feedforward controller 5 without the non-interference voltage compensator 2 as shown in FIG.
  • (A) the feedback controller 1 is appropriately adjusted so as to obtain a vibration damping function with respect to the comparative example of FIG. 5 is provided.
  • FIG. 9 illustrates the principle of the feedback controller 1.
  • a block diagram of the feedback controller 1 having the vibration damping function is shown, and the voltage command V * given to the electric system model 8 of the rotating electric machine 80 includes an induced voltage (disturbance voltage) based on the disturbance torque Tn. Vn) will be added.
  • the description will be made without distinguishing between the d-axis and the q-axis.
  • the proportional gain in the feedback controller 1 configured as a proportional-integral controller is K P
  • the integral gain is K I
  • the transfer function of the proportional controller (proportional calculator) is “1”
  • the integral controller integral controller
  • the voltage command V * calculated by the feedback controller 1 is represented by the following equation (1). Note that "I * -I” indicates a deviation between the current command I * and the feedback current I.
  • V * (I * -I) (K P + (1 / s) K I) ⁇ (1)
  • V * ⁇ K P ⁇ I ⁇ (1 / s) K I ⁇ I (2)
  • FIG. 10 is an equivalent circuit diagram showing the principle of the electromagnetic shunt circuit.
  • the electric system model 8 of the rotating electric machine 80 has an impedance represented as a series circuit of the coil resistance Ra and the coil inductance La of the stator coil 81.
  • an AC current “I” flows through the electric system model 8 (stator coil 81)
  • the phase of the voltage across the coil inductance La is delayed with respect to the voltage across the coil resistance Ra, and a phase difference occurs.
  • an alternating current flows through the series circuit of the resistor and the capacitance, the voltage at both ends of the capacitance leads the phase of the voltage at both ends of the resistor.
  • the inductance and the capacitance in the circuit, preferably by causing the inductance and the capacitance to resonate, the above-described phase delay and advance can be canceled. That is, the vibration can be reduced to reduce the vibration (see Equation (4) below for the resonance frequency (vibration suppression frequency)).
  • the impedance of the electromagnetic shunt circuit 7 shown in FIG. 10 is the impedance of a series circuit of a resistor (shunt resistor Rs) and a capacitor (shunt capacitance Cs).
  • the voltage drop (shunt voltage Vs) by the electromagnetic shunt circuit 7 is expressed by the following equation (3).
  • the second term on the right side of the following equation (3) is the time integral of the current “I”.
  • the time integral of the current “I” is Laplace transformed. And expressed as a transfer function “1 / s”.
  • the proportional gain K P of the feedback controller 1 corresponds to the shunt resistor Rs
  • the integral gain K I corresponds to the inverse of the shunt capacitance Cs.
  • the shunt resistance Rs in the above-described electromagnetic shunt circuit 7 has a very small value or a negative value. Often. In the case of an RC shunt such as the electromagnetic shunt circuit 7, the shunt capacitance Cs also has a large value. Therefore, it is not practical to use a shunt circuit using a physical resistor or capacitor because the element itself does not have a negative resistance component and the capacitor becomes large.
  • a virtual electromagnetic shunt circuit (virtual impedance circuit)
  • more appropriate parameters shunt resistance Rs and shunt capacitance Cs
  • the virtual impedance circuit is connected to an actual shunt circuit that has the same impedance as the virtual impedance circuit by outputting the voltage in the shunt circuit by using a voltage amplifier instead of arranging passive elements such as resistors and capacitors. That's how it was done.
  • a virtual electromagnetic shunt circuit or a voltage based on the virtual impedance or the like
  • vibration suppression using a shunt circuit having more appropriate parameters is performed. Control becomes possible.
  • no technology has been established for incorporating such a virtual electromagnetic shunt circuit into the rotating electric machine control device 10 that drives and controls the AC rotating electric machine 80 in vector control.
  • the inventors have found that by incorporating a virtual electromagnetic shunt circuit into the feedback controller 1, the rotating electric machine control device 10 having a vibration damping function for the disturbance torque Tn can be realized. Although details will be described later, feedback control is performed so as to calculate a voltage command V * for outputting a vibration damping torque for attenuating the disturbance torque Tn based on a back electromotive force of the rotating electric machine 80 generated by the disturbance torque Tn (transmitted torque vibration).
  • a vibration damping function can be incorporated in the rotating electrical machine control device 10.
  • the proportional gain K P of the feedback controller 1 configured as a proportional-integral controller is changed by the shunt in the virtual electromagnetic shunt circuit 7. set based on the resistance Rs, the integral gain K I by setting based on the inverse of the shunt capacitance Cs in a virtual electromagnetic shunt circuit 7, it is possible to incorporate a virtual electromagnetic shunt circuit to a feedback controller 1 .
  • the integral gain K I for damping control is sufficiently smaller than the integral gain in the torque control of the general rotary electric machine.
  • the shunt resistance Rs is the real part of the impedance of the virtual electromagnetic shunt circuit 7, and the reciprocal of the shunt capacitance Cs is the imaginary part of the impedance of the virtual electromagnetic shunt circuit 7. Therefore, the feedback controller 1 of the present embodiment gains based on the impedance of the virtual electromagnetic shunt circuit 7 having the inductance (coil inductance La) of the rotating electric machine 80 and the capacitance (shunt capacitance Cs) forming a series resonance circuit. Is set.
  • the shunt resistance Rs often has a very small value or a negative value. For this reason, when actually forming a shunt circuit, the shunt resistor Rs may be set to zero (short circuit). For this reason, the feedback controller 1 may be configured such that the gain is set based on at least the impedance due to the shunt capacitance Cs.
  • the shunt resistance Rs (gain) also has the following meaning.
  • the shunt resistance Rs is a negative value (in the case of “Rs ⁇ 0”)
  • power can be consumed to generate a damping torque
  • the vibration damping torque can be increased as compared with.
  • regeneration energy recovery
  • the value of the shunt capacitance Cs is represented by the following equation (4), where the inductance of the rotating electric machine 80 is “L”, and the vibration suppression frequency which is the frequency of the target disturbance torque Tn (frequency of vibration suppression torque) is “fr”. ).
  • the feedback controller 1 includes the proportional gain K P and the integral gain K based on the impedance of the virtual electromagnetic shunt circuit 7. I is set. That is, in any of these rotary electric machine control devices 10, the internal configuration of the feedback controller 1 is different from the internal configuration of the feedback controller 1P in the rotary electric machine control device of the comparative example shown in FIGS. The feedback controller 1 is appropriately adjusted so as to obtain a vibration damping function.
  • the feedback controller 1 is configured as a proportional-integral controller.
  • a proportional integral derivative controller PID
  • the "proportional-integral controller” in the case where "the proportional-integral controller is appropriately adjusted so as to obtain the vibration suppression function" may include the "proportional-integral-differential controller".
  • the rotating electrical machine control device 10 calculates the voltage command V * for the rotating electrical machine 80 based on the deviation between the current command I * for the rotating electrical machine 80 and the feedback current I from the rotating electrical machine 80, and performs feedback control of the rotating electrical machine 80.
  • the d-axis and the q-axis are independently calculated.
  • the induced electromotive force (induced voltage) accompanying the rotation of the rotating electric machine 80 mutually affects (interferes) between the d-axis and the q-axis.
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • the q-axis interferes with the d-axis voltage Vd including the induced voltage.
  • the d-axis interferes with the q-axis voltage Vq.
  • the magnetic flux of the permanent magnet (the number of interlinkage magnetic fluxes) is ⁇
  • the rotation speed (electrical angular velocity) of the rotor is ⁇
  • the d-axis inductance is Ld
  • the q-axis inductance is Lq
  • the d-axis current is Id
  • the q-axis current is Iq
  • the resistance of the stator coil 81 is Ra
  • the differential operator is p.
  • Vd (Ra + pLd) Id- ⁇ LqIq (5)
  • Vq (Ra + pLq) Iq + ⁇ LdId + ⁇ ⁇ ⁇ (6)
  • the second term on the right side of Expressions (5) and (6) indicates the induced voltage due to the inductance (Ld, Lq) of the stator coil 81 and the current (Id, Iq) flowing through the stator coil 81. This shows that the voltage interferes with the voltages (Vd, Vq) on different axes in the d-axis and the q-axis. For this reason, the induced voltage of the second term on the right side of Expressions (5) and (6) is a control target in the first non-interference control described later.
  • the third term on the right side of the equation (6) indicates an induced voltage due to electromagnetic induction generated between the permanent magnet of the rotor and the stator coil 81. For this reason, the induced voltage of the third term on the right side of Expression (6) is a control target in the second non-interference control described later.
  • Equations (5) and (6) mean that the current “Id, Iq” flowing through the rotating electric machine 80 is determined by applying the voltage “Vd, Vq” to the rotating electric machine 80 (the inverter 30). ing.
  • a voltage (target voltage) given to the rotating electric machine 80 is “Vd, Vq” in order to supply a desired current (target current) to the rotating electric machine 80
  • the target voltage “Vd, Vq” is expressed by the following equation ( 7) and equation (8) (see FIG. 11).
  • Vd Vd_dcpl1 + Vd_pid (7)
  • Vq Vq_dcpl1 + Vq_dcpl2 + Vq_pid (8)
  • the first decoupling control control is performed to remove the component corresponding to the second term on the right side of the above equations (5) and (6) and to eliminate the interference between the d-axis and the q-axis.
  • decoupling for removing induced voltage between the stator coils 81 of a plurality of phases is performed.
  • the first decoupling control is executed by the d-axis decoupling controller 21 and the q-axis first decoupling controller 22 shown in FIG. Equation (9) shows the d-axis decoupling controller 21, and equation (10) shows the q-axis first decoupling controller 22.
  • Vd_dcpl1 ⁇ LqIq (9)
  • Vq_dcpl1 ⁇ LdId (10)
  • the second decoupling control a component corresponding to the third term on the right side of the above equation (6) is removed. That is, in the second decoupling control, control is performed to attenuate an induced voltage due to electromagnetic induction generated between the permanent magnet of the rotating electric machine 80 and the stator coil 81.
  • the second decoupling control is executed by the q-axis second decoupling controller 23 shown in FIG. Equation (11) shows the q-axis second decoupling controller 23.
  • Vq_dcpl2 ⁇ ⁇ ⁇ (11)
  • the induced voltage due to the electromagnetic induction generated between the permanent magnet of the rotating electric machine 80 and the stator coil 81 includes the disturbance voltage Vn based on the disturbance torque Tn. Therefore, if the q-axis voltage (q-axis current) is compensated for all of the induced voltages, the vibration suppression function of performing feedback control so as to output a torque that cancels the disturbance torque Tn is hindered. Therefore, when the current control unit 12 includes the non-interference voltage compensator 2 (in the case of the embodiment shown in FIGS. 3 and 4), induction by electromagnetic induction generated between the permanent magnet of the rotating electric machine 80 and the stator coil 81.
  • non-interference voltage compensation is not performed on the induced voltage caused by the disturbance torque Tn, and non-interference voltage compensation is performed only on the induced voltage caused by the rotation of the rotor based on the voltage command V * (rotation by the steady control). Is preferred.
  • the frequency (angular speed [rad / s]) of the disturbance torque Tn to be damped is higher than the rotational speed (angular speed) of the rotor.
  • the rotating shaft of the rotating electric machine 80 may be rotated by the driving force of the internal combustion engine 70.
  • the disturbance torque is, for example, a torque for accelerating the vehicle, and is not a torque to be damped.
  • the rotational speed (angular speed) based on the torque by the internal combustion engine 70 is also lower than the frequency (angular speed) of the disturbance torque Tn to be damped.
  • the induced voltage for performing the non-interference voltage compensation and the induced voltage for not performing the non-interference voltage compensation are separated from each other by the torque that is not the vibration suppression target. It is preferable to perform non-interference voltage compensation only on the induced voltage based on the rotation of the rotating shaft.
  • the second decoupling control is executed by the low-pass filter 24 (LPF) and the q-axis second decoupling controller 23 shown in FIG.
  • the right side of the following equation (12) is provided with a filter (FILT) for the angular velocity ⁇ , and the second decoupling is appropriately performed by the low-pass filter 24 (LPF) and the q-axis second decoupling controller 23. This indicates that the control is executed.
  • FILT filter
  • LPF low-pass filter 24
  • FIG. 12 shows the frequency characteristics (angular velocity characteristics) of the disturbance torque Tn to be damped and the filter characteristics of the filter set in the non-interference voltage compensator 2.
  • a filter (low-pass) that sets a frequency (angular velocity) sufficiently far from the center frequency Fn of the disturbance torque Tn to be damped to a frequency (angular velocity) sufficiently low with respect to the center frequency Fn in the present embodiment (cut-off frequency Fc) Filter) is preferably set in the non-interference voltage compensator 2.
  • the decoupling voltage compensator 2 includes a controller (q-axis second decoupling controller 23) for realizing at least the second decoupling control, and further includes a controller between the permanent magnet of the rotor and the stator coil 81.
  • a controller q-axis second decoupling controller 23 for realizing at least the second decoupling control
  • a controller between the permanent magnet of the rotor and the stator coil 81.
  • the induced voltage on the high frequency side (steady rotation component) is canceled out, and the induced voltage on the high frequency side (vibration component) is not canceled, so that the induced voltage on the high frequency side to be damped is fed back. .
  • the vibration component is not fed back, and the damping control cannot be performed.
  • the non-interference voltage compensator 2 includes such a low-pass filter, when the rotating speed of the rotating electric machine 80 changes (for example, when the rotating electric machine accelerates), even when the induced voltage changes according to the acceleration, Appropriate voltage compensation can be performed.
  • the induced voltage due to the disturbance torque Tn to be damped is cut off or attenuated by the low-pass filter, so that voltage compensation is not performed and vibration can be appropriately damped by the electromagnetic shunt function.
  • the non-interference voltage compensator 2 includes: Decoupling is performed at frequencies lower than the cutoff frequency Fc lower than the frequency (center frequency Fn) of the disturbance torque Tn (transmitted torque vibration) to be damped, and decoupling is not performed at frequencies higher than the cutoff frequency Fc. It is preferable to provide the low-pass filter 24 as described above.
  • the feedforward control unit 5 controls the feedback controller 1 so that the voltage command provided to the controller at the subsequent stage of the feedback controller 1 becomes a voltage command corresponding to a change in the current command I * (I ** ). Compensate the output voltage command V * . That is, the feedforward control unit 5 applies the current command I * (I ** ) to the feedback of the feedback controller 1 so as to complement the reduction in the gain of the feedback controller 1 which is reduced by incorporating the virtual electromagnetic shunt circuit into the feedback controller 1. Based on this, the voltage command V * output from the feedback controller 1 is compensated.
  • the feedforward control unit 5 includes a feedforward voltage compensator 3 and a current command adjuster 4.
  • the feedforward voltage compensator 3 is configured using a model of a control target (a model (a transfer function “P”) defining a current flowing with respect to an applied voltage). Since the compensation target by the feedforward voltage compensator 3 is a voltage, it is necessary to define a voltage that needs to be applied to a flowing current. Therefore, the feedforward voltage compensator 3 uses the reciprocal “P ⁇ 1 ” of the model to be controlled.
  • the control targets are “electric system model 8 (MG (ELE)) of rotating electric machine 80”, “mechanical system model 9 (MECH) of vehicle drive device 100”, and “non-interference voltage compensator”. 2P (DCPL) "(see FIG. 7). That is, the model to be controlled is a transfer function model from the voltage command “V * ” to the motor current “I”, and “P ⁇ 1 ” is the reciprocal thereof.
  • the transfer function of the feedforward voltage compensator 3 is proper.
  • “the transfer function is proper” means that when the transfer function is expressed by a fraction, “the order of the numerator ⁇ the order of the denominator” is satisfied.
  • the reference model is a controller having a transfer function “M” such that the transfer function “P ⁇ 1 M” of the feedforward voltage compensator 3 becomes proper. That is, the transfer function of the feedforward voltage compensator 3 is made proper by taking the product of the transfer function “M” of the reference model and the reciprocal “P ⁇ 1 ” of the transfer function “P” of the model to be controlled. .
  • the current command I * input to the feedback controller 1 has also passed the reference model.
  • the current command adjuster 4 has a reference model, and adjusts the current command I * input to the feedback controller 1. 3 and 6, the current command on the input side is indicated by “I ** " and the current on the output side (the side of the feedback controller 1) in order to distinguish the current command before and after the current command regulator 4. The command is indicated by "I * ".
  • the feedback controller 1 having the proportional-integral controller gives priority to the vibration suppression control, and the normal torque control of the rotating electric machine 80 is compensated by the feedforward control unit 5.
  • a feedback control unit (vibration control) for vibration suppression control including a proportional-integral controller (PI_s) for vibration suppression control.
  • the vibration control feedback control unit 1s) and the torque control feedback control unit (torque control feedback control unit 1t) including a proportional-integral controller (PI_t) for normal torque control are provided in parallel. You may.
  • the current command I * is input to the input side of each feedback control unit (1s, 1t) via an independent filter (FLT_t, FLT_s).
  • a torque control filter (FLT_t) in front of the proportional-integral controller (PI_t) for torque control is a low-pass filter
  • the filters (FLT_t, FLT_s) are not limited to the low-pass filter and the high-pass filter, and may be band-pass filters.
  • the rotating electrical machine control device 10 capable of performing vibration suppression control using the virtual electromagnetic shunt circuit 7. That is, the gain of the q-axis feedback controller 1 is set so as to calculate a voltage command V * that outputs a damping torque for attenuating the disturbance torque Tn based on the back electromotive force of the rotating electric machine 80 generated by the disturbance torque Tn. Accordingly, the vibration damping function for reducing the disturbance torque Tn transmitted to the rotating electric machine 80 can be appropriately incorporated in the rotating electric machine control device 10.
  • the gain of the q-axis feedback controller 1 is set so as to calculate a voltage command V * that outputs a damping torque for attenuating the disturbance torque Tn based on the back electromotive force of the rotating electric machine 80 generated by the disturbance torque Tn. Accordingly, the vibration damping function for reducing the disturbance torque Tn transmitted to the rotating electric machine 80 can be appropriately incorporated in the rotating electric machine control device 10.
  • a permanent magnet type multi-phase alternating current (in this embodiment, three-phase alternating current) rotating electric machine used in the vehicle drive device 100 as a driving force source for the vehicle wheels W.
  • the rotating electric machine control device 10 having the control target 80 has been described as an example, the rotating electric machine 80 to be controlled is not limited to this.
  • the rotating electrical machine control device 10 can control an AC rotating electrical machine widely used in today's industrial field, such as an air conditioner and a generator.
  • a direction of a magnetic field generated by the permanent magnet which has a vibration damping function for reducing a transmission torque vibration (Tn) that is a torque vibration transmitted to a rotating shaft of a permanent magnet type AC rotating electric machine (80).
  • the rotating electrical machine control device (10) that drives and controls the rotating electrical machine (80) in a dq-axis vector coordinate system of a d-axis and a q-axis orthogonal to the d-axis is a d-axis and a q-axis.
  • the gain of the clock controller (1) is set.
  • Transmission torque vibration (Tn) which is vibration due to disturbance, causes a back electromotive force in the rotating electric machine (80).
  • the q-axis feedback controller (1) is calculated based on the back electromotive force so that the voltage command (V * ) for outputting the damping torque for attenuating the transmission torque vibration (Tn) is calculated. ) Is set. That is, the vibration damping function can be incorporated in the feedback controller (1). That is, according to this configuration, the rotating electric machine control device (10) that controls the rotating electric machine (80) appropriately has the vibration damping function of reducing the transmission torque vibration (Tn) transmitted to the rotating electric machine (80). Can be incorporated.
  • the feedback controller of the q-axis is used. It is preferable that the gain of (1) is set.
  • the voltage drop due to the capacitance (Cs) is represented by the time integral of the current (I).
  • the feedback controller (1) often includes an integrator. Therefore, by setting the gain of the feedback controller (1) that calculates the voltage command (V * ) based on the impedance of the virtual electromagnetic shunt circuit (7), the virtual electromagnetic shunt circuit (7) is fed back.
  • the vibration suppression function of reducing the transmission torque vibration (Tn) transmitted to the rotating electric machine (80) can be appropriately incorporated in the rotating electric machine control device (10).
  • the electromagnetic shunt circuit (7) is formed by a series circuit of a shunt resistor and a shunt capacitor.
  • the resistance value of the shunt resistor is Rs
  • the capacitance of the shunt capacitor is Cs
  • the proportional gain is Rs. It is preferable that the gain is set based on 1 / Cs.
  • the voltage drop (Vs) of the electromagnetic shunt circuit (7) is represented by the voltage drop at the shunt resistor and the voltage drop by the shunt capacitor.
  • the voltage drop due to the shunt resistor is proportional to the current (I) flowing through the shunt resistor, and the voltage drop due to the shunt capacitor is represented by the time integral of the current (I).
  • the feedback controller (1) is often configured as a proportional-integral controller, and has a proportional unit and an integrator as controllers (arithmetic units).
  • the proportional gain (K P ) of the feedback controller (1) that calculates the voltage command (V * ) is set based on the resistance value (Rs) of the shunt resistor, and the integral gain (K K) of the feedback controller (1) is set.
  • I the proportional gain (K P ) of the feedback controller (1) that calculates the voltage command (V * ) is set based on the resistance value (Rs) of the shunt resistor
  • K K integral gain
  • the rotating electric machine control device (10) calculates a deviation between a current command (I * ) based on a target torque (T * ) of the rotating electric machine (80) and a feedback current (I) from the rotating electric machine (80).
  • a current control unit (12) that calculates the voltage command (V * ) based on the current control unit is provided, and the current control unit (12) includes the feedback controller (1).
  • the difference between the current command (I * ) indicating an ideal current flowing through the rotating electric machine (80) and the feedback current (I) that is the current actually flowing through the rotating electric machine (80) is obtained. Since the feedback controller (1) calculates the voltage command (V * ) so as to be smaller, the rotating electric machine (80) can be appropriately controlled.
  • the current control unit (12) includes a feedforward control unit (5) that compensates for the voltage command (V * ) output from the feedback controller (1) based on the current command (I * ). It is preferable to provide.
  • the gain of the feedback controller (1) is set so that the damping torque is output, the gain may be reduced and the controllability may be reduced.
  • the feedforward control unit (5) compensates for the voltage command (V * ) according to the change in the current command (I * ), so that the followability of the feedback controller (1) is reduced.
  • an appropriate voltage command (V * ) can be provided to a controller subsequent to the feedback controller (1).
  • the feedforward control unit (5) includes a feedforward voltage compensator (3) that calculates a compensation voltage to be added to the voltage command (V * ) output from the feedback controller (1).
  • the feedforward voltage compensator (3) includes the voltage command (V * )
  • a controller having a transfer function of a reciprocal (P ⁇ 1 ) of a transfer function (P) of a control system model from the current to the current (I) flowing through the rotating electric machine (80); and a feedforward voltage compensator (3).
  • the current command adjuster (4) preferably corrects the current command (I * ) by the reference model. is there.
  • the feedforward voltage compensator (3) is configured using a model of a control target (a model defining a current flowing with respect to an applied voltage, a transfer function (P)).
  • a model of a control target a model defining a current flowing with respect to an applied voltage, a transfer function (P)
  • P transfer function
  • the compensation target by the feedforward voltage compensator (3) is a voltage
  • the transfer function of the feedforward voltage compensator (3) must be proper (when the transfer function is expressed as a fraction, “order of the numerator ⁇ order of the denominator”). Is preferred.
  • the feedforward voltage compensator 3 includes a controller (reference model) having a transfer function (M) such that its own transfer function “P ⁇ 1 M” is proper. Also, considering the balance between the voltage calculated by the feedforward voltage compensator (3) and the voltage calculated by the feedback controller (1), the current command (I * ) input to the feedback controller (1) ) Is also preferably passed through a reference model having a transfer function (M). That is, by configuring the feedforward control unit (5) as described above, it is possible to configure the rotating electrical machine control device (10) capable of performing stable control.
  • the rotating electric machine control device (10) calculates a deviation between a current command (I * ) based on a target torque (T * ) of the rotating electric machine (80) and a feedback current (I) from the rotating electric machine (80).
  • a feedback control unit for torque control (1t) that calculates the voltage command (V * ) based on the feedback control unit and a feedback control unit for vibration suppression control (1s) including the feedback controller (1) are provided. is there.
  • the rotating electrical machine control device (10) includes a non-interference voltage compensator (10) for reducing interference voltage induced by electromagnetic induction generated between the permanent magnet and the coil (81) of the rotating electrical machine (80). 2), and the non-interference voltage compensator (2) performs the non-interference at a frequency lower than a cutoff frequency (Fc) lower than a frequency (Fn) of the transmission torque vibration (Tn) to be damped.
  • a low-pass filter is provided so that the decoupling is not performed at frequencies equal to or higher than the cutoff frequency (Fc).
  • non-interference may be performed to reduce an induced voltage due to electromagnetic induction generated between the permanent magnet of the rotating electric machine (80) and the coil (81).
  • the induced voltage includes not only a voltage generated by rotating the rotor while the rotating electric machine (80) is steadily controlled, but also a voltage generated by transmission torque vibration (Tn) to be damped. Therefore, if all of the induced voltages are made non-interfering, the transmission torque vibration (Tn) to be damped is not fed back, which also affects the damping function.
  • the frequency band is different between the induced voltage due to the transmission torque vibration (Tn) to be damped and the induced voltage accompanying the rotation of the rotating electric machine (80) based on the voltage command (V * ).
  • the control device (10) can appropriately perform decoupling and also perform vibration suppression control.

Abstract

回転電機を制御する回転電機制御装置に、当該回転電機に伝達される伝達トルク振動を低減させる制振機能を適切に組み込む技術を提供する。dq軸ベクトル座標系において回転電機(80)を駆動制御する回転電機制御装置(10)は、d軸及びq軸のそれぞれにおいて、回転電機(80)に対する電圧指令(V)を演算して回転電機(80)をフィードバック制御するフィードバック制御器(1)を備え、伝達トルク振動(Tn)により生じる回転電機(80)の逆起電力に基づいて伝達トルク振動(Tn)を減衰させる制振トルクを出力する電圧指令(V)を演算するように、q軸のフィードバック制御器(1)のゲインが設定されている。

Description

回転電機制御装置
 本発明は、永久磁石型の交流の回転電機の回転軸に伝達されるトルク振動である伝達トルク振動を低減させる制振機能を備えた回転電機制御装置に関する。
 特開2012-200128号公報には、回転電機が駆動連結される機械系から回転電機の回転軸に伝達されるトルク振動を打ち消すためのトルクを回転電機に出力させる制御装置が開示されている。この制御装置では、回転電機の回転速度から、トルク振動の周波数に対応した回転速度振動を抽出すると共に、回転電機の回転速度に基づいてトルク振動の周波数であるトルク振動周波数を算出している。そして、この制御装置は、回転速度振動及びトルク振動周波数に基づいて、回転速度振動をトルク振動周波数において所定位相遅らせた位相遅れ回転速度振動を算出して、制振トルク(打ち消しトルク振動の指令値)を演算している。この手法では、回転電機の回転速度(角速度)の変化に対して位相遅れが顕著となる共振点付近における制振性能が充分に得られないという課題がある。
 そのような共振点領域において高い制振性能を得られる手法が、高木賢太郎らによる論文「ディジタル仮想インピーダンス回路を用いた電磁シャント制振」において提案されている。この論文には、ばね・質量と電磁アクチュエータからなる系の支配方程式を導出して、コンピュータ上における仮想的なディジタルインピーダンス回路を用いて制振制御を行う手法が記載されている。この電磁アクチュエータは、永久磁石とコイルから構成され、コイルに電流が流れることで可動部を可動させるローレンツ力を生じ、逆に可動部の移動速度に応じてコイルに誘導起電力を生じさせるものである。但し、この論文の序文(1.はじめに)にも記載されているように、この論文では、高度な振動制御系設計に進む前の段階として、インピーダンス回路を模擬する場合を検討している。従って、ディジタル仮想インピーダンス回路(仮想的な電磁シャント回路)を用いた制振技術を、電動車両やエアコンディショナー、発電機など、今日の産業分野において広く用いられている交流の回転電機(例えば永久磁石型同期モータ(PMSM:Permanent Magnet Synchronous Motor))に対して、そのまま適用できるというものではない。
特開2012-200128号公報
高木賢太郎(TAKAGI Kentaro)、井上剛志(INOUE Tsuyoshi)、宮地智也(MIYACHI Tomoya)"ディジタル仮想インピーダンス回路を用いた電磁シャント制振(Electro-Magnetic Shunt Damping with a Digital Virtual Impedance Circuit)"、日本機械学会論文集(C編)、日本機械学会、2012年2月、78巻、786号、論文No.2011-JCR-0693、p.126-140(p.474-488)
 上記背景に鑑みて、回転電機を制御する回転電機制御装置に、当該回転電機に伝達される伝達トルク振動を低減させる制振機能を適切に組み込む技術の提供が望まれる。
 上記に鑑みた回転電機制御装置は、1つの態様として、永久磁石型の交流の回転電機の回転軸に伝達されるトルク振動である伝達トルク振動を低減させる制振機能を備え、永久磁石が発生する磁界の方向であるd軸と前記d軸に直交するq軸とのdq軸ベクトル座標系において前記回転電機を駆動制御する回転電機制御装置であって、前記d軸及び前記q軸のそれぞれにおいて、前記回転電機に対する電圧指令を演算して前記回転電機をフィードバック制御するフィードバック制御器を備え、前記伝達トルク振動により生じる前記回転電機の逆起電力に基づいて前記伝達トルク振動を減衰させる制振トルクを出力する前記電圧指令を演算するように、前記q軸の前記フィードバック制御器のゲインが設定されている。
 外乱による振動である伝達トルク振動は回転電機に逆起電力を生じさせる。本構成によれば、この逆起電力に基づいて、伝達トルク振動を減衰させる制振トルクを出力する電圧指令が演算されるように、q軸のフィードバック制御器のゲインが設定される。つまり、制振機能をフィードバック制御器に組み込むことができる。即ち、本構成によれば、回転電機を制御する回転電機制御装置に、当該回転電機に伝達される伝達トルク振動を低減させる制振機能を適切に組み込むことができる。
 回転電機制御装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
車両の駆動力源となる回転電機を含む車両用駆動装置の構成例を示す図 ベクトル制御を行う回転電機制御装置の構成例を示す模式的ブロック図 電流制御部の構成例を模式的に示すブロック線図 電流制御部の他の構成例を模式的に示すブロック線図 電流制御部の他の構成例を模式的に示すブロック線図 電流制御部の他の構成例を模式的に示すブロック線図 電流制御部の比較例を模式的に示すブロック線図 電流制御部の比較例を模式的に示すブロック線図 比例積分制御の原理を模式的に示すブロック線図 電磁シャント回路の原理を模式的に示す等価回路図 非干渉電圧制御部の構成例を模式的に示すブロック線図 非干渉電圧制御部におけるローパスフィルタの仕様の説明図 電流制御部の他の構成例を模式的に示すブロック線図
 以下、回転電機制御装置の実施形態を図面に基づいて説明する。ここでは、図1に示すように、車両の車輪Wの駆動力源として車両用駆動装置100に用いられる永久磁石型の複数相の交流(本実施形態では3相交流)の回転電機80(MG)を駆動制御する回転電機制御装置10(MG-CTRL)を例として説明する。回転電機80は、変速機90(TA)などの動力伝達装置を介して車輪Wに駆動連結されている。本実施形態では、さらに回転電機80に内燃機関70(EG)が駆動連結されている形態を例示している。つまり、例えば、車両用駆動装置100は、動力伝達経路の順に、内燃機関70、回転電機80、変速機90、車輪Wの順に駆動連結されている。
 内燃機関70と回転電機80とは、クラッチ75を介して連結されており、内燃機関70と回転電機80とが駆動連結されている状態と、内燃機関70と回転電機80とが遮断されている状態とに切り換え可能である。車輪Wは、回転電機80のトルクにより駆動される状態と、内燃機関70のトルク及び回転電機80のトルクにより駆動される状態と、内燃機関70のトルクにより駆動される状態とにより駆動される。尚、車輪Wが内燃機関70のトルクにより駆動される状態では、回転電機80が内燃機関70のトルクにより従動回転するため、回転電機80は内燃機関70のトルクにより回生動作を行うことができる。
 内燃機関70は、内燃機関制御装置71(EG-CTRL)により制御され、変速機90は、変速機制御装置91(TA-CTRL)により制御される。上述したように、回転電機80は、回転電機制御装置10により制御される。回転電機制御装置10、内燃機関制御装置71、変速機制御装置91は、車両制御装置20(VHC-CTRL)からの指令(トルク、走行速度、変速比などに基づく制御指令)に基づいて、それぞれの装置を制御する。
 図1に示すように、回転電機80は、変速機90(TA)などの動力伝達装置を介して車輪Wに駆動連結されており、回転電機80の回転軸は、車輪Wや変速機90から外乱トルクTn(図3等参照)を受ける。この外乱トルクTnは、回転電機80の回転軸に伝達されるトルク振動(伝達トルク振動)に相当する。回転電機制御装置10は、そのような外乱トルクTnを低減させる制振機能も有している。即ち、回転電機制御装置10は、永久磁石型の交流の回転電機80の回転軸に伝達されるトルク振動である伝達トルク振動(外乱トルクTn)を低減させる制振機能を備え、図2、図3等を参照して後述するように、永久磁石が発生する磁界の方向であるd軸と、d軸に直交するq軸とのdq軸ベクトル座標系において回転電機80を駆動制御する。
 図2に示すように、回転電機制御装置10は、トルク制御部11と、電流制御部12と、インバータ制御部13と、電流フィードバック部14とを備えている。トルク制御部11は、車両制御装置20からの指令(例えばトルク指令T(目標トルク))に基づいて電流指令I(Id,Iq)を演算する。電流制御部12は、電流指令Iと後述するフィードバック電流I(Id,Iq)との偏差に基づいて電圧指令V(Vd、Vq)を演算する。図3等を参照して後述するように、電流制御部12は、フィードバック制御器1(FB)を中核として構成されている。インバータ制御部13は、dq軸ベクトル座標系から回転電機80の3相座標系への座標変換を行ってインバータ30を構成するスイッチング素子のスイッチング信号を生成する。電流フィードバック部14は、回転電機80の3相のステータコイル81(コイル)に流れる3相の電流(3相座標系の電流:Iu,Iv,Iw)を座標変換してdq軸ベクトル座標系の電流(ベクトル座標系の電流:I(Id,Iq))を電流制御部12にフィードバックする。3相の電流(Iu,Iv,Iw)は、電流センサ85により検出される。また、座標変換のための回転電機80のロータの回転(回転角度(機械角、及び電気角)、回転速度)は、レゾルバなどの回転センサ87によって検出される。ベクトル制御については、公知であるので詳細な説明は省略する。
 本実施形態の回転電機制御装置10は、上述したように、伝達トルク振動(外乱トルクTn)を低減させる制振機能を備えている。この制振機能は、電流制御部12に組み込まれている。図3のブロック線図は、電流制御部12の構成例を、回転電機80を含む車両用駆動装置100のモデル(8,9)と電流制御部12との関係を中心に示している。符号“8”は、回転電機80の電気系モデル8(MG(ELE))であり、符号“9”は回転電機80を含む車両用駆動装置100の機械系モデル9(MECH)である。回転電機80の電気系モデル8に基づき出力されるトルクTに外乱トルクTnが加わり、機械系モデル9を介して回転軸が回転するモデルとなっている。
 1つの態様として、電流制御部12は、フィードバック制御器1(FB)と、非干渉電圧補償器2(DCPL)と、フィードフォワード制御部5とを備えている。以下、本実施形態では、フィードバック制御器1が、比例積分制御器(PI)により構成されている形態を例として説明するが、フィードバック制御器1は、比例積分微分制御器(PID)であってもよい。詳細は後述するが、フィードフォワード制御部5は、フィードフォワード電圧補償器3と、電流指令調整器4とを備えている。この形態は、比較例として図7のブロック線図に示す一般的な電流制御部12Pと比較して、(A)フィードバック制御器1(比例積分制御器)が制振機能を得られるように適切に調整されている(図7の“1P”と比較して適切に調整されている)、(B)非干渉電圧補償器2が制振機能を得られるように適切に調整されている(図7の“2P”と比較して適切に調整されている)、(C)フィードバック制御器1に対してフィードフォワード制御部5を備えている、という点で相違している。
 また、他の態様として、電流制御部12は、フィードフォワード制御部5を備えずに、図4に示すように、フィードバック制御器1と、非干渉電圧補償器2とを備えて構成されていてもよい。この形態では、図7に示す比較例と比べて、(A)フィードバック制御器1が制振機能を得られるように適切に調整されている、(B)非干渉電圧補償器2が制振機能を得られるように適切に調整されている、という点で相違する。
 尚、図7に例示する形態では、制振機能を有さない一般的な電流制御部12Pが非干渉電圧補償器2を備えている形態を示しているが、図8に例示するように、一般的な電流制御部12Pが非干渉電圧補償器2を備えていない場合もある。そのような電流制御部12Pに対して制振機能を設ける場合には、電流制御部12は、非干渉電圧補償器2及びフィードフォワード制御部5を備えずに、図5に示すように、制振機能を得られるように適切に調整されたフィードバック制御器1を備えて構成されていてもよい。つまり、この形態では、図8の比較例に対して、(A)フィードバック制御器1が制振機能を得られるように適切に調整されている、という点で相違する。
 また、電流制御部12は、非干渉電圧補償器2を備えずに、図6に示すように、フィードバック制御器1及びフィードフォワード制御部5を備えて構成されていてもよい。この形態では、図8の比較例に対して、(A)フィードバック制御器1が制振機能を得られるように適切に調整されている、(C)フィードバック制御器1に対してフィードフォワード制御部5を備えている、という点で相違する。
 以上、図3~図6を参照して、電流制御部12の構成例について簡単に説明した。以下、上述したような一般的な電流制御部12Pと相違する部分、上述した(A)、(B)、(C)について詳細に説明する。
 まず、(A)フィードバック制御器1を調整する手法について説明する。図9のブロック線図は、フィードバック制御器1の原理を示している。ここでは、制振機能を備えたフィードバック制御器1のブロック線図を示しており、回転電機80の電気系モデル8に与えられる電圧指令Vには、外乱トルクTnに基づく誘起電圧(外乱電圧Vn)が加算されることになる。また、ここでは簡略化のため、d軸、q軸を区別せずに説明する。ここで、比例積分制御器として構成されたフィードバック制御器1における比例ゲインをK、積分ゲインをKとし、比例制御器(比例演算器)の伝達関数を“1”、積分制御器(積分演算器)の伝達関数を“1/s”とすると、フィードバック制御器1(比例積分制御器)において演算される電圧指令Vは、下記式(1)で示される。尚、“I-I”は電流指令Iとフィードバック電流Iとの偏差を示している。
 V = (I-I)(K+(1/s)K)  ・・・(1)
 ここで、制振機能に着目し、“電流指令I=0”とすると、フィードバック制御器1において演算される電圧指令Vは、下記式(2)で示される。
 V = -K・I-(1/s)K・I  ・・・(2)
 図10は、電磁シャント回路の原理を示す等価回路図である。この等価回路において、回転電機80の電気系モデル8は、ステータコイル81のコイル抵抗RaとコイルインダクタンスLaとの直列回路として示されるインピーダンスを有する。この電気系モデル8(ステータコイル81)に交流の電流“I”が流れると、コイル抵抗Raの両端電圧に対して、コイルインダクタンスLaの両端電圧の位相が遅れ、位相差が生じる。一方、抵抗とキャパシタンスとの直列回路に交流電流が流れる場合には、キャパシタンスの両端電圧は、抵抗の両端電圧に対して位相が進む。従って、回路内にインダクタンスとキャパシタンスとを含むことによって、好ましくは、インダクタンスとキャパシタンスとを共振させることによって、上述した位相の遅れや進みを相殺することができる。つまり、これによって振動を低減する制振を実現することができる(共振周波数(制振周波数)については、下記の式(4)を参照。)。
 図10に示す電磁シャント回路7のインピーダンスは、抵抗器(シャント抵抗Rs)と、キャパシタ(シャントキャパシタンスCs)との直列回路のインピーダンスである。ここで、電磁シャント回路7による電圧降下(シャント電圧Vs)は、下記式(3)で示される。尚、下記式(3)の右辺第2項は、電流“I”の時間積分であるが、ここでは式(1)、式(2)と同様に、電流“I”の時間積分をラプラス変換し、伝達関数“1/s”として表す。
 Vs = -Rs・I-(1/s)(1/Cs)・I ・・・(3)
 式(2)と式(3)とを比較すると、フィードバック制御器1の比例ゲインKがシャント抵抗Rsに対応し、積分ゲインKがシャントキャパシタンスCsの逆数に対応している。
 高木賢太郎らによる論文「ディジタル仮想インピーダンス回路を用いた電磁シャント制振」にも記載されているように、上記のような電磁シャント回路7におけるシャント抵抗Rsは非常に小さな値もしくは負の値になることが多い。また、電磁シャント回路7のようなRCシャントの場合にはシャントキャパシタンスCsも大きな値となる。従って、物理的な抵抗器やキャパシタを用いたシャント回路を用いることは、素子自身が負の抵抗成分を持たないことや、キャパシタが大型化することなどより、現実的ではない。
 一方、仮想的な電磁シャント回路(仮想インピーダンス回路)であれば、より適切なパラメータ(シャント抵抗RsやシャントキャパシタンスCs)を設定することができる。仮想インピーダンス回路とは、抵抗器やキャパシタなどの受動素子を配置する代わりに電圧アンプなどを用いて、シャント回路における電圧を出力することによって、仮想インピーダンス回路と同じインピーダンスを持つ実際のシャント回路が接続されたようにする方法である。例えば、回転電機制御装置10などの制御ブロックの中に、仮想的な電磁シャント回路(或いはその仮想的なインピーダンスに基づく電圧など)を組み込めば、より適切なパラメータを有するシャント回路を用いた制振制御が可能となる。但し、交流の回転電機80をベクトル制御に駆動制御する回転電機制御装置10に対して、そのような仮想的な電磁シャント回路を組み込む技術は確立されていなかった。
 発明者らは、仮想的な電磁シャント回路をフィードバック制御器1に組み込むことによって、外乱トルクTnに対する制振機能を有した回転電機制御装置10が実現できることを見いだした。詳細は後述するが、外乱トルクTn(伝達トルク振動)により生じる回転電機80の逆起電力に基づいて外乱トルクTnを減衰させる制振トルクを出力する電圧指令Vを演算するように、フィードバック制御器1(ここでは比例積分制御器)のゲインを設定することで、回転電機制御装置10に制振機能を組み込むことができる。具体的には、式(2)及び式(3)を参照して上述したように、比例積分制御器として構成されたフィードバック制御器1の比例ゲインKを仮想的な電磁シャント回路7におけるシャント抵抗Rsに基づいて設定し、積分ゲインKを仮想的な電磁シャント回路7におけるシャントキャパシタンスCsの逆数に基づいて設定することで、仮想的な電磁シャント回路をフィードバック制御器1に組み込むことができる。尚、制振制御のための積分ゲインKは、一般的な回転電機のトルク制御における積分ゲインに比べて十分小さい値である。
 シャント抵抗Rsは、仮想的な電磁シャント回路7のインピーダンスの実部であり、シャントキャパシタンスCsの逆数は、仮想的な電磁シャント回路7のインピーダンスの虚部である。従って、本実施形態のフィードバック制御器1は、回転電機80のインダクタンス(コイルインダクタンスLa)と直列共振回路を形成するキャパシタンス(シャントキャパシタンスCs)を有する仮想的な電磁シャント回路7のインピーダンスに基づいてゲインが設定されている。
 尚、上述したように、シャント抵抗Rsは、非常に小さな値もしくは負の値になることが多い。このため、実際にシャント回路を組む場合には、シャント抵抗Rsがゼロ(短絡)に設定される場合がある。このため、フィードバック制御器1は、少なくともシャントキャパシタンスCsによるインピーダンスに基づいてゲインが設定される形態であってもよい。
 ところで、シャント抵抗Rs(ゲイン)には、以下のような意味もある。例えば、シャント抵抗Rsが負の値の場合(“Rs<0”の場合)は、電力を消費して制振トルクを生成することができ、“Rs=0”や“Rs>0”の場合に比べて、制振トルクを大きくすることができる。“Rs>0”の場合は、外乱トルクTnによる逆起電力により回生(エネルギーの回収)が可能であるが、“Rs=0”や“Rs<0”の場合に比べて、制振トルクは小さくなり、制振効果は限定的となる。“Rs=0”の場合は、電力の消費がほとんどなく(原理的には電力消費がなく)、実用的に十分な大きさの制振トルクを得ることができる。
 また、シャントキャパシタンスCsの値は、回転電機80のインダクタンスを”L”とし、ターゲットとなる外乱トルクTnの周波数(制振トルクの周波数)である制振周波数を”fr”として、下記式(4)で表される。
 Cs=(1/(2π))・(1/(L・fr)) ・・・(4)
 尚、ベクトル制御においては、図2のブロック図に示したように、d軸及びq軸のそれぞれについて独立してフィードバック制御が実行される。発明者らによる実験やシミュレーションによれば、q軸のフィードバック制御器1のゲインを仮想的な電磁シャント回路7に基づいて設定することによって、好適な制振機能を実現できることが確認されている。従って、本実施形態では、q軸のフィードバック制御器1のゲインが仮想的な電磁シャント回路7に基づいて設定される。
 図3、図4、図5、図6に例示した回転電機制御装置10の何れにおいても、フィードバック制御器1には、仮想的な電磁シャント回路7のインピーダンスに基づく比例ゲインK及び積分ゲインKが設定されている。つまり、これらの回転電機制御装置10の何れにおいても、フィードバック制御器1の内部構成は、図7及び図8に示す比較例の回転電機制御装置におけるフィードバック制御器1Pの内部構成とは異なっており、フィードバック制御器1は、制振機能を得られるように適切に調整されている。
 尚、上記においては、フィードバック制御器1が比例積分制御器として構成されている形態を例示して説明した。比例積分制御器と同様に、ベクトル制御においてしばしば用いられる比例積分微分制御器(PID)も、比例ゲイン及び積分ゲインを有している。従って、「比例積分制御器が制振機能を得られるように適切に調整されている。」と言った場合の「比例積分制御器」には、「比例積分微分制御器」を含めてもよい。或いは、回転電機制御装置10が、回転電機80に対する電流指令Iと回転電機80からのフィードバック電流Iとの偏差に基づき、回転電機80に対する電圧指令Vを演算して回転電機80をフィードバック制御する比例積分制御器又は比例積分微分制御器を備え、回転電機80のインダクタンスと直列共振回路を形成するキャパシタンスを有する仮想的な電磁シャント回路のインピーダンスに基づいて、q軸の比例積分制御器又は比例積分微分制御器のゲインが設定されている、ということもできる。
 次に、(B)非干渉電圧補償器2を調整する手法について説明する。上述したように、ベクトル制御においては、d軸及びq軸が独立して演算される。但し、回転電機80の回転に伴う誘導起電力(誘起電圧)は、d軸及びq軸の間で相互に影響を与え合う(干渉し合う)。例えば、埋込磁石型同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)では、下記式(5)及び下記式(6)に示すように、誘起電圧を含むd軸電圧Vdには、q軸が干渉し、q軸電圧Vqにはd軸が干渉する。尚、式(5)及び式(6)においては、永久磁石の磁束(鎖交磁束数)をΨ、ロータの回転速度(電気角速度)をω、d軸インダクタンスをLd、q軸インダクタンスをLq、d軸電流をId、q軸電流をIq、ステータコイル81の抵抗をRa、微分演算子をpとする。
 Vd=(Ra+pLd)Id-ωLqIq     ・・・(5)
 Vq=(Ra+pLq)Iq+ωLdId+ω・Ψ ・・・(6)
 式(5)及び式(6)の右辺第2項は、ステータコイル81のインダクタンス(Ld,Lq)と、ステータコイル81を流れる電流(Id,Iq)とによる誘起電圧を示しており、この誘起電圧が、d軸及びq軸における異なる軸の電圧(Vd,Vq)に干渉することを示している。このため、式(5)及び式(6)の右辺第2項の誘起電圧は、後述する第1の非干渉化制御における制御対象となる。また、式(6)の右辺第3項は、ロータの永久磁石とステータコイル81との間で生じる電磁誘導による誘起電圧を示している。このため、式(6)の右辺第3項の誘起電圧は、後述する第2の非干渉化制御における制御対象となる。
 式(5)及び式(6)は、回転電機80(インバータ30)に対して、電圧“Vd,Vq”を与えることで、回転電機80に流れる電流“Id,Iq”が定まることを意味している。ここで、回転電機80に所望の電流(目標電流)を流すために、回転電機80に与える電圧(目標電圧)を“Vd,Vq”とすると、目標電圧“Vd,Vq”を、下記式(7)及び式(8)で示すことができる(図11参照)。
 Vd = Vd_dcpl1+Vd_pid         ・・・(7)
 Vq = Vq_dcpl1+Vq_dcpl2+Vq_pid・・・(8)
 ここで、第1の非干渉化制御として、上記式(5)及び式(6)の右辺第2項に相当する成分を取り除き、d軸及びq軸間の干渉を取り除く制御が行われる。第1の非干渉化制御では、複数相のステータコイル81の間における誘起電圧を取り除く非干渉化が行われる。第1の非干渉化制御は、図11に示すd軸非干渉化制御器21及びq軸第1非干渉化制御器22によって実行される。式(9)は、d軸非干渉化制御器21を示し、式(10)は、q軸第1非干渉化制御器22を示している。
 Vd_dcpl1 = -ωLqIq ・・・(9)
 Vq_dcpl1 = ωLdId  ・・・(10)
 さらに、第2の非干渉化制御では、上記式(6)の右辺第3項に相当する成分を取り除く。つまり、第2の非干渉化制御では、回転電機80の永久磁石とステータコイル81との間で生じる電磁誘導による誘起電圧を減衰させる制御が実行される。一般的には、第2の非干渉化制御は、図11に示すq軸第2非干渉化制御器23によって実行される。式(11)は、q軸第2非干渉化制御器23を示している。
 Vq_dcpl2 = ω・Ψ ・・・(11)
 但し、回転電機80の永久磁石とステータコイル81との間で生じる電磁誘導による誘起電圧には、外乱トルクTnに基づく外乱電圧Vnも含まれる。このため、この誘起電圧の全てを対象としてq軸電圧(q軸電流)が補償されてしまうと、外乱トルクTnを相殺するトルクを出力するようにフィードバック制御を行う制振機能の妨げとなる。従って、電流制御部12が非干渉電圧補償器2を備える場合(図3及び図4に示す形態の場合)には、回転電機80の永久磁石とステータコイル81との間で生じる電磁誘導による誘起電圧の内、外乱トルクTnに起因する誘起電圧については非干渉電圧補償を行わず、電圧指令Vに基づくロータの回転(定常制御による回転)に起因する誘起電圧についてのみ非干渉電圧補償を行うことが好ましい。
 制振対象となる外乱トルクTnの周波数(角速度[rad/s])は、ロータの回転速度(角速度)に対して高い。尚、車両用駆動装置100が図1に示すような構成の場合、内燃機関70の駆動力によって回転電機80の回転軸が回転する場合があり、その際にはその駆動力も回転電機80から見て外乱トルクとなる。但し、この外乱トルクは、例えば車両を加速させるためのトルクであり、制振対象となるトルクではない。そして、内燃機関70によるトルクに基づく回転速度(角速度)も、制振対象となる外乱トルクTnの周波数(角速度)に比べて低い。従って、非干渉電圧補償器2に、角速度に対するフィルタを設けることによって、非干渉電圧補償を行う誘起電圧と、非干渉電圧補償を行わない誘起電圧とを分離し、制振対象とはならないトルクによる回転軸の回転に基づく誘起電圧に対してのみ、非干渉電圧補償を行うと好適である。第2の非干渉化制御は、図11に示すローパスフィルタ24(LPF)及びq軸第2非干渉化制御器23によって実行される。下記式(12)の右辺は、角速度ωに対してフィルタ(FILT)が設けられ、ローパスフィルタ24(LPF)とq軸第2非干渉化制御器23とにより、適切に第2の非干渉化制御が実行されることを示している。
 Vq_dcpl2 = FILT(ω)・Ψ ・・・(12)
 図12は、制振対象となる外乱トルクTnの周波数特性(角速度の特性)と、非干渉電圧補償器2に設定されるフィルタのフィルタ特性とを示している。制振対象となる外乱トルクTnの中心周波数Fnに対して充分離れた周波数(角速度)~本実施形態では中心周波数Fnに対して充分低い周波数(角速度)~をカットオフ周波数Fcとするフィルタ(ローパスフィルタ)が、非干渉電圧補償器2に設定されると好適である。
 非干渉電圧補償器2は、少なくとも第2の非干渉化制御を実現する制御器(q軸第2非干渉化制御器23)を備え、さらに、ロータの永久磁石とステータコイル81との間で生じる誘起電圧の内、制振対象の外乱トルクTnに基づく誘起電圧を遮断或いは減衰させて、制振対象ではないトルクに基づく誘起電圧(定常制御によるロータの回転に伴う誘起電圧)を通過させるようなローパスフィルタ24を備える。つまり、相対的に低周波側(定常回転成分)の誘起電圧は打ち消して、高周波側(振動成分)の誘起電圧は打ち消さないことで、制振対象である高周波側の誘起電圧をフィードバックしている。上述したように、制振対象である高周波側の誘起電圧も打ち消されると、振動成分がフィードバックされなくなり、制振制御ができなくなってしまう。非干渉電圧補償器2が、このようなローパスフィルタを備えることにより、回転電機80の回転速度が変化する場合(例えば加速する場合)には、加速に応じて誘起電圧が変化した場合にも、適切に電圧補償を行うことができる。一方、制振対象の外乱トルクTnによる誘起電圧については、ローパスフィルタによって遮断或いは減衰されるので、電圧補償が行われず、適切に電磁シャント機能による制振を行うことができる。
 以上説明したように、図3及び図4に例示した形態のように、回転電機80の永久磁石とステータコイル81との間で生じる電磁誘導による誘起電圧を低減させる非干渉化を行う非干渉電圧補償器2(少なくとも第2の非干渉化を行う制御器(q軸第2非干渉化制御器23)を備えた非干渉電圧補償器2)を備える場合、この非干渉電圧補償器2は、制振対象の外乱トルクTn(伝達トルク振動)の周波数(中心周波数Fn)よりも低いカットオフ周波数Fc未満の周波数において非干渉化を行い、カットオフ周波数Fc以上の周波数において非干渉化を行わないようにローパスフィルタ24を備えると好適である。
 次に、(C)フィードフォワード制御部5について説明する。上述したように、フィードバック制御器1(比例積分制御器)のゲイン(K,K)を電磁シャント制振機能が得られるように適切に調整した場合、通常のゲインに比べてその値が小さくなる傾向がある。このため、電流指令I(I**)の変化に対するフィードバック制御器1の追従性が低下するおそれがある。例えば、回転電機80の回転速度が速くなるように電流指令I(I**)が増加した場合(回転電機を加速させる場合)に、回転電機80の回転速度の上昇が遅くなり、加速性を妨げるおそれがある。フィードフォワード制御部5は、フィードバック制御器1の後段の制御器に提供される電圧指令が、電流指令I(I**)の変化に対応した電圧指令となるように、フィードバック制御器1が出力する電圧指令Vを補償する。つまり、フィードフォワード制御部5は、仮想的な電磁シャント回路をフィードバック制御器1に組み込むことにより低下するフィードバック制御器1のゲインの低下を補完するように、電流指令I(I**)に基づいてフィードバック制御器1から出力される電圧指令Vを補償する。
 図3及び図6に示すように、フィードフォワード制御部5は、フィードフォワード電圧補償器3と電流指令調整器4とを備えている。フィードフォワード電圧補償器3は、制御対象のモデル(印加する電圧に対して流れる電流を規定したモデル(伝達関数“P”))を用いて構成されている。フィードフォワード電圧補償器3による補償対象は電圧であるから、流れる電流に対して印加が必要な電圧を規定する必要がある。このため、フィードフォワード電圧補償器3では、制御対象のモデルの逆数“P-1”が用いられる。本実施形態では、制御対象は、「回転電機80の電気系モデル8(MG(ELE))」と、「車両用駆動装置100の機械系モデル9(MECH)」と、「非干渉電圧補償器2P(DCPL)」とで構成されている(図7参照)。つまり、制御対象のモデルは、電圧指令“V”からモータの電流“I”までの伝達関数モデルであり、“P-1”はその逆数である。
 ここで、制御の安定性を得るためには、フィードフォワード電圧補償器3の伝達関数がプロパーであることが好ましい。尚、「伝達関数がプロパーであること」とは、伝達関数を分数で表した場合に、「分子の次数≦分母の次数」となることを言う。規範モデルは、フィードフォワード電圧補償器3の伝達関数“P-1M”がプロパーとなるような伝達関数“M”を有する制御器である。つまり、規範モデルの伝達関数“M”と、制御対象のモデルの伝達関数“P”の逆数“P-1”との積をとることで、フィードフォワード電圧補償器3の伝達関数をプロパーとしている。
 また、フィードフォワード電圧補償器3により演算される電圧と、フィードバック制御器1により演算される電圧とのバランスを考慮すると、フィードバック制御器1に入力される電流指令Iも、規範モデルを通過したものであることが好ましい。電流指令調整器4は、規範モデルを有して構成され、フィードバック制御器1に入力される電流指令Iを調整している。尚、図3、図6では、電流指令調整器4の前後の電流指令を区別するため、入力側の電流指令を“I**”で示し、出力側(フィードバック制御器1の側)の電流指令を“I”で示している。
 上記においては、図3及び図6に例示したように、比例積分制御器を備えたフィードバック制御器1では制振制御を優先し、回転電機80の通常のトルク制御はフィードフォワード制御部5により補償する形態について説明した。しかし、このようにフィードフォワード制御部5を有する形態に限らず、図13に例示するように、制振制御用の比例積分制御器(PI_s)を備えた制振制御用のフィードバック制御部(制振制御用フィードバック制御部1s)と、通常のトルク制御用の比例積分制御器(PI_t)を備えたトルク制御用のフィードバック制御部(トルク制御用フィードバック制御部1t)と、が並列に備えられていてもよい。それぞれのフィードバック制御部(1s、1t)の入力側には、それぞれ独立したフィルタ(FLT_t,FLT_s)を介して電流指令Iが入力される。例えば、トルク制御用の比例積分制御器(PI_t)の前段のトルク制御用のフィルタ(FLT_t)はローパスフィルタ、制振制御用の比例積分制御器(PI_s)の前段のトルク制御用のフィルタ(FLT_s)はトルク制御用側のローパスフィルタ(FLT_t)よりも周波数の高いハイパスフィルタとします。尚、ローパスフィルタ、ハイパスフィルタに限らず、これらのフィルタ(FLT_t,FLT_s)はバンドパスフィルタであってもよい。
 以上説明したように、本実施形態(変形例を含む)によれば、仮想的な電磁シャント回路7を用いた制振制御が可能な回転電機制御装置10を実現することができる。即ち、外乱トルクTnにより生じる回転電機80の逆起電力に基づいて外乱トルクTnを減衰させる制振トルクを出力する電圧指令Vを演算するように、q軸のフィードバック制御器1のゲインが設定されることで、回転電機制御装置10に、回転電機80に伝達される外乱トルクTnを低減させる制振機能を適切に組み込むことができる。尚、上記においては、図1に示すように、車両の車輪Wの駆動力源として車両用駆動装置100に用いられる永久磁石型の複数相の交流(本実施形態では3相交流)の回転電機80を制御対象とする回転電機制御装置10を例として説明したが、制御対象となる回転電機80はこれに限定されるものではない。回転電機制御装置10は、エアコンディショナー、発電機など、今日の産業分野において広く用いられている交流の回転電機を制御対象とすることができる。
〔実施形態の概要〕
 以下、上記において説明した回転電機制御装置(10)の概要について簡単に説明する。
 1つの態様として、永久磁石型の交流の回転電機(80)の回転軸に伝達されるトルク振動である伝達トルク振動(Tn)を低減させる制振機能を備え、永久磁石が発生する磁界の方向であるd軸と前記d軸に直交するq軸とのdq軸ベクトル座標系において前記回転電機(80)を駆動制御する回転電機制御装置(10)は、前記d軸及び前記q軸のそれぞれにおいて、前記回転電機(80)に対する電圧指令(V)を演算して前記回転電機(80)をフィードバック制御するフィードバック制御器(1)を備え、前記伝達トルク振動(Tn)により生じる前記回転電機(80)の逆起電力に基づいて前記伝達トルク振動(Tn)を減衰させる制振トルクを出力する前記電圧指令(V)を演算するように、前記q軸の前記フィードバック制御器(1)のゲインが設定されている。
 外乱による振動である伝達トルク振動(Tn)は回転電機(80)に逆起電力を生じさせる。本構成によれば、この逆起電力に基づいて、伝達トルク振動(Tn)を減衰させる制振トルクを出力する電圧指令(V)が演算されるように、q軸のフィードバック制御器(1)のゲインが設定される。つまり、制振機能をフィードバック制御器(1)に組み込むことができる。即ち、本構成によれば、回転電機(80)を制御する回転電機制御装置(10)に、当該回転電機(80)に伝達される伝達トルク振動(Tn)を低減させる制振機能を適切に組み込むことができる。
 ここで、前記回転電機(80)のインダクタンス(La)と直列共振回路を形成するキャパシタンス(Cs)を有する仮想的な電磁シャント回路(7)のインピーダンスに基づいて、前記q軸の前記フィードバック制御器(1)のゲインが設定されていると好適である。
 キャパシタンス(Cs)による電圧降下は、電流(I)の時間積分により表される。フィードバック制御器(1)には、積分器が含まれる場合が多い。従って、電圧指令(V)を演算するフィードバック制御器(1)のゲインを仮想的な電磁シャント回路(7)のインピーダンスに基づいて設定することで、仮想的な電磁シャント回路(7)をフィードバック制御器(1)に組み込むことができ、回転電機制御装置(10)に、回転電機(80)に伝達される伝達トルク振動(Tn)を低減させる制振機能を適切に組み込むことができる。
 ここで、前記電磁シャント回路(7)は、シャント抵抗器及びシャントキャパシタの直列回路により形成され、前記シャント抵抗器の抵抗値をRs、前記シャントキャパシタのキャパシタンスをCsとして、比例ゲインがRs、積分ゲインが1/Csに基づいて設定されていると好適である。
 電磁シャント回路(7)の電圧降下(Vs)は、シャント抵抗における電圧降下と、シャントキャパシタによる電圧降下とにより表される。シャント抵抗による電圧降下は、シャント抵抗を流れる電流(I)に比例し、シャントキャパシタによる電圧降下は、電流(I)の時間積分により表される。フィードバック制御器(1)は、多くの場合、比例積分制御器として構成され、制御器(演算器)として比例器と積分器とを有する。従って、電圧指令(V)を演算するフィードバック制御器(1)の比例ゲイン(K)をシャント抵抗の抵抗値(Rs)に基づいて設定し、フィードバック制御器(1)の積分ゲイン(K)をシャントキャパシタのキャパシタンス(Cs)に基づいて設定することで、仮想的な電磁シャント回路(7)を適切にフィードバック制御器(1)に組み込むことができる。
 また、回転電機制御装置(10)は、前記回転電機(80)の目標トルク(T)に基づく電流指令(I)と前記回転電機(80)からのフィードバック電流(I)との偏差に基づき、前記電圧指令(V)を演算する電流制御部(12)を備え、前記電流制御部(12)が、前記フィードバック制御器(1)を備えると好適である。
 この構成によれば、回転電機(80)に流す理想的な電流を示す電流指令(I)と、実際に回転電機(80)に流れている電流であるフィードバック電流(I)との差が小さくなるように、フィードバック制御器(1)が電圧指令(V)を演算するので、適切に回転電機(80)を制御することができる。
 また、前記電流制御部(12)は、前記電流指令(I)に基づいて前記フィードバック制御器(1)から出力される前記電圧指令(V)を補償するフィードフォワード制御部(5)を備えると好適である。
 フィードバック制御器(1)のゲインを制振トルクが出力されるように設定すると、ゲインが小さくなって制御の追従性が低下する場合がある。例えば、電流指令(I)の変化が比較的大きい場合に、出力される電圧指令(V)が電流指令(I)ほどには大きく変化せず、追従性が低下する場合がある。本構成によれば、フィードフォワード制御部(5)が、電流指令(I)の変化に応じて電圧指令(V)を補償するので、フィードバック制御器(1)における追従性が低下しても、適切な電圧指令(V)を、フィードバック制御器(1)の後段の制御器に提供することができる。
 ここで、前記フィードフォワード制御部(5)は、前記フィードバック制御器(1)から出力される前記電圧指令(V)に加算される補償電圧を演算するフィードフォワード電圧補償器(3)と、前記フィードバック制御器(1)に入力される前記電流指令(I)を補正する電流指令調整器(4)とを備え、前記フィードフォワード電圧補償器(3)は、前記電圧指令(V)から前記回転電機(80)を流れる電流(I)までの制御系モデルの伝達関数(P)の逆数(P-1)の伝達関数を有する制御器と、前記フィードフォワード電圧補償器(3)の伝達関数がプロパーとなるような伝達関数(M)を有する規範モデルとを有し、前記電流指令調整器(4)は、前記規範モデルにより前記電流指令(I)を補正すると好適である。
 フィードフォワード電圧補償器(3)は、制御対象のモデル(印加する電圧に対して流れる電流を規定したモデル、伝達関数(P))を用いて構成されている。但し、フィードフォワード電圧補償器(3)による補償対象は電圧であるから、流れる電流に対して印加が必要な電圧を規定する必要がある。このため、フィードフォワード電圧補償器(3)では、制御対象のモデルの逆数“P-1”の伝達関数を有する制御器が用いられると好適である。また、制御の安定性を得るためには、フィードフォワード電圧補償器(3)の伝達関数がプロパーであること(伝達関数を分数で表した場合に、「分子の次数≦分母の次数」となること)が好ましい。従って、フィードフォワード電圧補償器3は、自身の伝達関数“P-1M”がプロパーとなるような伝達関数(M)を有する制御器(規範モデル)を備えると好適である。また、フィードフォワード電圧補償器(3)により演算される電圧と、フィードバック制御器(1)により演算される電圧とのバランスを考慮すると、フィードバック制御器(1)に入力される電流指令(I)も、伝達関数(M)を有する規範モデルを通過したものであることが好ましい。即ち、上記のようにフィードフォワード制御部(5)を構成することで、安定した制御が可能な回転電機制御装置(10)を構成することができる。
 また、回転電機制御装置(10)は、前記回転電機(80)の目標トルク(T)に基づく電流指令(I)と前記回転電機(80)からのフィードバック電流(I)との偏差に基づき、前記電圧指令(V)を演算するトルク制御用フィードバック制御部(1t)と、前記フィードバック制御器(1)を備えた制振制御用フィードバック制御部(1s)と、を備えると好適である。
 1つのフィードバック制御部によって、トルク制御と制振制御とを行う場合に、フィードバック制御器(1)のゲインを制振トルクが出力されるように設定すると、ゲインが小さくなってトルク制御の追従性が低下する場合がある。本構成によれば、トルク制御用フィードバック制御部(1t)と、制振制御用フィードバック制御部(1s)とを独立して設けることにより、トルク制御及び制振制御の双方を満足するような適切な電圧指令(V)を後段の制御器に提供することができる。
 また、回転電機制御装置(10)は、前記回転電機(80)の前記永久磁石とコイル(81)との間で生じる電磁誘導による誘起電圧を低減させる非干渉化を行う非干渉電圧補償器(2)を備え、前記非干渉電圧補償器(2)は、制振対象の前記伝達トルク振動(Tn)の周波数(Fn)よりも低いカットオフ周波数(Fc)未満の周波数において前記非干渉化を行い、前記カットオフ周波数(Fc)以上の周波数において前記非干渉化を行わないようにローパスフィルタを備えると好適である。
 ベクトル制御においては、回転電機(80)の前記永久磁石とコイル(81)との間で生じる電磁誘導による誘起電圧を低減させる非干渉化が行われる場合がある。但し、この誘起電圧には、回転電機(80)が定常制御されてロータが回転することによって生じるものの他、制振対象の伝達トルク振動(Tn)によって生じるものも含まれる。このため、この誘起電圧の全てが非干渉化されてしまうと、制振対象の伝達トルク振動(Tn)がフィードバックされなくなり、制振機能にも影響する。制振対象の伝達トルク振動(Tn)による誘起電圧と、電圧指令(V)に基づく回転電機(80)の回転に伴う誘起電圧とでは、周波数帯域が異なる。本構成によれば、非干渉電圧補償器(2)が、制振対象の伝達トルク振動(Tn)の周波数(Fn)よりも低いカットオフ周波数(Fc)を有するローパスフィルタを備えるので、回転電機制御装置(10)は、適切に非干渉化を行うと共に、制振制御も行うことができる。
1   :フィードバック制御器
1s  :制振制御用フィードバック制御部
1t  :トルク制御用フィードバック制御部
2   :非干渉電圧補償器
12  :電流制御部
23  :q軸第2非干渉化制御器
24  :ローパスフィルタ
3   :フィードフォワード電圧補償器
4   :電流指令調整器
5   :フィードフォワード制御部
7   :電磁シャント回路
10  :回転電機制御装置
80  :回転電機
81  :ステータコイル(コイル)
Cs  :シャントキャパシタンス
Fc  :カットオフ周波数
Fn  :中心周波数(制振対象の伝達トルク振動の周波数)
I   :フィードバック電流
  :電流指令
Id  :d軸フィードバック電流(フィードバック電流)
Iq  :q軸フィードバック電流(フィードバック電流)
  :積分ゲイン
  :比例ゲイン
La  :コイルインダクタンス(回転電機のインダクタンス)
M   :規範モデル
P   :制御対象のモデル(回転電機の電気系制御モデル)
Ra  :コイル抵抗
Rs  :シャント抵抗
Tn  :外乱トルク(伝達トルク振動)
  :トルク指令(目標トルク)
  :電圧指令

Claims (8)

  1.  永久磁石型の交流の回転電機の回転軸に伝達されるトルク振動である伝達トルク振動を低減させる制振機能を備え、永久磁石が発生する磁界の方向であるd軸と前記d軸に直交するq軸とのdq軸ベクトル座標系において前記回転電機を駆動制御する回転電機制御装置であって、
     前記d軸及び前記q軸のそれぞれにおいて、前記回転電機に対する電圧指令を演算して前記回転電機をフィードバック制御するフィードバック制御器を備え、
     前記伝達トルク振動により生じる前記回転電機の逆起電力に基づいて前記伝達トルク振動を減衰させる制振トルクを出力する前記電圧指令を演算するように、前記q軸の前記フィードバック制御器のゲインが設定されている、回転電機制御装置。
  2.  前記回転電機のインダクタンスと直列共振回路を形成するキャパシタンスを有する仮想的な電磁シャント回路のインピーダンスに基づいて、前記q軸の前記フィードバック制御器のゲインが設定されている、請求項1に記載の回転電機制御装置。
  3.  前記電磁シャント回路は、シャント抵抗器及びシャントキャパシタの直列回路により形成され、前記シャント抵抗器の抵抗値をRs、前記シャントキャパシタのキャパシタンスをCsとして、比例ゲインがRs、積分ゲインが1/Csに基づいて設定されている、請求項2に記載の回転電機制御装置。
  4.  前記回転電機の目標トルクに基づく電流指令と前記回転電機からのフィードバック電流との偏差に基づき、前記電圧指令を演算する電流制御部を備え、前記電流制御部は、前記フィードバック制御器を備える、請求項1から3の何れか一項に記載の回転電機制御装置。
  5.  前記電流制御部は、前記電流指令に基づいて前記フィードバック制御器から出力される前記電圧指令を補償するフィードフォワード制御部を備える、請求項4に記載の回転電機制御装置。
  6.  前記フィードフォワード制御部は、前記フィードバック制御器から出力される前記電圧指令に加算される補償電圧を演算するフィードフォワード電圧補償器と、前記フィードバック制御器に入力される前記電流指令を補正する電流指令調整器とを備え、
     前記フィードフォワード電圧補償器は、前記電圧指令から前記回転電機を流れる電流までの制御系モデルの伝達関数の逆数の伝達関数を有する制御器と、前記フィードフォワード電圧補償器の伝達関数がプロパーとなるような伝達関数を有する規範モデルとを有し、
     前記電流指令調整器は、前記規範モデルにより前記電流指令を補正する、請求項5に記載の回転電機制御装置。
  7.  前記回転電機の目標トルクに基づく電流指令と前記回転電機からのフィードバック電流との偏差に基づき、前記電圧指令を演算するトルク制御用フィードバック制御部と、
     前記フィードバック制御器を備えた制振制御用フィードバック制御部と、を備える請求項1から3の何れか一項に記載の回転電機制御装置。
  8.  前記回転電機の前記永久磁石とコイルとの間で生じる電磁誘導による誘起電圧を低減させる非干渉化を行う非干渉電圧補償器を備え、
     前記非干渉電圧補償器は、制振対象の前記伝達トルク振動の周波数よりも低いカットオフ周波数未満の周波数において前記非干渉化を行い、前記カットオフ周波数以上の周波数において前記非干渉化を行わないようにローパスフィルタを備える、請求項1から7の何れか一項に記載の回転電機制御装置。
PCT/JP2019/038284 2018-09-28 2019-09-27 回転電機制御装置 WO2020067482A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184026 2018-09-28
JP2018184026A JP2022028976A (ja) 2018-09-28 2018-09-28 回転電機制御装置

Publications (1)

Publication Number Publication Date
WO2020067482A1 true WO2020067482A1 (ja) 2020-04-02

Family

ID=69951916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038284 WO2020067482A1 (ja) 2018-09-28 2019-09-27 回転電機制御装置

Country Status (2)

Country Link
JP (1) JP2022028976A (ja)
WO (1) WO2020067482A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110990A (ja) * 1986-10-24 1988-05-16 Yaskawa Electric Mfg Co Ltd 電圧形pwmインバ−タの電流制御方法
JP2009106015A (ja) * 2007-10-22 2009-05-14 Nissan Motor Co Ltd 電動機の制御装置
JP2009247168A (ja) * 2008-03-31 2009-10-22 Jtekt Corp モータ制御装置
WO2012133220A1 (ja) * 2011-03-25 2012-10-04 アイシン・エィ・ダブリュ株式会社 制御装置
WO2015083213A1 (ja) * 2013-12-02 2015-06-11 日産自動車株式会社 電動車両の制御装置および電動車両の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110990A (ja) * 1986-10-24 1988-05-16 Yaskawa Electric Mfg Co Ltd 電圧形pwmインバ−タの電流制御方法
JP2009106015A (ja) * 2007-10-22 2009-05-14 Nissan Motor Co Ltd 電動機の制御装置
JP2009247168A (ja) * 2008-03-31 2009-10-22 Jtekt Corp モータ制御装置
WO2012133220A1 (ja) * 2011-03-25 2012-10-04 アイシン・エィ・ダブリュ株式会社 制御装置
WO2015083213A1 (ja) * 2013-12-02 2015-06-11 日産自動車株式会社 電動車両の制御装置および電動車両の制御方法

Also Published As

Publication number Publication date
JP2022028976A (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
JP5862436B2 (ja) 電動車両の制御装置
JP5877733B2 (ja) 電動モータの制御装置
JP5947075B2 (ja) 同期モータの制御装置、同期モータの制御方法
WO2008075558A1 (ja) 位置制御装置
JP2009247168A (ja) モータ制御装置
JP2013223329A (ja) モータ制御装置
WO2014115626A1 (ja) 誘導モータ制御装置および誘導モータ制御方法
WO2021172207A1 (ja) モータ制御装置
JP5900656B2 (ja) モータ制御装置およびモータ制御方法
JP6720714B2 (ja) 電動車両の制御方法、及び電動車両の制御装置
WO2020067482A1 (ja) 回転電機制御装置
JP2012247914A (ja) 制御装置
WO2020194637A1 (ja) 電動車両の制御方法、及び、制御装置
JP7107385B2 (ja) 電動車両の制御方法、及び、制御装置
JP2017192248A (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP6417881B2 (ja) 誘導モータの制御装置
JP2013055756A (ja) 車両用モータ制御装置
JP5850179B2 (ja) モータ制御装置およびモータ制御方法
JP2022184648A (ja) 電動車両の制御方法及び電動車両の制御装置
WO2014104164A1 (ja) モータ制御装置およびモータ制御方法
WO2023188667A1 (ja) 車両用駆動制御装置及びその方法
Tárník et al. Additional adaptive controller for mutual torque ripple minimization in PMSM drive systems
WO2021157178A1 (ja) モータ制御装置
JP5794106B2 (ja) 制振制御装置
JP2013066342A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP