WO2020066931A1 - 推定装置、及び車両 - Google Patents

推定装置、及び車両 Download PDF

Info

Publication number
WO2020066931A1
WO2020066931A1 PCT/JP2019/037071 JP2019037071W WO2020066931A1 WO 2020066931 A1 WO2020066931 A1 WO 2020066931A1 JP 2019037071 W JP2019037071 W JP 2019037071W WO 2020066931 A1 WO2020066931 A1 WO 2020066931A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
filter
ash
estimating unit
particulate matter
Prior art date
Application number
PCT/JP2019/037071
Other languages
English (en)
French (fr)
Inventor
直人 村澤
彰朗 西方
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2020066931A1 publication Critical patent/WO2020066931A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles

Definitions

  • the present disclosure relates to an estimation device and a vehicle.
  • an exhaust passage of an internal combustion engine includes an exhaust gas such as a particulate filter (hereinafter, referred to as a “PM filter”) that collects particulate matter (Particulate @Matter: hereinafter, referred to as “PM”) contained in exhaust gas.
  • a purifying device is provided.
  • this type of PM filter has an upper limit on the amount of PM that can be collected, regeneration that burns and removes PM in the PM filter is performed (for example, see Patent Document 1).
  • the operating state of the internal combustion engine is changed to raise the temperature of the exhaust gas (for example, about 600 ° C.), thereby heating the PM filter and reducing the PM in the PM filter. Then, it is burned and removed using O 2 in the exhaust gas (hereinafter, referred to as “forced regeneration”).
  • forced regeneration As a method of raising the temperature of the exhaust gas, for example, the injection amount of HC as fuel injected from the injector is increased, and the HC is oxidized by an oxidation catalyst provided before the PM filter or carried by the PM filter. A method utilizing HC heat of oxidation generated by the oxidation catalyst is used.
  • the present disclosure has been made in view of the above problems, and has as its object to provide an estimating apparatus and a vehicle that can easily and accurately estimate the amount of ash deposited in a PM filter.
  • An estimating device for estimating an ash amount that accumulates on a filter disposed in an exhaust passage of an internal combustion engine A first particulate matter amount estimating unit that estimates a deposited amount of particulate matter deposited on the filter based on a detection value of a differential pressure sensor that detects a differential pressure across the filter; A second particulate matter amount estimating unit for estimating the amount of particulate matter deposited on the filter based on a change in the operating state of the internal combustion engine; Based on a difference value between the amount of particulate matter deposited by the first particulate matter amount estimating unit and the amount of particulate matter deposited by the second particulate matter amount estimating unit.
  • the estimation device it is possible to easily and accurately estimate the amount of ash deposited in the PM filter.
  • the figure which shows the structure of the vehicle which concerns on one Embodiment. 1 is a block diagram illustrating a configuration of an ECU according to an embodiment.
  • the figure which shows the transition of the PM accumulation amount estimated by each of the 1st PM amount estimation part and 2nd PM amount estimation part which concern on one Embodiment. 4 is a flowchart showing the operation of the ECU according to one embodiment.
  • FIG. 1 is a diagram showing a configuration of a vehicle 1 according to the present embodiment.
  • the vehicle 1 includes the engine 10, the intake passage 20, the exhaust passage 30, the air cleaner 21, the turbocharger 22, the intake throttle valve 23, the EGR device 31, the exhaust gas purification device 40, and the like.
  • the engine 10 includes a combustion chamber, an injector (not shown), and the like.
  • the engine 10 generates power for the vehicle 1 by repeatedly performing an air intake stroke, an air compression stroke, a combustion gas expansion stroke, and a combustion gas exhaust stroke in a combustion chamber.
  • the engine 10 changes the fuel injection mode and the like of the injector into a low fuel consumption / low exhaust gas operation mode (hereinafter, referred to as “normal operation”) in which fuel efficiency is prioritized, a forced regeneration operation mode in which the PM filter 42 is forcibly regenerated, and the like. It is configured to be switchable.
  • normal operation a low fuel consumption / low exhaust gas operation mode
  • forced regeneration operation mode in which the PM filter 42 is forcibly regenerated
  • the engine 10 is a four-cylinder engine, which branches from an intake passage 20 into four combustion chambers via an intake manifold, and joins the four combustion chambers into an exhaust passage 30 via an exhaust manifold. Configuration.
  • the intake passage 20 is an intake pipe that draws fresh air (air) from the upstream intake port 20 a and supplies the fresh air to the engine 10.
  • the intake passage 20 is provided with an air cleaner 21, a compressor of a turbocharger 22, an intake throttle valve 23, and the like in order from the intake port 20a on the upstream side to the combustion chamber.
  • the exhaust passage 30 is an exhaust pipe for discharging the exhaust gas after combustion discharged from the engine 10 to the outside of the vehicle 1.
  • an EGR device 31 a turbine of the turbocharger 22, an exhaust gas purification device 40, and the like are provided in this order from the engine 10 toward the downstream side.
  • the exhaust gas purification device 40 includes an oxidation catalyst 41, a PM filter 42, a differential pressure sensor 43, an oxygen concentration sensor 44, a temperature sensor 45, and an ECU (Electronic Control Unit) 46.
  • the oxidation catalyst 41 oxidizes and removes unburned fuel hydrocarbons and carbon monoxide contained in the exhaust gas.
  • the oxidation catalyst 41 may be any known oxidation catalyst such as platinum or cerium oxide.
  • a porous ceramic such as cordierite or silicon carbide is used, and formed by supporting a catalyst component on these. .
  • the oxidation catalyst 41 is disposed adjacent to the exhaust passage 30 on the upstream side of the PM filter 42.
  • the oxidation catalyst 41 oxidizes hydrocarbons (HC) of the unburned fuel discharged from the engine 10 and raises the temperature of the exhaust gas by the oxidation heat. Function.
  • the PM filter 42 (corresponding to the “filter” of the present invention) captures PM contained in the exhaust gas.
  • a cordierite or a porous ceramic of silicon carbide is typically used as a material.
  • the PM filter 42 has, for example, a honeycomb structure in which an inlet and an outlet are alternately plugged so that exhaust gas passes through a collection wall formed of the porous ceramic.
  • the differential pressure sensor 43 detects a differential pressure across the PM filter 42.
  • the oxygen concentration sensor 44 detects the oxygen concentration of the exhaust gas at the inlet side of the oxidation catalyst 41.
  • the temperature sensor 45 detects the temperature of the exhaust gas at the inlet side of the oxidation catalyst 41.
  • the differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45 each transmit sensor information (hereinafter, abbreviated as “sensor information”) relating to a sensor value detected by itself to the ECU 46.
  • the ECU 46 includes an electronic control unit that performs regeneration control and the like of PM filter 42.
  • the ECU 46 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like.
  • the ECU 46 communicates with various parts of the vehicle 1 to control them and receive data from them. Further, the ECU 46 acquires sensor information from various sensors (in the present embodiment, the differential pressure sensor 43, the oxygen concentration sensor 44, and the temperature sensor 45) provided in the vehicle 1, and obtains the exhaust gas purification device 40 and the vehicle 1 The state of each part is detected. Dotted arrows in FIG. 1 indicate signal paths.
  • FIG. 2 is a block diagram showing the configuration of the ECU 46 according to the present embodiment.
  • the ECU 46 includes a first PM amount estimating unit 46a, a second PM amount estimating unit 46b, a filter regeneration control unit 46c, and an ash amount estimating unit 46d. Note that arrows in FIG. 2 indicate signal paths.
  • the first PM amount estimating unit 46 a (corresponding to the “first particulate matter amount estimating unit” of the present invention) accumulates in the PM filter 42 based on the differential pressure across the PM filter 42 indicated by the differential pressure sensor 43. The pressure loss due to PM is calculated, and the amount of PM accumulated in the PM filter 42 is estimated based on the pressure loss.
  • the first PM amount estimating unit 46a determines the PM filter 42 from the differential pressure across the PM filter 42 based on the correlation between the differential pressure across the PM filter 42 and the amount of PM deposited on the PM filter 42. Is estimated. Note that the correspondence between the differential pressure across the PM filter 42 and the amount of PM deposited on the PM filter 42 is, for example, obtained in advance by experiments or the like, and is stored in a storage unit (for example, ROM) of the ECU 46 or the like.
  • the PM accumulation amount estimated by the first PM amount estimation unit 46a is the ash This includes an error component caused by the above.
  • the second PM amount estimating unit 46 b (corresponding to the “second particulate matter amount estimating unit” of the present invention) estimates the amount of PM accumulated on the PM filter 42 based on the transition of the operating state of the engine 10. I do.
  • the second PM amount estimating unit 46b normally operates (represents cases other than the time of filter regeneration; the same applies hereinafter), and the operating state of the engine 10 (for example, fuel injection amount, engine speed, engine load, and EGR) Rate, etc.), the amount of PM discharged from the engine 10 per unit time is calculated.
  • the second PM amount estimating unit 46b calculates the amount of PM accumulated on the PM filter 42 at the present time by integrating the amount of PM discharged from the engine 10 per unit time.
  • the second PM amount estimating unit 46b is burned and removed from the PM filter 42 per unit time based on the operating state of the engine 10 (for example, the temperature of the exhaust gas and the oxygen concentration of the exhaust gas) during the filter regeneration. Calculate the PM amount. Then, the second PM amount estimating unit 46b subtracts the amount of PM burned and removed per unit time from the amount of PM accumulated on the PM filter 42 at the time of starting the filter regeneration, thereby obtaining the current PM amount. The amount of PM accumulated on the filter 42 is calculated.
  • the amount of PM discharged from the engine 10 per unit time and the amount of PM burned and removed from the PM filter 42 per unit time are determined in advance by experiments, for example, and are associated with the operating state of the engine 10.
  • the information is stored in a storage unit (for example, a ROM) of the ECU 46.
  • the filter regeneration control unit 46c executes forced regeneration of the PM filter 42 when the amount of accumulated PM in the PM filter 42 exceeds a predetermined threshold.
  • the filter regeneration control unit 46c outputs a control signal to the engine 10 to operate the engine 10 in the forced regeneration operation mode, thereby forcibly regenerating the PM filter 42. Perform playback.
  • the engine 10 increases the amount of HC (hydrocarbon) in the exhaust gas by increasing the fuel injection amount injected from the injector or executing multi-injection.
  • HC hydrocarbon
  • the HC is oxidized by the oxidation catalyst 41, and the exhaust gas is heated to about 600 ° C. using the heat of HC oxidation in the oxidation catalyst 41.
  • heating the PM filter 42, PM in the PM filter 42, the combustion is removed by the O 2 in the exhaust gas.
  • the filter regeneration control unit 46c supplies the additional fuel with the exhaust pipe injector instead of or together with injecting the additional fuel using the engine 10. You may inject.
  • the filter regeneration control unit 46c determines whether the PM deposition amount in the PM filter 42 estimated by the first PM amount estimation unit 46a or not when determining whether to forcibly regenerate the PM filter 42. Any value of the PM accumulation amount in the PM filter 42 estimated by the second PM amount estimation unit 46b may be used. However, in consideration of the respective characteristics of the method of estimating the amount of accumulated PM by the first PM amount estimating unit 46a and the method of estimating the amount of accumulated PM by the second PM amount estimating unit 46b, the filter regeneration control unit 46c sets the PM filter 42 Depending on the timing of grasping the PM accumulation amount inside, either the PM accumulation amount estimated by the first PM amount estimation unit 46a or the PM accumulation amount estimated by the second PM amount estimation unit 46b is selectively determined. Either value may be used.
  • the ash amount estimating unit 46d performs a PM filter based on a difference value between the PM accumulated amount estimated by the first PM amount estimating unit 46a and the PM accumulated amount estimated by the second PM amount estimating unit 46b. The amount of ash that accumulates at 42 is estimated. Then, the ash amount estimating unit 46d notifies the vehicle ECU (not shown) or the like when the ash amount accumulated on the PM filter 42 becomes excessive.
  • the ash amount estimating unit 46d typically uses the PM accumulation amount estimated by the first PM amount estimating unit 46a and the second PM amount estimating unit 46b when the regeneration of the PM filter 42 is completed. Thus, the amount of ash deposited on the PM filter 42 is estimated.
  • FIG. 3 is a diagram showing a change in the PM accumulation amount estimated by each of the first PM amount estimation unit 46a and the second PM amount estimation unit 46b. Note that T1 in FIG. 3 represents a time point when the regeneration of the PM filter 42 is completed.
  • the PM accumulation amount (dotted line L1) estimated by the first PM amount estimation unit 46a is a value that takes into account the ash accumulated on the PM filter 42.
  • the value is larger than the PM accumulation amount (solid line L2) estimated at 46b. Therefore, based on a value obtained by subtracting the PM accumulation amount estimated by the second PM amount estimation unit 46b from the PM accumulation amount estimated by the first PM amount estimation unit 46a, the ash amount accumulated on the PM filter 42 is determined. Can be estimated.
  • the ash amount estimating unit 46d includes, for example, a PM accumulation amount estimated by the first PM amount estimating unit 46a and a second PM amount estimating unit stored in a storage unit (for example, a ROM) of the ECU 46 in advance.
  • the ash amount is estimated based on data stored in association with the difference value between the PM accumulation amount estimated by 46b and the ash amount deposited on the PM filter 42.
  • the storage unit of the ECU 46 may store only a reference value for determining that the ash amount is excessive.
  • the estimation accuracy of the first PM amount estimating unit 46a and the estimation accuracy of the second PM amount estimating unit 46b depend on the operating state of the engine 10 or the PM accumulated on the PM filter 42, respectively. It differs depending on the amount of sedimentation. At this point, when the regeneration of the PM filter 42 is completed, the amount of accumulated PM in the PM filter 42 is normally zero. Therefore, either the first PM amount estimating unit 46a or the second PM amount estimating unit 46b is used. Is also in the highest estimation accuracy.
  • the ash amount estimating unit 46d based on the PM accumulation amounts estimated by the first PM amount estimating unit 46a and the second PM amount estimating unit 46b at the time when the regeneration of the PM filter 42 is completed, , The amount of ash deposited on the PM filter 42 is estimated.
  • the above-described functions of the ECU 46 are realized by, for example, the CPU referring to control programs and various data stored in a ROM, a RAM, or the like. However, it is needless to say that the function is not limited to the processing by software but can also be realized by a dedicated hardware circuit.
  • FIG. 4 is a flowchart showing the operation of the ECU 46 according to the present embodiment.
  • the flowchart shown in FIG. 4 is executed by the ECU 46 at predetermined intervals (for example, every 100 ms) according to a computer program.
  • step S1 the ECU 46 determines whether or not the forced regeneration of the PM filter 42 has just been completed.
  • S1: YES when it is immediately after the forced regeneration of the PM filter 42 is completed, the ECU 46 advances the process to step S2.
  • S1: NO when it is not immediately after the forced regeneration of the PM filter 42 is completed, the ECU 46 ends the processing of the series of flows in FIG.
  • step S2 the ECU 46 estimates the amount of PM accumulated in the PM filter 42 by the first PM amount estimating unit 46a.
  • step S3 the ECU 46 estimates the amount of accumulated PM in the PM filter 42 by the second PM amount estimating unit 46b.
  • step S4 the ECU 46 calculates a difference value between the PM accumulation amount estimated by the first PM amount estimation unit 46a and the PM accumulation amount estimated by the second PM amount estimation unit 46b, and calculates the difference value. Is greater than or equal to a threshold. If the difference value is equal to or larger than the threshold value (S4: YES), the ECU 46 proceeds to step S5. On the other hand, when the difference value is smaller than the threshold value (S4: NO), the ECU 46 ends the series of processing in FIG.
  • step S5 the ECU 46 notifies, for example, the vehicle ECU that the amount of ash deposited on the PM filter 42 is excessive.
  • the vehicle ECU displays the notification on an instrument panel or the like of the vehicle 1 and notifies the passenger.
  • the ECU 46 suppresses ash from being excessively accumulated in the PM filter 42 by the above-described processing.
  • the PM accumulation amount estimated by the first PM amount estimating unit 46a and the second PM amount estimating unit The case where the difference value between the PM accumulation amount estimated by 46b and the threshold value is equal to or larger than the threshold value is shown.
  • the ECU 46 (ash amount estimating unit 46d) calculates the PM accumulation amount estimated by the first PM amount estimating unit 46a and the PM accumulation amount estimated by the second PM amount estimating unit.
  • the configuration may be such that the PM filter 42 is once manually regenerated.
  • the ECU 46 calculates the PM accumulation amount estimated by the first PM amount estimating unit 46a and the PM accumulation amount estimated by the second PM amount estimating unit 46b.
  • the difference value is equal to or larger than the threshold value (Step S4 in FIG. 4: YES)
  • the manual regeneration lamp arranged on the instrument panel of the vehicle 1 is turned on.
  • the PM accumulation amount estimated by the first PM amount estimation unit 46a and the PM accumulation amount estimated by the second PM amount estimation unit 46b again.
  • a difference value between the calculated amount and the calculated amount may be calculated, and if the difference value at that time is equal to or larger than the threshold, the passenger may be notified that the ash amount is excessive. This can suppress erroneous notification due to unburned PM remaining in the PM filter 42.
  • the ECU 46 calculates the PM accumulation amount estimated from the detection value of the differential pressure sensor 43 and the PM accumulation amount estimated from the transition of the operating state of the engine 10. Based on the difference value, the amount of ash deposited on the PM filter 42 is estimated.
  • the amount of ash deposited on the PM filter 42 can be estimated by a simple method. Further, this makes it possible to accurately detect a state where the amount of ash deposited on the PM filter 42 is excessive. Thus, it is possible to accurately notify the occupant of the vehicle of the time of replacement of the PM filter 42 or the time of ash cleaning.
  • the logic for estimating the ash amount is created. This is preferable in that it contributes to a reduction in the number of development man-hours for performing the calculation and a reduction in the calculation load on the ECU 46.
  • the ECU 46 when estimating the ash amount, uses the PM accumulation amount estimated immediately after the regeneration of the PM filter 42 is completed, so that the ash amount can be more accurately estimated. Become.
  • the functions of the first PM amount estimating unit 46a, the second PM amount estimating unit 46b, the filter regeneration control unit 46c, and the ash amount estimating unit 46d are realized by one computer.
  • the present invention may be realized by a plurality of computers.
  • the function of the ash amount estimation unit 46d and the function of the filter regeneration control unit 46c may be mounted on separate ECUs.
  • the exhaust gas purification device 40 for an internal combustion engine is described as an example of the exhaust gas purification device 40 for an internal combustion engine.
  • the exhaust gas purification device 40 according to the present invention is not limited to a vehicle, but can be applied to a device including an internal combustion engine, such as a ship or an aircraft.
  • the estimating device for an exhaust purification device it is possible to easily and accurately estimate the amount of ash deposited in the PM filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

内燃機関(10)の排気通路(30)内に配設されたPMフィルタ(42)に堆積するアッシュ量を推定する推定装置(46)であって、PMフィルタ(42)の前後差圧を検出する差圧センサ(43)の検出値に基づいて、PMフィルタ(42)に堆積するPM堆積量を推定する第1のPM量推定部(46a)と、内燃機関(10)の運転状態の推移に基づいて、PMフィルタ(42)に堆積するPM堆積量を推定する第2のPM量推定部(46b)と、第1のPM量推定部(46a)により推定されるPM堆積量と、第2のPM量推定部(46b)により推定されるPM堆積量と、の差分値に基づいて、PMフィルタ(42)に堆積するアッシュ量を推定するアッシュ量推定部(46d)と、を備える。

Description

推定装置、及び車両
 本開示は、推定装置、及び車両に関する。
 一般に、内燃機関の排気通路には、排気ガスに含まれる微粒子状物質(Particulate Matter:以下、「PM」と称する)を捕集するパーティキュレートフィルタ(以下、「PMフィルタ」と称する)等の排気浄化装置が設けられている。
 この種のPMフィルタは、捕集できるPM量に上限があるため、PMフィルタ中のPMを燃焼除去する再生が行われている(例えば、特許文献1を参照)。
 PMフィルタを再生する際には、一般に、内燃機関の運転状態を変更して、排気ガスを高温化し(例えば、約600℃)、これにより、PMフィルタを加熱し、当該PMフィルタ中のPMを、排気ガス中のOを用いて燃焼除去する(以下、「強制再生」と称する)。排気ガスを高温化する手法としては、例えば、インジェクタから噴射する燃料たるHCの噴射量を増加させ、PMフィルタの前段に配設され又はPMフィルタに担持された酸化触媒にて当該HCを酸化し、酸化触媒で発生するHC酸化熱を利用する方法等が用いられる。
日本国特開2015-172341号公報
 ところで、この種のPMフィルタには、車両の走行距離や走行時間が長くなるにつれて、煤成分のPMの堆積だけでなく、排気ガスに含まれるエンジンオイルの成分(例えば、CaSO)に起因するアッシュ(灰状物質)が堆積することが知られている。
 かかるアッシュは、PMを強制再生する際にも除去されず、PMフィルタ中に堆積し続ける。PMフィルタ中に堆積するアッシュは、PMと同様に、圧力損失を生じさせるため、堆積量が増加するにつれてPMフィルタにおける圧力損失の増大を引き起こし、燃費の悪化を引き起こすという問題がある。
 そのため、通常、アッシュが堆積した場合には、車両の搭乗者にPMフィルタの交換時期又はアッシュ洗浄時期を、報知することが行われている。かかる観点から、PMフィルタに堆積するアッシュ量を推定する要請がある。
 本開示は、上記の問題点に鑑みてなされたもので、PMフィルタ中に堆積するアッシュ量を簡易に、且つ、正確に推定することを可能とする推定装置、及び車両を提供することを目的とする。
 前述した課題を解決する主たる本開示は、
 内燃機関の排気通路内に配設されたフィルタに堆積するアッシュ量を推定する推定装置であって、
 前記フィルタの前後差圧を検出する差圧センサの検出値に基づいて、前記フィルタに堆積する粒子状物質の堆積量を推定する第1の粒子状物質量推定部と、
 前記内燃機関の運転状態の推移に基づいて、前記フィルタに堆積する粒子状物質の堆積量を推定する第2の粒子状物質量推定部と、
 前記第1の粒子状物質量推定部により推定される粒子状物質の堆積量と、前記第2の粒子状物質量推定部により推定される粒子状物質の堆積量と、の差分値に基づいて、前記フィルタに堆積するアッシュ量を推定するアッシュ量推定部と、
 を備える推定装置である。
 又、他の局面では、
 上記の推定装置を備える車両である。
 本開示に係る推定装置によれば、PMフィルタ中に堆積するアッシュ量を簡易に、且つ、正確に推定することが可能である。
一実施形態に係る車両の構成を示す図 一実施形態に係るECUの構成を示すブロック図 一実施形態に係る第1のPM量推定部及び第2のPM量推定部それぞれにより推定されるPM堆積量の推移を示す図 一実施形態に係るECUの動作を示すフローチャート
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。
[車両の構成]
 以下、図1を参照して、一実施形態に係る推定装置の構成について説明する。本実施形態では、本発明の推定装置を、ディーゼルエンジン車両に適用した態様ついて説明する。
 図1は、本実施形態に係る車両1の構成を示す図である。
 本実施形態に係る車両1は、エンジン10、吸気通路20、排気通路30、エアクリーナ21、ターボチャージャ22、吸気スロットルバルブ23、EGR装置31、及び、排気浄化装置40等を含んで構成される。
 エンジン10は、燃焼室及びインジェクタ(図示せず)等を含んで構成される。エンジン10は、燃焼室内で、空気の吸気行程、空気の圧縮行程、燃焼ガスの膨張行程、及び燃焼ガスの排気行程が繰り返し行われることよって、車両1の動力を生成する。
 エンジン10は、インジェクタにおける燃料噴射態様等を、燃費を優先した低燃費・低排ガス運転モード(以下、「通常運転時」と称する)、又は、PMフィルタ42を強制再生する強制再生運転モード等に切り替え可能に構成されている。
 尚、本実施形態に係るエンジン10は、4気筒エンジンであり、吸気通路20から吸気マニホルドを介して四つの燃焼室に分岐し、当該四つの燃焼室から排気マニホルドを介して排気通路30に合流する構成となっている。
 吸気通路20は、上流側の吸気口20aから新気(空気)を吸入し、エンジン10に当該新気を供給する吸気管である。吸気通路20には、上流側の吸気口20aから燃焼室にかけて、順に、エアクリ-ナ21、ターボチャージャ22のコンプレッサ、及び吸気スロットルバルブ23等が設けられている。
 排気通路30は、エンジン10から排出される燃焼後の排気ガスを、車両1の外部に排出する排気管である。排気通路30には、エンジン10から下流側に向かって、順に、EGR装置31、ターボチャージャ22のタービン、及び排気浄化装置40等が設けられている。
 排気浄化装置40は、酸化触媒41、PMフィルタ42、差圧センサ43、酸素濃度センサ44、温度センサ45、及び、ECU(Electronic Control Unit)46を含んで構成される。
 酸化触媒41は、排気ガス中に含まれる未燃焼燃料の炭化水素や一酸化窒炭素を酸化して除去する。酸化触媒41は、白金や酸化セリウム等の公知の任意の酸化触媒であってよく、例えば、コージェライトや炭化ケイ素等の多孔質セラミックが用いられ、これらに触媒成分を担持して形成されている。
 酸化触媒41は、排気通路30のPMフィルタ42の上流側に隣接して配設されている。そして、酸化触媒41は、PMフィルタ42の強制再生時には、エンジン10側から排出される未燃焼燃料の炭化水素(HC)を酸化して、当該酸化熱により、排気ガスを高温化するようにも機能する。
 PMフィルタ42(本発明の「フィルタ」に相当)は、排気ガス中に含まれるPMを捕捉する。PMフィルタ42としては、典型的には、コージェライトや炭化ケイ素の多孔質セラミックが素材として用いられる。PMフィルタ42は、例えば、当該多孔質セラミックで形成した捕集壁中を排気ガスが通過するように入口と出口を交互に目封じしたハニカム構造を呈している。
 差圧センサ43は、PMフィルタ42の前後差圧を検出する。酸素濃度センサ44は、酸化触媒41の入口側にて、排気ガスの酸素濃度を検出する。温度センサ45は、酸化触媒41の入口側にて、排気ガスの温度を検出する。これらのセンサは、公知の任意のセンサで実現され得る。
 差圧センサ43、酸素濃度センサ44、及び、温度センサ45は、それぞれ、自身が検出したセンサ値に係るセンサ情報(以下、「センサ情報」と略称する)をECU46に送信する。
 ECU46は、PMフィルタ42の再生制御等を行う電子制御ユニットを含む。ECU46は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、及び出力ポート等を含んで構成されている。尚、ECU46は、車両1の各部と通信することで、これらを制御したり、これらからデータを受信したりする。又、ECU46は、車両1に設けられた各種センサ(本実施形態では、差圧センサ43、酸素濃度センサ44、及び、温度センサ45)からセンサ情報を取得して、排気浄化装置40や車両1の各部の状態を検出している。図1中の点線矢印は、信号経路を示す。
[ECUの構成]
 ここで、図2、図3を参照して、本実施形態に係る排気浄化装置40のECU46(本発明の「推定装置」に相当する)の構成の一例について、説明する。
 図2は、本実施形態に係るECU46の構成を示すブロック図である。
 ECU46は、第1のPM量推定部46a、第2のPM量推定部46b、フィルタ再生制御部46c、及び、アッシュ量推定部46dを備えている。尚、図2中の矢印は、信号経路を示す。
 第1のPM量推定部46a(本発明の「第1の粒子状物質量推定部」に相当)は、差圧センサ43が示すPMフィルタ42の前後差圧から、PMフィルタ42中に堆積するPMに起因する圧力損失を算出し、これによって、PMフィルタ42中に堆積するPM堆積量を推定する。
 PMフィルタ42に堆積したPMは、排気ガスの流れを妨げるため、PMフィルタ42にPMが堆積につれて、PMフィルタ42の前後差圧も大きくなる。一方、PMフィルタ42のフィルタ再生を実行した際には、PMフィルタ42に堆積したPMが、燃焼除去されるため、PMフィルタ42の前後差圧は小さくなる。
 第1のPM量推定部46aは、このようにPMフィルタ42の前後差圧とPMフィルタ42に堆積したPM堆積量との間の相関に基づいて、PMフィルタ42の前後差圧からPMフィルタ42のPM堆積量を推定する。尚、PMフィルタ42の前後差圧とPMフィルタ42に堆積するPM堆積量との対応関係は、例えば、予め実験等によって求められ、ECU46等の記憶部(例えば、ROM)に記憶されている。
 但し、差圧センサ43が示すPMフィルタ42の前後差圧は、PMフィルタ42に堆積したアッシュに起因した圧力損失も含むため、第1のPM量推定部46aが推定するPM堆積量は、アッシュに起因した誤差成分を含むものとなっている。
 第2のPM量推定部46b(本発明の「第2の粒子状物質量推定部」に相当)は、エンジン10の運転状態の推移に基づいて、PMフィルタ42に堆積するPM堆積量を推定する。
 第2のPM量推定部46bは、通常時(フィルタ再生時以外の場合を表す。以下同じ)には、エンジン10の運転状態(例えば、燃料噴射量、エンジン回転数、エンジン負荷、及び、EGR率等)に基づいて、単位時間当たりにエンジン10から排出されるPM量を算出する。そして、第2のPM量推定部46bは、単位時間当たりにエンジン10から排出されるPM量を積算することにより、現時点におけるPMフィルタ42に堆積するPM堆積量を算出する。
 又、第2のPM量推定部46bは、フィルタ再生時には、エンジン10の運転状態に基づいて(例えば、排気ガスの温度、排気ガスの酸素濃度)、単位時間当たりにPMフィルタ42から燃焼除去されるPM量を算出する。そして、第2のPM量推定部46bは、フィルタ再生開始時にPMフィルタ42に堆積していたPM堆積量から、単位時間当たりに燃焼除去されるPM量を減算していくことにより、現時点におけるPMフィルタ42に堆積するPM堆積量を算出する。
 ここで、単位時間当たりにエンジン10から排出されるPM量、及び、単位時間当たりにPMフィルタ42から燃焼除去されるPM量は、例えば、予め実験等により求められ、エンジン10の運転状態と関連付けて、ECU46の記憶部(例えば、ROM)等に記憶されている。
 フィルタ再生制御部46cは、PMフィルタ42中のPM堆積量が所定の閾値を超えた場合に、PMフィルタ42の強制再生を実行する。フィルタ再生制御部46cは、PMフィルタ42を強制再生する際には、例えば、エンジン10に対して制御信号を出力して、エンジン10を強制再生運転モードで運転させることによって、PMフィルタ42の強制再生を行う。
 強制再生運転モードにおいては、例えば、エンジン10は、インジェクタから噴射する燃料噴射量を増加したり、マルチ噴射を実行したりして、排気ガス中のHC(炭化水素)量を増加させる。これによって、酸化触媒41で当該HCを酸化させ、酸化触媒41でのHC酸化熱を利用して、排気ガスを600℃程度まで昇温させる。これにより、PMフィルタ42を加熱し、当該PMフィルタ42中のPMを、排気ガス中のOを用いて燃焼除去する。
 但し、強制再生の手法としては、従来公知の種々の手法を適用することが可能である。例えば、車両1が排気管インジェクタを搭載している場合には、フィルタ再生制御部46cは、エンジン10にて追加燃料を噴射させる代わりに、又は、これと共に、当該排気管インジェクタにて追加燃料を噴射させてもよい。
 尚、ここでは、フィルタ再生制御部46cは、PMフィルタ42を強制再生するか否かを判断する際には、第1のPM量推定部46aにより推定されたPMフィルタ42中のPM堆積量又は第2のPM量推定部46bにより推定されたPMフィルタ42中のPM堆積量のいずれの値を用いてもよい。但し、第1のPM量推定部46aによるPM堆積量の推定方法及び第2のPM量推定部46bによるPM堆積量の推定方法それぞれの特性に鑑みて、フィルタ再生制御部46cは、PMフィルタ42中のPM堆積量を把握するタイミングに応じて、選択的に、第1のPM量推定部46aに推定されたPM堆積量又は第2のPM量推定部46bに推定されたPM堆積量のいずれか一方の値を用いてもよい。
 アッシュ量推定部46dは、第1のPM量推定部46aにより推定されるPM堆積量と、 第2のPM量推定部46bにより推定されるPM堆積量と、の差分値に基づいて、PMフィルタ42に堆積するアッシュ量を推定する。そして、アッシュ量推定部46dは、PMフィルタ42に堆積するアッシュ量が過剰となった場合には、車両ECU(図示せず)等に報知する。
 アッシュ量推定部46dは、典型的には、PMフィルタ42の再生が完了した時点において、第1のPM量推定部46a及び第2のPM量推定部46bそれぞれにより推定されるPM堆積量に基づいて、PMフィルタ42に堆積するアッシュ量を推定する。
 図3は、第1のPM量推定部46a及び第2のPM量推定部46bそれぞれにより推定されるPM堆積量の推移を示す図である。尚、図3のT1は、PMフィルタ42の再生が完了した時点を表している。
 図3に示すように、第1のPM量推定部46aに推定されるPM堆積量(点線L1)は、PMフィルタ42に堆積するアッシュを加味した値となるため、第2のPM量推定部46bに推定されるPM堆積量(実線L2)よりも大きい値となる。従って、第1のPM量推定部46aにより推定されるPM堆積量から第2のPM量推定部46bにより推定されるPM堆積量を減算した値に基づいて、PMフィルタ42に堆積するアッシュ量を推定することができる。
 この際、アッシュ量推定部46dは、例えば、ECU46の記憶部(例えば、ROM)等に予め記憶された第1のPM量推定部46aにより推定されるPM堆積量と第2のPM量推定部46bにより推定されるPM堆積量との差分値とPMフィルタ42に堆積するアッシュ量とが関連付けて記憶されたデータに基づいて、アッシュ量を推定する。尚、ECU46の記憶部には、アッシュ量が過多であると判定するための基準値のみが記憶されていてもよい。
 但し、図3に示すように、第1のPM量推定部46aの推定精度、及び第2のPM量推定部46bの推定精度は、それぞれ、エンジン10の運転状態又はPMフィルタ42に堆積するPM堆積量等に依拠して異なっている。この点、PMフィルタ42の再生が完了した時点においては、PMフィルタ42中のPM堆積量は、通常、ゼロとなるため、第1のPM量推定部46a及び第2のPM量推定部46bいずれの推定精度も最も高い状態となる。かかる観点から、アッシュ量推定部46dは、PMフィルタ42の再生が完了した時点において、第1のPM量推定部46a及び第2のPM量推定部46bそれぞれにより推定されたPM堆積量に基づいて、PMフィルタ42に堆積するアッシュ量を推定する。
 尚、ECU46の上記した各機能は、例えば、CPUがROM、RAM等に記憶された制御プログラムや各種データを参照することによって実現される。但し、当該機能は、ソフトウェアによる処理に限られず、専用のハードウェア回路によっても実現できることは勿論である。
[ECUの動作]
 次に、図4を参照して、本実施形態に係るECU46の動作の一例について説明する。尚、ここでは、PMフィルタ42を強制再生するためのECU46の動作についてのみ説明する。
 図4は、本実施形態に係るECU46の動作を示すフローチャートである。図4に示すフローチャートは、例えば、ECU46がコンピュータプログラムに従って、所定間隔(例えば、100ms毎)で実行するものである。
 ステップS1において、ECU46は、PMフィルタ42の強制再生が完了した直後か否かを判定する。ここで、PMフィルタ42の強制再生が完了した直後である場合(S1:YES)、ECU46は、ステップS2に処理を進める。一方、PMフィルタ42の強制再生が完了した直後でない場合(S1:NO)、ECU46は、図4の一連のフローの処理を終了する。
 ステップS2において、ECU46は、第1のPM量推定部46aによって、PMフィルタ42中のPM堆積量を推定する。
 ステップS3において、ECU46は、第2のPM量推定部46bによって、PMフィルタ42中のPM堆積量を推定する。
 ステップS4において、ECU46は、第1のPM量推定部46aによって推定されたPM堆積量と、第2のPM量推定部46bによって推定されたPM堆積量との差分値を算出し、当該差分値が閾値以上であるか否かを判定する。そして、当該差分値が閾値以上である場合(S4:YES)、ECU46は、ステップS5に処理を進める。一方、当該差分値が閾値未満である場合(S4:NO)、ECU46は、図4の一連のフローの処理を終了する。
 ステップS5において、ECU46は、例えば、車両ECUに、PMフィルタ42に堆積するアッシュ量が過多である旨を報知する。尚、車両ECUは、ECU46から当該報知を受けた場合、車両1のインストルメントパネル等にその旨を表示し、搭乗者に対して報知する。
 本実施形態に係るECU46は、以上のような処理によって、PMフィルタ42中に過剰にアッシュが堆積することを抑制する。
 尚、上記では、ECU46(アッシュ量推定部46d)の報知タイミングの一例として、強制再生完了後において、第1のPM量推定部46aにより推定されたPM堆積量と、第2のPM量推定部46bにより推定されたPM堆積量と、の差分値が閾値以上である際を示した。但し、より正確を期するため、ECU46(アッシュ量推定部46d)は、第1のPM量推定部46aにより推定されたPM堆積量と、第2のPM量推定部により推定されたPM堆積量46bと、の差分値が閾値以上であると判定した場合、一旦、PMフィルタ42の手動再生を実行させる構成としてもよい。
 具体的には、ECU46(アッシュ量推定部46d)は、第1のPM量推定部46aにより推定されたPM堆積量と、第2のPM量推定部46bにより推定されたPM堆積量と、の差分値が閾値以上である場合(図4のステップS4:YES)、車両1のインストルメントパネルに配設された手動再生ランプを点灯させる。そして、運転者が、PMフィルタ42の手動再生を実行した後に、再度、第1のPM量推定部46aにより推定されたPM堆積量と、第2のPM量推定部46bにより推定されたPM堆積量と、の差分値を算出し、その際の差分値が閾値以上である場合には、搭乗者に対してアッシュ量が過多である旨を報知する態様とすればよい。これによって、PMフィルタ42に残存する燃え残りのPMに起因して、誤報知してしまうことを抑制することができる。
[効果]
 以上のように、本実施形態に係るECU46(推定装置)は、差圧センサ43の検出値から推定されるPM堆積量と、エンジン10の運転状態の推移から推定されるPM堆積量と、の差分値に基づいて、PMフィルタ42に堆積するアッシュ量を推定する。
 従って、本実施形態に係るECU46によれば、簡易な手法で、PMフィルタ42に堆積するアッシュ量を推定することができる。又、これによって、PMフィルタ42に堆積するアッシュ量が過多となった状態を正確に検出することが可能である。これによって、車両の搭乗者にPMフィルタ42の交換時期又はアッシュ洗浄時期を、正確に報知することが可能である。
 尚、本実施形態に係るECU46によれば、特に、PMフィルタ42に堆積するPM堆積量を推定するロジックのみを用いて、アッシュ量を推定することができるため、アッシュ量を推定するロジックを作成するための開発工数の削減、及びECU46における演算負荷の軽減に資する点で、好適である。
 又、本実施形態に係るECU46は、アッシュ量を推定する際、PMフィルタ42の再生が完了した直後に推定されたPM堆積量を用いるため、より高精度にアッシュ量を推定することが可能となる。
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
 上記実施形態では、ECU46の構成の一例として、第1のPM量推定部46a、第2のPM量推定部46b、フィルタ再生制御部46c、及びアッシュ量推定部46dの機能が一のコンピュータによって実現されるものとして記載したが、複数のコンピュータによって実現されてもよいのは勿論である。例えば、アッシュ量推定部46dの機能とフィルタ再生制御部46cの機能は、それぞれ別個のECUに搭載されてもよい。
 又、上記実施形態では、排気浄化装置40を適用する車両1の一例として、ディーゼルエンジン車両に適用した態様ついて説明する。但し、本発明に係る排気浄化装置40は、ガソリンンジン車両にも適用し得る。
 又、上記実施形態では、内燃機関の排気浄化装置40の一例として、車両に適用する態様を示した。しかしながら、本発明に係る排気浄化装置40は、車両に限らず、船舶や航空機等、その他の内燃機関を備える装置にも適用し得るのは勿論である。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本出願は、2018年9月28日付で出願された日本国特許出願(特願2018-183405)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示に係る排気浄化装置の推定装置によれば、PMフィルタ中に堆積するアッシュ量を簡易に、且つ、正確に推定することが可能である。
 1 車両
 10 エンジン
 20 吸気通路
 21 エアクリーナ
 22 ターボチャージャ
 23 吸気スロットルバルブ
 30 排気通路
 31 EGR装置
 40 排気浄化装置
 41 酸化触媒
 42 PMフィルタ
 43 差圧センサ
 44 酸素濃度センサ
 45 温度センサ
 46 ECU(推定装置)
 46a 第1のPM量推定部(第1の粒子状物質量推定部)
 46b 第2のPM量推定部(第2の粒子状物質量推定部)
 46c フィルタ再生制御部
 46d アッシュ量推定部

Claims (4)

  1.  内燃機関の排気通路内に配設されたフィルタに堆積するアッシュ量を推定する推定装置であって、
     前記フィルタの前後差圧を検出する差圧センサの検出値に基づいて、前記フィルタに堆積する粒子状物質の堆積量を推定する第1の粒子状物質量推定部と、
     前記内燃機関の運転状態の推移に基づいて、前記フィルタに堆積する粒子状物質の堆積量を推定する第2の粒子状物質量推定部と、
     前記第1の粒子状物質量推定部により推定される粒子状物質の堆積量と、前記第2の粒子状物質量推定部により推定される粒子状物質の堆積量と、の差分値に基づいて、前記フィルタに堆積するアッシュ量を推定するアッシュ量推定部と、
     を備える推定装置。
  2.  前記アッシュ量推定部は、前記フィルタの再生が完了した時点において、前記第1の粒子状物質量推定部及び前記第2の粒子状物質量推定部それぞれにより推定される粒子状物質の堆積量に基づいて、前記フィルタに堆積するアッシュ量を推定する
     請求項1に記載の推定装置。
  3.  前記アッシュ量推定部は、前記フィルタに堆積するアッシュ量が所定の閾値を超えている場合、その旨を報知する
     請求項1に記載の推定装置。
  4.  請求項1に記載の推定装置を備える車両。
PCT/JP2019/037071 2018-09-28 2019-09-20 推定装置、及び車両 WO2020066931A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183405A JP2020051375A (ja) 2018-09-28 2018-09-28 推定装置、及び車両
JP2018-183405 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066931A1 true WO2020066931A1 (ja) 2020-04-02

Family

ID=69952123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037071 WO2020066931A1 (ja) 2018-09-28 2019-09-20 推定装置、及び車両

Country Status (2)

Country Link
JP (1) JP2020051375A (ja)
WO (1) WO2020066931A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999764A (zh) * 2021-03-03 2021-06-22 华能(天津)煤气化发电有限公司 一种用于判断除灰系统过滤器滤棒状态的方法
WO2022191307A1 (ja) * 2021-03-11 2022-09-15 いすゞ自動車株式会社 監視装置および車両
CN115485464A (zh) * 2020-05-27 2022-12-16 日立安斯泰莫株式会社 内燃机控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105056A (ja) * 2004-10-07 2006-04-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008057443A (ja) * 2006-08-31 2008-03-13 Denso Corp 排気浄化装置
JP2008121557A (ja) * 2006-11-13 2008-05-29 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008215105A (ja) * 2007-02-28 2008-09-18 Yanmar Co Ltd ディーゼルエンジン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105056A (ja) * 2004-10-07 2006-04-20 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008057443A (ja) * 2006-08-31 2008-03-13 Denso Corp 排気浄化装置
JP2008121557A (ja) * 2006-11-13 2008-05-29 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2008215105A (ja) * 2007-02-28 2008-09-18 Yanmar Co Ltd ディーゼルエンジン

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485464A (zh) * 2020-05-27 2022-12-16 日立安斯泰莫株式会社 内燃机控制装置
CN112999764A (zh) * 2021-03-03 2021-06-22 华能(天津)煤气化发电有限公司 一种用于判断除灰系统过滤器滤棒状态的方法
WO2022191307A1 (ja) * 2021-03-11 2022-09-15 いすゞ自動車株式会社 監視装置および車両
JP2022138960A (ja) * 2021-03-11 2022-09-26 いすゞ自動車株式会社 監視装置および車両
JP7439782B2 (ja) 2021-03-11 2024-02-28 いすゞ自動車株式会社 監視装置および車両

Also Published As

Publication number Publication date
JP2020051375A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
JP4709220B2 (ja) パティキュレートフィルタの再生方法
JP5720230B2 (ja) パティキュレートフィルタシステム
JP6201577B2 (ja) 診断装置
JP4924758B2 (ja) フィルタ再生システムの異常診断システム及び異常診断方法
WO2020066931A1 (ja) 推定装置、及び車両
JP4631942B2 (ja) パティキュレートフィルタ再生装置
WO2004016916A1 (ja) フィルタ制御装置
CN102844538B (zh) 废气净化装置及废气净化装置的控制方法
JP2009138704A (ja) 排気後処理装置
JP4044908B2 (ja) 内燃機関の排気浄化装置
JP2012077716A (ja) Pmセンサの異常検出装置及び方法
JP3951618B2 (ja) ディーゼルパティキュレートフィルタ装置とその再生制御方法
JP2016136011A (ja) 内燃機関の制御装置
US7784275B2 (en) Optimization of hydrocarbon injection during diesel particulate filter (DPF) regeneration
JP4537232B2 (ja) 燃料噴射量の制御方法
JP2004132358A (ja) フィルタ制御装置
JP4241465B2 (ja) パティキュレートフィルタ再生処理装置の検査システム
JP4424071B2 (ja) 内燃機関の排気浄化装置
JP4510709B2 (ja) 触媒劣化判定装置
JP7384114B2 (ja) フィルタ状態検知装置
JP7439782B2 (ja) 監視装置および車両
JP4682877B2 (ja) 排ガス浄化フィルタのパティキュレート堆積量検出装置及び検出方法
JP6365319B2 (ja) Pmセンサの異常診断装置
JP4070681B2 (ja) 排気浄化装置
JP2009209859A (ja) ディーゼルエンジンの排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866115

Country of ref document: EP

Kind code of ref document: A1