WO2020067161A1 - 高強度セパレータ - Google Patents

高強度セパレータ Download PDF

Info

Publication number
WO2020067161A1
WO2020067161A1 PCT/JP2019/037608 JP2019037608W WO2020067161A1 WO 2020067161 A1 WO2020067161 A1 WO 2020067161A1 JP 2019037608 W JP2019037608 W JP 2019037608W WO 2020067161 A1 WO2020067161 A1 WO 2020067161A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
microporous membrane
molecular weight
polyethylene
uhmwpe
Prior art date
Application number
PCT/JP2019/037608
Other languages
English (en)
French (fr)
Inventor
シュン 張
諒 黒木
裕一郎 井門
健介 新村
知樹 石川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP19867650.4A priority Critical patent/EP3859822A4/en
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US16/977,996 priority patent/US20210074983A1/en
Priority to CN202310771612.XA priority patent/CN116722306A/zh
Priority to EP24154598.7A priority patent/EP4394833A1/en
Priority to KR1020227019946A priority patent/KR102550429B1/ko
Priority to CN202310771609.8A priority patent/CN116722303A/zh
Priority to CN201980013600.2A priority patent/CN111727517B/zh
Priority to JP2020530389A priority patent/JP7361034B2/ja
Priority to KR1020207024102A priority patent/KR102476944B1/ko
Publication of WO2020067161A1 publication Critical patent/WO2020067161A1/ja
Priority to JP2022005212A priority patent/JP7351943B2/ja
Priority to JP2023089795A priority patent/JP2023120223A/ja
Priority to US18/217,738 priority patent/US20230344078A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a power storage device, a method for manufacturing a separator for a power storage device, a method for manufacturing a microporous polyolefin membrane, and the like.
  • Microporous membranes are widely used as separation or permselective separation membranes for various substances, as separators, and as examples of applications, such as microfiltration membranes, fuel cells, separators for capacitors, or porous materials for functional materials. And a base material for a functional film for expressing a new function by filling the inside of the substrate, a separator for a power storage device, and the like.
  • polyolefin microporous membranes are suitably used as separators for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like.
  • polyolefin microporous membranes are manufactured using relatively low molecular weight polyethylene, but in recent years, using relatively high molecular weight polyethylene, polyolefin microporous membranes that can be used as lithium ion battery separators Has been attempted (Patent Documents 1 to 3).
  • Patent Document 1 discloses a method for preventing a phenomenon that an electrolyte is not retained in pores of a separator (so-called decrease in liquid withdrawal) while maintaining mechanical strength and shutdown characteristics of a power storage device separator.
  • a combination of a first polyethylene having a density of 0.942 g / cm 3 or more and a second polyethylene having a density of 0.942 g / cm 3 or more has been proposed.
  • the weight average molecular weight was 4,150,000 and A first polyethylene powder with a melting point of 141 ° C. and a second polyethylene powder with a weight average molecular weight of 560,000 and a melting point of 135 ° C. are used.
  • Patent Document 2 discloses that, using a blade, polyethylene having a weight average molecular weight of 500,000 or more is used as a main component of the separator so as to suppress poor cutting when cutting the separator for a nonaqueous electrolyte battery and to have excellent shutdown characteristics.
  • An area ratio I (110) represented by the area I (110) of the diffraction peak on the (110) plane and the area I (200) of the diffraction peak on the (200) plane when irradiated with X-rays in the thickness direction of the separator. It is described that / (I (110) + I (200)) is adjusted to 0.90 or more.
  • Patent Document 3 discloses that a resin composition containing a polyolefin resin having a weight average molecular weight of 500,000 or more and liquid paraffin is melt-kneaded, and the obtained melt-kneaded product is formed into a sheet, and the obtained sheet is obtained.
  • a method for producing a microporous polyolefin membrane which includes a step of performing a rolling treatment and a defluidization paraffin treatment of a shaped article, is described.
  • a butterfly blade having a rotation speed of 10 to 500 rpm and a turbine blade having a rotation speed of 500 to 3000 rpm are described. It has been proposed that a resin composition previously stirred by a stirrer provided is subjected to melt-kneading.
  • ultra-high molecular weight polyethylene UHMWPE is known to be difficult to mold.
  • Patent Documents 1 and 2 includes a polyolefin using an ultrahigh molecular weight polyethylene having a viscosity average molecular weight Mw of 300,000 to 900,000 and a degree of dispersion (weight average molecular weight Mw / number average molecular weight Mn) of 3 to 15.
  • the quality as a separator for an electricity storage device for example, low gel, suppression of molecular weight deterioration, battery safety and cycle properties, and the like, and separator strength, for example, tensile strength and puncture strength, are still unknown. There is room for improvement.
  • the method for producing a polyolefin microporous membrane described in Patent Document 3 involves a polyolefin resin having a weight average molecular weight of 500,000 or more, there is still room for study on the conditions under which each step can be performed. Further, the polyolefin microporous membrane obtained by the method described in Patent Document 3 has a quality as a separator for a lithium ion battery, for example, a small amount of gel, suppression of molecular weight deterioration, and the like; and a separator strength such as a tensile strength. There is also room for improvement in puncture strength and the like.
  • an object of the present invention is to provide a separator for a power storage device having usable quality and strength, or a polyolefin microporous membrane for forming the separator.
  • the present inventors have determined the crystallinity of polyethylene used for a separator for an electric storage device by X-ray diffraction (XRD), or under specific conditions, a mixed slurry of a liquid plasticizer and ultrahigh molecular weight polyethylene (UHMWPE).
  • XRD X-ray diffraction
  • UHMWPE ultrahigh molecular weight polyethylene
  • the power storage device separator according to item 1 wherein the specific surface area S per 1 nm 3 of the power storage device separator is 1 ⁇ 10 ⁇ 2 nm 2 to 5 ⁇ 10 ⁇ 2 nm 2 .
  • the converted average pore diameter calculated according to the Porod rule in the small angle X-ray scattering (SAXS) measurement of the power storage device separator is 50 nm to 150 nm.
  • SAXS small angle X-ray scattering
  • the power storage device separator according to any one of items 1 to 4, wherein the power storage device separator includes ultra high molecular weight polyethylene (UHMWPE).
  • UHMWPE ultra high molecular weight polyethylene
  • Mv The viscosity average molecular weight
  • Mw the dispersity expressed as a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 3-15.
  • Polyolefin microporous membrane containing ultra high molecular weight polyethylene UHMWPE
  • UHMWPE ultra high molecular weight polyethylene
  • the polyolefin microporous membrane is used for an electricity storage device separator, and the polyolefin microporous membrane has a polyethylene crystallinity of 80 to 99% as measured by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • [13] 13 The polyolefin microporous membrane according to any one of items 7 to 12, wherein the UHMWPE contains 98.5 mol% or more and 100 mol% or less of a constituent unit derived from ethylene.
  • a method for producing a microporous polyolefin membrane used as a separator for a lithium ion secondary battery comprising the following steps: (1) Polyethylene (PE) was produced using a continuous mixer under the conditions of a temperature of 20 ° C. to 70 ° C., a shear rate of 100 sec ⁇ 1 to 400,000 sec ⁇ 1 and a residence time of 1.0 sec to 60 sec.
  • PE Polyethylene
  • a method for producing a polyolefin microporous membrane comprising: [18] Item 18. The method for producing a microporous polyolefin membrane according to Item 17, wherein in the step (2), the polyolefin powder is swelled, melted, and / or kneaded in the twin-screw extruder. [19] Item 17 or 18, wherein the polyethylene is ultra high molecular weight polyethylene (UHMWPE), and the content of the UHMWPE in the polyolefin powder is 2% by mass to 90% by mass based on the mass of the polyolefin powder.
  • UHMWPE ultra high molecular weight polyethylene
  • the polyethylene is an ultra high molecular weight polyethylene (UHMWPE), and the UHMWPE has a viscosity average molecular weight (Mv) of 300,000 to 9,700,000, and a weight average molecular weight (Mw) with respect to a number average molecular weight (Mn).
  • UHMWPE ultra high molecular weight polyethylene
  • Mv viscosity average molecular weight
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • a method for producing a microporous membrane [22] 22. The method for producing a microporous polyolefin membrane according to any one of items 17 to 21, wherein in the step (6), the porous body is stretched in a width direction and / or a longitudinal direction.
  • the separator for electrical storage devices which has high quality and high intensity
  • FIG. 1 is a graph showing the relationship between the diffraction angle and the diffraction intensity in X-ray diffraction (XRD) of the microporous polyolefin membrane according to one embodiment of the present invention.
  • a separator for an electric storage device (hereinafter, also simply referred to as a “separator”) needs to have insulating properties and lithium ion permeability, it is generally used as an insulating material having a porous structure, such as paper, polyolefin nonwoven fabric, or resin. It is formed from a microporous membrane or the like.
  • a polyolefin microporous membrane capable of constructing a dense and uniform porous structure with oxidation-reduction resistance deterioration of a separator is excellent.
  • the separator is a flat membrane (for example, formed of one microporous membrane), a laminated membrane (for example, a laminate of a plurality of polyolefin microporous membranes, a laminate of a polyolefin microporous membrane and another membrane), It may be in the form of a coating film (for example, when a functional substance is coated on at least one surface of a polyolefin microporous film).
  • the separator according to the first embodiment has a degree of cross-sectional crystal orientation of 0.85 or more.
  • the separator quality for example, low gel, suppression of molecular weight deterioration, battery safety and cycleability, and separator strength, for example, separator thickness (z ) Direction tends to be compatible with the compression resistance, tensile strength, piercing strength and the like.
  • separator thickness (z ) Direction tends to be compatible with the compression resistance, tensile strength, piercing strength and the like.
  • the effect of resistance to compression in the thickness (cross-section) direction has the following industrial value.
  • a positive electrode has a nickel: manganese: cobalt ratio of 1: 1: 1 instead of a conventional nickel: manganese: cobalt ratio of 1: 1: 1.
  • the high nickel content type is changed to 8: 1: 1, and there are cases where the nickel content is higher.
  • the negative electrode material has been changed from graphite to silicon or to a silicon-containing type, thereby increasing the density of batteries.
  • the electrodes expand and contract remarkably, and a compressive force is applied to the separator. The rate decreases and the cycle characteristics deteriorate.
  • a separator in order to realize a battery capable of long-term use of a high-capacity battery without deteriorating the physical properties of the separator even during the battery production process, according to the present invention, in a specific direction, for example, in the thickness (cross section, z) direction.
  • a separator Under high compression conditions, a separator exhibiting good compression resistance (no decrease in film thickness) is provided.
  • the degree of cross-sectional crystal orientation is found as the most important control factor that can maintain the resistance.
  • the specific surface area per 1 nm 3 of the separator as a control factor (S), in terms of average pore diameter, was found to polyethylene crystallite size.
  • the degree of cross-sectional crystal orientation can be calculated by wide-angle X-ray scattering measurement of one film sample by the transmission method described in Examples.
  • the separator when the separator is a flat film, the separator is subjected to X-ray scattering or X-ray diffraction measurement.
  • the separator When the separator is a laminated film, one film sample is removed from the laminated film and subjected to X-ray scattering or X-ray diffraction measurement.
  • the separator When the separator is a coating film, the coating film is subjected to X-ray scattering or X-ray diffraction measurement.
  • X-ray scattering measurement and X-ray diffraction measurement can be performed by the methods described in Examples.
  • the separator is not desired to be bound by theory when the degree of cross-sectional crystal orientation is ⁇ 0.85 in the wide-angle X-ray scattering measurement.
  • the axis is oriented generally parallel to the surface of the membrane sample, and the crystalline phase approaches full orientation (ie, the amorphous phase approaches full orientation), so that for stresses from a particular direction, for example, the thickness (z ) It is considered that it can withstand compression from the direction.
  • the cross-sectional crystal orientation degree of the separator is preferably 0.86 or more or 0.87 or more, and is preferably 0.88 or more or 0.89 or more. preferable.
  • the degree of cross-sectional crystal orientation of the separator is preferably 0.99 or less, more preferably 0.98 or 0.97 or less, from the viewpoint of handling properties and flexibility at the time of manufacturing the device.
  • the specific surface area (S) per 1 nm 3 of the separator is 1 ⁇ 10 ⁇ 2 nm 2 to 5 ⁇ 10 ⁇ 2 nm 2 from the viewpoint of improving the quality of the separator and the compression resistance in the z direction. And more preferably from 1.4 ⁇ 10 ⁇ 2 nm 2 to 4.5 ⁇ 10 ⁇ 2 nm 2 .
  • the specific surface area (S) represents a specific surface area per unit volume of nano order of the separator, and can be controlled by a three-dimensional structure or an internal structure of the separator.
  • the specific surface area (S) can also be controlled by adjusting the microporosity.
  • the specific surface area S per 1 nm 3 of the separator is measured at small angle X-ray scattering measurement by a transmission method described in the Examples.
  • the reduced average pore diameter calculated according to the Porod rule is preferably 50 nm to 150 nm, and 55 nm to 145 nm or 91 nm to 136 nm. It is more preferable from the viewpoint of improving compression resistance, tensile strength and piercing strength in the direction. Although the reason why the above range is preferable is not clear, the mechanical strength of the separator is strongly affected by the average pore size, and the relationship between the film thickness range (25 ⁇ m or less) usually used as a lithium ion battery separator and the crystallite size of the present invention.
  • the range particularly contributes to stress dispersion and prevents concentration of stress on a specific defect of the sample film to be measured. Furthermore, the ease of passage of lithium ion clusters inside the membrane in the battery strongly correlates with the size of the clusters and the average pore diameter of the actual membrane measured by SAXS in a non-contact manner, and as a result, the ionic resistance becomes moderate. It is thought that it can be adjusted to the range. Further, in this average pore size range, the cycle characteristics are good and the resistance at the time of charge and discharge is small, so it is also presumed that the solid electrolyte interface (SEI) is formed extremely uniformly on the electrode surface at the time of initial charge and discharge. . The method for calculating the converted average pore diameter according to the Porod rule in the small-angle X-ray scattering measurement will be described in detail in the section of Examples.
  • the polyethylene crystallite size is preferably 14.2 nm to 40.0 nm as measured by X-ray diffraction (XRD) of the separator.
  • XRD X-ray diffraction
  • the crystallite size represents the thickness of the crystal in a direction perpendicular to the polyethylene molecular chain.
  • the polyethylene crystallite size is in the range of 14.2 nm to 40.0 nm, it is considered that the cleavage point in polyethylene can be diffused and the stress concentration can be suppressed, whereby the usable level of the power storage device separator can be reduced. It tends to achieve quality, strength and compression resistance in the z-direction. This tendency is remarkable when the separator contains ultrahigh molecular weight polyethylene (UHMWPE), which was conventionally difficult to mold.
  • UHMWPE ultrahigh molecular weight polyethylene
  • the polyethylene crystallite size is preferably 15.0 nm to 35.0 nm, more preferably 15.5 nm to 36.5 nm, More preferably, it is 16.0 nm to 36.0 nm. Note that XRD can be performed by the method described in Examples.
  • the polyolefin microporous membrane according to the second embodiment contains ultrahigh molecular weight polyethylene (UHMWPE).
  • UHMWPE ultrahigh molecular weight polyethylene
  • Mv viscosity average molecular weight
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the polyolefin microporous membrane Since the polyolefin microporous membrane has resistance to oxidation-reduction degradation and a dense and uniform porous structure, it can be used as a separator for an electricity storage device, contained in a separator, or configured as a flat membrane. Can be.
  • the polyolefin microporous membrane according to the second embodiment can constitute the separator according to the first embodiment.
  • the polyolefin microporous membrane according to the second embodiment has a polyethylene crystallinity of 80% to 99% and a polyethylene crystallite size of 14.2 nm as measured by X-ray diffraction (XRD). 0.040.0 nm.
  • XRD X-ray diffraction
  • the degree of crystallinity indicates the ratio of the crystal phase in polyethylene
  • the crystallite size indicates the thickness of the crystal in a direction perpendicular to the polyethylene molecular chain.
  • the polyethylene measured by XRD of the microporous polyolefin membrane may include not only UHMWPE but also polyethylene other than UHMWPE.
  • the polyethylene crystallinity is preferably 82% to 97%, more preferably. Is 84% to 96% or 86% to 94%, and / or the polyethylene crystallite size is preferably 15.0 nm to 35.0 nm, more preferably 15.5 nm to 36.5 nm, and still more preferably 16. 0 nm to 36.0 nm.
  • XRD of the polyolefin microporous membrane can be performed by the method described in Examples.
  • the cross-sectional crystal orientation degree of the microporous polyolefin membrane is preferably 0. 0 from the viewpoint of exhibiting good pliability from the viewpoint of handling at the time of device fabrication using the electricity storage device separator, and obtaining high mechanical strength. It is 80 to 0.99, more preferably 0.81 to 0.98, even more preferably 0.85 to 0.97 or 0.89 to 0.97.
  • the degree of cross-sectional crystal orientation can be calculated by wide-angle X-ray scattering measurement of a polyolefin microporous film by a transmission method. Wide-angle X-ray scattering measurement can be performed by the method described in Examples.
  • the orientation of the other plane can be known by observing the orientation of one plane; (2)
  • the orientation of the ⁇ 110> plane can be known from the azimuthal spread of scattering originating from the ⁇ 110>plane; and (3)
  • the azimuth-scattering intensity is used to quantify the orientation of the ⁇ 110> plane.
  • the full width at half maximum of the plot is valid, and the sharper the full width at half maximum, the higher the degree of orientation of the polyethylene molecular chain; Can be considered.
  • the c-axis is randomly generated on the projection plane.
  • the c-axis is oriented substantially parallel to the surface of the microporous polyolefin membrane, and the crystal phase approaches the perfect orientation (that is, the amorphous phase approaches the perfect orientation). It can be considered that it can withstand the stress from.
  • the reduced average pore diameter calculated according to the Porod rule is preferably 50 nm to 150 nm, and 55 nm to 145 nm or 91 nm to 136 nm, It is more preferable from the viewpoint of improving the piercing strength.
  • the mechanical strength of the polyolefin microporous membrane is strongly affected by the average pore diameter, and the thickness range (25 ⁇ m or less) usually used as a lithium ion battery separator and the crystallite size of the present invention From the relationship described above, it is conceivable that the range particularly contributes to stress dispersion and hinders stress concentration on a specific film defect. Furthermore, the ease with which the lithium ion clusters pass through the membrane in the battery strongly correlates with the size of the clusters and the average pore diameter of the actual membrane measured by the SAXS measurement in a non-contact manner. It is thought that it can be adjusted to a suitable range.
  • a gas adsorption method (1 to 100 nm), a mercury intrusion method (1 to 100 ⁇ m), and the like are known.
  • the separator used in the second embodiment has a structure in which meso-macro coexists, and it is considered that the measurement cannot be performed by the gas adsorption method.
  • the mercury intrusion method is adapted to the measurement range of the polyethylene microporous membrane as used in the second embodiment, but a relatively high pressure is applied to the membrane during measurement, so that the polyethylene microporous membrane is used. It may be impossible to measure because it is crushed and the structure is destroyed.
  • the separator as used in the second embodiment has a very complicated porous structure, there is no engineering model that can be accurately described.
  • the porous structure of the polyethylene microporous membrane can be statistically measured nondestructively and accurately, and can be related to battery cycle performance or safety evaluation performance. it can.
  • the polyolefin microporous membrane is represented by the following formula 6 from the viewpoint of high quality and strength that can be used for a power storage device separator.
  • 10 ⁇ m conversion permeability coefficient (J) air permeability (Pe) ⁇ porosity (Po) (Equation 6) Is preferably 0.5 to 14, more preferably 0.7 to 13.8 per 10 ⁇ m of film thickness.
  • the characteristics of the polyolefin microporous membrane are described below. These characteristics are obtained when the polyolefin microporous film as the power storage device separator is a flat film, but when the power storage device separator is in the form of a laminated film, layers other than the microporous film are removed from the laminated film. Can be measured afterwards.
  • the porosity of the microporous polyolefin membrane is preferably 20% or more, more preferably 30% or more, and even more preferably 31% or more.
  • the porosity of the microporous membrane is preferably 90% or less, more preferably 80% or less, and further preferably 50% or less.
  • the porosity of the microporous membrane is 90% or less, the film strength is more improved, and the self-discharge tends to be further suppressed.
  • the porosity of the microporous membrane can be measured by the method described in Examples.
  • the air permeability of the polyolefin microporous membrane is preferably at least 1 second, more preferably at least 50 seconds, further preferably at least 55 seconds, even more preferably at least 60 seconds, at least 100 seconds per 100 cm 3. , 120 seconds or more, 140 seconds or more, or 150 seconds or more.
  • the air permeability of the microporous membrane is preferably 400 seconds or less, more preferably 320 seconds or less, and still more preferably 310 seconds or less, 300 seconds or less, 280 seconds or less or 270 seconds or less.
  • the air permeability of the microporous membrane can be measured by the method described in Examples.
  • the tensile strength is 1000 kgf / cm 2 or more, breakage at the time of winding the slit or the electricity storage device is more likely to be suppressed, or short-circuiting due to foreign matter in the electricity storage device tends to be more suppressed.
  • the tensile strength of the microporous membrane is preferably 5,000 kgf / cm 2 or less, more preferably 4,500 kgf / cm 2 or less, and still more preferably 4,000 kgf / cm 2 or less.
  • the tensile strength of the microporous membrane is 5000 kgf / cm 2 or less, the microporous membrane is easily relaxed at the time of a heating test, and the contraction force is weakened, and as a result, safety tends to be increased.
  • the thickness of the polyolefin microporous membrane is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, even more preferably 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 4.5 ⁇ m or more, Still more preferably, it is 5.0 ⁇ m or more.
  • the thickness of the microporous membrane is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 80 ⁇ m or less, 22 ⁇ m or less, or 19 ⁇ m or less.
  • the thickness of the microporous film can be measured by the method described in Examples.
  • the thickness of the microporous membrane is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less or 20 ⁇ m or less. And more preferably 18 ⁇ m or less, particularly preferably 16 ⁇ m or less, 14.0 ⁇ m or less, or 12.0 ⁇ m or less.
  • the thickness of the microporous film is 25 ⁇ m or less, the permeability tends to be further improved.
  • the lower limit of the film thickness of the microporous film may be 1.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 5.0 ⁇ m or more.
  • the polyolefin microporous membrane may contain polyethylene other than UHMWPE, polyolefin other than polyethylene, resin other than polyolefin, and various additives, if desired.
  • Ultra high molecular weight polyethylene refers to a dispersion having a viscosity average molecular weight (Mv) of 300,000 to 9,700,000 and expressed as a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn). Polyethylene having a degree (Mw / Mn) of 3 to 15.
  • UHMWPE preferably has a viscosity average molecular weight (Mv) of 320,000 to 9,000,000, and more preferably 350,000 to 8,500,000.
  • Mv viscosity average molecular weight
  • the degree of dispersion of UHMWPE is preferably 3 to 15, 4 to 14, or 4 to 13.
  • the viscosity average molecular weight (Mv) can be measured with good accuracy and reproducibility regardless of the molecular weight, but the number average molecular weight (Mn) and weight average molecular weight (Mw) determined by GPC measurement and the degree of dispersion expressed as a ratio thereof (Mw / Mn) cannot be measured accurately in the region where the molecular weight is 1,000,000 or more because of the column exclusion volume limit. On the other hand, in the region where the molecular weight is 1,000,000 or less, the measurement can be performed with very high accuracy and reproducibility, and the number average molecular weight (Mn), the weight average molecular weight (Mw) and the degree of dispersion (Mw / Mn) expressed as a ratio thereof can be calculated. .
  • UHMWPE is preferably poly (ethylene and / or propylene-co- ⁇ -olefin) from the viewpoint of high strength of the polyolefin microporous membrane, and more preferably poly (ethylene-co-propylene) and poly (ethylene-co-propylene).
  • -Co-butene and at least one selected from the group consisting of poly (ethylene-co-propylene-co-butene).
  • the UHMWPE preferably contains 98.5 mol% or more and 100 mol% or less of a constitutional unit derived from ethylene, and more preferably contains 0.0 mol% of a constitutional unit derived from an ⁇ -olefin other than ethylene. % To 1.5 mol% or less.
  • the mass ratio of UHMWPE is preferably from 5% by mass to 70% by mass, more preferably from 7% by mass to 68% by mass, based on the total mass of all the powder materials of the microporous polyolefin membrane. is there.
  • polyethylene other than UHMWPE examples include high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), high-pressure low-density polyethylene, and mixtures thereof. Further, polyethylene having a narrow molecular weight distribution obtained by using a metallocene catalyst and HDPE obtained by multi-stage polymerization may be used. One or more of these polyethylenes can be used, and can constitute the remainder of the polyolefin microporous membrane containing UHMWPE.
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-pressure low-density polyethylene
  • polyethylene having a narrow molecular weight distribution obtained by using a metallocene catalyst and HDPE obtained by multi-stage polymerization may be used.
  • One or more of these polyethylenes can be used, and can constitute the remainder of the polyolefin microporous membrane containing UHMWPE.
  • Polyolefins other than polyethylene examples include polypropylene, polybutene, ethylene-propylene copolymer, polymethylpentene, silane-grafted modified polyolefin, and the like. One or more of these polyolefins can be used, and can constitute the remainder of a polyolefin microporous membrane containing UHMWPE.
  • resins other than polyolefin examples include engineering plastic resins such as polyphenylene ether; polyamide resins such as nylon 6, nylon 6-12 and aramid resin; polyimide resins; polyester resins such as polyethylene terephthalate (PET) and polybutene terephthalate (PBT).
  • engineering plastic resins such as polyphenylene ether
  • polyamide resins such as nylon 6, nylon 6-12 and aramid resin
  • polyimide resins such as polyethylene terephthalate (PET) and polybutene terephthalate (PBT).
  • Resins polycarbonate resins; fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene; copolymers of ethylene and vinyl alcohol; copolymers of C 2 to C 12 ⁇ -olefins and carbon monoxide; Hydrogenated products thereof; hydrogenated products of styrene polymers; copolymers of styrene and ⁇ -olefins and hydrogenated products thereof; copolymers of styrene and aliphatic monounsaturated fatty acids; (meth) acrylic acid; Polymers of (meth) acrylates and / or their derivatives; Thermoplastic resins selected from copolymers of ren and conjugated diene unsaturated monomers and hydrogenated products thereof; polysulfone, polyether sulfone, polyketone, and the like. One or more of these resins can be used, and can constitute the remainder of the polyolefin microporous membrane
  • the polyolefin microporous membrane may be, if desired, in addition to UHMWPE, a dehydration-condensation catalyst, metal soaps such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, a coloring pigment, and the like. May be included.
  • the polyolefin microporous membrane may be produced by any method known in the art.
  • a polyolefin film is formed by melt-extrusion of a polyolefin resin, followed by stretching, etc., and the porosity thereof can be obtained by a wet method.
  • a wet method for example, a pore-forming material such as a plasticizer is added to polyolefin, dispersed and molded, and then the pore-forming material is extracted with a solvent or the like to form pores, and before and after extraction as necessary. There is a method of performing a stretching process.
  • An example of a means for controlling the polyethylene crystallinity measured by XRD of the microporous polyolefin membrane within the range of 80 to 99% and the polyethylene crystallite size within the range of 14.2 to 40.0 nm is as follows.
  • a liquid plasticizer such as liquid paraffin and UHMWPE
  • the method for producing a microporous polyolefin membrane according to the third embodiment includes the following steps: (1) Polyethylene (PE) was produced using a continuous mixer under the conditions of a temperature of 20 ° C. to 70 ° C., a shear rate of 100 sec ⁇ 1 to 400,000 sec ⁇ 1 and a residence time of 1.0 sec to 60 sec.
  • PE Polyethylene
  • Process including.
  • (1) the mixed slurry of PE and plasticizer obtained in the mixed slurry production step is subjected to (2) extrusion step, (3) sheet processing step, (4) stretching step,
  • (5) the extraction step and (6) the heat treatment step is subjected to (2) the extrusion step, a uniform resin composition can be obtained without applying excessive shearing force. It is possible to suppress generation of a molten gel or a decrease in molecular weight, and to achieve high quality and high strength when used for a separator for a lithium ion secondary battery.
  • uniform kneading can be realized by uniformly feeding PE and the plasticizer to the extruder in the step (2).
  • the PE-containing polyolefin powder is uniformly dispersed, and the polymer chain is cut by a high shear force at the time of melt-kneading as in the conventional method, and the resulting polyolefin microporous membrane is obtained without impairing the higher-order structure of PE. It is conceivable to increase the crystallinity of the alloy to diffuse the stress concentration points.
  • a uniform mixed slurry of the PE-containing polyolefin powder and the plasticizer can be provided to the extrusion process, so that the resin powder and the liquid are separately supplied to the extruder and then uniformly dispersed. And excellent handling properties.
  • step (1) in a continuous mixer, at a temperature of 20 ° C. to 70 ° C., a shear rate of 100 seconds ⁇ 1 to 400,000 seconds ⁇ 1 , and a residence time of 1.0 seconds to 60 seconds, polyethylene A (PE) -containing polyolefin powder and a plasticizer are mixed to obtain a mixed slurry.
  • PE polyethylene A
  • UHMWPE ultrahigh molecular weight polyethylene
  • the raw material UHMWPE powder changes the ratio of the crystal-non-crystalline portion of UHMWPE due to heat generation in the system or external heating, and the overall mobility gradually increases. Therefore, the plasticizer can be immersed in the non-crystalline portion of the UHMWPE powder or the intermediate layer portion between the crystal and the non-crystalline portion. At this stage, no melting or dissolution of the resin powder occurs, and this phenomenon is called swelling of the plasticizer.
  • the extrusion step (2) the UHMWPE powder is swollen to a predetermined level in the step (1) before being fed into the extruder, so that the UHMWPE is uniformly applied without excessive shearing in the extrusion step (2). A dissolved resin composition can be obtained.
  • the storage elastic modulus (E ′) shows a broad peak at 0 ° C. to 120 ° C., which is called crystal relaxation. This corresponds to slip ( ⁇ 1 ) or a change ( ⁇ 2 ) at which the crystal itself becomes elastic [the corresponding temperature T is T ⁇ 2 > T ⁇ 1 ].
  • the UHMWPE powder varies or differs in molecular weight, molecular weight distribution, density, or the like. In general, for all of them, T ⁇ 2 is known to be about 100 ° C., and from storage elastic modulus (E ′) to 60 ° C. large peak, alpha 1 is observed in the vicinity.
  • the relaxation of ⁇ 2 is observed from about 70 ° C. to about 100 ° C. From this, in order to maximize the swelling of the UHMWPE powder without melting it, select the sliding state of the crystal grain boundaries without changing the crystal itself at 70 ° C to 100 ° C to make it elastic. It is possible to promote the swelling of the plasticizer into the amorphous portion or the intermediate layer portion between the crystalline portion and the amorphous portion. At a temperature of 70 ° C. or higher, the crystals gradually melt and swelling is hindered.
  • the lower limit of the set temperature of the continuous mixer is 20 ° C. or higher, preferably 25 ° C. or higher, more preferably 30 ° C. or higher, from the viewpoint of maximizing the swelling of the PE powder.
  • the upper limit is 70 ° C. or lower, preferably 68 ° C. or lower, more preferably 67 ° C. or lower, 66 ° C. or lower, or 65 ° C. or lower, from the viewpoint of suppressing the dissolution of UHMWPE during mixing to obtain a slurry.
  • the shear rate of the continuous mixer is from 100 sec- 1 to 400,000 sec- 1 , preferably from 120 sec- 1 to from the viewpoint that the PE-containing polyolefin powder is uniformly brought into contact with the plasticizer to obtain a dispersion. 398,000 sec -1 , more preferably 1,000 sec -1 to 100,000 sec -1 .
  • the residence time of the continuous mixer is from 1.0 second to 60 seconds, preferably from 2.0 seconds to 58 seconds, more preferably from 2.0 seconds to from the viewpoint of ensuring the dispersion of PE in the plasticizer. 56 seconds.
  • Ultrahigh molecular weight polyethylene (UHMWPE) used in the third embodiment may be UHMWPE described above for the first or second embodiment.
  • UHMWPE is preferably poly (ethylene and / or propylene-co- ⁇ -olefin) from the viewpoint of high strength of the polyolefin microporous membrane, and more preferably poly (ethylene-co-propylene) and poly (ethylene-co-propylene).
  • -Co-butene and at least one selected from the group consisting of poly (ethylene-co-propylene-co-butene).
  • the UHMWPE preferably contains 98.5 mol% or more and 100 mol% or less of a constitutional unit derived from ethylene, and more preferably contains 0.0 mol% of a constitutional unit derived from an ⁇ -olefin other than ethylene. % To 1.5 mol% or less.
  • the content of the polyolefin powder in the mixed slurry is preferably more than 0% by mass, more preferably 1% by mass or more, and still more preferably, from the viewpoint of the strength of the obtained microporous polyolefin membrane, based on the mass of the mixed slurry.
  • the content is 2% by mass or more or 4% by mass or more, and this content is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably from the viewpoint of suppressing the generation of unmelted gel of the polyolefin powder. It is 30% by mass or less or 20% by mass or less.
  • the content of PE or UHMWPE in the polyolefin powder is preferably 2% by mass or more, more preferably 4% by mass or more, based on the mass of the polyolefin powder, from the viewpoint of the strength of the obtained polyolefin microporous membrane.
  • the content is preferably 90% by mass or less, more preferably 88% by mass or less, from the viewpoint of suppressing the generation of unmelted gel of PE or UHMWPE.
  • the plasticizer used in the step (1) can be a known material as long as it is liquid at a temperature of 20 ° C to 70 ° C and has excellent PE dispersibility.
  • the plasticizer used in the step (1) is preferably a non-volatile solvent capable of forming a homogeneous solution at a temperature equal to or higher than the melting point of the polyolefin in consideration of the extraction step (5).
  • Specific examples of the non-volatile solvent include, for example, hydrocarbons such as liquid paraffin, paraffin wax, decane and decalin; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol.
  • liquid paraffin is preferable because it has high compatibility with polyethylene or polypropylene, and even when the melt-kneaded product is stretched, the interface between the resin and the plasticizer hardly occurs and uniform stretching tends to be easily performed.
  • the mixed slurry may contain polyethylene other than UHMWPE, polyolefin other than polyethylene, resin other than polyolefin, various additives, and the like, if desired. Further, the polyolefin powder may contain a polyethylene other than UHMWPE and / or a polyolefin other than polyethylene, if desired.
  • polyethylene other than UHMWPE examples include high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), high-pressure low-density polyethylene, and mixtures thereof. Further, polyethylene having a narrow molecular weight distribution obtained by using a metallocene catalyst and HDPE obtained by multi-stage polymerization may be used. One or more of these polyethylenes can be used, and can constitute the remainder of the polyolefin microporous membrane containing UHMWPE.
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-pressure low-density polyethylene
  • polyethylene having a narrow molecular weight distribution obtained by using a metallocene catalyst and HDPE obtained by multi-stage polymerization may be used.
  • One or more of these polyethylenes can be used, and can constitute the remainder of the polyolefin microporous membrane containing UHMWPE.
  • Polyolefins other than polyethylene include, for example, polypropylene, polybutene, ethylene-propylene copolymer, polymethylpentene, silane graft-modified polyolefin and the like.
  • polypropylene polybutene
  • ethylene-propylene copolymer polymethylpentene
  • silane graft-modified polyolefin silane graft-modified polyolefin and the like.
  • One or more of these polyolefins can be used, and can constitute the remainder of a polyolefin microporous membrane containing UHMWPE.
  • resins other than polyolefin examples include engineering plastic resins such as polyphenylene ether; polyamide resins such as nylon 6, nylon 6-12 and aramid resin; polyimide resins; polyester resins such as polyethylene terephthalate (PET) and polybutene terephthalate (PBT).
  • engineering plastic resins such as polyphenylene ether
  • polyamide resins such as nylon 6, nylon 6-12 and aramid resin
  • polyimide resins such as polyethylene terephthalate (PET) and polybutene terephthalate (PBT).
  • Resins polycarbonate resins; fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene; copolymers of ethylene and vinyl alcohol; copolymers of C 2 to C 12 ⁇ -olefins and carbon monoxide; Hydrogenated products thereof; hydrogenated products of styrene polymers; copolymers of styrene and ⁇ -olefins and hydrogenated products thereof; copolymers of styrene and aliphatic monounsaturated fatty acids; (meth) acrylic acid; Polymers of (meth) acrylates and / or their derivatives; Thermoplastic resins selected from copolymers of ren and conjugated diene unsaturated monomers and hydrogenated products thereof; polysulfone, polyether sulfone, polyketone, and the like. One or more of these resins can be used, and can constitute the remainder of the polyolefin microporous membrane
  • the mixed slurry may contain a known additive, for example, a dehydration condensation catalyst, a metal soap such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, a coloring pigment, and the like.
  • a dehydration condensation catalyst such as calcium stearate or zinc stearate
  • an ultraviolet absorber such as calcium stearate or zinc stearate
  • an ultraviolet absorber such as calcium stearate or zinc stearate
  • a light stabilizer such as calcium stearate or zinc stearate
  • an antistatic agent such as calcium stearate or zinc stearate
  • an antifogging agent such as calcium stearate or zinc stearate
  • step (2) the mixed slurry is charged into a twin-screw extruder and extruded to obtain a resin composition.
  • the step (2) it is preferable to feed the mixed slurry to a twin-screw extruder at a temperature of 25 ° C. to 80 ° C. to produce a resin composition.
  • the feed temperature is adjusted within the range of 25 ° C. to 80 ° C. from the viewpoint of securing the entanglement of the polymer chains to such an extent that the molecular weight of PE contained in the polyolefin powder does not decrease while ensuring the appropriate viscosity of the mixed slurry. Is preferred. From the same viewpoint, the feed temperature is more preferably from 30 ° C to 76 ° C, and still more preferably from 30 ° C to 70 ° C.
  • the extrusion step is performed by controlling the feed temperature and the extrusion temperature within the above-described ranges. It is not limited by the type of the twin-screw extruder, the supply of the slurry to the twin-screw extruder, the extrusion time, the extrusion speed, the shear rate, the shear force, and the like.
  • the twin-screw extruder it is preferable to perform swelling, melting, and / or kneading of the PE-containing polyolefin powder from the viewpoint of suppressing generation of unmelted gel or reduction in molecular weight in the resin composition.
  • the melt-kneading method include a method in which a mixed slurry is charged into a twin-screw extruder to heat and melt a resin component such as a PE-containing polyolefin powder and knead with a plasticizer.
  • polyethylene other than UHMWPE, polyolefin other than polyethylene, resin other than polyolefin, various additives, and the like may be supplied to a twin-screw extruder.
  • Polyethylene other than UHMWPE, polyolefin other than polyethylene, resin other than polyolefin, and additives described in the mixed slurry production step can be introduced into the twin-screw extruder in the (2) extrusion step.
  • the resin composition obtained in the step (2) is extruded into a sheet and cooled and solidified to form a sheet-shaped molded body.
  • the resin composition may include a polyolefin resin including UHMWPE, a plasticizer, and the like.
  • the proportion of the polyolefin resin in the sheet-like molded product is preferably from 10% by mass to 80% by mass, more preferably from 20% by mass to 60% by mass, based on the mass of the sheet-like molded product, from the viewpoint of sheet moldability. Most preferably, it is 30% by mass to 50% by mass.
  • the resin composition obtained in the step (2) is extruded into a sheet via a T-die or the like, and is brought into contact with a heat conductor to obtain a crystallization temperature of the resin component.
  • a heat conductor for cooling and solidifying.
  • the heat conductor used for cooling and solidifying include metal, water, air, and a plasticizer. Among these, it is preferable to use a metal roll because of high heat conduction efficiency.
  • the die lip interval when the resin composition is extruded from the T-die into a sheet is preferably from 200 ⁇ m to 3,000 ⁇ m, more preferably from 500 ⁇ m to 2,500 ⁇ m.
  • the die lip interval is 200 ⁇ m or more, the scumming and the like are reduced, the influence of stripes or defects on the film quality is small, and the risk of film breakage and the like in the subsequent stretching step can be reduced.
  • the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
  • the extruded sheet-shaped compact may be rolled.
  • step (4) the sheet-like molded product obtained in the step (3) is biaxially stretched at an area ratio of 20 times or more and 200 times or less to obtain a stretched product.
  • biaxial stretching is preferable to uniaxial stretching from the viewpoint that the film thickness distribution and the air permeability distribution in the width direction can be reduced.
  • the biaxial stretching method include methods such as simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, and multiple stretching. Simultaneous biaxial stretching is preferred from the viewpoint of improving piercing strength and uniformity of stretching, and successive biaxial stretching is preferred from the viewpoint of easy control of plane orientation.
  • simultaneous biaxial stretching refers to stretching in which MD (the machine direction of the microporous membrane continuous molding) stretching and TD (a direction crossing the MD of the microporous membrane at an angle of 90 °) are simultaneously performed. This means a method, and the stretching ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which MD and TD stretching are independently performed. When stretching is performed in MD or TD, the other direction is fixed to an unconstrained state or a fixed length. State.
  • the stretching ratio is in the range of 20 times or more and 200 times or less, preferably in the range of 25 times or more and 170 times or less, and more preferably 30 times or more and 150 times or less.
  • the stretching ratio in each axial direction is preferably in the range of 2 to 15 times for MD, 2 to 15 times for TD, 3 to 12 times for MD, and 3 to 12 times for TD. Is more preferable, and the MD is more preferably 5 times or more and 10 times or less, and the TD is more preferably 5 times or more and 10 times or less.
  • the stretching temperature is preferably from 90 ° C to 150 ° C, more preferably from 100 ° C to 140 ° C, and still more preferably from 110 ° C to 130 ° C, from the viewpoints of the meltability and film forming properties of the polyolefin resin.
  • a plasticizer is extracted and removed from the stretched product obtained in the step (4) to obtain a porous body.
  • a method of extracting the plasticizer for example, a method of immersing the stretched product in an extraction solvent to extract the plasticizer, and drying the extracted plasticizer is exemplified.
  • the extraction method may be either a batch type or a continuous type.
  • the residual amount of the plasticizer in the porous body is less than 1% by mass based on the mass of the entire porous film.
  • the plasticizer may be recovered and reused by an operation such as distillation.
  • an extraction solvent that is a poor solvent for the polyolefin resin, a good solvent for the plasticizer, and has a boiling point lower than the melting point of the polyolefin resin.
  • an extraction solvent include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; and non-chlorinated hydrocarbons such as hydrofluoroether and hydrofluorocarbon.
  • Halogenated solvents alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone.
  • step (6) the porous body is subjected to a heat treatment at a temperature equal to or lower than the melting point of the porous body for the purpose of suppressing shrinkage and heat setting, and the porous body is stretched to obtain a microporous film.
  • the porous body is subjected to heat treatment for the purpose of heat fixing from the viewpoint of suppressing shrinkage.
  • a heat treatment method a stretching operation performed at a predetermined atmosphere, a predetermined temperature and a predetermined stretching ratio for the purpose of adjusting physical properties, and / or a predetermined atmosphere, a predetermined temperature and a predetermined temperature for the purpose of reducing stretching stress.
  • the relaxation operation performed at a relaxation rate of After performing the stretching operation, the relaxation operation may be performed.
  • the MD and / or TD of the membrane is preferably 1.1 times or more, more preferably 1.2 times or more, from the viewpoint of increasing the strength and porosity of the microporous film.
  • the relaxation operation refers to an operation of reducing the film to MD and / or TD.
  • the relaxation rate is a value obtained by dividing the dimension of the film after the relaxation operation by the dimension of the film before the relaxation operation. When both the MD and the TD are relaxed, the value is obtained by multiplying the MD relaxation rate by the TD relaxation rate.
  • the relaxation rate is preferably 1.0 or less, more preferably 0.97 or less, and even more preferably 0.95 or less.
  • the relaxation rate is preferably 0.5 or more from the viewpoint of film quality.
  • the relaxation operation may be performed in both the MD and TD directions, or in only one of the MD and TD.
  • the temperature of the heat treatment including the stretching or relaxation operation is preferably in the range of 100 ° C to 170 ° C from the viewpoint of the melting point of the polyolefin resin (hereinafter, also referred to as “Tm”). It is preferable that the temperature of the stretching and relaxation operations be in the above range from the viewpoint of the balance between the reduction of the heat shrinkage and the porosity.
  • the lower limit of the heat treatment temperature is more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher, even more preferably 125 ° C. or higher, and the upper limit thereof is more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower, and even more. Preferably it is 140 ° C. or lower.
  • the microporous membrane may be subjected to a post-treatment such as a hydrophilization treatment with a surfactant or the like and a crosslinking treatment with ionizing radiation or the like.
  • a post-treatment such as a hydrophilization treatment with a surfactant or the like and a crosslinking treatment with ionizing radiation or the like.
  • the order of the steps (4), (5) and (6) described above may be rearranged, or these steps may be performed at the same time. Preferably, these steps are performed in the order of steps (4), (5) and (6).
  • the obtained microporous membrane can be wound up by a winder to form a roll or cut by a slitter from the viewpoints of handleability and storage stability.
  • the microporous polyolefin membrane according to the second embodiment can also be manufactured.
  • the separator for a power storage device according to the first embodiment can be manufactured using the microporous polyolefin membrane according to the second or third embodiment.
  • a single-layer separator can be formed by using a polyolefin microporous membrane as a flat membrane.
  • a separator laminated film can be formed by laminating a plurality of polyolefin microporous films and / or laminating a polyolefin microporous film and another film / layer.
  • the coating film of the separator can be formed by coating the polyolefin microporous film with a paint.
  • the separator according to the first embodiment or the separator including the polyolefin microporous membrane according to the second or third embodiment can be used in an electricity storage device.
  • the power storage device includes a positive electrode, a negative electrode, a separator disposed between the positive and negative electrodes, and an electrolytic solution.
  • Specific examples of the power storage device include a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a sodium secondary battery, a sodium ion secondary battery, a magnesium secondary battery, a magnesium ion secondary battery, and a calcium secondary battery.
  • a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a nickel hydride battery, or a lithium ion capacitor is preferable, and a lithium battery or a lithium ion secondary battery is more preferable.
  • the lithium ion secondary battery contains a lithium transition metal oxide such as lithium cobalt oxide and lithium cobalt composite oxide as a positive electrode, a carbon material such as graphite and graphite as a negative electrode, and a lithium salt such as LiPF 6 as an electrolyte.
  • a lithium transition metal oxide such as lithium cobalt oxide and lithium cobalt composite oxide
  • a carbon material such as graphite and graphite as a negative electrode
  • a lithium salt such as LiPF 6 as an electrolyte.
  • ⁇ Melting point (° C)> The melting point of the polyolefin resin was measured using a differential scanning calorimeter (DSC) measuring apparatus “DSC-60” (manufactured by Shimadzu Corporation).
  • ⁇ Thickness of each layer ( ⁇ m)> The film thickness was measured at an ambient temperature of 23 ⁇ 2 ° C. using a micro thickness gauge (Type KBN, terminal diameter ⁇ 5 mm) manufactured by Toyo Seiki. When measuring the thickness, ten microporous membranes are stacked and measured, and the value obtained by dividing the total thickness by 10 is defined as the thickness of one sheet.
  • ⁇ Porosity (%)> A sample of 10 cm ⁇ 10 cm square was cut out from the microporous membrane, the volume (cm 3 ) and the mass (g) were obtained, and the porosity was calculated from them and the density (g / cm 3 ) using the following equation.
  • the density of the mixed composition a value calculated from the density and the mixing ratio of each of the used raw materials was used.
  • Porosity (%) (volume ⁇ mass / density of mixed composition) / volume ⁇ 100
  • D (110) K ⁇ / ( ⁇ cos ⁇ ) Equation 1
  • D (110) crystallite size (nm)
  • K 0.9 (constant)
  • X-ray wavelength (nm)
  • ( ⁇ 1 2 ⁇ 2 2 )
  • ⁇ 1 full width at half maximum (rad) of the peak calculated as a result of peak separation (hkl)
  • ⁇ 2 full width at half maximum of the spread of the incident beam (rad)
  • Bragg angle
  • the area of the (110) plane diffraction peak I (110) and the area of the (200) plane diffraction peak I (200) obtained by this analysis can be used to calculate the area according to the following equation.
  • the ratio R was calculated.
  • This curve was fitted by adding a constant and a Gaussian function as shown in Equation 2, and the cross-sectional orientation degree f was calculated according to Equation 3 from the full width at half maximum of the Gaussian function of the fitting result.
  • I ( ⁇ ) A + B * exp ( ⁇ (( ⁇ 0 ) / w) 2 ) Equation 2
  • I ( ⁇ ) integrated intensity in the range of 19.5 ° ⁇ 2 ⁇ ⁇ 21.3 ° at a certain azimuth angle ⁇ after background correction and sky cell scattering correction
  • azimuth angle (rad)
  • f 1 ⁇ FWHM / 180 Equation 3
  • I (q) 2 ⁇ e 2 Sq -4 Equation 4
  • I (q) SAXS profile after correction of absolute intensity (e 2 / nm 3 )
  • q absolute value of scattering vector (nm -1 )
  • e electron density difference between air and film (e / nm 3 )
  • d pore size (nm)
  • P Porosity (%)
  • ⁇ Puncture strength (gf)> Using a handy compression tester “KES-G5” (manufactured by Kato Tech Co., Ltd.), the piercing strength of the sample film was determined by performing a piercing test on the sample film under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec. Was.
  • the resin aggregate (gel-containing material) in the separator has an area of 100 ⁇ m in length ⁇ 100 ⁇ m in width when the separator obtained through the film forming process of Examples and Comparative Examples described below is observed with a transmission optical microscope. It is defined as a region that has and does not transmit light. In observation with a transmission type optical microscope to measure the number of resin agglomerates per separator area 1000 m 2.
  • the temperature of the upper and lower heaters of the press was 70 ° C., and the sample was held for 3 minutes so that 8 Mpa was uniformly applied to a 10 cm ⁇ 10 cm sample.
  • the thickness of the two stacked separators is measured at any nine points within an area of 8 cm ⁇ 8 cm based on the intersection of the diagonal lines in top view, and the average value thereof is calculated according to the following equation.
  • the difference from the thickness before the compression operation was quantified as the thickness reduction rate (%).
  • Thickness reduction rate (%) ((thickness after compression operation ( ⁇ m) ⁇ thickness before compression operation ( ⁇ m)) / thickness before compression operation ( ⁇ m)) * 100
  • the battery breakdown safety test is a test in which an iron nail is driven into a battery charged to 4.5 V at a speed of 20 mm / sec and penetrated to cause an internal short circuit.
  • the phenomenon at the time of an internal short circuit can be clarified by measuring the time change behavior of the battery voltage drop due to an internal short circuit and the battery surface temperature increasing behavior due to an internal short circuit.
  • the separator may be insufficiently shut down or the membrane may break down at a low temperature, which may cause the battery to generate heat. This may cause the electrolyte to ignite, causing the battery to emit smoke and / or explode. is there.
  • Battery assembly A separator is cut out in the horizontal (TD) direction of 60 mm and in the vertical (MD) direction of 1000 mm, folded 99 times on the separator, and the positive electrode and the negative electrode are alternately stacked between the separators (12 positive electrodes, 13 negative electrodes). .
  • the thing of the area of 30 mm x 50 mm was used for the positive electrode, and the thing of 32 mm x 52 mm was used for the negative electrode.
  • the battery After standing at room temperature for one day, the battery was charged to a battery voltage of 4.2 V at a current value of 3 mA (0.5 C) in an atmosphere of 25 ° C., and after reaching the voltage, the current value was reduced from 3 mA to maintain 4.2 V.
  • the first charge after the battery production was performed for a total of 6 hours.
  • the battery was discharged to a battery voltage of 3.0 V at a current value of 3 mA (0.5 C).
  • Voltage drop time The time required for the voltage drop from 4.5 V to 3 V after the iron nail was passed through the obtained battery was defined as the voltage drop time (3 V drop time).
  • the battery was discharged to a battery voltage of 3.0 V at a current value of 6.0 mA (1.0 C).
  • the capacity retention rate was calculated from the discharge capacity at the 100th cycle and the discharge capacity at the first cycle. When the capacity retention ratio was high, it was evaluated as having good cycle characteristics.
  • d. Battery Assembly The separator was cut into a circular shape having a diameter of 18 mm, and the positive electrode and the negative electrode were cut into a circular shape having a diameter of 16 mm.
  • the container and the lid were insulated, and the container was in contact with the copper foil of the negative electrode, and the lid was in contact with the aluminum foil of the positive electrode. In this container, c. Of the above item “(7) Battery destruction safety test” was added.
  • the non-aqueous electrolyte obtained in the above was injected and sealed. After standing at room temperature for one day, the battery was charged to a battery voltage of 4.2 V at a current value of 3 mA (0.5 C) in an atmosphere of 25 ° C., and after reaching the voltage, the current value was reduced from 3 mA to maintain 4.2 V. By the method of starting, the first charge after the battery production was performed for a total of 6 hours. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 3 mA (0.5 C).
  • UHMWPE ultra high molecular weight poly
  • kinematic viscosity at .78 °C 7.59 ⁇ 10 -5 m 2 / s) and mixing the slurry mixed or dispersed in a continuous mixer was obtained (provided that the polyethylene in the mixed slurry so as to be 35 mass%).
  • the obtained mixed slurry was supplied to a twin-screw extruder by a feeder.
  • the mixed slurry is melt-kneaded in an extruder, and the feeder and the pump are adjusted so that the ratio of the liquid paraffin in the extruded polyolefin composition becomes 70% by mass (that is, the polymer concentration becomes 30% by mass). did.
  • the melt-kneading conditions were a set temperature of 230 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 18 kg / hr. Subsequently, the melt-kneaded material was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C. and cast to obtain a gel sheet having an original film thickness of 1400 ⁇ m. Next, the gel sheet was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the set stretching conditions were as follows: MD magnification 7.0 times, TD magnification 6.0 times (that is, 7 ⁇ 6 times), and biaxial stretching temperature 125 ° C.
  • the stretched gel sheet was guided to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove the liquid paraffin, and then the methyl ethyl ketone was dried and removed.
  • it is led to a TD tenter to perform heat setting, and HS is performed at a heat setting temperature of 125 ° C. and a draw ratio of 1.8 times, and then a relaxation operation of 0.5 times in the TD direction (that is, the HS relaxation rate is 0). .5 times).
  • the obtained microporous membrane was cut at the end and wound up as a mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the microporous membrane was obtained by changing the resin composition in the raw material, the mode of the raw material feed, the XRD, WAXD, and SAXS profiles as shown in Tables 1 to 3.
  • Various evaluations were performed on the obtained microporous membrane according to the above evaluation methods, and the evaluation results are also shown in Tables 1 to 3.
  • FIG. 1 shows the relationship between the diffraction angle and the diffraction intensity in the X-ray diffraction (XRD) of the (110) plane of the polyolefin microporous membrane obtained in Example I-1.
  • XRD X-ray diffraction
  • Example II-1 Using a continuous mixer, powders shown in Table 4 (weight-average molecular weight and number-average molecular weight were not measurable, ultra-high-molecular-weight polyethylene having a viscosity-average molecular weight of 450; UHMWPE, weight-average molecular weight 126,000, number-average molecular weight 20,000) High-density polyethylene having a viscosity-average molecular weight of 150,000; other PE, homopolypropylene having a weight-average molecular weight of 400,000, a number-average molecular weight of 30,000, and a viscosity-average molecular weight of 350,000; PP) and liquid paraffin (kinematic viscosity at 37.78 ° C.
  • Table 4 weight-average molecular weight and number-average molecular weight were not measurable, ultra-high-molecular-weight polyethylene having a viscosity-average molecular weight of 450; UHMWPE, weight-average molecular weight
  • liquid paraffin was injected from the middle stage of extrusion so that the ratio of the amount of liquid paraffin in the resin composition extruded from the extruder was 70% by mass and the temperature of the resin composition was 220 ° C.
  • the extruded resin composition was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C. and cast to obtain a sheet-shaped molded body.
  • it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching to obtain a stretched product.
  • the set stretching conditions were a stretching surface magnification of 50 to 180 times, and the porosity, air permeability, thickness, or piercing strength was adjusted by adjusting the stretching temperature, the amount of heated air, or the magnification.
  • the biaxial stretching temperature was 125 ° C.
  • the stretched sheet was sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous body.
  • the porous body is guided to a TD tenter to perform heat setting, and heat setting (HS) is performed at 128 ° C., and then a relaxation operation of 0.5 times in the TD direction (that is, the HS relaxation rate is 0.5 times). ) was done. Thereafter, the obtained microporous membrane was evaluated as described above. Table 4 shows the evaluation results.
  • Example II-2 to II-19 Comparative Examples II-1 to II-8
  • Tables 4 to 6 the raw material composition, process conditions, and the like were changed to prepare a polyolefin microporous membrane, and the physical properties of the obtained membrane were evaluated. went.
  • the evaluation results are also shown in Tables 4 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

蓄電デバイス用セパレータの断面結晶配向度が0.85以上であり、かつ/又は蓄電デバイス用セパレータの製造方法が、20℃~70℃の温度、100~400,000秒-1のせん断速度及び1.0秒~60秒の滞留時間の条件下で連続混合機を用いて、ポリエチレンを含むポリオレフィンパウダーと可塑剤とを混合して、混合スラリーを製造する工程と、混合スラリーを押出して冷却固化してシート状成形体に加工する工程と、シート状成形体を20倍~200倍の面倍率で二軸延伸する工程とを含む。

Description

高強度セパレータ
 本発明は、蓄電デバイス用セパレータ、蓄電デバイス用セパレータの製造方法、ポリオレフィン製微多孔膜の製造方法などに関する。
 微多孔膜は、種々の物質の分離又は選択透過分離膜、及び隔離材等として広く用いられており、その用途例としては、精密ろ過膜、燃料電池用、コンデンサー用セパレータ、又は機能材を孔の中に充填させて新たな機能を発現させるための機能膜の母材、蓄電デバイス用セパレータ等が挙げられる。中でも、ポリオレフィン製微多孔膜は、ノート型パーソナルコンピュータ又は携帯電話、デジタルカメラ等に広く使用されているリチウムイオン電池用セパレータとして好適に使用されている。
 一般に、ポリオレフィン製微多孔膜は、比較的低い分子量のポリエチレンを使用して製造されるが、近年、比較的高い分子量のポリエチレンを用いて、リチウムイオン電池用セパレータとして使用可能なポリオレフィン製微多孔膜の製造が試みられていた(特許文献1~3)。
 特許文献1には、蓄電デバイス用セパレータの機械強度とシャットダウン特性を維持しながら、セパレータの空孔内に電解液が保持されなくなる現象(いわゆる液枯れ減少)を防止するために、重量平均分子量1,000,000以上の第一ポリエチレンと密度0.942g/cm以上の第二ポリエチレンの併用が提案され、具体的には、ポリエチレン製微多孔膜の製造において重量平均分子量4,150,000及び融点141℃の第一ポリエチレンパウダーと、重量平均分子量560,000及び融点135℃の第二ポリエチレンパウダーとが使用される。
 特許文献2には、刃による非水電解質電池用セパレータの切断時に切断不良を抑制し、かつシャットダウン特性に優れるように、重量平均分子量500,000以上のポリエチレンをセパレータの主成分として使用して、セパレータの膜厚方向からX線照射したときの(110)面の回折ピークの面積I(110)と(200)面の回折ピークの面積I(200)とにより表される面積比率I(110)/(I(110)+I(200))を0.90以上に調整することが記述されている。
 特許文献3には、重量平均分子量が500,000以上のポリオレフィン樹脂と流動パラフィンとを含む樹脂組成物を溶融混錬し、得られた溶融混錬物をシート状に成形し、得られたシート状成形物の圧延処理と脱流動パラフィン処理を行う工程を含むポリオレフィン製微多孔膜の製造方法が記述されており、10~500rpmの回転数のバタフライブレードと500~3000rpmの回転数のタービンブレードを備える撹拌機により予め攪拌した樹脂組成物を溶融混錬に供することが提案されている。
国際公開第2011/118660号 特開2017-103044号公報 特開2002-88189号公報
 微多孔膜の分野では、超高分子量ポリエチレン(UHMWPE)は、成形が困難であることが知られている。
 特許文献1又は2に記載の技術には、粘度平均分子量Mwが300,000~900,000及び分散度(重量平均分子量Mw/数平均分子量Mn)が3~15の超高分子量ポリエチレンを用いるポリオレフィン製微多孔膜の提供に際して、蓄電デバイス用セパレータとしての品質、例えば、ゲルの少なさ、分子量劣化の抑制、電池安全性とサイクル性等;及びセパレータ強度、例えば、引張強度と突刺強度等について未だ改良の余地がある。
 特許文献3に記載のポリオレフィン製微多孔膜の製造方法は、重量平均分子量が500,000以上のポリオレフィン樹脂を伴うため、各工程の実施可能な条件について未だに検討の余地がある。また、特許文献3に記載の方法により得られるポリオレフィン製微多孔膜は、リチウムイオン電池用セパレータとしての品質、例えば、ゲルの少なさ、分子量劣化の抑制等;及びセパレータ強度、例えば、引張強度と突刺強度等についても改良の余地がある。
 上記の事情に鑑みて、本発明は、使用可能な品質と強度を有する蓄電デバイス用セパレータ、又はそれを形成するためのポリオレフィン製微多孔膜を提供することを目的とする。
 本発明者らは、蓄電デバイス用セパレータに使用されるポリエチレン結晶性をX線回折(XRD)で特定することによって、又は特定の条件下、液状可塑剤と超高分子量ポリエチレン(UHMWPE)の混合スラリーを用いて押出及び成形を行って、得られた成形物を多孔化することによって上記課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は以下のとおりである。
[1]
 断面結晶配向度が、0.85以上である、蓄電デバイス用セパレータ。
[2]
 前記蓄電デバイス用セパレータの1nm当たりの比表面積Sが、1×10-2nm~5×10-2nmである、項目1に記載の蓄電デバイス用セパレータ。
[3]
 前記蓄電デバイス用セパレータの小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径が、50nm~150nmである、項目1又は2に記載の蓄電デバイス用セパレータ。
[4]
 前記蓄電デバイス用セパレータが、ポリエチレン(PE)を含み、かつポリエチレン結晶子サイズが、14.2nm~40.0nmである、項目1~3のいずれか1項に記載の蓄電デバイス用セパレータ。
[5]
 前記蓄電デバイス用セパレータが、超高分子量ポリエチレン(UHMWPE)を含む、項目1~4のいずれか1項に記載の蓄電デバイス用セパレータ。
[6]
 前記断面結晶配向度が、0.99以下である、項目1~5のいずれか1項に記載の蓄電デバイス用セパレータ。
[7]
 粘度平均分子量(Mv)が300,000~9,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分散度(Mw/Mn)が3~15である超高分子量ポリエチレン(UHMWPE)を含むポリオレフィン製微多孔膜であって、
 前記ポリオレフィン製微多孔膜が、蓄電デバイス用セパレータに使用され、X線回折(XRD)において測定された前記ポリオレフィン製微多孔膜のポリエチレン結晶化度が、80~99%であり、かつ前記XRDにおいて測定された前記ポリオレフィン製微多孔膜のポリエチレン結晶子サイズが、14.2~40.0nmであることを特徴とするポリオレフィン製微多孔膜。
[8]
 前記ポリオレフィン製微多孔膜の断面結晶配向度が、0.80~0.99である、項目7に記載のポリオレフィン製微多孔膜。
[9]
 前記ポリオレフィン製微多孔膜の小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径が、50~150nmである、項目7又は8に記載のポリオレフィン製微多孔膜。
[10]
 下記式6:
 10μm換算透過係数(J)=透気度(Pe)÷気孔率(Po)・・・(式6)
で表される膜厚10μm当たりの換算透過係数が、0.5~14である、項目7~9のいずれか1項に記載のポリオレフィン製微多孔膜。
[11]
 前記UHMWPEは、ポリ(エチレン及び/又はプロピレン-co-α-オレフィン)である、項目7~10のいずれか1項に記載のポリオレフィン製微多孔膜。
[12]
 前記UHMWPEは、ポリ(エチレン-co-プロピレン)、ポリ(エチレン-co-ブテン)及びポリ(エチレン-co-プロピレン-co-ブテン)から成る群から選択される少なくとも1つである、項目7~11のいずれか1項に記載のポリオレフィン製微多孔膜。
[13]
 前記UHMWPEは、エチレン由来の構成単位を98.5モル%以上100モル%以下で含む、項目7~12のいずれか1項に記載のポリオレフィン製微多孔膜。
[14]
 前記UHMWPEは、エチレン以外のα-オレフィンに由来する構成単位を0.0モル%超1.5モル%以下で含む、項目7~13のいずれか1項に記載のポリオレフィン製微多孔膜。
[15]
 前記UHMWPEの質量割合は、前記ポリオレフィン製微多孔膜の全粉体原料の合計質量に対して、2質量%~90質量%である、項目7~14のいずれか1項に記載のポリオレフィン製微多孔膜。
[16]
 前記UHMWPEの質量割合は、前記ポリオレフィン製微多孔膜の全粉体原料の合計質量に対して、5質量%~70質量%である、項目7~15のいずれか1項に記載のポリオレフィン製微多孔膜。
[17]
 リチウムイオン二次電池用セパレータとして使用されるポリオレフィン製微多孔膜の製造方法であって、以下の工程:
  (1)20℃~70℃の温度、100秒-1~400,000秒-1のせん断速度及び1.0秒~60秒の滞留時間の条件下で連続混合機を用いて、ポリエチレン(PE)を含むポリオレフィンパウダーと可塑剤とを混合して、混合スラリーを製造する工程;
  (2)前記混合スラリーを二軸押出機に投入し、押出して、樹脂組成物を製造する工程;
  (3)前記樹脂組成物をシート状に押出し、冷却固化させてシート状成形体に加工する工程;
  (4)前記シート状成形体を20倍以上200倍以下の面倍率で二軸延伸して、延伸物を形成する工程;
  (5)前記延伸物から前記可塑剤を抽出して、多孔体を形成する工程;並びに
  (6)前記多孔体の融点以下の温度で前記多孔体の熱処理を行って、前記多孔体を延伸する工程;
を含むことを特徴とするポリオレフィン製微多孔膜の製造方法。
[18]
 前記工程(2)では、前記二軸押出機において、前記ポリオレフィンパウダーの膨潤、溶融及び/又は混錬を行う、項目17に記載のポリオレフィン製微多孔膜の製造方法。
[19]
 前記ポリエチレンが超高分子量ポリエチレン(UHMWPE)であり、かつ前記ポリオレフィンパウダー中の前記UHMWPEの含有率が、前記ポリオレフィンパウダーの質量を基準として、2質量%~90質量%である、項目17又は18に記載のポリオレフィン製微多孔膜の製造方法。
[20]
 前記ポリエチレンが超高分子量ポリエチレン(UHMWPE)であり、かつ前記UHMWPEは、粘度平均分子量(Mv)が300,000~9,700,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分子量分布(Mw/Mn)が、3~15である、項目17~19のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
[21]
 前記工程(2)では、前記混合スラリーを25℃~80℃の温度で前記二軸押出機へフィードして、前記樹脂組成物を製造する、項目17~20のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
[22]
 前記工程(6)では、前記多孔体を幅方向及び/又は長手方向に延伸する、項目17~21のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
 本発明によれば、高品質及び高強度を有する蓄電デバイス用セパレータ、及びそれに使用されるポリオレフィン製微多孔膜を提供することができ、さらに蓄電デバイス用セパレータ又はポリオレフィン製微多孔膜の厚さ(断面)方向の耐圧縮性を向上させることもできる。また、本発明は、混合スラリーを押出工程に供することができるので、パウダー又は固体混合物の供給に比べて、分子量の劣化を抑制することができ、かつ/又はハンドリング性に優れることがある。
図1は、本発明の一実施形態に係るポリオレフィン製微多孔膜のX線回折(XRD)における回折角と回折強度の関係を示すグラフである。
 以下、本発明を実施するための形態(以下、「実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本明細書で説明される物性値又は評価値は、特に言及されない限り、実施例に記載される方法に従って測定又は算出されるものである。
<蓄電デバイス用セパレータ>
 蓄電デバイス用セパレータ(以下、単に「セパレータ」ともいう)は、絶縁性とリチウムイオン透過性が必要なため、一般的には、多孔質体構造を有する絶縁材料である紙、ポリオレフィン製不織布又は樹脂製微多孔膜などから形成される。特に、リチウムイオン電池においては、セパレータの耐酸化還元劣化及び緻密で均一な多孔質構造を構築できるポリオレフィン製微多孔膜が優れている。
 セパレータは、平膜(例えば、1枚の微多孔膜で形成される)、積層膜(例えば、複数のポリオレフィン製微多孔膜の積層体、ポリオレフィン製微多孔膜と他の膜の積層体)、コーティング膜(例えば、ポリオレフィン製微多孔膜の少なくとも片面に機能性物質がコーティングされている場合)などの形態でよい。
 第一実施形態に係るセパレータは、断面結晶配向度が、0.85以上である。セパレータは、断面結晶配向度≧0.85のときに、セパレータ品質、例えば、ゲルの少なさ、分子量劣化の抑制、電池安全性とサイクル性等と、セパレータ強度、例えば、セパレータの厚さ(z)方向の耐圧縮性、引張強度と突刺強度等とを両立し得る傾向にある。中でも、厚さ(断面)方向の圧縮耐性という効果は、以下のような産業的価値がある。
 近年、リチウムイオン電池の高容量化に伴い、電極に使用する活物質として、正極は従来のニッケル:マンガン:コバルトの割合が1:1:1であるものから、ニッケル:マンガン:コバルトの割合が8:1:1である高ニッケル含有タイプへ変更され、また、それ以上の高ニッケル含有のケースもある。負極材料は、黒鉛からシリコンへ、又はシリコン含有タイプへ変更され、それにより、電池の高密度化が進められている。しかしながら、いずれの場合でも、電池放充電過程では、電極の膨張収縮が顕著に発生し、セパレータへ圧縮力が掛かり、それにより、セパレータには、膜厚減少と透気度上昇に伴い、イオン伝導率の低下とサイクル特性の悪化が発生する。
 他方、車載用電池の製造過程では、電極とセパレータの積層状態を圧縮させながら、製造する工程が多く、特に、近年では材料間の密着度向上と生産速度の向上を目的とし、加熱しながら圧縮する場合もある。
 したがって、電池生産工程中でもセパレータの物性を悪化させず、かつ高容量電池の長期使用が可能な電池を実現させるために、本発明によって、特定方向での、例えば厚さ(断面、z)方向での圧縮条件下で、良い耐圧縮性(膜厚減少しない)を示すセパレータを提供し、高分子化学の視点から、その耐性を維持できる最も重要な制御因子として断面結晶配向度を見出し、他の制御因子としてセパレータの1nm当たりの比表面積(S)、換算平均孔径、ポリエチレン結晶子サイズ等を見出した。
 断面結晶配向度は、実施例に説明される透過法による1枚の膜サンプルの広角X線散乱測定により算出されることができる。
 本明細書では、セパレータが平膜の場合、セパレータをX線散乱又はX線回折測定に供する。セパレータが積層膜の場合、積層膜から1枚の膜サンプルを取り外してX線散乱又はX線回折測定に供する。セパレータがコーティング膜の場合、コーティング膜をX線散乱又はX線回折測定に供する。X線散乱測定及びX線回折測定は、実施例に記載の方法により行われることができる。
 セパレータは、広角X線散乱測定において断面結晶配向度≧0.85のときに、理論に拘束されることを望まないが、投影面ではc軸がランダムに配向するのに対して、断面ではc軸が膜サンプルの表面と概ね平行に配向し、結晶相が完全配向に近付き(すなわち、非晶相も完全配向に近付き)、それにより特定方向からの応力に対して、例えば、厚さ(z)方向からの圧縮等に対して、耐えられることが考えられる。セパレータの断面結晶配向度は、z方向の耐圧縮性及び機械的強度の観点から、0.86以上又は0.87以上であることが好ましく、0.88以上又は0.89以上であることが好ましい。また、セパレータの断面結晶配向度は、デバイスの作製時のハンドリング性及びしなやかさの観点から、0.99以下であることが好ましく、0.98以下又は0.97以下であることがより好ましい。
 第一実施形態では、セパレータの1nm当たりの比表面積(S)が、セパレータの品質及びz方向の耐圧縮性の向上という観点から、1×10-2nm~5×10-2nmであることが好ましく、1.4×10-2nm~4.5×10-2nmであることがより好ましい。比表面積(S)は、セパレータのナノオーダーの単位体積当たりの比表面積を表し、セパレータの立体構造又は内部構造により制御されることができる。また、比表面積(S)は、セパレータが微多孔膜を含む場合には、微多孔性の調整によっても制御されることができる。なお、セパレータの1nm当たりの比表面積Sは、実施例に説明される透過法による小角X線散乱測定時に測定される。
 第一実施形態に係るセパレータの小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径は50nm~150nmであることが好ましく、55nm~145nm又は91nm~136nmであることが、z方向の耐圧縮性、引張強度及び突刺強度を向上させるという観点からより好ましい。当該範囲が好ましい理由は明らかではないが、セパレータの力学強度は平均孔径に強く影響され、またリチウムイオン電池セパレータとして通常用いられる膜厚範囲(25μm以下)および本発明の結晶子サイズとの関係から当該範囲が特に応力分散に寄与し、被測定サンプル膜の特定の欠陥への応力集中を妨げるなどの理由が考えられる。さらに、電池内でのリチウムイオンクラスタの膜内部の通り易さは、当該クラスタの大きさと、非接触においてSAXSで計測された現実の膜の平均孔径と強く相関し、結果としてイオン抵抗を適度な範囲に調整できると考えられる。また、この平均孔径範囲では、サイクル特性が良好で、放充電時の抵抗も少ないことから、初期放充電時に固体電解質界面(SEI)が極めて均一に電極表面に形成されていることも推測される。なお、小角X線散乱測定においてポロド則に従って換算平均孔径を算出する方法は、実施例の項目において詳述される。
 第一実施形態に係るセパレータがポリエチレンを含む場合には、セパレータのX線回折(XRD)において測定されたときに、ポリエチレン結晶子サイズが、14.2nm~40.0nmであることが好ましい。ポリエチレンのXRDにおいて、結晶子サイズは、ポリエチレン分子鎖と垂直な方向の結晶の厚みを表す。ポリエチレン結晶子サイズが14.2nm~40.0nmの範囲内にあると、ポリエチレン中の開裂点が拡散して、応力集中を抑制できることが考えられ、それにより蓄電デバイス用セパレータの使用可能な水準の品質と強度とz方向の耐圧縮性とを達成することができる傾向にある。この傾向は、セパレータが、従来は成形の困難であった超高分子量ポリエチレン(UHMWPE)を含む場合に顕著である。
 セパレータの品質とz方向の耐圧縮性をさらに向上させるために、セパレータのXRD測定において、ポリエチレン結晶子サイズは、好ましくは15.0nm~35.0nm、より好ましくは15.5nm~36.5nm、さらに好ましくは16.0nm~36.0nmである。なお、XRDは、実施例に記載の方法により行われることができる。
 セパレータの構成要素について以下に説明する。
<ポリオレフィン製微多孔膜>
 第二実施形態に係るポリオレフィン製微多孔膜は、超高分子量ポリエチレン(UHMWPE)を含む。本明細書では、超高分子量ポリエチレン(UHMWPE)とは、粘度平均分子量(Mv)が300,000~9,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分散度(Mw/Mn)が3~15であるポリエチレンをいう。
 ポリオレフィン製微多孔膜は、酸化還元劣化に対する耐性及び緻密で均一な多孔質構造を有するため、蓄電デバイス用セパレータに使用されたり、セパレータに含有させられたり、平膜としてセパレータを構成したりすることができる。また、第二実施形態に係るポリオレフィン製微多孔膜は、第一実施形態に係るセパレータを構成することができる。
 第二実施形態に係るポリオレフィン製微多孔膜は、そのX線回折(XRD)において測定されたときに、ポリエチレン結晶化度が80%~99%であり、かつポリエチレン結晶子サイズが、14.2nm~40.0nmであることを特徴とする。ポリエチレンのXRDにおいて、結晶化度は、ポリエチレン中の結晶相の割合を表し、結晶子サイズは、ポリエチレン分子鎖と垂直な方向の結晶の厚みを表す。本明細書では、ポリオレフィン製微多孔膜のXRDで測定されるポリエチレンは、UHMWPEだけでなく、UHMWPE以外のポリエチレンも含むことができる。
 ポリエチレンの結晶化度が80%~99%の範囲内にあり、かつ結晶子サイズが14.2nm~40.0nmの範囲内にあることによって、従来は成形が困難であったUHMWPEを用いて、蓄電デバイス用セパレータに使用可能な品質と強度を有する微多孔膜の提供を達成することができる。これに関連して、ポリエチレンの結晶化度が相対的に高い(つまり、非晶相が相対的に少ない)にもかかわらず、結晶子サイズが14.2nm~40.0nmであるため、ポリエチレン中の開裂点が拡散して、応力集中を抑制できることが考えられる。
 蓄電デバイス用セパレータに使用されるポリオレフィン製微多孔膜の品質と強度をさらに向上させるために、ポリオレフィン製微多孔膜のXRD測定において、ポリエチレン結晶化度は、好ましくは82%~97%、より好ましくは84%~96%又は86%~94%であり、かつ/又はポリエチレン結晶子サイズは、好ましくは15.0nm~35.0nm、より好ましくは15.5nm~36.5nm、さらに好ましくは16.0nm~36.0nmである。
 なお、ポリオレフィン製微多孔膜のXRDは、実施例に記載の方法により行われることができる。
 ポリオレフィン製微多孔膜の断面結晶配向度が、蓄電デバイス用セパレータを用いて、デバイスの作製時にハンドリングの視点から良好なしなやか性を示すこと、高い機械的強度が得られる観点から、好ましくは0.80~0.99、より好ましくは0.81~0・98、さらに好ましくは0.85~0.97又は0.89~0.97である。断面結晶配向度は、透過法によるポリオレフィン製微多孔膜の広角X線散乱測定により算出されることができる。広角X線散乱測定は、実施例に記載の方法により行われることができる。
 ポリエチレンの広角X線散乱測定については、理論に拘束されることを望まないが、下記(1)~(3):
 (1)ポリエチレンの結晶構造ではc軸<001>面と<110>面が直交するので、一方の面の配向を観察することにより他方の面の配向も知ることができる;
 (2)<110>面の配向は、<110>面由来の散乱の方位角方向の広がりから知ることができる;及び
 (3)<110>面の配向の定量化には方位角-散乱強度プロットの半値全幅が有効であり、その半値全幅が鋭いほどポリエチレン分子鎖の配向度も高い;
が考えられる。
 上記(1)~(3)を考慮すると、ポリエチレンの広角X線散乱測定において、断面結晶配向度を0.80~0.99の範囲内に調整したときに、投影面ではc軸がランダムに配向するのに対して、断面ではc軸がポリオレフィン製微多孔膜の表面と概ね平行に配向し、結晶相が完全配向に近付き(すなわち、非晶相も完全配向に近付き)、それにより特定方向からの応力に耐えられることが考えられる。
 ポリオレフィン製微多孔膜の小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径は50nm~150nmであることが好ましく、55nm~145nm又は91nm~136nmであることが、引張強度及び突刺強度を向上させるという観点からより好ましい。当該範囲が好ましい理由は明らかではないがポリオレフィン製微多孔膜の力学強度は平均孔径に強く影響され、またリチウムイオン電池セパレータとして通常用いられる膜厚範囲(25μm以下)および本発明の結晶子サイズとの関係から当該範囲が特に応力分散に寄与し、特定の膜欠陥への応力集中を妨げるなどの理由が考えられる。さらに、電池内でのリチウムイオンクラスタの膜内部の通り易さは、当該クラスタの大きさと非接触において上記SAXS測定で計測された現実の膜の平均孔径と強く相関し、結果としてイオン抵抗を適度な範囲に調整できると考えられる。またこの平均孔径範囲では、サイクル特性が良好で、放充電時の抵抗も少ないことから、初期放充電時にSEIが極めて均一に電極表面に形成されていることも推測される。なお、小角X線散乱測定においてポロド則に従って換算平均孔径を算出する方法は、実施例の項目において詳述される。
 一般的な多孔質体の孔計測では、ガス吸着法(1~100nm)、水銀圧入法(1~100μm)などが知られている。第二実施形態で使用されるようなセパレータは、メソ~マクロが共存した構造を有しており、ガス吸着法では測定できないことが考えられる。一方、水銀圧入法は、第二実施形態で使用されるようなポリエチレン製微多孔膜の測定範囲に適応しているが、測定時に比較的高い圧力を膜に掛けるため、ポリエチレン製微多孔膜が潰れてしまい、構造が破壊されるため、測定できないことが考えられる。さらに、ガス吸着法及び水銀圧入法の他に、透空気率又は透水率を計測することにより、有管モデルに従った孔径及び曲路率を算出する方法(貫通細孔径分布測定)が挙げられるが、第二実施形態で使用されるようなセパレータは、非常に複雑な多孔質構造を有しているため、正確に描写できる工学的なモデルはない。第二実施形態では、前記X線構造解析を用いることで、非破壊的で正確にポリエチレン製微多孔膜の多孔質構造を統計的に計測でき、電池サイクル性能又は安全性評価性能へ関係付けることできる。
 ポリオレフィン製微多孔膜は、蓄電デバイス用セパレータに使用可能なほど高い品質と強度の観点から、下記式6:
 10μm換算透過係数(J)=透気度(Pe)÷気孔率(Po)・・・(式6)
で表される膜厚10μm当たりの換算透過係数が、好ましくは0.5~14、より好ましくは0.7~13.8である。
 ポリオレフィン製微多孔膜の特性を以下に説明する。これらの特性は、蓄電デバイス用セパレータとしてのポリオレフィン製微多孔膜が平膜の場合であるが、蓄電デバイス用セパレータが積層膜の形態である場合には積層膜から微多孔膜以外の層を除いてから測定されることができる。
 ポリオレフィン製微多孔膜の気孔率は、好ましくは20%以上であり、より好ましくは30%以上であり、さらに好ましくは31%以上である。微多孔膜の気孔率が20%以上であることにより、リチウムイオンの急速な移動に対する追従性がより向上する傾向にある。一方、微多孔膜の気孔率は、好ましくは90%以下、より好ましくは80%以下、さらに好ましくは50%以下である。微多孔膜の気孔率が90%以下であることにより、膜強度がより向上し、自己放電がより抑制される傾向にある。微多孔膜の気孔率は、実施例に記載の方法により測定することができる。
 ポリオレフィン製微多孔膜の透気度は、100cm当たり、好ましくは1秒以上であり、より好ましくは50秒以上であり、さらに好ましくは55秒以上、よりさらに好ましくは60秒以上、100秒以上、120秒以上、140秒以上又は150秒以上である。微多孔膜の透気度が1秒以上であることにより、膜厚と気孔率と平均孔径のバランスがより向上する傾向にある。また、微多孔膜の透気度は、好ましくは400秒以下であり、より好ましくは320秒以下であり、さらに好ましくは310秒以下、300秒以下、280秒以下又は270秒以下である。微多孔膜の透気度が400秒以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の透気度は、実施例に記載の方法により測定することができる。
 ポリオレフィン製微多孔膜の引張強度は、MD及びTD(MDと直交する方向、膜幅方向)の両方向において、それぞれ、好ましくは1000kgf/cm以上であり、より好ましくは1050kgf/cm以上であり、さらに好ましくは1100kgf/cm以上である。引張強度が1000kgf/cm以上であることにより、スリット又は蓄電デバイス捲回時での破断がより抑制されるか、蓄電デバイス内の異物等による短絡がより抑制される傾向にある。一方、微多孔膜の引張強度は、好ましくは5000kgf/cm以下であり、より好ましくは4500kgf/cm以下であり、さらに好ましくは4000kgf/cm以下である。微多孔膜の引張強度が5000kgf/cm以下であることにより、加熱試験時に微多孔膜が早期に緩和して収縮力が弱まり、結果として安全性が高まる傾向にある。
 ポリオレフィン製微多孔膜の膜厚は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、さらに好ましくは3.0μm以上、4.0μm以上、又は4.5μm以上であり、よりさらに好ましくは5.0μm以上である。微多孔膜の膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。また、微多孔膜の膜厚は、好ましくは500μm以下であり、より好ましくは100μm以下であり、さらに好ましくは80μm以下、22μm以下又は19μm以下である。微多孔膜の膜厚が500μm以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の膜厚は実施例に記載の方法により測定することができる。
 ポリオレフィン製微多孔膜が近年の比較的高容量のリチウムイオン二次電池に使用されるセパレータである場合、微多孔膜の膜厚は、好ましくは25μm以下であり、より好ましくは22μm以下又は20μm以下であり、さらに好ましくは18μm以下であり、特に好ましくは16μm以下、14.0μm以下、又は12.0μm以下である。この場合、微多孔膜の膜厚が25μm以下であることにより、透過性がより向上する傾向にある。この場合、微多孔膜の膜厚の下限値は、1.0μm以上、3.0μm以上、4.0μm以上、又は5.0μm以上でよい。
 ポリオレフィン製微多孔膜は、所望により、UHMWPE以外のポリエチレン、ポリエチレン以外のポリオレフィン、ポリオレフィン以外の樹脂、各種の添加剤などを含んでよい。
<超高分子量ポリエチレン(UHMWPE)>
 超高分子量ポリエチレン(UHMWPE)とは、粘度平均分子量(Mv)が300,000~9,700,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分散度(Mw/Mn)が3~15であるポリエチレンをいう。
 UHMWPEの粘度平均分子量(Mv)は、好ましくは320,000~9,000,000であり、より好ましくは、350,000~8,500,000である。UHMWPEの分散度は、好ましくは3~15、4~14又は4~13である。
 粘度平均分子量(Mv)は分子量によらず、精度、再現性よく測定できることに対して、GPC測定で求められる数平均分子量(Mn)、重量平均分子量(Mw)およびその比として表される分散度(Mw/Mn)については分子量が100万以上の領域ではカラム排除体積限界であるため、正確に測定できない。一方、分子量が100万以下の領域では非常に精度、再現性よく測定でき、数平均分子量(Mn)、重量平均分子量(Mw)およびその比として表される分散度(Mw/Mn)を算出できる。また、分子量が100万以下の領域での検証実験により、同一種のポリエチレン重合触媒を用いた場合では、数平均分子量(Mn)と重量平均分子量(Mw)が変化しても、分散度(Mw/Mn)は変化しないことが実験的に明らかになっている。そのため、本発明では、分子量が100万以上のUHMWPEに関しては数平均分子量(Mn)及び重量平均分子量(Mw)は正確な測定が不可能であるのに対して、その比として表される分散度(Mw/Mn)は同一種ポリエチレン重合触媒を使用することで重合した100万以下の領域で算出した値を用いて検討を進めた。
 第一及び第二実施形態では、単一種又は複数種のUHMWPEを使用してよい。UHMWPEは、ポリオレフィン製微多孔膜の高強度の観点から、好ましくはポリ(エチレン及び/又はプロピレン-co-α-オレフィン)であり、より好ましくは、ポリ(エチレン-co-プロピレン)、ポリ(エチレン-co-ブテン)及びポリ(エチレン-co-プロピレン-co-ブテン)から成る群から選択される少なくとも1つである。同様の観点から、UHMWPEは、好ましくは、エチレン由来の構成単位を98.5モル%以上100モル%以下で含み、より好ましくは、エチレン以外のα-オレフィンに由来する構成単位を0.0モル%超1.5モル%以下で含む。
 UHMWPEの質量割合は、高強度の観点から、ポリオレフィン製微多孔膜の全粉体原料の合計質量に対して、好ましくは5質量%~70質量%、より好ましくは7質量%~68質量%である。
<UHMWPE以外のポリエチレン>
 UHMWPE以外のポリエチレンとしては、例えば、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、高圧法低密度ポリエチレン、又はこれらの混合物等が挙げられる。また、メタロセン触媒を利用して得られた分子量分布の狭いポリエチレン、多段重合により得られたHDPEを使用してよい。これらのポリエチレンは、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
<ポリエチレン以外のポリオレフィン>
 ポリエチレン以外のポリオレフィンとしては、例えば、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、ポリメチルペンテン、シラングラフト変性ポリオレフィン等が挙げられる。これらのポリオレフィンは、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
<ポリオレフィン以外の樹脂>
 ポリオレフィン以外の樹脂としては、例えば、ポリフェニレンエーテル等のエンプラ樹脂;ナイロン6、ナイロン6-12、アラミド樹脂等のポリアミド樹脂;ポリイミド系樹脂;ポリエチレンテレフタレート(PET)、ポリブテンテレフタレート(PBT)等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系樹脂;エチレンとビニルアルコールの共重合体、C~C12のα-オレフィンと一酸化炭素の共重合体及びその水添物;スチレン系重合体の水添物;スチレンとα-オレフィンとの共重合体及びその水添物;スチレンと脂肪族モノ不飽和脂肪酸との共重合体;(メタ)アクリル酸、(メタ)アクリレート及び/又はそれらの誘導体の重合体;スチレンと共役ジエン系不飽和単量体との共重合体及びこれらの水添物から選択される熱可塑性樹脂;ポリスルホン、ポリエーテルスルホン、ポリケトン等が挙げられる。これらの樹脂は、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
<添加剤>
 ポリオレフィン製微多孔膜は、所望により、UHMWPEに加えて、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を含んでよい。
<ポリオレフィン製微多孔膜の製造方法>
 ポリオレフィン製微多孔膜が上記で説明された結晶構造を有する限り、本技術分野で知られる任意の方法によりポリオレフィン製微多孔膜を製造してよい。例えば、ポリオレフィン製膜は、ポリオレフィン樹脂の溶融押出、その後の延伸等により形成され、その多孔化は、湿式法により行われることができる。
 湿式法としては、例えば、ポリオレフィンに、可塑剤などの孔形成材を添加し、分散させ、成形した後に、孔形成材を溶媒などにより抽出して孔を形成し、必要に応じて抽出前後に延伸加工を行う方法などがある。
 ポリオレフィン製微多孔膜のXRDにおいて測定されるポリエチレン結晶化度を80~99%の範囲内に、かつポリエチレン結晶子サイズを14.2~40.0nmの範囲内に制御するための手段の一例は、ポリオレフィン製微多孔膜のための原料中の樹脂組成を調整すること、流動パラフィンなどの液状可塑剤とUHMWPEの混合スラリーを用いて押出、混錬及び成形を行って成形物を湿式法により多孔化すること等である。
 第三実施形態に係るポリオレフィン製微多孔膜の製造方法は、以下の工程:
  (1)20℃~70℃の温度、100秒-1~400,000秒-1のせん断速度及び1.0秒~60秒の滞留時間の条件下で連続混合機を用いて、ポリエチレン(PE)を含むポリオレフィンパウダーと可塑剤とを混合して、混合スラリーを製造する混合スラリー製造工程;
  (2)前記混合スラリーを二軸押出機に投入し、押出して、樹脂組成物を製造する押出工程;
  (3)前記樹脂組成物をシート状に押出し、冷却固化させてシート状成形体に加工する工程;
  (4)前記シート状成形体を20倍以上200倍以下の面倍率で二軸延伸して、延伸物を形成する工程;
  (5)前記延伸物から前記可塑剤を抽出して、多孔体を形成する工程;並びに
  (6)前記多孔体の融点以下の温度で前記多孔体の熱処理を行って、前記多孔体を延伸する工程;
を含む。
 理論に拘束されることを望まないが、(1)混合スラリー製造工程により得られたPEと可塑剤の混合スラリーを、(2)押出工程、(3)シート加工工程、(4)延伸工程、(5)抽出工程及び(6)熱処理工程に供することによって、(2)押出工程では過度なせん断力を掛けなくても均一な樹脂組成物を得られるので、PEを含む微多孔膜について、未溶融ゲルの発生又は分子量の低下を抑制し、かつリチウムイオン二次電池用セパレータに利用した際に高品質及び高強度を達成することができる。
 また、理論に拘束されることを望まないが、第三実施形態では、前記工程(2)において押出機へ均一にPEおよび可塑剤をフィードすることで、均一な混練が実現できるため、工程(1)によりPE含有ポリオレフィンパウダーの均一分散が確保され、従来のように溶融混錬時に高いせん断力でポリマー鎖を切断し、PEの高次構造を損なうことなく、得られたポリオレフィン製微多孔膜の結晶性を高めて応力集中点を拡散させることが考えられる。
 さらに、第三実施形態ではPE含有ポリオレフィンパウダーと可塑剤の均一な混合スラリーを押出工程に供することができるので、樹脂粉体及び液体を個別に押出機に供給してから均一分散することに比べて、ハンドリング性に優れることがある。
 第三実施形態に係るポリオレフィン微多孔膜の製造方法の各工程について以下に説明する。特に言及しない場合、各工程について既知の条件又は方法を採用することができる。
[(1)混合スラリー製造工程]
 工程(1)では、連続混合機において、20℃~70℃の温度、100秒-1~400,000秒-1のせん断速度及び1.0秒~60秒の滞留時間の条件下で、ポリエチレン(PE)含有ポリオレフィンパウダーと可塑剤とを混合して、混合スラリーを得る。工程(1)では、得られるポリオレフィン製微多孔膜の品質及び強度を高めるという観点から、PE原料として超高分子量ポリエチレン(UHMWPE)を使用することが好ましい。
 原料のUHMWPE粉体は、可塑剤との共存条件下では、系内の発熱又は外部からの加熱により、UHMWPEの結晶―非結晶部の割合が変化するともに、全体の運動性が徐々に増加するため、可塑剤が、UHMWPE粉体の非結晶部、又は結晶と非結晶部の間の中間層部へ浸漬することができるようになる。この段階では、樹脂パウダーの融解もしくは溶解が発生せず、この現象を可塑剤の膨潤と呼ぶ。押出工程(2)において押出機へ投入する前に、工程(1)においてUHMWPE粉体を所定の水準で膨潤させることによって、押出工程(2)ではUHMWPEに過剰なせん断を加えることなく、均一な溶解樹脂物組成を得ることができる。また、混合スラリー製造工程(1)を含まない従来法では、UHMWPE粉体を押出機へフィードする際に、UHMWPE粉体表面の融解もしくは溶解が進行することで、押出機内部での膨潤が抑制され、未溶融物又はゲルの発生を著しく誘発させる。
 なお、UHMWPE粉体の圧着樹脂物の固体粘弾性測定より、貯蔵弾性率(E’)が0℃~120℃においてブロードなピークを示し、これは結晶緩和を呼ばれており、結晶粒界の滑り(α)又は結晶そのものが弾性率的になる変化(α)[対応する温度Tは、Tα2>Tα1である]と対応している。なお、UHMWPE粉体は、分子量、分子量分布又は密度などで変動又は違いあるが、一般に、それらの全てについて、Tα2は100℃程度と知られており、貯蔵弾性率(E’)から60℃付近に大きなピーク、αが観測される。約70℃以上100℃付近までにαの緩和が観測される。このことから、UHMWPE粉体を溶融させずに最大限に膨潤させるためには、70℃~100℃での結晶そのものが弾性率的になる変化を与えずに、結晶粒界の滑り状態を選択的に作り、非結晶部、又は結晶と非結晶部の間の中間層部への可塑剤の膨潤を促進できる。また、70℃以上の温度では、結晶が徐々に融解し、膨潤が阻害される。
 以上のことから、連続混合機の設定温度の下限は、PE粉体を最大限に膨潤する目的の観点から、20℃以上であり、好ましくは25℃以上、より好ましくは30℃以上であり、その上限は、混合時にUHMWPEの溶解を抑制してスラリーを得るという観点から、70℃以下であり、好ましくは68℃以下、より好ましくは、67℃以下、66℃以下又は65℃以下である。
 連続混合機のせん断速度は、PE含有ポリオレフィンパウダーが均一に可塑剤と接触させ、分散体を得るという観点から、100秒-1~400,000秒-1であり、好ましくは120秒-1~398,000秒-1、より好ましくは1,000秒-1~100,000秒-1である。
 連続混合機の滞留時間は、可塑剤中のPEの分散を確保するという観点から、1.0秒~60秒であり、好ましくは2.0秒~58秒、より好ましくは2.0秒~56秒である。
 第三実施形態で使用される超高分子量ポリエチレン(UHMWPE)は、第一又は第二実施形態について上記で説明されたUHMWPEでよい。
 第三実施形態では、単一種又は複数種のUHMWPEを使用してよい。UHMWPEは、ポリオレフィン製微多孔膜の高強度の観点から、好ましくはポリ(エチレン及び/又はプロピレン-co-α-オレフィン)であり、より好ましくは、ポリ(エチレン-co-プロピレン)、ポリ(エチレン-co-ブテン)及びポリ(エチレン-co-プロピレン-co-ブテン)から成る群から選択される少なくとも1つである。同様の観点から、UHMWPEは、好ましくは、エチレン由来の構成単位を98.5モル%以上100モル%以下で含み、より好ましくは、エチレン以外のα-オレフィンに由来する構成単位を0.0モル%超1.5モル%以下で含む。
 混合スラリー中のポリオレフィンパウダーの含有率は、混合スラリーの質量を基準として、得られるポリオレフィン微多孔膜の強度の観点から、好ましくは0質量%を超え、より好ましくは1質量%以上、さらに好ましくは2質量%以上又は4質量%以上であり、この含有率は、ポリオレフィンパウダーの未溶融ゲルの発生を抑制するという観点から、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下又は20質量%以下である。
 ポリオレフィンパウダー中のPE又はUHMWPEの含有率は、ポリオレフィンパウダーの質量を基準として、得られるポリオレフィン微多孔膜の強度の観点から、好ましくは2質量%以上、より好ましくは4質量%以上であり、この含有率は、PE又はUHMWPEの未溶融ゲルの発生を抑制するという観点から、好ましくは90質量%以下、より好ましくは88質量%以下である。
 工程(1)で使用される可塑剤は、20℃~70℃の温度で液状であり、かつPEの分散性に優れる限り、既知の材料であることができる。工程(1)で使用される可塑剤は、(5)抽出工程も考慮すると、ポリオレフィンの融点以上において均一溶液を形成し得る不揮発性溶媒が好ましい。不揮発性溶媒の具体例としては、例えば、流動パラフィン、パラフィンワックス、デカン、デカリン等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。中でも、流動パラフィンは、ポリエチレン又はポリプロピレンとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こり難く、均一な延伸が実施し易くなる傾向にあるため好ましい。
 混合スラリーは、所望により、UHMWPE以外のポリエチレン、ポリエチレン以外のポリオレフィン、ポリオレフィン以外の樹脂、各種の添加剤などを含んでよい。また、ポリオレフィンパウダーは、所望により、UHMWPE以外のポリエチレン、及び/又はポリエチレン以外のポリオレフィンを含んでよい。
 UHMWPE以外のポリエチレンとしては、例えば、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、高圧法低密度ポリエチレン、又はこれらの混合物等が挙げられる。また、メタロセン触媒を利用して得られた分子量分布の狭いポリエチレン、多段重合により得られたHDPEを使用してよい。これらのポリエチレンは、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
 ポリエチレン以外のポリオレフィンとしては、例えば、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、ポリメチルペンテン、シラングラフト変性ポリオレフィン等が挙げられる。これらのポリオレフィンは、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
 ポリオレフィン以外の樹脂としては、例えば、ポリフェニレンエーテル等のエンプラ樹脂;ナイロン6、ナイロン6-12、アラミド樹脂等のポリアミド樹脂;ポリイミド系樹脂;ポリエチレンテレフタレート(PET)、ポリブテンテレフタレート(PBT)等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系樹脂;エチレンとビニルアルコールの共重合体、C~C12のα-オレフィンと一酸化炭素の共重合体及びその水添物;スチレン系重合体の水添物;スチレンとα-オレフィンとの共重合体及びその水添物;スチレンと脂肪族モノ不飽和脂肪酸との共重合体;(メタ)アクリル酸、(メタ)アクリレート及び/又はそれらの誘導体の重合体;スチレンと共役ジエン系不飽和単量体との共重合体及びこれらの水添物から選択される熱可塑性樹脂;ポリスルホン、ポリエーテルスルホン、ポリケトン等が挙げられる。これらの樹脂は、単数又は複数で使用されることができ、UHMWPEを含むポリオレフィン製微多孔膜の残分を構成することができる。
 混合スラリーは、公知の添加剤、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等を含んでよい。
[(2)押出工程]
 工程(2)では、混合スラリーを二軸押出機に投入し、押出して、樹脂組成物を得る。
 工程(2)では、混合スラリーを25℃~80℃の温度で二軸押出機へフィードして、樹脂組成物を製造することが好ましい。混合スラリーの適切な粘度を確保しながら、ポリオレフィンパウダーに含まれるPEの分子量の低下を起こさない程度にポリマー鎖の絡み合いを確保するという観点から、フィード温度を25℃~80℃の範囲内に調整することが好ましい。同様の観点から、フィード温度は、より好ましくは30℃~76℃、さらに好ましくは30℃~70℃である。
 第三実施形態では、(1)混合スラリー製造工程によりPEの均一分散が確保されるため、(2)押出工程は、フィード温度及び押出温度を上記で説明された範囲内に制御するならば、二軸押出機の種類、二軸押出機へのスラリーの供給、押出時間、押出速度、せん断速度、せん断力などの条件により限定されるものではない。
 二軸押出機において、樹脂組成物における未溶融ゲルの発生又は分子量の低下を抑制するという観点から、PE含有ポリオレフィンパウダーの膨潤、溶融及び/又は混錬を行うことが好ましい。溶融混練方法としては、例えば、混合スラリーを二軸押出機に投入することで、PE含有ポリオレフィンパウダーなどの樹脂成分を加熱溶融させ、かつ可塑剤と混練する方法が挙げられる。
 混合スラリーの押出時に、所望により、UHMWPE以外のポリエチレン、ポリエチレン以外のポリオレフィン、ポリオレフィン以外の樹脂、各種の添加剤などを二軸押出機に供給してよい。(1)混合スラリー製造工程について説明されたUHMWPE以外のポリエチレン、ポリエチレン以外のポリオレフィン、ポリオレフィン以外の樹脂及び添加剤を、(2)押出工程において二軸押出機に投入することができる。
[(3)シート加工工程]
 (3)シート加工工程では、工程(2)で得られた樹脂組成物をシート状に押出し、冷却固化させて、シート状成形体を形成する。樹脂組成物は、UHMWPEを含むポリオレフィン樹脂、可塑剤等を含んでよい。
 シート状成形体中のポリオレフィン樹脂の割合は、シート成形性の観点から、シート状成形体の質量を基準として、好ましくは10質量%~80質量%、より好ましくは20質量%~60質量%、最も好ましくは30質量%~50質量%である。
 シート状成形体を製造する方法としては、例えば、工程(2)で得られた樹脂組成物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、可塑剤等が挙げられる。これらの中でも、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出した樹脂組成物を金属製のロールに接触させる際に、ロール間で挟み込むことも、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるため好ましい。樹脂組成物をTダイからシート状に押出す際のダイリップ間隔は200μm以上3,000μm以下であることが好ましく、500μm以上2,500μm以下であることがより好ましい。ダイリップ間隔が200μm以上であると、メヤニ等が低減され、スジ又は欠点などの膜品位への影響が少なく、その後の延伸工程において膜破断などのリスクを低減することができる。一方、ダイリップ間隔が3,000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる。
 また、工程(3)中に、押し出されたシート状成形体を圧延してもよい。
[(4)延伸工程]
 工程(4)では、工程(3)で得られたシート状成形体を20倍以上200倍以下の面倍率で二軸延伸して、延伸物を得る。
 延伸処理としては、幅方向の膜厚分布と透気度分布を小さくできるという観点から、一軸延伸よりも二軸延伸が好ましい。シートを二軸方向に同時に延伸することでシート状成形体が製膜工程の中で冷却・加熱を繰り返す回数が減り、幅方向の分布が良くなる。二軸延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。突刺強度の向上及び延伸の均一性の観点からは、同時二軸延伸が好ましく、また、面配向の制御容易性の観点からは、遂次二軸延伸が好ましい。
 本明細書では、同時二軸延伸とは、MD(微多孔膜連続成形の機械方向)の延伸とTD(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD及びTDの延伸が独立して施される延伸方法をいい、MD又はTDに延伸が為されているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上200倍以下の範囲内であり、25倍以上170倍以下の範囲であることが好ましく、30倍以上150倍以下がより好ましい。各軸方向の延伸倍率は、MDに2倍以上15倍以下、TDに2倍以上15倍以下の範囲であることが好ましく、MDに3倍以上12倍以下、TDに3倍以上12倍以下の範囲であることがより好ましく、MDに5倍以上10倍以下、TDに5倍以上10倍以下の範囲であることがさらに好ましい。総面積倍率が20倍以上であると、得られる微多孔膜に十分な強度を付与できる傾向にあり、一方、総面積倍率が200倍以下であると、工程(4)における膜破断を防ぎ、高い生産性が得られる傾向にある。
 延伸温度は、ポリオレフィン樹脂の溶融性及び製膜性の観点から、好ましくは90℃~150℃、より好ましくは100℃~140℃、さらに好ましくは110℃~130℃である。
[(5)抽出工程]
 工程(5)では、工程(4)で得られた延伸物から可塑剤を抽出除去して多孔体を得る。可塑剤の抽出方法としては、例えば、抽出溶剤に延伸物を浸漬して可塑剤を抽出して、乾燥させる方法が挙げられる。抽出方法は、バッチ式と連続式のいずれであってもよい。多孔体の収縮を抑えるために、浸漬及び乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔体中の可塑剤残存量は、多孔膜全体の質量に対して、1質量%未満にすることが好ましい。
 なお、(5)抽出工程の後に、蒸留等の操作により可塑剤を回収して再利用してよい。
 抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒であり、可塑剤に対して良溶媒であり、かつ沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。
[(6)熱処理工程]
 工程(6)では、多孔体に対して、収縮の抑制、熱固定などを目的として、多孔体の融点以下の温度で熱処理を行い、多孔体を延伸させ、微多孔膜を得る。
 多孔体には、収縮を抑制する観点から熱固定を目的として熱処理を施す。熱処理の方法としては、物性の調整を目的として、所定の雰囲気、所定の温度及び所定の延伸倍率で行う延伸操作、並びに/又は、延伸応力低減を目的として、所定の雰囲気、所定の温度及び所定の緩和率で行う緩和操作が挙げられる。延伸操作を行った後に緩和操作を行ってよい。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。
 延伸操作は、微多孔膜の強度及び気孔率を高めるという観点から、膜のMD及び/又はTDに1.1倍以上であることが好ましく、より好ましくは1.2倍以上の延伸を行う。
 また、緩和操作は、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜の寸法を緩和操作前の膜の寸法で除した値のことである。なお、MDとTDの双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、1.0以下であることが好ましく、0.97以下であることがより好ましく、0.95以下であることがさらに好ましい。緩和率は膜品質の観点から0.5以上であることが好ましい。緩和操作は、MDとTDの両方向で、又はMDとTDの片方だけで行ってよい。
 延伸又は緩和操作などを含む熱処理の温度は、ポリオレフィン樹脂の融点(以下、「Tm」ともいう。)の観点から、100℃~170℃の範囲内であることが好ましい。延伸及び緩和操作の温度が上記範囲であると、熱収縮率の低減と気孔率とのバランスの観点から好ましい。熱処理温度の下限は、より好ましくは110℃以上、さらに好ましくは120℃以上、よりさらに好ましくは125℃以上であり、その上限は、より好ましくは160℃以下、さらに好ましくは150℃以下、よりさらに好ましくは140℃以下である。
 工程(6)中又は工程(6)後に、微多孔膜に対して、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。なお、上記で説明された工程(4)、(5)及び(6)の順序を並べ替えたり、これらの工程を同時に行ったりしてよいが、製膜性の観点からは、二軸延伸機を用いて、工程(4)、(5)及び(6)の順序で、これらの工程を行うことが好ましい。
 得られた微多孔膜は、取り扱い性及び保管安定性の観点から、巻取機により巻き取られ、ロールを形成したり、スリッターにより切断されたりすることができる。
 また、第三実施形態に係る方法を実施することによって、第二の実施形態に係るポリオレフィン製微多孔膜を製造することもできる。
<蓄電デバイス用セパレータの製造方法>
 第二又は第三実施形態に係るポリオレフィン製微多孔膜を用いて、第一実施形態に係る蓄電デバイス用セパレータを製造することができる。ポリオレフィン製微多孔膜を平膜として用いて単層セパレータを形成することができる。複数のポリオレフィン製微多孔膜を積層し、かつ/又はポリオレフィン製微多孔膜と他の膜/層とを積層して、セパレータ積層膜を形成することができる。ポリオレフィン製微多孔膜を塗料でコーティングすることによりセパレータのコーティング膜を形成することができる。
<蓄電デバイス>
 第一実施形態に係るセパレータ、又は第二若しくは第三実施形態に係るポリオレフィン製微多孔膜を含むセパレータは、蓄電デバイスにおいて使用されることができる。蓄電デバイスは、正極と、負極と、正負極間に配置されたセパレータと、電解液とを備える。蓄電デバイスとしては、具体的には、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ニッケル水素電池、又はリチウムイオンキャパシタが好ましく、リチウム電池又はリチウムイオン二次電池がより好ましい。
<リチウムイオン二次電池>
 リチウムイオン二次電池は、正極として、コバルト酸リチウム、リチウムコバルト複合酸化物等のリチウム遷移金属酸化物、負極として、グラファイト、黒鉛等の炭素材料、そして電解液としてLiPF等のリチウム塩を含む有機溶媒を使用した蓄電池である。リチウムイオン二次電池の充電・放電時に、イオン化したリチウムが電極間を往復する。また、電極間の接触を抑制しながら、イオン化したリチウムが電極間を比較的高速で移動する必要があるため、電極間にセパレータが配置される。
 実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例又は比較例の物性値を以下の方法により測定した。
<重量平均分子量(Mw)、数平均分子量(Mn)>
 Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについても同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量と数平均分子量を算出した。
 カラム  :東ソー製 GMH-HT(商標)2本+GMH-HTL(商標)2本
 移動相  :o-ジクロロベンゼン
 検出器  :示差屈折計
 流速   :1.0ml/min
 カラム温度:140℃
 試料濃度 :0.1wt%
(ポリエチレンの重量平均分子量と数平均分子量)
 得られた較正曲線における各分子量成分に0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることによりポリエチレン換算の分子量分布曲線を得て、重量平均分子量と数平均分子量を算出した。
<粘度平均分子量(Mv)>
 ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvを次式により算出した。
   [η]=6.77×10-4Mv0.67
ポリプロピレンのMvを次式により算出した。
   [η]=1.10×10-4Mv0.80
<融点(℃)>
 示差走査熱量(DSC)測定装置「DSC-60」(島津製作所社製)を用いてポリオレフィン樹脂の融点を測定した。
<各層の厚み(μm)>
 東洋精機製の微少測厚器(タイプKBN、端子径Φ5mm)を用いて、雰囲気温度23±2℃で膜厚を測定した。なお、厚みを測定する際には微多孔膜を10枚重ねて測定し、その総厚みを10で割った値を1枚の厚みとする。
<気孔率(%)>
 10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと密度(g/cm)より、次式を用いて気孔率を計算した。なお、混合組成物の密度は、用いた原料の各々の密度と混合比より計算して求められる値を用いた。
   気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
<透気度(sec/100cm)>
 JIS P-8117(2009年)に準拠し、東洋精器(株)製のガーレー式透気度
計、G-B2(商標)により試料の透気度を測定した。
<(110)結晶子サイズ、結晶化度>
(測定)
 リガク社製X線回折装置Ultima-IVを用いてXRD測定を行った。Cu-Kα線を試料に入射し、リガク社製検出器D/tex Ultraにより回折光を検出した。試料-検出器間距離285mm、励起電圧40kV及び電流40mAの条件下でKRD測定を行った。光学系としては集中光学系を採用し、DS=1/2°、SS=解放及び縦スリット=10mmというスリット条件下で測定を行った。
(解析)
 得られたXRDプロフィールの2θ=9.7°から2θ=29.0°までの範囲を斜方晶(110)面回折ピークと斜方晶(200)面回折ピークと非晶ピークの3つに分離し、(110)面回折ピークの半値全幅より、シェラーの式(式1)に従って、結晶子サイズを算出した。(110)面回折ピークと(200)面回折ピークはvoigt関数で近似し、非晶ピークはgauss関数で近似した。なお、非晶ピークのピーク位置は、2θ=19.6°、半値全幅は6.3°で固定し、結晶ピークのピーク位置と半値全幅は特に固定せずにピーク分離を行った。ピーク分離により算出された(110)面回折ピークの半値全幅より、シェラーの式(式1)に従って、結晶子サイズを算出した。
 D(110)=Kλ/(βcosθ)   式1
  式1中の記号の説明
  D(110):結晶子サイズ(nm)
  K:0.9 (定数)
  λ:X線の波長(nm)
  β:(β  -β 0.5
  β:ピーク分離の結果算出された(hkl)ピークの半値全幅(rad)
  β:入射ビームの広がりの半値全幅(rad)
  θ:ブラッグ角
 また、必要に応じて、この解析により得られた(110)面回折ピークの面積I(110)と(200)面回折ピークの面積I(200)を用いて、下記式に従って面積比率Rを算出した。
 面積比率R=I(110)/{I(110)+I(200)}
 また、結晶化度(X)は下記式により算出した。
  結晶化度X={I(110)+I(200)}/{I(110)+I(200)+Iamr}
  Iamr:非晶ピークの面積
<断面配向>
(測定)
 リガク社製X線構造評価装置NANO-Viewerを用いて、透過法による広角X線散乱測定を行った。CuKα線を試料に照射し、イメージングプレートにより散乱を検出した。試料-検出器間距離95.2mm、出力60kV及び45mAの条件下で広角X線散乱測定を行った。光学系にはポイントフォーカスを採用し、スリット径については、1st slit:φ=0.4mm、及び2nd slit:φ=0.2mmの条件下で測定を行った。なお、試料は、試料面とX線入射方向とが10.5°の角度を成すようにセットした。
(解析)
 試料面法線方向のうち、上流側を向いている方向を検出器面に射影した方向を方位角φ=0°とし、検出器面上で時計回りに方位角φ=-180°からφ=180°まで定義する。続いて、イメージングプレートから得られたX線散乱パターンに対して検出器のバックグラウンド補正と空セル散乱補正を行った。その後、各方位角φにおける、ポリエチレンの(110)面回折ピークが存在する19.5°<2θ<21.3°の範囲の積算強度I(φ)を方位角φに対して、方位角-45°<φ<45°の範囲でプロットする。I(φ)は、断面において、分子鎖がフィルム面と平行方向に配向していた場合、φ=0°を中心とする単一ピークとなる。この曲線を、式2で示すような定数とガウス関数の足し合わせでフィットし、フィッティング結果のガウス関数の半値全幅より、式3に従って、断面配向度fを算出した。
 I(φ)=A+B*exp(-((φ-φ)/w))   式2
 式2中の記号の説明
  I(φ):バックグラウンド補正、空セル散乱補正後のある方位角φにおける19.5°<2θ<21.3°の範囲の積算強度
  φ:方位角(rad)
 f=1-FWHM/180   式3
 式3中の記号の説明
  f:断面配向度
  FWHM:フィッティング結果より得られたガウス関数の半値全幅(°)
<孔径>
(測定)
 リガク社製X線構造評価装置NANO-Viwerを用いて、透過法による小角X線散乱測定を行った。CuKα線を試料に照射し、Dectris社の半導体検出器PILATUSにより散乱を検出した。試料-検出器間距離841.5mm、出力60kV及び45mAの条件下で測定を行った。光学系にはポイントフォーカスを採用し、スリット径については、1st slit:φ=0.4mm、2nd slit:φ=0.2mm、及びguard slit:φ=0.8mmの条件下で測定を行った。なお、試料は、試料面とX線入射方向とが垂直になるようにセットした。
(解析)
 PILATUSから得られたX線散乱パターンに対して検出器の絶対強度補正を行い、円環平均によりSAXSプロフィールI(q)を得た。得られた1次元プロフィールI(q)の0.33nm-1<q<1.04nm-1の範囲を、式4に示すPorod則によりフィッティングし、1nm当たりの比表面積Sを得た。その後、膜の孔の形は全て球形であると仮定して、比表面積Sと気孔率Pより、式5により孔径dを得た。
 I(q)=2πΔρ Sq-4   式4
 式4中の記号の説明
  I(q):絶対強度補正済みのSAXSプロフィール(e/nm
  q:散乱ベクトルの絶対値(nm-1
  Δρ:空気と膜の電子密度差(e/nm
  S:1nm当たりの比表面積(nm
 d=3P/50S   式5
 式5中の記号の説明
  d:孔径(nm)
  P:気孔率(%)
  S:1nm当たりの比表面積(nm
<突刺強度(gf)>
 ハンディー圧縮試験器「KES-G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で試料膜の突刺試験を行うことにより突刺強度を求めた。
<引張破断強度(kgf/cm)>
 10mm×100mmに切り出した試料膜と引張試験機とを用いて、ロードセル荷重5kgf及びチャック間距離50mmの条件下で試料膜の引張強度を測定した。
<セパレータ中樹脂凝集物の定量化>
 セパレータ中樹脂凝集物(ゲル含有物)は、後述される実施例と比較例の製膜工程を経て得られたセパレータを透過型光学顕微鏡で観察したときに、縦100μm×横100μm以上の面積を有し、かつ光が透過しない領域として定義されるものである。透過型光学顕微鏡による観察において、セパレータ面積1000m当たりの樹脂凝集物の個数を測定した。
<分子量劣化の定量化>
 押出機に投入前の混合原料を一定量測り取り、上記項目<粘度平均分子量(Mv)>に記載された粘度平均分子量測定方法を用いて、粘度[η]を測定し、これを[η]とする。また、製膜工程で得られた最終膜を同一定量で測り取り、粘度測定を行い、[η]とする。下記式に従って、分子量劣化率(%)を算出する。
 分子量劣化率(%)=100×[η]/[η
<圧縮耐性試験>
 セパレータを2枚、10cm×10cmに切り出し、重ね合わせ、上面視において対角線の交点を基準として8cm×8cmの面積内の任意の9点で厚みを測定し、それらの平均値を算出し、次にその上下から2枚のPETフィルム(10cm×10cm)でカバーして積層体を形成した。さらに、積層体を、その上下から厚み5mmの2枚のゴムシート(10cm×10cm)で挟み、TOYOSEIKI社製ミニテストプレス(品番:MP-WCH)を用いて、加熱しながら圧力を掛けた。なお、PETフィルムとゴムシートは均一に全面に圧力を掛けるように使用し、かつ圧力センサーでその均一性を確認した。プレス機の上下ヒータ温度は70℃であり、10cm×10cmのサンプルに8Mpaが均一に加えられるように、3分間保持した。加熱圧縮操作後に、2枚重ねたセパレータの厚みを、上面視において対角線の交点を基準として8cm×8cmの面積内の任意の9点で測定し、それらの平均値を算出して、下記式に従って、圧縮操作前の厚みとの差分を厚み減少率(%)として定量した。
厚み減少率(%)=((圧縮操作後厚み(μm)-圧縮操作前厚み(μm))/圧縮操作前厚み(μm))*100
<電池破壊安全性試験>
 電池破壊安全性試験は、4.5Vまで充電した電池に鉄釘を20mm/secの速度で打ち込み、貫通させて、内部短絡を起こす試験である。本試験は、内部短絡による電池の電圧低下の時間変化挙動および内部短絡による電池表面温度上昇挙動を測定することで、内部短絡時の現象を明らかにできる。また、内部短絡時にセパレータの不十分なシャットダウン機能や低温での破膜により、電池の急激な発熱が生じる場合があり、それに伴い、電解液が発火し、電池が発煙及び/又は爆発することがある。
(電池破壊安全性試験に用いられる電池の作製)
a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物LiCoOを92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、及びバインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるように調整した。
b.負極の作製
 負極活物質として人造グラファイト96.9質量%、及びバインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるように調整した。
c.非水電解液の調製
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させて調製した。
d.電池組立
 セパレータを横(TD)方向60mm、縦(MD)方向1000mmに切出し、セパレータに対して、九十九折し、正極と負極を交互にセパレータ間(正極12枚、負極13枚)に重ねる。なお、正極は30mm×50mm、負極は32mm×52mmの面積の物を使用した。この九十九折した積層体をラミ袋へ入れた後、上記c.で得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
(最大発熱速度)
 得られた電池へ鉄釘を貫通させた後、電池表面温度は熱電対を用いて、300秒間に亘って測定した温度変化グラフから、1sec当たりに昇温変化が最も大きかった時の速度を最大発熱速度と定めた。
(電圧低下時間)
 得られた電池へ鉄釘を貫通させた後、4.5Vから3Vまでの電圧低下に要した時間を電圧低下時間(3V低下時間)として定めた。
<サイクル特性評価およびその電池の作製方法>
 上記項目<電池破壊安全性試験>に用いられる電池の作製方法のa.~c.と同じ方法に従って、ただし組立は下記d.によりサイクル特性評価用電池を作製した。
 得られた電池の充放電は、60℃雰囲気下で100サイクル実施した。充電は6.0mA(1.0C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を6.0mAから絞り始めるという方法で、合計3時間充電した。放電は6.0mA(1.0C)の電流値で電池電圧3.0Vまで放電した。100サイクル目の放電容量と1サイクル目の放電容量から、容量維持率を算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
d.電池組立
 セパレータを直径18mm、正極及び負極を直径16mmの円形に切り出し、正極と負極の活物質面が対向するよう、正極、セパレータ、負極の順に重ね、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接していた。この容器内に、上記項目「(7)電池破壊安全性試験」のc.において得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
<実験グループI>
<製膜例>
 ホモポリマーの超高分子量ポリエチレン(UHMWPE、重量平均分子量および数平均分子量は測定不可、粘度平均分子量:250万)35質量%、ホモポリマーの高密度ポリエチレン(HDPE、重量平均分子量:13万、数平均分子量:2万、粘度平均分子量:35万)60質量%、ホモポリマーのポリプロピレン(PP、重量平均分子量:40万、数平均分子量:3万、粘度平均分子量:35万)5質量%及び酸化防止剤としてのペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を前記ポリオレフィン混合物の全量に対して1質量%を添加し、流動パラフィン(37.78℃における動粘度7.59×10-5/s)と連続混合機で混合又は分散して混合スラリーを得た(ただし、混合スラリー中のポリエチレンは35質量%となるように)。得られた混合スラリーをフィーダーで二軸押出機へ供給した。押出機内で混合スラリーを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(すなわち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度230℃、スクリュー回転数240rpm、及び吐出量18kg/hrであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシートを得た。
 次に、ゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、熱固定を行なうべくTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向に0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行った。その後、得られた微多孔膜について、端部を裁断し幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
<実施例I-1~I-23、比較例I-1~I-12>
 上記の製膜例に対して、表1~3に示されるように、原料中の樹脂組成、原料フィードの態様、XRD、WAXD及びSAXSプロフィールなどを変更して、微多孔膜を得た。得られた微多孔膜について、上記評価方法に従って各種の評価を行って、評価結果も表1~3に示した。
 実施例I-1で得られたポリオレフィン製微多孔膜の(110)面については、X線回折(XRD)における回折角と回折強度の関係を図1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<実験グループII>
[実施例II-1]
 連続混合機を用いて、表4に示されるパウダー(重量平均分子量および数平均分子量は測定不能、粘度平均分子量450の超高分子量ポリエチレン;UHMWPE、重量平均分子量12.6万、数平均分子量2万、粘度平均分子量15万の高密度ポリエチレン;その他のPE、重量平均分子量40万、数平均分子量3万、粘度平均分子量35万のホモポリプロピレン;PP)および流動パラフィン(37.78℃における動粘度7.59×10-5/s)をせん断速度40,000秒-1及び滞留時間20秒の条件下で混合して、温度が65℃に調整された混合スラリーを得た。なお、混合スラリー中にポリオレフィンパウダーが占める質量比が35%となるように調合を行った。表中の略語「StCa」はステアリン酸カルシウムを意味する。
 得られた混合スラリーを、ダイリップ間隔1500μmのマニホルド(Tダイ)を備える二軸押出機へ窒素雰囲気下60℃でフィーダーにより供給し、樹脂組成物を押し出した。このとき、押出機から押し出される樹脂組成物に占める流動パラフィン量比が質量70%、樹脂組成物の温度が220℃となるように、押出中段部から流動パラフィンを注入して、調整した。続いて、押し出された樹脂組成物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、シート状成形体を得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行い、延伸物を得た。設定延伸条件は、延伸面倍率50~180倍であり、延伸温度、加熱風量又は倍率を調整することで、気孔率、透気度、厚み又は突刺強度を調整した。なお、実施例1は二軸延伸温度125℃とした。
 次に、延伸後のシート(延伸物)をジクロロメタンに充分に浸漬して、流動パラフィンを抽出除去し、その後、ジクロロメタンを乾燥除去して、多孔体を得た。
 次に、多孔体の熱固定を行なうべくTDテンターに導き、128℃で熱固定(HS)を行い、その後、TD方向に0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行った。その後、得られた微多孔膜について、上記で説明された評価を行った。評価結果を表4に示す。
[実施例II-2~II-19、比較例II-1~II-8]
 上記の実施例II-1に対して、表4~6に示されるように、原料組成、プロセス条件などを変更し、ポリオレフィン製微多孔膜の調製を試みて、得られた膜の物性評価を行った。評価結果も表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (22)

  1.  断面結晶配向度が、0.85以上である、蓄電デバイス用セパレータ。
  2.  前記蓄電デバイス用セパレータの1nm当たりの比表面積Sが、1×10-2nm~5×10-2nmである、請求項1に記載の蓄電デバイス用セパレータ。
  3.  前記蓄電デバイス用セパレータの小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径が、50nm~150nmである、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4.  前記蓄電デバイス用セパレータが、ポリエチレン(PE)を含み、かつポリエチレン結晶子サイズが、14.2nm~40.0nmである、請求項1~3のいずれか1項に記載の蓄電デバイス用セパレータ。
  5.  前記蓄電デバイス用セパレータが、超高分子量ポリエチレン(UHMWPE)を含む、請求項1~4のいずれか1項に記載の蓄電デバイス用セパレータ。
  6.  前記断面結晶配向度が、0.99以下である、請求項1~5のいずれか1項に記載の蓄電デバイス用セパレータ。
  7.  粘度平均分子量(Mv)が300,000~9,000,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分散度(Mw/Mn)が3~15である超高分子量ポリエチレン(UHMWPE)を含むポリオレフィン製微多孔膜であって、
     前記ポリオレフィン製微多孔膜が、蓄電デバイス用セパレータに使用され、X線回折(XRD)において測定された前記ポリオレフィン製微多孔膜のポリエチレン結晶化度が、80~99%であり、かつ前記XRDにおいて測定された前記ポリオレフィン製微多孔膜のポリエチレン結晶子サイズが、14.2~40.0nmであることを特徴とするポリオレフィン製微多孔膜。
  8.  前記ポリオレフィン製微多孔膜の断面結晶配向度が、0.80~0.99である、請求項7に記載のポリオレフィン製微多孔膜。
  9.  前記ポリオレフィン製微多孔膜の小角X線散乱(SAXS)測定において、ポロド則に従って算出された換算平均孔径が、50~150nmである、請求項7又は8に記載のポリオレフィン製微多孔膜。
  10.  下記式6:
     10μm換算透過係数(J)=透気度(Pe)÷気孔率(Po)・・・(式6)
    で表される膜厚10μm当たりの換算透過係数が、0.5~14である、請求項7~9のいずれか1項に記載のポリオレフィン製微多孔膜。
  11.  前記UHMWPEは、ポリ(エチレン及び/又はプロピレン-co-α-オレフィン)である、請求項7~10のいずれか1項に記載のポリオレフィン製微多孔膜。
  12.  前記UHMWPEは、ポリ(エチレン-co-プロピレン)、ポリ(エチレン-co-ブテン)及びポリ(エチレン-co-プロピレン-co-ブテン)から成る群から選択される少なくとも1つである、請求項7~11のいずれか1項に記載のポリオレフィン製微多孔膜。
  13.  前記UHMWPEは、エチレン由来の構成単位を98.5モル%以上100モル%以下で含む、請求項7~12のいずれか1項に記載のポリオレフィン製微多孔膜。
  14.  前記UHMWPEは、エチレン以外のα-オレフィンに由来する構成単位を0.0モル%超1.5モル%以下で含む、請求項7~13のいずれか1項に記載のポリオレフィン製微多孔膜。
  15.  前記UHMWPEの質量割合は、前記ポリオレフィン製微多孔膜の全粉体原料の合計質量に対して、2質量%~90質量%である、請求項7~14のいずれか1項に記載のポリオレフィン製微多孔膜。
  16.  前記UHMWPEの質量割合は、前記ポリオレフィン製微多孔膜の全粉体原料の合計質量に対して、5質量%~70質量%である、請求項7~15のいずれか1項に記載のポリオレフィン製微多孔膜。
  17.  リチウムイオン二次電池用セパレータとして使用されるポリオレフィン製微多孔膜の製造方法であって、以下の工程:
      (1)20℃~70℃の温度、100秒-1~400,000秒-1のせん断速度及び1.0秒~60秒の滞留時間の条件下で連続混合機を用いて、ポリエチレン(PE)を含むポリオレフィンパウダーと可塑剤とを混合して、混合スラリーを製造する工程;
      (2)前記混合スラリーを二軸押出機に投入し、押出して、樹脂組成物を製造する工程;
      (3)前記樹脂組成物をシート状に押出し、冷却固化させてシート状成形体に加工する工程;
      (4)前記シート状成形体を20倍以上200倍以下の面倍率で二軸延伸して、延伸物を形成する工程;
      (5)前記延伸物から前記可塑剤を抽出して、多孔体を形成する工程;並びに
      (6)前記多孔体の融点以下の温度で前記多孔体の熱処理を行って、前記多孔体を延伸する工程;
    を含むことを特徴とするポリオレフィン製微多孔膜の製造方法。
  18.  前記工程(2)では、前記二軸押出機において、前記ポリオレフィンパウダーの膨潤、溶融及び/又は混錬を行う、請求項17に記載のポリオレフィン製微多孔膜の製造方法。
  19.  前記ポリエチレンが超高分子量ポリエチレン(UHMWPE)であり、かつ前記ポリオレフィンパウダー中の前記UHMWPEの含有率が、前記ポリオレフィンパウダーの質量を基準として、2質量%~90質量%である、請求項17又は18に記載のポリオレフィン製微多孔膜の製造方法。
  20.  前記ポリエチレンが超高分子量ポリエチレン(UHMWPE)であり、かつ前記UHMWPEは、粘度平均分子量(Mv)が300,000~9,700,000であり、かつ数平均分子量(Mn)に対する重量平均分子量(Mw)の比として表される分子量分布(Mw/Mn)が、3~15である、請求項17~19のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
  21.  前記工程(2)では、前記混合スラリーを25℃~80℃の温度で前記二軸押出機へフィードして、前記樹脂組成物を製造する、請求項17~20のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
  22.  前記工程(6)では、前記多孔体を幅方向及び/又は長手方向に延伸する、請求項17~21のいずれか1項に記載のポリオレフィン製微多孔膜の製造方法。
PCT/JP2019/037608 2018-09-25 2019-09-25 高強度セパレータ WO2020067161A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN202310771609.8A CN116722303A (zh) 2018-09-25 2019-09-25 高强度分隔件
US16/977,996 US20210074983A1 (en) 2018-09-25 2019-09-25 High-Strength Separator
CN202310771612.XA CN116722306A (zh) 2018-09-25 2019-09-25 高强度分隔件
EP24154598.7A EP4394833A1 (en) 2018-09-25 2019-09-25 High-strength separator
KR1020227019946A KR102550429B1 (ko) 2018-09-25 2019-09-25 고강도 세퍼레이터
EP19867650.4A EP3859822A4 (en) 2018-09-25 2019-09-25 HIGH RESISTANCE SEPARATOR
CN201980013600.2A CN111727517B (zh) 2018-09-25 2019-09-25 高强度分隔件
JP2020530389A JP7361034B2 (ja) 2018-09-25 2019-09-25 高強度セパレータ
KR1020207024102A KR102476944B1 (ko) 2018-09-25 2019-09-25 고강도 세퍼레이터
JP2022005212A JP7351943B2 (ja) 2018-09-25 2022-01-17 高強度セパレータ
JP2023089795A JP2023120223A (ja) 2018-09-25 2023-05-31 高強度セパレータ
US18/217,738 US20230344078A1 (en) 2018-09-25 2023-07-03 High-Strength Separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018179491 2018-09-25
JP2018-179491 2018-09-25
JP2018-179515 2018-09-25
JP2018179515 2018-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/977,996 A-371-Of-International US20210074983A1 (en) 2018-09-25 2019-09-25 High-Strength Separator
US18/217,738 Division US20230344078A1 (en) 2018-09-25 2023-07-03 High-Strength Separator

Publications (1)

Publication Number Publication Date
WO2020067161A1 true WO2020067161A1 (ja) 2020-04-02

Family

ID=69949926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037608 WO2020067161A1 (ja) 2018-09-25 2019-09-25 高強度セパレータ

Country Status (6)

Country Link
US (2) US20210074983A1 (ja)
EP (2) EP4394833A1 (ja)
JP (4) JP7361034B2 (ja)
KR (2) KR102550429B1 (ja)
CN (3) CN111727517B (ja)
WO (1) WO2020067161A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210590A1 (ja) 2020-04-13 2021-10-21 旭化成株式会社 蓄電デバイス用セパレータの製造方法
KR20210147948A (ko) * 2020-05-28 2021-12-07 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터 및 그의 제조 방법
WO2022092302A1 (ja) * 2020-10-30 2022-05-05 旭化成株式会社 シロキサン分散架橋型セパレータ
WO2022255444A1 (ja) * 2021-06-04 2022-12-08 株式会社Gsユアサ 鉛蓄電池用セパレータおよびそれを含む鉛蓄電池
WO2023054514A1 (ja) * 2021-09-29 2023-04-06 旭化成株式会社 超高分子量ポリエチレンパウダー及びこれを成形してなる成形体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937275A4 (en) * 2019-03-22 2022-05-04 Lg Chem, Ltd. POLYOLEFIN SEPARATOR AND PROCESS FOR MANUFACTURE THEREOF
KR20240117572A (ko) 2021-11-29 2024-08-01 주식회사 다이셀 조성물 및 셀룰로오스 유도체
CN114221090B (zh) * 2021-12-10 2024-04-26 蜂巢能源科技股份有限公司 一种隔膜及其制备方法和应用
CN114361548A (zh) * 2021-12-31 2022-04-15 重庆大学 一种采用多孔膜的非水系热再生电池
WO2023176880A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、非水電解液二次電池およびフィルター
KR102563504B1 (ko) * 2022-06-14 2023-08-04 주식회사 엘지에너지솔루션 전기화학소자용 폴리올레핀 분리막 및 이를 구비한 전기화학소자

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001011223A (ja) * 1999-06-28 2001-01-16 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002088189A (ja) 2000-09-13 2002-03-27 Nitto Denko Corp 多孔質フィルムの製造方法
JP2005526882A (ja) * 2002-04-12 2005-09-08 ダラミック,インコーポレイテッド 超高分子量ポリエチレン製品および製造方法
WO2011118660A1 (ja) 2010-03-23 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜、非水系二次電池用セパレータ、非水系二次電池及びポリオレフィン微多孔膜の製造方法
JP2012094450A (ja) * 2010-10-28 2012-05-17 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
JP2014105302A (ja) * 2012-11-29 2014-06-09 Nitto Denko Corp 多孔質膜の製造方法
JP2014118535A (ja) * 2012-12-19 2014-06-30 Asahi Kasei Chemicals Corp エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレーター
JP2017080977A (ja) * 2015-10-27 2017-05-18 旭化成株式会社 多層微多孔膜及び蓄電デバイス用セパレータ
JP2017103044A (ja) 2015-11-30 2017-06-08 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材、非水電解液二次電池、および多孔質フィルムの製造方法
WO2018078710A1 (ja) * 2016-10-24 2018-05-03 住友化学株式会社 セパレータ、およびセパレータを含む二次電池
WO2018164056A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212264A (ja) * 1990-02-15 1992-08-03 Asahi Chem Ind Co Ltd 電池セパレーター用ポリエチレン微多孔膜
WO2006025323A1 (ja) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corporation ポリオレフィン微多孔膜及び蓄電池用セパレータ
US9722225B2 (en) * 2006-09-20 2017-08-01 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
JP5235484B2 (ja) * 2008-04-30 2013-07-10 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP5463154B2 (ja) * 2009-03-19 2014-04-09 旭化成イーマテリアルズ株式会社 積層微多孔膜及び非水電解質二次電池用セパレータ
KR100928898B1 (ko) * 2009-04-17 2009-11-30 (주)씨에스텍 미세다공성 고분자 분리막의 제조방법 및 상기 방법으로 제조된 미세다공성 고분자 분리막
WO2011062176A1 (ja) * 2009-11-17 2011-05-26 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜の製造方法
CN102263220B (zh) * 2011-06-22 2014-09-24 广东博特动力能源有限公司 电池隔膜的制备方法
WO2014017651A1 (ja) * 2012-07-26 2014-01-30 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、積層体、及び多孔膜
JP2014112480A (ja) * 2012-12-05 2014-06-19 Dic Corp 非水電解液電池用セパレータ
KR20140083664A (ko) * 2012-12-26 2014-07-04 에스케이이노베이션 주식회사 전지용 분리막의 제조방법
JP5969683B1 (ja) * 2015-11-30 2016-08-17 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001011223A (ja) * 1999-06-28 2001-01-16 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002088189A (ja) 2000-09-13 2002-03-27 Nitto Denko Corp 多孔質フィルムの製造方法
JP2005526882A (ja) * 2002-04-12 2005-09-08 ダラミック,インコーポレイテッド 超高分子量ポリエチレン製品および製造方法
WO2011118660A1 (ja) 2010-03-23 2011-09-29 帝人株式会社 ポリオレフィン微多孔膜、非水系二次電池用セパレータ、非水系二次電池及びポリオレフィン微多孔膜の製造方法
JP2012094450A (ja) * 2010-10-28 2012-05-17 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
JP2014105302A (ja) * 2012-11-29 2014-06-09 Nitto Denko Corp 多孔質膜の製造方法
JP2014118535A (ja) * 2012-12-19 2014-06-30 Asahi Kasei Chemicals Corp エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレーター
JP2017080977A (ja) * 2015-10-27 2017-05-18 旭化成株式会社 多層微多孔膜及び蓄電デバイス用セパレータ
JP2017103044A (ja) 2015-11-30 2017-06-08 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材、非水電解液二次電池、および多孔質フィルムの製造方法
WO2018078710A1 (ja) * 2016-10-24 2018-05-03 住友化学株式会社 セパレータ、およびセパレータを含む二次電池
WO2018164056A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050064A4 (en) * 2020-04-13 2023-01-04 Asahi Kasei Kabushiki Kaisha METHOD OF MANUFACTURE OF SEPARATOR FOR POWER STORAGE DEVICE
KR20220029698A (ko) 2020-04-13 2022-03-08 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터의 제조 방법
CN114207926A (zh) * 2020-04-13 2022-03-18 旭化成株式会社 蓄电装置用分隔件的制造方法
WO2021210590A1 (ja) 2020-04-13 2021-10-21 旭化成株式会社 蓄電デバイス用セパレータの製造方法
KR20240117644A (ko) 2020-04-13 2024-08-01 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터의 제조 방법
EP4243182A3 (en) * 2020-04-13 2023-11-15 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
EP4243181A3 (en) * 2020-04-13 2023-11-15 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
EP4243181A2 (en) 2020-04-13 2023-09-13 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
EP4243182A2 (en) 2020-04-13 2023-09-13 Asahi Kasei Kabushiki Kaisha Method for producing separator for power storage device
KR20210147948A (ko) * 2020-05-28 2021-12-07 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터 및 그의 제조 방법
KR102655663B1 (ko) * 2020-05-28 2024-04-09 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터 및 그의 제조 방법
KR20230110457A (ko) * 2020-05-28 2023-07-24 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터 및 그의 제조 방법
KR102601003B1 (ko) * 2020-05-28 2023-11-13 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터 및 그의 제조 방법
WO2022092302A1 (ja) * 2020-10-30 2022-05-05 旭化成株式会社 シロキサン分散架橋型セパレータ
KR20230079399A (ko) 2020-10-30 2023-06-07 아사히 가세이 가부시키가이샤 실록산 분산 가교형 세퍼레이터
WO2022255444A1 (ja) * 2021-06-04 2022-12-08 株式会社Gsユアサ 鉛蓄電池用セパレータおよびそれを含む鉛蓄電池
WO2023054514A1 (ja) * 2021-09-29 2023-04-06 旭化成株式会社 超高分子量ポリエチレンパウダー及びこれを成形してなる成形体

Also Published As

Publication number Publication date
US20230344078A1 (en) 2023-10-26
KR20220084445A (ko) 2022-06-21
KR20200108476A (ko) 2020-09-18
US20210074983A1 (en) 2021-03-11
CN116722306A (zh) 2023-09-08
EP3859822A1 (en) 2021-08-04
JP2022058637A (ja) 2022-04-12
EP3859822A4 (en) 2022-01-05
JP7351943B2 (ja) 2023-09-27
KR102476944B1 (ko) 2022-12-14
JP2023120223A (ja) 2023-08-29
CN111727517B (zh) 2023-12-19
JP7364629B2 (ja) 2023-10-18
JP7361034B2 (ja) 2023-10-13
EP4394833A1 (en) 2024-07-03
CN116722303A (zh) 2023-09-08
CN111727517A (zh) 2020-09-29
JP2021193177A (ja) 2021-12-23
JPWO2020067161A1 (ja) 2021-02-25
KR102550429B1 (ko) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2020067161A1 (ja) 高強度セパレータ
JP5052135B2 (ja) ポリオレフィン微多孔膜及び蓄電池用セパレータ
JP5216327B2 (ja) ポリオレフィン製微多孔膜
CN110431176B (zh) 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
JP6823718B2 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス
EP3816217B1 (en) Polyolefin microporous membrane
JP6895570B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP7265349B2 (ja) 微多孔膜の製造方法
WO2018164056A1 (ja) ポリオレフィン微多孔膜
JPWO2020137336A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
CN110785461B (zh) 聚烯烃微多孔膜
JP4979252B2 (ja) ポリオレフィン製微多孔膜
JP7525288B2 (ja) 蓄電デバイス用セパレータ
JP6741884B1 (ja) ポリオレフィン微多孔膜
JP2024018418A (ja) 蓄電デバイス用セパレータ捲回体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530389

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024102

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867650

Country of ref document: EP

Effective date: 20210426