WO2021157178A1 - モータ制御装置 - Google Patents
モータ制御装置 Download PDFInfo
- Publication number
- WO2021157178A1 WO2021157178A1 PCT/JP2020/045288 JP2020045288W WO2021157178A1 WO 2021157178 A1 WO2021157178 A1 WO 2021157178A1 JP 2020045288 W JP2020045288 W JP 2020045288W WO 2021157178 A1 WO2021157178 A1 WO 2021157178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control device
- command
- controller
- vibration
- speed
- Prior art date
Links
- 230000004044 response Effects 0.000 claims abstract description 88
- 238000013016 damping Methods 0.000 claims description 100
- 238000012545 processing Methods 0.000 claims description 22
- 230000005284 excitation Effects 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 4
- 230000001629 suppression Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/04—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/021—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/14—Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41025—Detect oscillation, unstability of servo and change gain to stabilize again
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41119—Servo error compensation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41121—Eliminating oscillations, hunting motor, actuator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41123—Correction inertia of servo
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41232—Notch filter
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45217—Notching
Definitions
- the present invention relates to a motor control device.
- damping control is generally used.
- vibration damping control is generally performed by processing a position command. Specifically, vibration suppression at the end of the machine is realized by applying a low-pass filter or notch filter to the position command and removing the frequency component that excites the vibration at the end of the machine from the position command. ..
- Patent Document 1 makes it possible to suppress vibration at the end of a machine even when the resonance / antiresonance characteristics of the machine change by switching between two vibration damping filters in response to a position command.
- a notch filter is given as an example of a vibration filter.
- the upper system control device that generates a position command has a position controller due to industrial reasons such as replacement of equipment, and has a minor loop.
- the servomotor control device is responsible for a certain speed control system.
- Patent Document 1 the vibration damping filter 3, the filter switching means 9, and the command direction detecting means 4 that contribute to the vibration damping control are configured to realize the vibration damping control by the upper system control device in FIG. Therefore, in Patent Document 1, vibration damping control is not realized in the servomotor control device which is responsible for the speed control system.
- An object of the present invention is a motor that realizes vibration suppression control in a motor servo control device that is responsible for a speed control system, without processing a position command for the purpose of vibration suppression at the end of the machine in the upper system control device.
- the purpose is to provide a control device.
- a preferred example of the present invention is a motor control device that receives a speed command from a host system control device having a position controller.
- a position command estimator that calculates an estimated value of the position command based on the speed command and the motor shaft position response, and an actual speed that does not cause the end of the machine connected to the motor to vibrate based on the estimated value. It is a motor control device having a speed command generator for generating a command and outputting the actual speed command from the speed command generator to the speed controller.
- vibration suppression control can be realized in the motor servo control device that bears the speed control system without processing the position command for the purpose of vibration suppression at the end of the machine in the upper system control device.
- FIG. 1st basic structure of Example 1. The figure which shows the 2nd basic structure of Example 1.
- FIG. The figure which shows the specific structure of FIG. The figure which shows the frequency characteristic of the vibration excitation component extractor.
- the figure which shows the structure of the FF type vibration damping control corresponding to FIG. The figure which shows the structure including the FF controller corresponding to FIG.
- the figure which shows the specific structure of the FF controller of FIG. The figure which shows the structure when the FB type vibration damping control is executed.
- the figure which shows the specific structure of the parallel type vibration damping controller of FIG. The block diagram in the case of having a predetermined filter.
- the block diagram of the parallel type vibration damping control which processes a motor shaft position response.
- FIG. 1 The figure which shows the effect of the vibration damping control in the configuration of FIG.
- FIG. 16 is a diagram showing a comparative example. As shown in FIG. 16, by interposing the notch filter 1601 in the speed control system, it is possible to remove the frequency component that excites the vibration at the mechanical end from the speed command.
- the notch frequency 1602 of the notch filter 1601 is set so as to match the frequency of the mechanical end vibration.
- the phase lag characteristic around the notch frequency of the notch filter 1601 reduces the stability margin of the position control system, and the response at the machine end becomes oscillating at a frequency different from the resonance / antiresonance characteristic of the machine. It ends up. This phenomenon becomes unavoidable as the resonance / antiresonance characteristics of the machine are in the low frequency range and as the gain of the position controller is increased with the aim of improving the tact time.
- feedback may be abbreviated as “FB” and feedforward” may be abbreviated as “FF”. It may be abbreviated.
- FIGS. 1 and 2 are diagrams showing a cascade feedback type motor control system having a semi-closed configuration including the speed control system internal vibration damping controller 4 and the speed control system internal vibration damping controller 21 of the first embodiment.
- the servomotor control device 3 shown in FIGS. 1 and 2 is incorporated in the position control system so as to receive a speed command from the host system control device 2 and output a motor shaft position response 15 to the host system control device 2. ..
- the host system control device 2 is incorporated in the position control system, has a position controller 7, generates a position command, and controls the position from the position command and the motor shaft position response 15 received from the servomotor control device 3.
- a speed command is generated using the vessel 7.
- the position controller inputs the position command 13 and the motor shaft position response 15 and outputs the position operation amount (speed command 14).
- the servomotor control device 3 of FIG. 1 is responsible for the speed control system of the motor, has a speed controller 8, and is a position command that calculates an estimated value 34 of the position command based on the speed command 14 and the motor shaft position response 15. It has a speed control system internal vibration damping controller 4 having an estimator 5 and a speed command generator 6 that generates an actual speed command 16 so that the end 17 of the machine does not vibrate based on the estimated value 34 of the position command. , The actual speed command 16 is set as the command of the speed controller 8.
- the speed controller 8 inputs the actual speed command 16 and the motor shaft speed response 15 and outputs the speed operation amount as a current command to the current control system 9.
- the output of the position / speed calculator 10 may mean the motor shaft position response 15 or the motor shaft speed response 15.
- the servomotor control device 3 of FIG. 2 is responsible for the speed control system of the motor, has a speed controller 8, and is a position command that calculates an estimated value 34 of the position command based on the speed command 14 and the motor shaft position response 15.
- the estimator 5 and the parallel type vibration damping controller 23 that extracts the frequency component that excites the vibration of the end 17 of the machine included in the speed command based on the estimated value 34 of the position command and outputs the extracted frequency component. It has a velocity control system internal vibration damping controller 21 having an addition / subtractor 24, and the addition / subtractor 24 subtracts the output of the parallel type vibration damping controller 23 from the speed command 14 to excite the vibration of the end 17 of the machine.
- the frequency component to be used is removed from the speed command 14, the output of the adder / subtractor 24 is set as the actual speed command 27, the output of the vibration control controller 21 in the speed control system is used, and the actual speed command 27 is set as the command of the speed controller 8.
- the end of the machine connected to the motor (hereinafter referred to as the machine).
- the 17 (called the end) vibrates at a low frequency of several Hz to 100 Hz, and on the contrary, it takes time for positioning, and it may be difficult to improve the response.
- the vibration damping control it is generally possible to suppress the vibration of the mechanical end 17 and shorten the positioning time.
- this embodiment assumes a case where the motor control system is composed of the host system control device 2 and the servo motor control device 3.
- the host system control device 2 generates a position command 13, includes a position controller 7, receives a motor shaft position response (a response indicating the position of the rotor of the motor) 15 from the servomotor control device 3, and receives the position command 13 and the motor.
- the position controller 7 generates a speed command 14 based on the shaft position response 15, and outputs the speed command 14 to the servomotor control device 3.
- position command 13 may be given from the outside of the host system control device 2 from another host device or the like.
- the servomotor control device 3 includes a speed controller 8, a current control system 9, a position / speed calculator 10, and a vibration control controller 4 (or 21) in the speed control system, and issues a speed command 14 from the host system control device 2.
- the position / speed calculator 10 determines the position and speed of the motor shaft based on the measurement signal from a sensor (for example, a rotary encoder) that can receive and control the speed of the motor and can grasp the position / speed attached to the motor. The calculation is performed, and the motor shaft position response 15 is output to the host system control device 2 as the motor shaft position response 15 and the motor shaft speed response 15.
- the servomotor control device 3 has a CPU (Central Processing Unit), although not shown.
- the position command estimator 5, the speed command generator 6, the speed control system internal vibration control controller 21 including each processing unit such as the parallel type vibration control controller, the speed controller 8, the position / speed calculator 10, and the like are CPUs. Reads the program and executes the program, so that the processing of each processing unit is executed. Hardware such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array) can be used to configure all or part of each processing unit.
- the host system control device 2 has a CPU, and the CPU executes a program corresponding to the position controller 7.
- Vibration suppression control is performed by acting a low-pass filter or a notch filter on the position command 13 and removing the frequency component that excites the vibration of the mechanical end 17 from the position command 13.
- vibration suppression control is not realized by the position controller 7, and vibration suppression control is performed in the servomotor control device 3 that is responsible for the speed control system, which is a minor loop. There are times when you want to achieve it.
- the vibration damping controller 4 (or 21) in the speed control system is a damping controller for solving the problem.
- Ford forward type vibration damping control is performed by removing the frequency component that excites the vibration at the mechanical end from the position command 13.
- S1 Grasp / estimate the position command.
- S2 The frequency component that excites the mechanical end vibration is extracted from the grasped / estimated position command.
- S3 A speed command that does not include the frequency component extracted in S2 is generated and used as a speed command of the speed controller.
- FIG. 3 is a diagram showing a configuration example of the vibration control controller 4 in the speed control system corresponding to FIG.
- the vibration control controller 31 in the speed control system includes a vibration excitation component extractor 33 that extracts a frequency component that excites mechanical end vibration, a position command estimator 5 that the position command 13 estimates, an actual position controller 32, and an addition / subtractor. It is composed of 35.
- the mechanical end vibration obtained by dividing the output of the vibration excitation component extractor 33 (implementing S2) from the position command estimation value 34 (implementing S1) calculated by the position command estimator 5 with the adder / subtractor 35 is excited. Based on the position command 36 and the motor shaft position response 15 that do not include the frequency component, the actual position controller 32 generates the speed command 37 (implementing S3).
- the vibration damping controller 31 in the speed control system shown in FIG. 3 can carry out the above S1 to S3 and can dampen the mechanical end.
- the vibration excitation component extractor 33 is a filter capable of extracting the frequency component that excites the mechanical end vibration from the position command estimated value 34 without phase delay, and an example thereof is the following equation corresponding to the line enhancer (LE). ..
- the actual position controller 32 controls the position, and the position controller 7 included in the upper system control device 2 essentially does not take charge of the position control. Therefore, the control gain of the position controller 7 and the control gain of the actual position controller 32 do not necessarily have to match.
- the actual position controller 32 may be a controller having a configuration different from that of the position controller 7.
- the position controller 7 is a PID controller
- the actual position controller 32 is a P controller.
- the speed control system internal vibration damping controller 31 has a degree of freedom in designing the actual position controller 32, but a separate actual position controller 32 is required in addition to the position controller 7.
- FIG. 5 is a diagram showing a configuration of an FF type vibration damping control corresponding to FIG. 2.
- the vibration damping controller 51 in the speed control system of FIG. 5 includes a vibration excitation component extractor 52 that extracts a frequency component that excites mechanical end vibration, a position command estimator 5 that estimates a position command 13, a unit converter 53, and a unit converter 53. It is composed of an adder / subtractor 54.
- the vibration control controller 51 in the speed control system uses the vibration excitation component extractor 52 to excite the mechanical end vibration based on the position command estimation value 55 (corresponding to S1) calculated by the position command estimator 5 without phase delay.
- the signal extracted (corresponding to S2), the signal obtained from the vibration excitation component extractor 52 by the unit converter 53 is converted into the unit of velocity, and the output 56 of the unit converter 53 is removed from the velocity command 14 by the adder / subtractor 54.
- the vibration damping controller 51 in the speed control system shown in FIG. 5 can carry out the above-mentioned S1 to S3 and can dampen the mechanical end.
- An example of the vibrationally excited component extractor 52 is the LE shown in the equation (1).
- An example of the unit converter 53 is the position controller 7 included in the upper system control device 2.
- the position controller 7 plays a role of generating a speed command based on the position command 13 and the deviation between the position command 13 and the motor shaft position response 15. Therefore, in the speed control system internal vibration damping controller 51, the position controller 7 can play the role of the unit converter 53.
- An example of the position command estimator 5 is the following equation.
- Fp is an estimation filter that matches the inverse characteristic of the position controller 7. For example, if the position controller 7 is a P controller, Fp is the reciprocal of the P controller, that is, the reciprocal of the P gain.
- the speed control system internal vibration damping controller 51 shown in FIG. 5 is not an FB type vibration damping control based on the motor end position response, but an FF type vibration damping control that processes commands in an FF manner, and is a position command 13 It plays a role of applying a notch filter to the vibration damping control.
- FIG. 6 shows a configuration provided with means for improving such a response delay by a method other than increasing the control gain of the position controller 7.
- FIG. 6 is a diagram showing a configuration example including an FF controller corresponding to the basic configuration shown in FIG.
- the vibration-excited component extractor 52 and the unit converter 53 shown in FIG. 6 have the same functions as those shown in FIG. Compared with FIG. 5, the configuration of FIG. 6 is obtained by adding an adder / subtractor 64, an adder / subtractor 65, and an FF controller 62 to the parallel type vibration damping controller 23.
- the parallel type vibration damping controller 23 extracts the frequency component that excites the mechanical end vibration by the vibration excitation component extractor 52 from the position command estimated value 55, and transfers the extracted frequency component that excites the mechanical end vibration to the adder / subtractor 65. Output.
- the adder / subtractor 65 subtracts the output of the vibrationally excited component extractor 52 from the position command estimated value 55.
- the signal 67 from the adder / subtractor 65 is processed by the FF controller 62, which is a differential element having a scalar adjustment gain, and the output 68 of the FF controller 62 is subtracted from the output of the unit converter 53 by the adder / subtractor 64. ,
- the output signal 63 is calculated.
- the output signal 63 is subtracted from the speed command 14 by the addition / subtractor 54, and the output signal 66 of the addition / subtractor 54 is the output of the vibration control controller 61 in the speed control system and the speed control as the speed command of the speed controller 8. It is output to the vessel 8.
- the control target of the position control system in motor control is an integrator. Therefore, the FF controller 62 may basically be a differential element having a scalar adjustment gain.
- the signal 67 means a position command in which the frequency component that excites the vibration at the mechanical end is removed from the position command estimated value 55, and the vibration damping effect is obtained by using the FF controller 62.
- the effect of accelerating the response characteristics can be obtained by FF control.
- the configuration of the FF controller 62 has a degree of freedom, and it is possible to configure the FF controller 62 so as to have a general model matching 2 degree of freedom control configuration as shown in FIG. 7, for example.
- the FF controller 73 is configured so that the response 76 to be controlled becomes the norm response 75 obtained by processing the command 74 by the norm model 71.
- the FB controller 72 is configured to suppress the deviation between the normative response 75 and the controlled response 76.
- the FF controller 73 may basically be composed of the normative model 71 ⁇ the inverse characteristic of the transfer function to be controlled.
- the FF controller 62 provided in the parallel type vibration damping controller 23 can improve the responsiveness.
- the position command estimator 5 is subject to disturbance and the influence of the disturbance is superimposed on the motor shaft position response 15, the disturbance is not applied to the processing system on the left side of the position command estimator 5 in FIGS. 5 and 6. Note that the position command 13 can be estimated regardless of the presence or absence of the disturbance influence superimposed on the motor shaft position response 15.
- the FF type vibration damping control as shown in FIGS. 5 and 6 cannot suppress the vibration of the mechanical end caused by the disturbance.
- FIG. 8 is a diagram showing a configuration when FB type vibration damping control is executed, which can suppress vibration at the mechanical end caused by disturbance.
- the parallel type vibration damping controller 82 grasps the influence of the disturbance through the motor shaft position response 15, and executes the FB type vibration damping control so as to suppress the mechanical end vibration caused by the disturbance.
- the parallel type vibration damping controller 82 shown in FIG. 8 calculates the anti-phase component of the vibration component of the end portion 17 of the machine based on the output of the position command estimator 5 and the motor shaft position response 15, and parallels the anti-phase components. It is the output of the type vibration damping controller 82.
- the addition / subtractor 83 of the vibration control controller 81 in the speed control system subtracts the opposite phase component from the speed command 14, and outputs the subtraction result to the speed controller 8 as the actual speed command 84.
- FIG. 9 is a diagram showing an example of the parallel type vibration damping controller 82 shown in FIG.
- FIG. 9 shows the normative response model 91, the mechanical end vibration characteristic model 92, the adder / subtractor 64, the adder / subtractor 65, the adder / subtractor 98, and the unit converter 94 with respect to the parallel type vibration damping controller 23 shown in FIG. Is an added configuration.
- the parallel type vibration damping controller 82 includes a normative response model 91 that defines that the response of the position control system is not a vibrational response to a position command but a desired response, and a machine from the motor shaft. It has a mechanical end vibration characteristic model 92 that means transmission characteristics to the end, a third adder / subtractor 98, and a unit converter 94 that converts the unit of the input signal into the dimension of velocity, and is a position command estimator.
- the signal obtained by processing the motor shaft position response 15 by the mechanical end vibration characteristic model 92 from the signal processed by the normative response model 91 of 5 is removed by the third adder / subtractor 98, and the output signal of the third adder / subtractor 98 is removed.
- the signal processed by the unit converter 94 is output as the reverse phase component of the vibration component at the end of the machine, and the signal from which the frequency component that excites the vibration at the end of the machine included in the speed command is extracted is the sixth adder / subtractor ( While removing with 64, 54), the reverse phase component is removed from the speed command 14 with the sixth adder / subtractor (64, 54), and the output of the sixth adder / subtractor (64, 54) is used as the actual speed command 97 for the speed. It is the output of the vibration damping controller 81 in the control system.
- FB type vibration damping control can generally be realized by reducing the reverse phase of the vibration at the machine end from the speed command 14.
- the normative response model 91 and the mechanical end vibration characteristic model 92 are for calculating the reverse phase of the mechanical end vibration.
- the normative response model 91 is a model that defines that the response of the position control system is a desired response rather than oscillating to the position command, and is, for example, the following equation.
- ⁇ f is the response frequency [rad / s] of the position control system.
- the machine end vibration characteristic model 92 means the transmission characteristic from the motor shaft to the machine end, and when the controlled target machine can be regarded as a bi-inertial frame, it is given by the following equation.
- ⁇ a and ⁇ a are the antiresonance frequency [rad / s] and the antiresonance attenuation coefficient of the two inertial system, respectively.
- the machine end response can be estimated by the machine end vibration characteristic model 92, and the estimated value of the machine end response can be obtained as the estimated machine end signal 99.
- the response of the ideal position control system without mechanical end vibration can be calculated as the ideal response signal 93.
- the unit converter 94 is operated to convert the unit into the velocity dimension, and the opposite phase component of the velocity dimension is calculated as the signal 95.
- the signal 95 is added by the adder / subtractor 64, and the reverse phase of the vibration of the machine end 17 can be reduced from the speed command 14 by the adder / subtractor 54, and FB type vibration damping control can be realized.
- the position command estimator 5 is based on the equation (2), but the position command estimator is predetermined with respect to the estimated value of the position command. It may be a signal mapped by a filter.
- a predetermined filter when used as a unit converter, there is an advantage that arithmetic processing can be simplified.
- an example of the unit converter is the position controller 7, which has an inverse characteristic of Fp. Therefore, when both sides of the equation (2) are processed with the inverse characteristics of Fp, the equation (5) is obtained.
- rep is a signal mapped using a predetermined filter (inverse characteristic of Fp) with respect to the estimated value re of the position command.
- the output signal 1002 of the position command estimator 1001 is a rep of the equation (5).
- FIG. 10 The configuration of FIG. 10 is a case where the position command estimator 1001 represented by the equation (5) is adopted for the configuration of FIG.
- the position command estimator 1001 targets a signal obtained by mapping the position command generated by the host system control device 2 with a predetermined filter, and outputs an estimated value of the signal obtained by mapping the position command with a predetermined filter.
- the input signal 1003 of the mechanical end vibration characteristic model 92 is yp / Fp of the second term on the right side of the equation (5) calculated based on the equation (5) in the position command estimator 1001. It is assumed that the motor shaft position response is yp, the estimation filter that matches the inverse characteristic of the position controller 7 is Fp, and yp / Fp is obtained from the position command estimator 1001 as a signal 1003.
- FIG. 10 Comparing the configuration of FIG. 9 with that of FIG. 10, FIG. 10 has an advantage that the processing can be simplified because it is not necessary to provide unit converters in various places.
- the speed control system internal vibration damping controller processes the speed command 14 for damping the mechanical end, but it can also be processed by processing the motor shaft position response 15 as shown in FIG. Vibration control at the mechanical end can be realized.
- the parallel type vibration damping controller 1101 is a vibration excitation component extractor 52 that extracts a frequency component that excites the vibration of the end of the machine included in the speed command 14, and a predetermined filter 1102 that processes the extracted frequency component. Consists of.
- the output signal 1105 of the parallel type vibration damping controller 1101 is added to the motor shaft position response 15 by the adding / subtracting device 1107, and the output signal 1106 of the adding / subtracting device 1107 is the output of the vibration damping controller 1108 in the speed control system. At the same time, it is output to the host system control device 2 as the actual motor shaft position response 1106.
- the predetermined filter 1102 of FIG. 11 may have the following equation.
- the effect of FF type vibration damping control is obtained by removing the frequency component that excites the vibration of the mechanical end from the position command 13 via the position FB loop. Therefore, even with the vibration damping controller 1108 in the speed control system that processes the motor shaft position response 15 shown in FIG. 11, vibration damping control that suppresses vibration at the machine end can be realized.
- FIG. 12 shows the effect of damping control at the mechanical end in the configuration shown in FIG.
- the vertical axis of FIG. 12 represents the position response (rad) at the end of the machine, and the horizontal axis represents the time (s).
- the vibration-damping machine end position response 1203 in the vibration-damping control of the present embodiment shown in FIG. 5 the machine-end vibration is suppressed from the rising edge, and the vibration can be suppressed even after 0.2 [sec] of setting. Therefore, it can be seen from FIG. 12 that the vibration damping control of this embodiment is sufficiently effective.
- the upper system control device has a position controller, and the position command for the purpose of mechanical end vibration damping is not processed in the upper system control device.
- the controlled machine is a two-inertial system, but it may be a three-inertial system or a multi-inertial system of three or more. This can be dealt with by expanding the parallel type damping control.
- the parallel type vibration damping controller may have a configuration in which FF type vibration damping control and FB type vibration damping control are arbitrarily combined. Based on the parallel type vibration damping controllers shown in FIGS. 5, 6 and 9, FF type vibration damping control and FB type vibration damping control can be combined and realized.
- the motor control device of the second embodiment is a case where it is assumed that the AC servomotor composed of the upper system control device 2 and the servomotor control device 3 is applied to the cascade position FB control system as shown in FIG.
- FIG. 14 shows a case where the speed control system internal vibration damping controller 21 shown in the first embodiment is applied to FIG.
- the cascade position FB control system of the AC servo motor shown in FIG. 14 is a th-order that converts coordinates from the adder / subtractor 1312 and the adder / subtractor 1314, the position controller 1315, the speed controller 132, the current controller 133, and the dq coordinate system to the three-phase coordinate system.
- Coordinate converter 134 of 1 second coordinate converter 1310 that converts coordinates from a three-phase coordinate system to a dq coordinate system, a PWM output device 135 that inputs a three-phase voltage command and outputs a PWM pulse, and an inverter having a switching element.
- Power converter 136, current detector 138, position / speed calculator 1311, speed control system internal vibration damping controller 21, encoder 139 for measuring the number of rotations of the motor, motor 137, machine 1313 driven by the motor. Be prepared.
- the vibration control controller 21 in the speed control system inputs the motor shaft position response calculated by the position / speed calculator 1311 and the position operation amount from the position controller 1315 from the output of the encoder 139, and inputs the position operation amount from the position controller 1315 to the position controller 1315.
- the position response is output, and the speed command is output to the speed controller 132.
- the current control system is approximately 1 in the speed control system (the amount of operation of the speed controller 132 is the motor). It is considered to be directly reached to the mechanical part (rotor) of 137).
- control target of the speed controller 132 is the mechanical part (rotor) of the motor 137 and the machine 1313 coupled to the motor rotor, which corresponds to the control target of the FB controller in FIG.
- the speed control system is approximately regarded as 1 in the position control system.
- the vibration control controller 21 in the speed control system is located in the previous stage in the speed control system, processes the speed command which is the output of the upper system control device 2, and generates a command to the speed controller 132. ..
- the inertial number of the machine 1313 is 1, and when the machine 1313 and the motor rotor are elastically coupled, the control target can be regarded as a two inertial system in which the machine 1313 and the motor rotor are coupled by a spring damper, and the control target is 1. It has frequency characteristics including a set of resonance / anti-resonance characteristics.
- the controlled object is 3 inertia in which each inertia is coupled by a spring damper. It can be regarded as a system and has frequency characteristics including two sets of resonance / antiresonance characteristics.
- Machine 1313 has low rigidity and has resonance / antiresonance characteristics in the low frequency range of several Hz to 100 Hz.
- FIG. 13 in a state where the vibration damping controller 21 in the speed control system is not included. If the control gain of the position controller 1315 is increased, the position command to the motor shaft position response of the motor 137 are controlled to a high response, and the vibration caused by the resonance / antiresonance characteristics of the machine 1313 is suppressed, the rigidity of the machine 1313 is set. Is low, the end of the machine 1313 becomes oscillating.
- the vibration damping effect at the mechanical end can be exhibited as described in the first embodiment, and for example, sufficient damping as shown in FIG. A vibration effect can be obtained.
- the upper system control device has a position controller, and the processing of the position command for the purpose of mechanical end vibration damping is performed in the upper system control device. It is possible to provide a motor control device provided with means for realizing vibration suppression control in the motor servo control device that bears the speed control system without performing the operation.
- the DC motor control also has a cascade control configuration using a speed / position controller. Therefore, according to this embodiment, the vibration control controller 21 in the speed control system is placed in front of the speed controller. By interposing, vibration suppression at the mechanical end can be realized in the speed control system.
- the above embodiment can be applied not only to a motor control device but also to, for example, a semiconductor inspection device, a main motor control device for an electric vehicle, an electric power steering, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Control Of Electric Motors In General (AREA)
- Feedback Control In General (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
位置制御器を有する上位系制御装置からの速度指令を受けとるモータ制御装置であって、速度指令とモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、推定値に基づいて、モータに接続された機械の端部が振動しないような実速度指令を生成する速度指令生成器とを有し、速度指令生成器から速度制御器に実速度指令を出力するモータ制御装置。
Description
本発明は、モータの制御装置に関する。
制御対象の機械を制御する目的のセミクローズド構成のモータ制御系において、モータに取り付けられた機械の剛性が低い場合一般に、機械の共振・反共振特性が原因で機械の端部が振動し所望の応答特性を実現できない場合がある。
FA分野では、タクトタイム向上のために制御系の応答を高めたい。
セミクローズド構成のモータ制御系において、しかしながら機械の剛性が低い場合は機械の端部が数Hz~100Hzの低周波数で振動し位置決めに時間がかかる等が理由で、制御系の応答を高めることが難しい。
セミクローズド構成のモータ制御系において、しかしながら機械の剛性が低い場合は機械の端部が数Hz~100Hzの低周波数で振動し位置決めに時間がかかる等が理由で、制御系の応答を高めることが難しい。
このような場合、一般的に制振制御が用いられる。モータ制御系が位置制御系である場合、制振制御は一般に位置指令の加工により成される。
具体的には、位置指令に対してローパスフィルタやノッチフィルタを作用させ、機械の端部の振動を励起する周波数成分を位置指令から除去することで、機械の端部の制振が実現される。
具体的には、位置指令に対してローパスフィルタやノッチフィルタを作用させ、機械の端部の振動を励起する周波数成分を位置指令から除去することで、機械の端部の制振が実現される。
特許文献1は、位置指令に対して2つの制振フィルタを切り替えて用いることで機械の共振・反共振特性が変化する場合であっても機械の端部を制振可能とするもので、制振フィルタの一例としてはノッチフィルタが挙げられている。
FA分野のセミクローズド構成のモータ制御系において、図15に示すように、機器のリプレースなどの産業上の都合により、位置指令を生成する上位系制御装置が位置制御器を有し、マイナーループである速度制御系をサーボモータ制御装置が担うような装置構成となる場合がある。
さらにメンテナンス性や各装置のスペックなどの都合により、位置制御器で制振制御を実現せず、マイナーループである速度制御系を担うサーボモータ制御装置内で制振制御を実現したい場合がある。
特許文献1では、制振制御に寄与する制振フィルタ3、フィルタ切替え手段9、指令方向検出手段4は、図15における上位系制御装置で制振制御を実現する構成である。そのため、特許文献1では、速度制御系を担うサーボモータ制御装置内で制振制御を実現してはいない。
本発明の目的は、機械の端部の制振を目的とした位置指令の加工を上位系制御装置内で行うことなく、速度制御系を担うモータサーボ制御装置内で制振制御を実現するモータ制御装置を提供することにある。
本発明の好ましい一例としては、位置制御器を有する上位系制御装置からの速度指令を受けとるモータ制御装置であって、
前記速度指令とモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、前記推定値に基づいて、モータに接続された機械の端部が振動しないような実速度指令を生成する速度指令生成器とを有し、前記速度指令生成器から速度制御器に前記実速度指令を出力するモータ制御装置である。
前記速度指令とモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、前記推定値に基づいて、モータに接続された機械の端部が振動しないような実速度指令を生成する速度指令生成器とを有し、前記速度指令生成器から速度制御器に前記実速度指令を出力するモータ制御装置である。
本発明によれば、機械の端部の制振を目的とした位置指令の加工を上位系制御装置内で行うことなく、速度制御系を担うモータサーボ制御装置内で制振制御を実現できる。
本発明で実現したい、位置指令を生成する上位系制御装置が位置制御器を有し、マイナーループである速度制御系をサーボモータ制御装置が担うような装置構成について、まずは、比較例の説明をする。
図16は比較例を示す図である。図16に示すように、ノッチフィルタ1601を速度制御系内に介在させることで、速度指令から機械端の振動を励起する周波数成分を除去することは可能である。なおノッチフィルタ1601のノッチ周波数1602は、機械端振動の周波数に一致するように設定する。
比較例の場合、ノッチフィルタ1601のノッチ周波数周辺の位相遅れ特性が位置制御系の安定余裕を減少させ、機械の共振・反共振特性とは別の周波数で機械端の応答が振動的になってしまう。この現象は機械の共振・反共振特性が低域である程、またタクトタイム向上を狙い位置制御器のゲインを高める程、発生不可避となる。
すなわち、セミクローズド構成のモータ制御系において、速度制御系を担うサーボモータ制御装置内で制振制御を行う場合、比較例では、数Hz~100Hz程度の低域での機械端の制振は困難であるという課題がある。
以下、実施例について図面を参照しながら説明する。なお各図において、共通な機能を有する構成要素には同一の番号を付与し、その説明を省略する。また、以降「フィードバック」は「FB」と、「フィードフォワード」は「FF」と略記する場合がある。略記する場合がある。
図1及び図2は、実施例1の速度制御系内制振制御器4及び速度制御系内制振制御器21を含んだセミクローズド構成のカスケードフィードバック型モータ制御系を示す図である。
図1および図2に示すサーボモータ制御装置3は、上位系制御装置2から速度指令を受取り、上位系制御装置2に対してモータ軸位置応答15を出力するよう位置制御系に組込まれている。上位系制御装置2は、位置制御系に組み込まれ、位置制御器7を有して、位置指令を生成し、位置指令とサーボモータ制御装置3から受け取ったモータ軸位置応答15とから、位置制御器7を用いて速度指令を生成する。位置制御器は、位置指令13とモータ軸位置応答15を入力し位置操作量(速度指令14)を出力する。
図1のサーボモータ制御装置3は、モータの速度制御系を担い、速度制御器8を有するとともに、速度指令14とモータ軸位置応答15とに基づいて位置指令の推定値34を算出する位置指令推定器5と、位置指令の推定値34に基づき機械の端部17が振動しないような実速度指令16を生成する速度指令生成器6とを有する速度制御系内制振制御器4を有し、実速度指令16を速度制御器8の指令とする。速度制御器8は実速度指令16とモータ軸速度応答15を入力し速度操作量を電流指令として電流制御系9に出力する。
なお以降説明の便宜上、位置・速度算出器10の出力はモータ軸位置応答15を意味する場合もあれば、モータ軸速度応答15を意味する場合もある。
なお以降説明の便宜上、位置・速度算出器10の出力はモータ軸位置応答15を意味する場合もあれば、モータ軸速度応答15を意味する場合もある。
図2のサーボモータ制御装置3は、モータの速度制御系を担い、速度制御器8を有するとともに、速度指令14とモータ軸位置応答15とに基づいて位置指令の推定値34を算出する位置指令推定器5と、位置指令の推定値34に基づき速度指令に含まれる機械の端部17の振動を励起する周波数成分を抽出し、抽出した周波数成分を出力する並列型制振制御器23と、加減算器24とを有する速度制御系内制振制御器21を有し、加減算器24は、速度指令14から並列型制振制御器23の出力を減算し、機械の端部17の振動を励起する周波数成分を速度指令14から除去し、加減算器24の出力を実速度指令27として速度制御系内制振制御器21の出力とし、実速度指令27を速度制御器8の指令とする。
モータ軸に取り付けられた機械の剛性が低い場合、例えば位置決め時間短縮を目的に位置制御器7、速度制御器8の各制御ゲインを高めると、モータに接続された機械の端部(以下、機械端という)17が、数Hz~100Hzの低周波数で振動し、逆に位置決めに時間がかかってしまい、高応答化が難しい場合がある。この際、制振制御を適用することで一般に機械端17の振動を抑制し、位置決め時間の短縮を図ることが可能である。
本実施例は図1及び図2に示すように、モータ制御系が上位系制御装置2とサーボモータ制御装置3とで構成される場合を想定したものである。
上位系制御装置2は位置指令13を生成し、位置制御器7を含み、サーボモータ制御装置3からモータ軸位置応答(モータの回転子の位置を表す応答)15を受け取り、位置指令13とモータ軸位置応答15とに基づき位置制御器7で速度指令14を生成し、これをサーボモータ制御装置3に出力する。
なお位置指令13は、上位系制御装置2の外部から別の上位装置等から与えられるものであってもよい。
サーボモータ制御装置3は速度制御器8、電流制御系9、位置・速度算出器10、および速度制御系内制振制御器4(もしくは21)を含み、上位系制御装置2から速度指令14を受け取り、モータに対して速度制御を行うとともに、モータに取り付けられた位置・速度を把握可能なセンサ(例えばロータリーエンコーダ)からの計測信号に基づき位置・速度算出器10でモータ軸の位置及び速度を算出し、これをモータ軸位置応答15、及びモータ軸速度応答15として、モータ軸位置応答15を上位系制御装置2に出力する。
サーボモータ制御装置3は、図示は省略したがCPU(Central Processing Unit)を有する。位置指令推定器5、速度指令生成器6、並列型制振制御器などの各処理部を含む速度制御系内制振制御器21、速度制御器8、位置・速度算出器10などは、CPUがプログラムを読み出してプログラムを実行することで、各処理部の処理が実行される。ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで、各処理部の全部もしくは一部を構成することもできる。また上位系制御装置2はCPUを有し、位置制御器7に対応したプログラムをCPUが実行する。
位置指令13に対してローパスフィルタやノッチフィルタを作用させ、機械端17の振動を励起する周波数成分を位置指令13から除去する等により制振制御が実施される。
しかしながら機器のリプレースやメンテナンス性、各装置のスペックなどの都合により、位置制御器7で制振制御を実現せず、マイナーループである速度制御系を担うサーボモータ制御装置3内で制振制御を実現したい場合がある。
実施例1では、上位系制御装置2の位置制御器7が制振制御を含まず、サーボモータ制御装置3の内部で制振制御を実現することを課題とする。本実施例では速度制御系内制振制御器4(もしくは21)は、その課題を解決するための制振制御器である。
フォードフォワード型の制振制御は位置指令13から機械端の振動を励起する周波数成分を除去することで成される。
これを速度制御系内で実施するには、原理的には以下のステップの処理を行えればよい。
S1:位置指令の把握・推定。
S2:把握・推定した位置指令から機械端振動を励起する周波数成分を抽出。
S3:S2で抽出した周波数成分を含まない速度指令を生成し、速度制御器の速度指令とする。
S1:位置指令の把握・推定。
S2:把握・推定した位置指令から機械端振動を励起する周波数成分を抽出。
S3:S2で抽出した周波数成分を含まない速度指令を生成し、速度制御器の速度指令とする。
図3は、図1に対応する速度制御系内制振制御器4の構成例を示す図である。
速度制御系内制振制御器31は、機械端振動を励起する周波数成分を抽出する振動励起成分抽出器33、位置指令13の推定する位置指令推定器5、実位置制御器32、および加減算器35で構成される。
なお説明の簡単のために、位置指令推定器5は位置指令13を正しく推定できるものとしておく。
位置指令推定器5で算出した位置指令推定値34(S1を実施)から振動励起成分抽出器33の出力(S2を実施)を加減算器35で除して得られた、機械端振動を励起する周波数成分を含まない位置指令36とモータ軸位置応答15に基づき、実位置制御器32は速度指令37を生成する(S3を実施)。
これにより図3に示す速度制御系内制振制御器31は、上記のS1~S3を実施でき、機械端を制振することができる。
なお振動励起成分抽出器33は、位置指令推定値34から機械端振動を励起する周波数成分を位相遅れなく抽出できるフィルタであり、その一例としてはラインエンハンサ(LE)に相当する次式が挙げられる。
但し、Wは抽出幅、Lは抽出パワーレベルを担うパラメータで、ωnは抽出する周波数[rad/s]である。W=1、L=0.1、ωn=2π×10とした際の式(1)の周波数特性を図4に示す。周波数ωnにおいて振幅がピークを迎え、位相遅れが0となる点が特徴である。
速度制御系内制振制御器31においては、実位置制御器32が位置制御を行い、上位系制御装置2に含まれる位置制御器7は本質的には位置制御を担わない。したがって、位置制御器7の制御ゲインと実位置制御器32の制御ゲインは必ずしも一致している必要はない。
さらには、実位置制御器32は位置制御器7と異なる構成の制御器であっても構わない。例えば、位置制御器7がPID制御器で、実位置制御器32はP制御器、というような場合である。
速度制御系内制振制御器31は実位置制御器32の設計自由度がある一方で位置制御器7に加えて別途実位置制御器32が必要となる点に注意する。
図5は、図2に対応するFF型の制振制御の構成を示す図である。
図5の速度制御系内制振制御器51は、機械端振動を励起する周波数成分を抽出する振動励起成分抽出器52、位置指令13を推定する位置指令推定器5、単位変換器53、および加減算器54で構成される。
なお説明の簡単のために、位置指令推定器5は位置指令13を正しく推定できるものとしておく。
速度制御系内制振制御器51は、位置指令推定器5で算出した位置指令推定値55(S1に対応)に基づき振動励起成分抽出器52で機械端振動を励起する周波数成分を位相遅れなく抽出し(S2に対応)、単位変換器53で振動励起成分抽出器52から得た信号を速度の単位に変換し、単位変換器53の出力56を速度指令14から加減算器54で除去した信号を速度制御器8の速度指令として実速度指令57とする(S3に対応)。
これにより、図5に示す速度制御系内制振制御器51は、前述のS1~S3を実施でき、機械端を制振することができる。
振動励起成分抽出器52の一例は、式(1)に示したLEである。単位変換器53の一例は、上位系制御装置2に含まれる位置制御器7である。
位置制御器7は位置指令13や、位置指令13とモータ軸位置応答15との偏差に基づき速度指令を生成する役割を担う。したがって速度制御系内制振制御器51においては、位置制御器7は単位変換器53の役割を担うことが可能である。
位置指令推定器5の一例は、次式である。
位置制御器7は位置指令13や、位置指令13とモータ軸位置応答15との偏差に基づき速度指令を生成する役割を担う。したがって速度制御系内制振制御器51においては、位置制御器7は単位変換器53の役割を担うことが可能である。
位置指令推定器5の一例は、次式である。
但し、reは位置指令推定値55を示し、srは速度指令14を示し、ypはモータ軸位置応答15を示す。Fpは、位置制御器7の逆特性に一致する推定フィルタである。例えば位置制御器7がP制御器ならば、FpはP制御器の逆特性、すなわちPゲインの逆数となる。
図5に示した速度制御系内制振制御器51は、モータ端位置応答に基づくFB型の制振制御ではなく、指令をFF的に加工するFF型の制振制御であり、位置指令13にノッチフィルタを適用し制振制御を行う役割を担うものである。
したがって、ノッチフィルタで制振制御を行う場合と同様に、実速度指令57は速度指令14と比較して、立ち上がりが遅れる傾向となり、モータ軸位置応答15は、実速度指令57に対して更に遅れたものとなる。このような応答遅れを位置制御器7の制御ゲインを高める以外の方法で改善する手段を備えた構成を図6に示す。
図6は、図2に示す基本構成に対応するFF制御器を含む構成例を示す図である。
図6に記載の振動励起成分抽出器52および単位変換器53は、図5に記載のものと同機能とする。図6の構成は図5と比較して、並列型制振制御器23に対して加減算器64、加減算器65及びFF制御器62が追加されたものである。
並列型制振制御器23は、位置指令推定値55から振動励起成分抽出器52が機械端振動を励起する周波数成分を抽出し、その抽出した機械端振動を励起する周波数成分を加減算器65に出力する。加減算器65は、位置指令推定値55から振動励起成分抽出器52の出力を減算する。加減算器65からの信号67は、スカラな調整ゲインを有する微分要素であるFF制御器62で処理され、FF制御器62の出力68を単位変換器53の出力から加減算器64で減算することで、出力信号63を算出する。出力信号63は加減算器54にて速度指令14から減算され、加減算器54の出力信号66は、速度制御系内制振制御器61の出力であるとともに、速度制御器8の速度指令として速度制御器8に出力される。
モータ制御における位置制御系の制御対象は、理想的には積分器である。したがってFF制御器62は基本的にはスカラな調整ゲインを有する微分要素、とすればよい。
図6の構成において、信号67は位置指令推定値55から機械端の振動を励起する周波数成分を除去した位置指令を意味し、これに対してFF制御器62を用いることで、制振効果を伴いつつFF制御で応答特性を早める効果を得ることができる。
なお、FF制御器62の構成には自由度があり、例えば図7に示すような一般的なモデルマッチング2自由度制御構成となるようにFF制御器62を構成することも可能である。
なお図7に示す一般的なモデルマッチング2自由度制御では、制御対象の応答76が、指令74を規範モデル71で処理し得られた規範応答75となるようにFF制御器73が構成され、FB制御器72は規範応答75と制御対象の応答76との偏差を抑制するように構成される。この場合のFF制御器73は基本的には規範モデル71×制御対象の伝達関数の逆特性、で構成すればよい。
図6の構成によれば、位置制御器7の制御ゲインを高める以外に、並列型制振制御器23に設けられたFF制御器62により、応答性を改善することが可能である。
なお、図5及び図6のモータ制御系においては、速度制御系内制振制御器21(もしくは51、61)の位置指令推定器5を介したFBループが存在するが、制御対象に加わる外乱を抑制する、もしくは制御対象に加わる外乱に起因して発生する機械端の振動を抑制するような効果はない点に注意する。これは並列型制振制御器23がFF型の制振制御として機能するためである。
また位置指令推定器5は制御対象に外乱が加わり、モータ軸位置応答15に外乱の影響が重畳する場合でも、図5及び図6において位置指令推定器5より左側の処理系に外乱が加わらない限りは、モータ軸位置応答15に重畳する外乱影響の有無によらず位置指令13を推定できる点に注意する。
実用に際しては、上位系制御装置2とサーボモータ制御装置3との通信遅延や、各処理での量子化誤差等が外乱要素として想定されるが、それらが十分微小であれば問題は生じない。
上述のように、図5、図6に示したようなFF型の制振制御では、外乱起因で生ずる機械端の振動を抑制できない。
図8は、外乱起因で生ずる機械端の振動も抑制可能な、FB型の制振制御を実行する場合の構成を示す図である。具体的には、並列型制振制御器82は、モータ軸位置応答15を介して外乱の影響を把握し、外乱起因の機械端振動を抑制するようにFB型の制振制御を実行する。
図8に示す並列型制振制御器82は、位置指令推定器5の出力とモータ軸位置応答15とに基づき機械の端部17の振動成分の逆相成分を算出し、逆相成分を並列型制振制御器82の出力とする。速度制御系内制振制御器81の加減算器83は速度指令14から逆相成分を減算し、減算結果を、実速度指令84として速度制御器8へ出力する。
図9は、図8に示す並列型制振制御器82の一例を示す図である。図9は、図5に示した並列型制振制御器23に対して、規範応答モデル91、機械端振動特性モデル92と、加減算器64、加減算器65、および加減算器98、単位変換器94が追加された構成である。
図9に示すように、並列型制振制御器82は、位置制御系の応答が位置指令に対して振動的でなく所望の応答となることを規定した規範応答モデル91と、モータ軸から機械端までの伝達特性を意味する機械端振動特性モデル92と、第3の加減算器98と、入力された信号の単位を速度の次元に変換する単位変換器94とを有し、位置指令推定器5の出力を規範応答モデル91で処理した信号からモータ軸位置応答15を機械端振動特性モデル92で処理した信号を、第3の加減算器98で除去し、第3の加減算器98の出力信号を単位変換器94が処理した信号を機械端の振動成分の逆相成分として出力し、速度指令に含まれる機械の端部の振動を励起する周波数成分を抽出した信号を第6の加減算器(64、54)で除去するとともに、速度指令14から逆相成分を第6の加減算器(64、54)で除去し、第6の加減算器(64、54)の出力を実速度指令97として速度制御系内制振制御器81の出力とする。
FB型の制振制御は一般に、機械端の振動の逆相を速度指令14から減ずることで実現できる。規範応答モデル91、および機械端振動特性モデル92は機械端の振動の逆相を算出するためのものである。
規範応答モデル91は、位置制御系の応答が位置指令に対して振動的でなく所望の応答となることを規定したモデルで、例えば次式である。
但し、ωfは位置制御系の応答周波数[rad/s]である。
他方、機械端振動特性モデル92はモータ軸から機械端までの伝達特性を意味するもので、制御対象機械を2慣性系と見なせる場合は、次式である。
他方、機械端振動特性モデル92はモータ軸から機械端までの伝達特性を意味するもので、制御対象機械を2慣性系と見なせる場合は、次式である。
但し、ωa及びζaは各々2慣性系の反共振周波数[rad/s]及び反共振減衰係数である。
図9に示すように、機械端振動特性モデル92により機械端の応答を推定でき、機械端応答の推定値を推定機械端信号99として得ることができる。他方、規範応答モデル91により、機械端振動の無い理想的な位置制御系の応答を理想応答信号93として算出できる。
理想応答信号93から推定機械端信号99を加減算器98で減ずることで、機械端の応答に重畳した機械端振動の逆相成分を抽出できる。これに対して、単位変換器94を作用させ単位を速度の次元に変換し、速度の次元の逆相成分を信号95として算出する。
信号95を加減算器64で加算し、加減算器54で、速度指令14から機械端17の振動の逆相を減ずることができ、FB型の制振制御を実現できる。
図2、図5、図6、図8および図9の構成では、位置指令推定器5は式(2)によるもの、としたが、位置指令推定器は位置指令の推定値に対して所定のフィルタで写像した信号としてもよい。
例えば、所定のフィルタを単位変換器とする場合、演算処理を簡素化できる優位性がある。単位変換器の一例は前述のように、位置制御器7でありFpの逆特性である。したがって、式(2)の両辺をFpの逆特性で処理すると、式(5)が得られる。
ただし、repは位置指令の推定値reに対して所定のフィルタ(Fpの逆特性)を用いて写像した信号、である。位置指令推定器1001の出力信号1002は式(5)のrepである。
図10の構成は、図9の構成に対して、式(5)で示した位置指令推定器1001を採用した場合である。
位置指令推定器1001は、上位系制御装置2が生成した位置指令を所定のフィルタで写像した信号を推定対象とし、位置指令を所定のフィルタで写像した信号の推定値を出力する。
このような位置指令推定器1001を用いた場合、図10に示すように、並列型制振制御器23に単位変換器を有する必要がなくなる。また図10において、機械端振動特性モデル92の入力信号1003は、位置指令推定器1001内で式(5)に基づき算出される、式(5)の右辺第2項のyp/Fpである。モータ軸位置応答をyp、位置制御器7の逆特性に一致する推定フィルタをFpとして、yp/Fpは位置指令推定器1001から信号1003として得られるものとする。
図9の構成と図10を比較すると、図10は各所に単位変換器を設ける必要がないため、処理を簡素化できる利点を有する。
図2、図8の構成では、速度制御系内制振制御器は機械端の制振のために速度指令14を加工したが、図11に示すようにモータ軸位置応答15を加工することでも機械端の制振を実現できる。
図11において、並列型制振制御器1101は、速度指令14に含まれる機械の端部の振動を励起する周波数成分を抽出する振動励起成分抽出器52と抽出した周波数成分を処理する所定フィルタ1102とから成る。並列型制振制御器1101の出力信号1105は、加減算器1107にてモータ軸位置応答15に対して加算され、加減算器1107の出力信号1106が速度制御系内制振制御器1108の出力であるとともに、実モータ軸位置応答1106として、上位系制御装置2に出力される。
振動励起成分抽出器52が式(1)のLEである場合、図11の所定フィルタ1102は次式であればよい。
所定フィルタを式(6)とすると、位置FBループを介して、位置指令13から機械端の振動を励起する周波数成分を除去する、FF型の制振制御の効果が得られる。したがって、図11に示すモータ軸位置応答15を加工するような速度制御系内制振制御器1108であっても、機械端の振動を抑制する、制振制御を実現できる。
図12は、図5に記載の構成における、機械端の制振制御の効果を示す。図12の縦軸は機械端の位置応答(rad)を表し、横軸は時間(s)を表す。
位置指令1201に対して、一切の制振制御を適用しない場合の機械端位置応答1202は、立ち上がりから振動的であり、整定する0.2[sec]以降も振動が顕著である。
位置指令1201に対して、一切の制振制御を適用しない場合の機械端位置応答1202は、立ち上がりから振動的であり、整定する0.2[sec]以降も振動が顕著である。
他方、図5に記載の本実施例の制振制御における制振機械端位置応答1203では、立ち上がりから機械端振動が抑制され、整定する0.2[sec]以降も振動を抑制できている。したがって図12から本実施例の制振制御は十分に有効であることが把握される。
本実施例によれば、セミクローズド構成のモータ制御系において、上位系制御装置が位置制御器を有し、機械端制振を目的とした位置指令の加工を上位系制御装置内で行うことなく、速度制御系を担うモータサーボ制御装置内で制振制御を実現するモータ制御装置を得ることができる。それにより制御系の応答を高めタクトタイム向上できる。
なお本実施例では、制御対象機械が2慣性系の場合を想定したが、3慣性系、もしくはそれ以上の多慣性系であってもよい。これには並列型制振制御を拡張することで対応可能である。
また並列型制振制御器は、FF型の制振制御と、FB型の制振制御とを任意に組み合わせた構成であってもよい。図5、図6、図9に記載の並列型制振制御器を基にFF型の制振制御と、FB型の制振制御とを組み合わせて実現可能である。
実施例2のモータ制御装置は、図13に示すような、上位系制御装置2とサーボモータ制御装置3で構成されるACサーボモータのカスケード位置FB制御系への適用を想定した場合である。
実施例1に示した速度制御系内制振制御器21を図13に適用した場合が図14である。
図14のACサーボモータのカスケード位置FB制御系は、加減算器1312および加減算器1314、位置制御器1315、速度制御器132、電流制御器133、d-q座標系から3相座標系へ座標変換する第1の座標変換器134、3相座標系からd-q座標系へ座標変換する第2の座標変換器1310、3相電圧指令を入力してPWMパルスを出力するPWM出力器135、スイッチング素子を有するインバータ(電力変換器)136、電流検出器138、位置・速度算出器1311、速度制御系内制振制御器21、モータの回転数を計測するエンコーダ139、モータ137、モータに駆動される機械1313を備える。
速度制御系内制振制御器21はエンコーダ139の出力から位置・速度算出器1311で算出されたモータ軸位置応答および位置制御器1315からの位置操作量を入力し、位置制御器1315にモータ軸位置応答を出力し、速度制御器132に速度指令を出力する。
モータの電気回路部分を電流制御器133が制御し、この制御周期が速度制御器132より速い前提においては速度制御系において、電流制御系は近似的に1(速度制御器132の操作量がモータ137の機械部分(ロータ)に直達される)にみなされる。
したがって速度制御器132の制御対象は、モータ137の機械部分(ロータ)とモータロータに結合された機械1313であり、これが図1におけるFB制御器の制御対象に相当する。
また速度制御器132の制御周期は、位置制御器1315の制御周期より早い速い前提においては、位置制御系において、速度制御系は近似的に1に見なされる。
速度制御系内制振制御器21は、速度制御系内のその前段に位置し、上位系制御装置2の出力である速度指令を加工し、速度制御器132への指令を生成するものである。
機械1313の慣性数は1とし、機械1313とモータロータが弾性結合されている場合は、制御対象は機械1313とモータロータがバネ・ダンパで結合された2慣性系とみなすことができ、制御対象は1組の共振・反共振特性を含む周波数特性を有するものとなる。
また、機械1313の慣性数が2で各慣性はバネ・ダンパで結合され、その一方がモータロータに対して弾性結合されている場合は、制御対象は各慣性がバネ・ダンパで結合された3慣性系とみなすことができ、2組の共振・反共振特性を含む周波数特性を有するものとなる。
機械1313は剛性が低く、数Hz~100Hz程度の低域で共振・反共振特性を有するものとする。
まず速度制御系内制振制御器21を含まない状態の図13を考える。位置制御器1315の制御ゲインを高め、位置指令からモータ137のモータ軸位置応答までを高応答に制御し、機械1313の共振・反共振特性起因の振動を抑制する設定とすると、機械1313の剛性が低いため、機械1313の端部は振動的になる。
他方、図14のように、速度制御系内制振制御器21を含む場合は実施例1で説明したように機械端の制振効果を発揮でき、例えば図12に示したように十分な制振効果を得ることができる。
したがって本実施例によれば、セミクローズド構成のACサーボモータ制御系において、上位系制御装置が位置制御器を有し、機械端制振を目的とした位置指令の加工を上位系制御装置内で行うことなく、速度制御系を担うモータサーボ制御装置内で制振制御を実現する手段を備えたモータ制御装置の提供が可能である。
なお、ACサーボモータ制御以外にも、DCモータ制御においても速度・位置制御器によるカスケード制御構成となるので、本実施例によれば速度制御系内制振制御器21を速度制御器の前段に介在させることで、速度制御系内で機械端の制振を実現できる。
上記の実施例は、モータ制御装置以外にも、例えば半導体検査装置、電気自動車の主モータ制御装置、電動パワーステアリング等にも適用可能である。
2…上位系制御装置、3…サーボモータ制御装置、5…位置指令推定器、10…位置・速度算出器、13…位置指令、14…速度指令、15…モータ軸位置応答、21…速度制御系内制振制御器、23…並列型制振制御器、52…振動励起成分抽出器
Claims (12)
- 位置制御器を有する上位系制御装置からの速度指令を受けとるモータ制御装置であって、
前記速度指令とモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、
前記推定値に基づいて、モータに接続された機械の端部が振動しないような実速度指令を生成する速度指令生成器とを有し、
前記速度指令生成器から速度制御器に前記実速度指令を出力するモータ制御装置。 - 請求項1に記載のモータ制御装置において、
前記速度指令生成器は、
前記機械の端部の振動を励起する周波数成分を抽出する振動周波数成分抽出器と、
前記機械の端部の振動を励起する周波数成分を含まない位置指令を受け、前記実速度指令を生成する実位置制御器とを有するモータ制御装置。 - 位置制御器を有する上位系制御装置からの速度指令を受けとるモータ制御装置であって、
前記速度指令とモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、
前記推定値に基づいて、前記速度指令に含まれる、モータに接続された機械の端部の振動を励起する周波数成分を抽出し、抽出した前記周波数成分を出力する並列型制振制御器と、
前記速度指令から前記並列型制振制御器の出力を減算する加減算器と、
を有し、前記加減算器の出力を実速度指令として速度制御器の指令とするモータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記並列型制振制御器は、
前記推定値とモータ軸位置応答と基づいて、前記端部の振動成分の逆相成分を算出し、前記逆相成分を、前記加減算器に出力するモータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記位置指令推定器は、
前記速度指令を入力し、前記位置制御器の逆特性に一致する推定フィルタと、
前記推定フィルタの出力と前記モータ軸位置応答とを加算する加算器を有する
モータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記並列型制振制御器は、
前記推定値から前記速度指令に含まれる前記機械の端部の振動を励起する前記周波数成分を位相遅れなく抽出する振動励起成分抽出フィルタと、
前記振動励起成分抽出フィルタで抽出された前記周波数成分の単位を速度の次元に変換する単位変換器とを有し、
前記単位変換器の出力を前記並列型制振制御器の出力とするモータ制御装置。 - 請求項4に記載のモータ制御装置において、
前記並列型制振制御器は、
前記位置指令に対して振動的でなく所望の応答となることを規定する規範応答モデルと、
モータ軸から機械端までの伝達特性を意味する機械端振動特性モデルと、
第3の加減算器と、
入力された信号の単位を速度の次元に変換する単位変換器とを有し、
前記位置指令推定器の出力を前記規範応答モデルで処理した信号から、前記モータ軸位置応答を前記機械端振動特性モデルで処理した信号を、前記第3の加減算器で除去し、
前記第3の加減算器の出力信号を前記単位変換器で処理した信号を、前記端部の振動成分の前記逆相成分として前記並列型制振制御器の出力とするモータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記位置指令推定器は、
前記位置指令を所定のフィルタで写像した信号を推定対象とし、
前記位置指令を所定のフィルタで写像した信号の前記推定値を出力するモータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記並列型制振制御器は、
前記速度指令に含まれる機械端の振動を励起する前記周波数成分を抽出した抽出信号を出力し、
第4の加減算器と、スカラな調整ゲインおよび微分器とを有し、
前記位置指令の前記推定値から前記抽出信号を前記第4の加減算器で減じ、
前記第4の加減算器の出力信号を前記調整ゲインおよび前記微分器で処理した
フィードフォワード制御信号を出力するものであって、
前記速度指令に対して前記フィードフォワード制御信号を第5の加減算器で加算するとともに、前記速度指令から前記抽出信号を前記第5の加減算器で除去し、前記第5の加減算器の出力を前記実速度指令とするモータ制御装置。 - 請求項3に記載のモータ制御装置において、
前記並列型制振制御器は、
前記速度指令に含まれる前記機械の端部の振動を励起する前記周波数成分を抽出する振動励起成分抽出器と、
前記位置指令に対して振動的でなく所望の応答となることを規定する規範応答モデルと、
モータ軸から前記端部までの伝達特性を意味する機械端振動特性モデルと、
第3の加減算器と、
入力された信号の単位を速度の次元に変換する単位変換器とを有し、
前記位置指令推定器の出力を前記規範応答モデルで処理した信号から前記モータ軸位置応答を前記機械端振動特性モデルで処理した信号を、前記第3の加減算器で除去し、
前記第3の加減算器の出力信号を前記単位変換器で処理した信号を、前記端部の振動成分の逆相成分として出力し、
前記速度指令に含まれる前記端部の振動を励起する前記周波数成分を抽出した信号を第6の加減算器で除去するとともに、前記速度指令から前記逆相成分を前記第6の加減算器で除去し、前記第6の加減算器の出力を前記実速度指令とするモータ制御装置。 - 請求項8に記載のモータ制御装置において、
前記位置指令推定器は、
前記所定のフィルタと、
加算器とを有し、
前記モータ軸位置応答を前記所定のフィルタで処理した信号と、前記速度指令とを前記加算器で加算し、
前記加算器の出力信号を前記位置指令推定器の出力とし、
前記並列型制振制御器は、
前記位置指令推定器の出力から前記機械の端部の振動を励起する前記周波数成分を抽出し、出力信号とするモータ制御装置。 - 位置制御器を有する上位系制御装置からの速度指令を受けとるモータ制御装置であって、
前記速度指令とモータからのモータ軸位置応答とに基づいて、位置指令の推定値を算出する位置指令推定器と、
前記位置指令の推定値に基づき、前記速度指令に含まれる機械の端部の振動を励起する周波数成分を抽出し、
抽出した周波数成分を所定のフィルタで処理した信号を出力する並列型制振制御器と、
加算器とを有し、
前記モータ軸位置応答と前記並列型制振制御器の出力とを、前記加算器で加算し、
前記加算器の出力信号を実モータ軸位置応答とし、前記実モータ軸位置応答を前記位置制御器に出力とするモータ制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/792,598 US11831262B2 (en) | 2020-02-04 | 2020-12-04 | Motor control device |
EP20918058.7A EP4102716A4 (en) | 2020-02-04 | 2020-12-04 | ENGINE CONTROL DEVICE |
CN202080092951.XA CN114946120A (zh) | 2020-02-04 | 2020-12-04 | 电动机控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020016818A JP7261755B2 (ja) | 2020-02-04 | 2020-02-04 | モータ制御装置 |
JP2020-016818 | 2020-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157178A1 true WO2021157178A1 (ja) | 2021-08-12 |
Family
ID=77200489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045288 WO2021157178A1 (ja) | 2020-02-04 | 2020-12-04 | モータ制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11831262B2 (ja) |
EP (1) | EP4102716A4 (ja) |
JP (1) | JP7261755B2 (ja) |
CN (1) | CN114946120A (ja) |
WO (1) | WO2021157178A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005168225A (ja) | 2003-12-04 | 2005-06-23 | Matsushita Electric Ind Co Ltd | モータ制御装置 |
US20180067086A1 (en) * | 2016-09-08 | 2018-03-08 | Linestream Technologies | Method for automatically identifying resonance |
JP2018196266A (ja) * | 2017-05-18 | 2018-12-06 | 川崎重工業株式会社 | モータ制御システム、モータ制御システムの制御方法、及びロボットシステム |
WO2019031218A1 (ja) * | 2017-08-08 | 2019-02-14 | パナソニックIpマネジメント株式会社 | エンコーダの異常検出方法 |
JP2019133494A (ja) * | 2018-02-01 | 2019-08-08 | オムロン株式会社 | 設定支援装置及び設定支援プログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6936990B2 (en) * | 2002-03-29 | 2005-08-30 | Matsushita Electric Industrial Co., Ltd. | Method for controlling electric motor and apparatus for controlling the same |
JP3678276B2 (ja) * | 2002-08-22 | 2005-08-03 | 株式会社安川電機 | フルクローズド制御装置 |
JP4811727B2 (ja) * | 2006-11-01 | 2011-11-09 | 株式会社安川電機 | 永久磁石界磁同期電動機制御装置 |
JP5273575B2 (ja) * | 2011-09-01 | 2013-08-28 | 株式会社安川電機 | 電動機制御装置 |
WO2015063842A1 (ja) * | 2013-10-28 | 2015-05-07 | 株式会社安川電機 | モータ制御装置 |
-
2020
- 2020-02-04 JP JP2020016818A patent/JP7261755B2/ja active Active
- 2020-12-04 WO PCT/JP2020/045288 patent/WO2021157178A1/ja unknown
- 2020-12-04 EP EP20918058.7A patent/EP4102716A4/en active Pending
- 2020-12-04 US US17/792,598 patent/US11831262B2/en active Active
- 2020-12-04 CN CN202080092951.XA patent/CN114946120A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005168225A (ja) | 2003-12-04 | 2005-06-23 | Matsushita Electric Ind Co Ltd | モータ制御装置 |
US20180067086A1 (en) * | 2016-09-08 | 2018-03-08 | Linestream Technologies | Method for automatically identifying resonance |
JP2018196266A (ja) * | 2017-05-18 | 2018-12-06 | 川崎重工業株式会社 | モータ制御システム、モータ制御システムの制御方法、及びロボットシステム |
WO2019031218A1 (ja) * | 2017-08-08 | 2019-02-14 | パナソニックIpマネジメント株式会社 | エンコーダの異常検出方法 |
JP2019133494A (ja) * | 2018-02-01 | 2019-08-08 | オムロン株式会社 | 設定支援装置及び設定支援プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4102716A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230066812A1 (en) | 2023-03-02 |
EP4102716A4 (en) | 2024-02-28 |
CN114946120A (zh) | 2022-08-26 |
JP7261755B2 (ja) | 2023-04-20 |
EP4102716A1 (en) | 2022-12-14 |
JP2021125934A (ja) | 2021-08-30 |
US11831262B2 (en) | 2023-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4391218B2 (ja) | サーボ制御装置 | |
WO2011039929A1 (ja) | 位置決め制御装置 | |
JP2013055751A (ja) | 電動機制御装置 | |
JP4294344B2 (ja) | 電動機の制御方法及び制御装置 | |
US11415948B2 (en) | Device for controlling electric motor | |
JP2010088290A (ja) | 慣性系の制御方法および装置 | |
JP7312684B2 (ja) | モータ制御装置、およびその自動調整方法 | |
JP6720714B2 (ja) | 電動車両の制御方法、及び電動車両の制御装置 | |
WO2021157178A1 (ja) | モータ制御装置 | |
JP7245978B2 (ja) | 電動機の制御装置 | |
WO2023276198A1 (ja) | モータ制御装置 | |
JP6827565B2 (ja) | 電動機の制御装置 | |
CN113767565B (zh) | 马达控制系统、马达控制方法以及程序 | |
WO2023171122A1 (ja) | モータ制御装置、およびその自動調整方法 | |
JP6640659B2 (ja) | 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法 | |
WO2020202707A1 (ja) | 制御装置 | |
JP2000175475A (ja) | 電磁気誘導機の機械的共振抑制装置 | |
JP5805016B2 (ja) | モータ制御装置 | |
JP2004201383A (ja) | モータ速度制御方法および装置 | |
JP5402649B2 (ja) | ノッチフィルタとそれを備えたモータ制御装置 | |
JP2022028976A (ja) | 回転電機制御装置 | |
JP2017147704A (ja) | 位置指令制御装置およびバンド除去フィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918058 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020918058 Country of ref document: EP Effective date: 20220905 |