WO2020066754A1 - 化合物の製造方法 - Google Patents

化合物の製造方法 Download PDF

Info

Publication number
WO2020066754A1
WO2020066754A1 PCT/JP2019/036403 JP2019036403W WO2020066754A1 WO 2020066754 A1 WO2020066754 A1 WO 2020066754A1 JP 2019036403 W JP2019036403 W JP 2019036403W WO 2020066754 A1 WO2020066754 A1 WO 2020066754A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
compound
chlorine
formula
aqueous solution
Prior art date
Application number
PCT/JP2019/036403
Other languages
English (en)
French (fr)
Inventor
正宗 岡本
健祐 牟田
井村 英明
夏奈子 長舩
大谷 充孝
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2020548521A priority Critical patent/JPWO2020066754A1/ja
Publication of WO2020066754A1 publication Critical patent/WO2020066754A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/04Preparation of halogenated hydrocarbons by addition of halogens to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • One embodiment of the present invention relates to a method for producing a saturated chlorofluorocarbon having a specific structure or a saturated hydrochlorofluorocarbon.
  • Saturated hydrochlorofluorocarbons and saturated chlorofluorocarbons such as 1,1,2-trichloro-3,3,3-trifluoropropane (233 da) have low ozone depletion potential (OPD) and global warming potential (GWP). It is a compound useful as a raw material for hydrochlorofluoroolefins and hydrofluoroolefins.
  • a hydrochloro compound such as (E) 1-chloro-3,3,3-trifluoropropene (1233zd (E)) under light irradiation is used.
  • Examples include fluoroolefins, hydrofluoroolefins, hydrochloroolefins, chloroolefins, and methods of adding chlorine to fluoroolefins (see Patent Documents 1 and 2).
  • An object of one embodiment of the present invention is to provide a method for easily producing a saturated hydrochlorofluorocarbon having a specific structure or a saturated chlorofluorocarbon on an industrial scale at low cost. .
  • the present inventors have conducted intensive studies in order to solve the above problems.
  • the present inventors have studied a method for adding chlorine to an industrially available compound represented by the following formula (II), which is a precursor of a desired compound represented by the following formula (I).
  • an industrially available compound represented by the following formula (II) which is a precursor of a desired compound represented by the following formula (I).
  • hydrogen fluoride can be generated in this reaction system.
  • Hydrogen fluoride can corrode glass and the like, so that manufacturing equipment becomes complicated and manufacturing costs increase. Therefore, as a result of further studies by the present inventors, a compound represented by the following formula (II) is reacted with chlorine in a liquid phase in the presence of an acid acceptor or a radical initiator, It has been found that free hydrogen fluoride that can be generated in the reaction system can be reduced. As a result, they have found that the compound represented by the following formula (I) can be produced easily and at low cost.
  • One embodiment of the present invention is a method for producing a compound represented by the formula (I).
  • the method comprises reacting a compound of formula (II) with chlorine in a liquid phase in the presence of an acid acceptor or a radical initiator.
  • X, Y and Z are independently selected from a hydrogen atom, a chlorine atom and a fluorine atom.
  • the compound represented by the formula (II) may be reacted with chlorine at a temperature of 0 ° C. or more and 200 ° C. or less.
  • the acid acceptor may be hydrotalcite, silica gel, or a compound containing an alkali metal or an alkaline earth metal.
  • the acid acceptor may be an aqueous solution of an alkali metal or an alkaline earth metal.
  • the aqueous solution of an alkali metal or alkaline earth metal is selected from an aqueous solution of calcium chloride, an aqueous solution of sodium hydrogen carbonate, an aqueous solution of sodium carbonate, an aqueous solution of potassium hydrogen carbonate, an aqueous solution of calcium hydrogen carbonate, an aqueous solution of sodium hydroxide, and an aqueous solution of potassium hydroxide. You may.
  • This reaction may be performed under light irradiation.
  • At least one of X, Y and Z may be a hydrogen atom.
  • Y When X is a hydrogen atom, Y may be a chlorine atom.
  • Z When X is a hydrogen atom and Y is a chlorine atom, Z may be a hydrogen atom.
  • the above reaction may be performed in the presence of a catalyst, or may be performed in the absence of a catalyst.
  • Transition metal chlorides, oxychlorides, and oxyfluoride chlorides can be used as the catalyst.
  • One embodiment of the present invention is a method for producing a compound represented by the formula (I), in a liquid phase at a temperature of 0 ° C or more and 200 ° C or less, in the presence of an acid acceptor and under light irradiation. , Formula (II) with chlorine.
  • One embodiment of the present invention is a method for producing a compound represented by the formula (I), which comprises reacting a compound represented by the formula (II) in a liquid phase at a temperature of 0 ° C to 200 ° C in the presence of a radical initiator. )) With chlorine. This reaction may be performed under light shielding.
  • One embodiment of the present invention is a method for producing a compound represented by the formula (III).
  • the method includes dehydrohalogenating the compound represented by the formula (I) produced by the above method.
  • X ′, Y ′ and Z ′ are independently selected from hydrogen, chlorine and fluorine, and when X ′ is hydrogen or fluorine, at least one of Y ′ and Z ′ is chlorine. .
  • the present production method includes adding chlorine to a compound represented by the formula (II) (hereinafter, also referred to as “compound (II)”), and follows the following reaction formula (1).
  • compound (II) is classified as either hydrochlorofluoropropene, hydrofluoropropene, or fluoropropene.
  • Compound (II) has structural isomers and geometric isomers depending on the substituent, and any of the isomers may be used. For example, only the trans form or only the cis form may be used. Alternatively, a mixture of these isomers may be used as compound (II).
  • At least one of X, Y and Z is preferably a hydrogen atom.
  • X is a hydrogen atom
  • Y is preferably a chlorine atom
  • Z is particularly preferably a hydrogen atom.
  • a substituent of the compound (II) is selected such that X is a hydrogen atom and at least one of Y and Z is a hydrogen atom, the 1-position carbon atom and the 2-position Hydrogen atoms are bonded to both of the carbon atoms. Therefore, when compound (I) is used as a synthetic intermediate for dehydrochlorination, a hydrogen atom to be eliminated can be selected by selecting reaction conditions.
  • Y is a hydrogen atom
  • at least one of X and Z is preferably a chlorine atom.
  • the reaction is performed in the liquid phase.
  • the reaction temperature is set in a range from 0 ° C to 200 ° C.
  • a sufficiently high reaction rate can be obtained, and the reaction can be completed in a short time.
  • the reaction temperature can be further adjusted within the above temperature range.
  • the reaction temperature can be set within the range of 0 ° C to 150 ° C, 0 ° C to 100 ° C, or 0 ° C to 50 ° C.
  • the reaction is performed in the presence of an acid acceptor or a radical initiator.
  • hydrotalcite for example, Mg—Al such as Mg x Al y X (OH) z ⁇ nH 2 O (x, y, z, n are integers and X is an anion root such as CO 3 ).
  • the main component is a system mineral, and examples of the product include a halogen killer (registered trademark).
  • the compound containing an alkali metal or an alkaline earth metal include calcium chloride, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, calcium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • an aqueous solution of an alkali metal compound or an alkaline earth metal compound can be used.
  • the aqueous solution include a calcium chloride aqueous solution, a sodium hydrogen carbonate aqueous solution, a sodium carbonate aqueous solution, a potassium hydrogen carbonate aqueous solution, a calcium hydrogen carbonate aqueous solution, a sodium hydroxide aqueous solution, and a potassium hydroxide aqueous solution.
  • the concentration of the alkali metal or alkaline earth metal in the aqueous solution is not particularly limited, and may be, for example, 0.1% by weight or more and 20% by weight or less.
  • the amount of the acid acceptor can be, for example, from 0.01% by mass to 20% by mass, or from 0.1% by mass to 5% by mass, based on compound (II).
  • an azo compound for example, an organic peroxide, a boron compound, and a zinc compound
  • azo compound for example, azobisisobutyronitrile (AIBN) can be used.
  • organic peroxide for example, benzoyl peroxide (BPO) can be used.
  • boron compound for example, triethylborane can be used.
  • zinc compound for example, diethyl zinc can be used.
  • the amount of the radical initiator used can be, for example, 0.01% by mass or more and 20% by mass or less, or 0.1% by mass or more and 5% by mass or less based on the compound (II).
  • the reaction can be carried out in the presence of an acid acceptor under light irradiation.
  • a light source capable of generating a radical in a reaction system is used.
  • a light emitting diode (LED) lamp capable of irradiating ultraviolet light, a high-pressure mercury lamp, or the like can be used.
  • the reaction when a radical initiator is used, the reaction is completed in a short time without irradiating the reaction system with light.
  • the reaction is preferably performed under dark conditions, that is, under light shielding, or a reaction vessel that does not transmit light is preferably used.
  • compound (II) as a raw material and chlorine are added to a sealable reaction vessel such as a glass reactor or an autoclave provided with a condenser through which a refrigerant can flow, and the inside of the reaction vessel is kept at a pressure higher than atmospheric pressure and lower than 5 MPa. Atmospheric pressure to 2 MPa or less, or atmospheric pressure to 1 MPa or less, more preferably atmospheric pressure conditions. Reaction of chlorine, which exists as a gas at normal temperature and normal pressure, with the raw material can also proceed quickly.
  • the reaction time depends on the structure of the compound (II) and the reaction temperature, but is selected from the range of, for example, 1 second to 10 hours, 1 second to 5 hours, or 1 second to 1 hour. can do.
  • compound (II) and chlorine react at a molar ratio of 1: 1.
  • one material may be used in excess of the other material.
  • the charged molar ratio of compound (II) to chlorine can be 0.1: 1 to 5: 1, 0.4: 1 to 2.5: 1, or 0.5: 1 to 2: 1. .
  • any of a batch system, a semi-batch system, and a continuous system may be applied.
  • the use of a catalyst is optional. That is, the reaction may be performed in the presence or absence of a catalyst. As described in Examples, since the reaction proceeds almost quantitatively even in the absence of a catalyst, compound (I) can be obtained efficiently without complicating the purification step.
  • a transition metal chloride, oxychloride, or oxyfluoride chloride can be used as the catalyst.
  • Transition metals include iron, titanium, chromium, manganese, cobalt, nickel, copper, zinc and the like.
  • the chloride is a transition metal that can have a plurality of valences
  • the valence of the transition metal is not limited, and a chloride containing a transition metal having a different valence may be used.
  • ferrous chloride (FeCl 2 ) or ferric chloride (FeCl 3 ) may be used, or a mixture thereof.
  • the chloride may be a mixed chloride containing a plurality of different metals.
  • the amount of the catalyst to be charged may be selected from the range of 0.1 mol% to 30 mol%, 0.5 mol% to 15 mol%, or 1 mol% to 10 mol% based on compound (II). Since the reaction proceeds at a higher rate by adding the catalyst, the reaction time can be significantly reduced.
  • the catalyst When a catalyst is used, the catalyst may be used alone or the catalyst may be supported on a carrier. When supported on a carrier, a porous body such as silica gel, alumina, activated carbon, or zeolite can be used as a simple substance.
  • a porous body such as silica gel, alumina, activated carbon, or zeolite
  • a method for producing hydrochlorofluoroolefin or chlorofluoroolefin by dehydrohalogenation using compound (I) obtained by the above production method as a starting material will be described.
  • compound (I) is subjected to dehydrohalogenation using a base or a dehydrohalogenating agent such as activated carbon in a liquid phase or a gaseous phase according to the following reaction formula (2).
  • a base or a dehydrohalogenating agent such as activated carbon in a liquid phase or a gaseous phase according to the following reaction formula (2).
  • hydrochlorofluoroolefins and chlorofluoroolefins obtained by this reaction are collectively referred to as compound (III).
  • examples of the dehydrohalogenating agent include a base and activated carbon.
  • a base a hydroxide of an alkali metal or an alkaline earth metal, a carbonate of an alkali metal or an alkaline earth metal, a metal alkoxide of an alkali metal or an alkaline earth metal, or the like can be used.
  • the alkoxy group of the metal alkoxide include a linear or branched alkoxy group having 1 to 4 carbon atoms, such as a methoxy group, an ethoxy group, an isopropoxy group, and a t-butoxy group. Since the reaction between the compound (I) and the base proceeds mainly by the E2 elimination mechanism, the compound (I) and the base react at a molar ratio of 1: 1.
  • activated carbon When activated carbon is used, its type is not limited, and examples include plants such as pine, bamboo, and coconut shells, and activated carbon prepared from coal.
  • the shape of the activated carbon is not limited, and may be powdery, granular, fibrous, or rod-like.
  • the BET (Brunauer-Emmett-Teller) specific surface area of the activated carbon is, for example, from 10 m 2 / g to 3000 m 2 / g, from 20 m 2 / g to 2500 m 2 / g, or from 50 m 2 / g to 2000 m 2 / g. .
  • the reaction When the reaction is performed in the liquid phase, the reaction may be performed in the absence of a solvent, or may be performed using a solvent.
  • the solvent include water, alcohols such as methanol, ethanol, isopropanol and t-butanol, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, and mixed solvents of these solvents.
  • an interlayer transfer catalyst may be used.
  • interlayer transfer catalysts such as quaternary ammonium salts, quaternary phosphonium salts, onium salts such as sulfonium salts, and crown ethers such as 18-crown-6 and dibenzo-18-crown-6 can be used as the interlayer transfer catalyst. Good.
  • any of a batch system and a flow system may be applied.
  • compound (I) or a solution thereof (or a mixture with a solvent) is added to a reaction vessel made of glass, fluororesin, stainless steel, or the like, and then a base, a solution of a base (or a solvent and a solvent) are added thereto. ), Activated carbon, or a mixture of activated carbon and a solvent (ie, activated carbon dispersion).
  • a base, a solution of a base (or a mixture with a solvent), activated carbon, or an activated carbon dispersion is prepared in a reaction vessel, and the compound (I) or a solution thereof (or a mixture with a solvent) is added thereto. Is also good.
  • the reaction temperature is preferably not lower than the boiling point of the resulting compound (III) at normal pressure. Specifically, the temperature is preferably 55 ° C. or more and 75 ° C. or less. By selecting this temperature, the compound (III) generated is preferentially vaporized from the reaction system, so that the compound (III) can be easily recovered.
  • a sealable reaction vessel such as an autoclave is used, and the pressure inside the reaction vessel is arbitrarily selected from the range of 0.1 MPa to 10 MPa, 0.05 MPa to 5 MPa, or 0.05 MPa to 1 MPa.
  • Compound (I) and a base or activated carbon are added to the reaction vessel such that The reaction temperature may be appropriately selected from the above range.
  • a solvent may be added if necessary.
  • the reaction can be monitored by gas chromatography, liquid chromatography, thin-layer chromatography, or the like.
  • a base or activated carbon is filled in a column-shaped reaction vessel made of glass, fluororesin, stainless steel, or the like to form a layer of a dehydrohalogenating agent, and the compound (I) or It may be performed by continuously injecting the solution (or a mixture with the solvent).
  • the layer of the dehydrohalogenating agent has a density of 0.2 g / cm 3 or more and 1.0 g / cm 3 or less, or 0.25 g / cm 3 or more and 0.7 g / cm 3 or less. It may be formed by filling with.
  • the reaction temperature and pressure in the flow method can be arbitrarily selected from the above ranges.
  • the purification of compound (III) is performed by distillation.
  • the compound (III) may be obtained as a mixture of compounds having different compositions or a mixture of geometric isomers having the same composition.
  • a single compound can be obtained with high purity by performing precision distillation.
  • liquid separation or extraction may be performed as necessary.
  • the reaction is carried out by treating the compound (I) with a base or activated carbon under conditions where the compound (I) can exist as a gas. That is, the reaction is carried out at normal pressure or under pressure at a temperature at which the compound (I) exists as a gas at that pressure.
  • the pressure is appropriately selected from, for example, normal pressure, a range from 0.1 MPa to 1 MPa, or a range from 0.1 MPa to 0.5 MPa.
  • the temperature is appropriately selected from the range of 50 ° C to 500 ° C, 100 ° C to 350 ° C, 160 ° C to 330 ° C, or 200 ° C to 300 ° C.
  • any of a batch system and a flow system may be applied to the gas phase reaction.
  • compound (I) a base or activated carbon, and a solvent, if necessary, are added to a sealable reaction vessel such as an autoclave, and the reaction vessel is sealed, and then subjected to a temperature and pressure condition selected from the above range.
  • the reaction may be performed at At this time, an inert gas such as nitrogen or argon may be mixed into the reaction vessel.
  • an inert gas such as nitrogen or argon
  • a base or activated carbon is filled in a column-shaped reaction vessel made of glass, fluorine resin, stainless steel, etc. to form a layer of a dehydrohalogenating agent, and this layer is formed.
  • the compound (I) or a solution thereof (or a mixture with a solvent) may be continuously injected.
  • the compound (I) vaporized in advance or a mixed gas of the compound (I) and the solvent may be injected into the reaction vessel, and the compound (I) in the liquid state or the mixture of the compound (I) and the solvent is reacted.
  • the compound (I) and the solvent may be vaporized in the reaction vessel by injecting the mixture into the vessel and heating the reaction vessel.
  • an inert gas may be simultaneously injected into the reaction vessel.
  • the injection speed of the compound (I) can be adjusted so that the linear velocity v is 0.1 cm / s or more and 100 cm / s.
  • W is the molar concentration (mol%) of the compound (I) in the substance introduced into the layer of the dehydrohalogenating agent
  • V is the flow rate (cm) of the total substance introduced into the layer of the dehydrohalogenating agent.
  • 3 / s) and S is the cross-sectional area (cm 2 ) of the layer of the dehydrohalogenating agent.
  • Example 1 Perfluoroalkoxyalkane (hereinafter referred to as "PFA”) coating thermometer, PFA chlorine introduction line, PFA gas outlet line (reaction outlet), stirrer for coating polytetrafluoroethylene (hereinafter referred to as "PTFE”)
  • PFA Perfluoroalkoxyalkane
  • PTFE polytetrafluoroethylene
  • the reactor was cooled in an ice-water bath, and ultraviolet light was irradiated from the outside of the reactor with a 365 nm LED lamp (manufactured by Optocode Co.) to give 155.0 g (2.19 mol, 0.98 equivalent) of chlorine and an internal temperature of 40. It was introduced at a rate of 0.1 g / min to 0.6 g / min, taking care not to exceed °C. After introducing chlorine, unreacted chlorine was purged with nitrogen to obtain a reaction solution. This reaction solution was separated into two phases to obtain 441.3 g of a crude reaction product as an organic phase.
  • Example 2 The same operation as in Example 1 was performed, except that 90.1 g of a 0.8 M aqueous sodium hydrogen carbonate solution was used instead of the 1 M aqueous calcium chloride solution. As a result, 448.0 g of a crude reaction product was obtained. The resulting crude reaction product was analyzed by gas chromatography. As a result, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 94.6% and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 93.1%.
  • Example 3 A reaction liquid was obtained by performing the same operation as in Example 1 except that 6.0 g of Halogen Killer (registered trademark) (manufactured by Horyu Chemical Co., Ltd.) was used as a powder instead of the 1M calcium chloride aqueous solution. The obtained reaction solution was filtered with a pressure filter equipped with a 1 ⁇ m PTFE membrane filter. As a result, 445.8 g of a crude reaction product was obtained. The resulting crude reaction product was analyzed by gas chromatography.
  • Halogen Killer registered trademark
  • Example 4 The same operation as in Example 1 was performed, except that 26.3 g of silica gel (60 N, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of the 1M calcium chloride aqueous solution, and the light source was changed to a high-pressure mercury lamp (manufactured by Ushio Inc.). A reaction solution was obtained. The obtained reaction solution was filtered by the same operation as in Example 4. As a result, 425 g of a crude reaction product was obtained.
  • silica gel 60 N, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 5 The same operation as in Example 1 was performed, except that 27.1 g of anhydrous calcium chloride was used instead of the 1M calcium chloride aqueous solution. As a result, 401 g of a crude reaction product was obtained. As a result of analyzing the obtained reaction crude product by gas chromatography, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 97.5% and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 86.2%. In addition, as a result of measuring the fluoride ion in the reaction crude by ion chromatography, it was found to be 162 ppm, and no fluoride ion was detected from the water trap at the reaction outlet.
  • Example 6 Use V-70 (2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile)) 6.9 g (22.3 mmol, 0.01 equivalent) instead of 1M calcium chloride aqueous solution, and use a light source The same operation as in Example 1 was performed except that it was not performed. As a result, 455.0 g of a crude reaction product was obtained. As a result of analyzing the obtained reaction crude product by gas chromatography, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 91.1% and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 89.2%. Further, the fluoride ion in the crude reaction product was measured by ion chromatography to find that it was 2 ppm, and 1 ppm of fluoride ion was detected from the water trap at the reaction outlet.
  • Example 1 The same operation as in Example 1 was performed except that the 1M aqueous solution of calcium chloride was not used. As a result, 448.5 g of a crude reaction product was obtained. The resulting crude reaction product was analyzed by gas chromatography. As a result, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 96.7%, and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 95.5%. The fluoride ion in the crude reaction product was measured by ion chromatography to be 45 ppm, and no fluoride ion was detected from the water trap at the reaction outlet.
  • Example 2 The same operation as in Example 1 was performed except that the 1M calcium chloride aqueous solution was not used and the light source was changed to a high-pressure mercury lamp (manufactured by Ushio Inc.). As a result, 449 g of a crude reaction product was obtained. As a result of analyzing the obtained reaction crude product by gas chromatography, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 99.0%, and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 97.5%. The fluoride ion in the crude reaction product was measured by ion chromatography to be 183 ppm, and no fluoride ion was detected from the water trap at the reaction outlet.
  • Example 3 The same operation as in Example 1 was performed, except that 90.1 g of water was used instead of the 1M calcium chloride aqueous solution. As a result, 447.7 g of a crude reaction product was obtained. As a result of analyzing the obtained reaction crude product by gas chromatography, the conversion of (Z) 1-chloro-3,3,3-trifluoropropene was 95.4%, and 1,1,2-trichloro- The yield of 3,3,3-trifluoropropane was 94.1%.
  • a saturated hydrochlorofluorocarbon having a specific structure or a saturated chlorofluorocarbon can be easily produced on an industrial scale at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

短時間で高純度の飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンを低コストで合成、製造するための方法を提供する。式(I)で表される化合物を製造する方法が提供される。 CF3-CXCI-CYZCI (I)この方法は、液相中、受酸剤またはラジカル開始剤の存在下、式(II)で表される化合物を塩素と反応させることを含む。ここで、X、Y、およびZは、独立して水素原子、塩素原子およびフッ素原子から選択される。この反応において、0℃以上200℃以下の温度で、式(II)で表される化合物を塩素と反応させてもよい。

Description

化合物の製造方法
 本発明の実施形態の一つは、特定の構造を有する飽和クロロフルオロカーボンや飽和ヒドロクロロフルオロカーボンの製造方法に関する。
 1,1,2-トリクロロ-3,3,3-トリフルオロプロパン(233da)等の飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンは、低いオゾン層破壊係数(OPD)と地球温暖化係数(GWP)を有するヒドロクロロフルオロオレフィンやヒドロフルオロオレフィンの原料として有用な化合物である。このような飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンの合成法の一つとして、光照射の下、(E)1-クロロ-3,3,3-トリフルオロプロペン(1233zd(E))等のヒドロクロロフルオロオレフィン、ヒドロフルオロオレフィン、ヒドロクロロオレフィン、クロロオレフィン、あるいはフルオロオレフィンに塩素を付加させる方法が挙げられる(特許文献1、2参照)。
特開2014-210765号公報 特表2015-500283号公報
 本発明の実施形態の一つは、特定の構造を有する飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンを工業的規模で簡便に、かつ低コストで製造するための方法を提供することを課題の一つとする。
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。本発明者らは、目的とする下記式(I)で表される化合物の前駆体となる、工業的に入手可能な下記式(II)で表される化合物に塩素を付加させる方法について検討したところ、この反応系においては、フッ化水素が生じ得ることがわかった。フッ化水素は、ガラス等を腐食させ得るため、製造設備の複雑化や製造コストの増大を招く。そこで、本発明者らが更なる検討を重ねた結果、下記式(II)で表される化合物を、液相中、受酸剤またはラジカル開始剤の存在下で、塩素と反応させることにより、反応系に生じ得る遊離フッ化水素を低減できることを見出した。これにより、下記式(I)で表される化合物を簡便かつ低コストで製造できることを見出した。
 本発明の実施形態の一つは、式(I)で表される化合物を製造する方法である。
Figure JPOXMLDOC01-appb-C000004
 この方法は、液相中、受酸剤またはラジカル開始剤の存在下で、式(II)で表される化合物を塩素と反応させることを含む。式(I)と式(II)において、X、Y、およびZは、独立して水素原子、塩素原子およびフッ素原子から選択される。
Figure JPOXMLDOC01-appb-C000005
 この反応において、0℃以上200℃以下の温度で、式(II)で表される化合物を塩素と反応させてもよい。
 この反応において、受酸剤は、ハイドロタルサイト、シリカゲル、または、アルカリ金属またはアルカリ土類金属を含む化合物でもよい。
 この反応において、受酸剤は、アルカリ金属またはアルカリ土類金属の水溶液でもよい。
 この反応において、アルカリ金属またはアルカリ土類金属の水溶液は、塩化カルシウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸水素カリウム水溶液、炭酸水素カルシウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液から選択されてもよい。
 この反応は、光照射下で行ってもよい。
 式(I)と式(II)において、XとYとZの少なくとも一つは水素原子であってもよい。Xが水素原子である場合、Yは塩素原子でもよい。Xが水素原子であり、Yが塩素原子である場合、Zは水素原子でもよい。
 上記反応は、触媒の存在下で行ってもよく、触媒の非存在下で行ってもよい。触媒としては遷移金属の塩化物、オキシ塩化物、オキシフッ化塩化物を用いることができる。
 本発明の実施形態の一つは、式(I)で表される化合物を製造する方法であり、液相中、0℃以上200℃以下の温度で、受酸剤の存在下、光照射下、式(II)に表される化合物を塩素と反応させることを含む。
 本発明の実施形態の一つは、式(I)で表される化合物を製造する方法であり、液相中、0℃以上200℃以下の温度で、ラジカル開始剤の存在下、式(II)に表される化合物を塩素と反応させることを含む。この反応は、遮光下で行ってもよい。
 本発明の実施形態の一つは、式(III)で表される化合物を製造する方法である。
 上記の方法で製造された式(I)で表される化合物を脱ハロゲン化水素化することを含む。
Figure JPOXMLDOC01-appb-C000006

式(III)において、X’、Y’、およびZ’は独立して水素、塩素、およびフッ素から選択され、X’が水素あるいはフッ素の時、Y’とZ’の少なくとも一方は塩素である。
 本発明の実施形態により、特定の構造を有する飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンを工業的規模で簡便に、かつ低コストで製造するための方法が提供される。
 以下、本発明の実施形態について説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。また、以下の実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 本実施形態では、式(I)で表される化合物(以下、「化合物(I)」とも記す)を製造する方法(以下、単に「本製造方法」とも記す)を説明する。
Figure JPOXMLDOC01-appb-C000007
 本製造方法は、式(II)で表される化合物(以下、「化合物(II)」とも記す)に塩素を付加することを含み、以下の反応式(1)に従う。
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
 上記式(I)、(II)、および反応式(1)において、X、Y、およびZは独立して水素原子、塩素原子およびフッ素原子から選択される。したがって、化合物(II)はヒドロクロロフルオロプロペン、ヒドロフルオロプロペン、あるいはフルオロプロペンのいずれかに分類される。化合物(II)は、置換基によっては構造異性体並びに幾何異性体が存在するが、いずれの異性体を用いてもよく、例えばトランス体のみ、あるいはシス体のみを用いてもよい。あるいはこれらの異性体の混合物を化合物(II)として用いてもよい。
 XとYとZのうち、少なくとも一つは水素原子であることが好ましい。Xが水素原子である場合、Yは塩素原子であることが好ましく、さらにZは水素原子であることが特に好ましい。また、Xが水素原子であり、かつ、YとZの少なくとも一方が水素原子となるように化合物(II)の置換基を選択すると、得られる化合物(I)の1位の炭素原子と2位の炭素原子の両者に水素原子が結合する。このため、化合物(I)を合成中間体として利用して脱塩酸する場合、反応条件の選択によって脱離する水素原子を選択することができる。その結果、単一の化合物から二種類の化合物を選択的に作り出すことができ、合成中間体としてより利用価値の高い飽和ヒドロクロロフルオロカーボンを提供することができる。また、Yが水素原子である場合、XとZの少なくとも一方が塩素原子であることが好ましい。
 本製造方法では、反応を液相で行う。反応温度は0℃以上200℃以下の範囲で設定される。0℃以上で反応させることにより十分に大きな反応速度を得ることができ、短時間で反応を完結させることができる。また、200℃以下の温度で反応を行うことで副生成物の生成が抑制され、高収率で高純度の化合物(I)を得ることができるだけでなく、塩素の導入量を容易に調整することができる。上記温度範囲内でさらに反応温度を調整することができ、例えば0℃以上150℃以下、0℃以上100℃以下、あるいは0℃以上50℃以下の範囲で反応温度を設定することができる。
 本製造方法では、反応を受酸剤またはラジカル開始剤の存在下で行う。
 受酸剤としては、例えば、ハイドロタルサイト、シリカゲル、または、アルカリ金属またはアルカリ土類金属を含む化合物を用いることができる。ハイドロタルサイトは、例えば、MgAlX(OH)・nHO(x、y、z、nは整数であり、XはCO等の陰イオン根である)等のMg-Al系の鉱物を主成分とするものであり、製品としては、ハロゲンキラー(登録商標)等が挙げられる。アルカリ金属またはアルカリ土類金属を含む化合物は、例えば、塩化カルシウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 受酸剤としては、上記の他に、例えば、アルカリ金属化合物またはアルカリ土類金属化合物の水溶液を用いることができる。この水溶液としては、例えば、塩化カルシウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸水素カリウム水溶液、炭酸水素カルシウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。この水溶液におけるアルカリ金属またはアルカリ土類金属の濃度は、特に制限されず、例えば、0.1重量%以上、20重量%以下とすることができる。
 受酸剤の使用量は、例えば、化合物(II)に対して0.01質量%以上20質量%以下、あるいは0.1質量%以上5質量%以下とすることができる。
 ラジカル開始剤としては、例えば、アゾ化合物、有機過酸化物、ホウ素化合物、亜鉛化合物を用いることができる。アゾ化合物としては、例えば、アゾビスイソブチロニトリル(AIBN)を用いることができる。有機過酸化物としては、例えば、過酸化ベンゾイル(BPO)を用いることができる。ホウ素化合物としては、例えば、トリエチルボランを用いることができる。亜鉛化合物としては、例えば、ジエチル亜鉛を用いることができる。
 ラジカル開始剤の使用量は、例えば、化合物(II)に対して0.01質量%以上20質量%以下、あるいは0.1質量%以上5質量%以下とすることができる。
 本製造方法では、反応を、受酸剤の存在下、光照射下で行うことができる。光源は、反応系にラジカルを発生させることができるものを用いる。例えば、紫外光照射可能な発光ダイオード(LED)ランプ、高圧水銀ランプ等を用いることができる。
 本製造方法では、ラジカル開始剤を使用する場合には、反応系に対して光照射を行わなくても短時間で反応が完結する。この場合には、反応を暗条件、すなわち遮光下で行う、あるいは光を透過しない反応容器を用いることが好ましい。
 本製造方法では、化合物(II)が液体として存在する条件下で行うことが好ましい。より具体的には、冷媒を流せるコンデンサーを備えたガラス反応器やオートクレーブなどの密閉可能な反応容器内に原料である化合物(II)と塩素を加え、反応容器内が大気圧以上5MPa以下、大気圧以上2MPa以下、あるいは大気圧以上1MPa以下、より好ましくは大気圧条件がよい。常温、常圧で気体として存在する塩素も原料と接触することで反応が速やかに進行する事ができる。
 本製造方法では、反応時間は、化合物(II)の構造や反応温度にも依存するが、例えば1秒以上10時間以下、1秒以上5時間以下、あるいは1秒以上1時間以下の範囲から選択することができる。
 本製造方法では、別途溶媒を用いることは、必ずしも必要では無いが、用いてもよい。溶媒を用いない場合には、溶媒を除去するための操作は不要であり、反応終了後、反応液を、必要に応じて洗浄し、蒸留装置に移送して蒸留することで容易に化合物(I)を精製することができる。したがって、簡便に、かつ低コストで化合物(I)を製造できるだけでなく、環境に対する負荷を低減することができる。
 本製造方法では、化合物(II)と塩素が1:1のモル比で反応するが、一方の材料を他方の材料よりも過剰に用いてもよい。例えば化合物(II)と塩素の仕込みモル比は、0.1:1から5:1、0.4:1から2.5:1、あるいは0.5:1から2:1とすることができる。
 本製造方法では、バッチ式、半バッチ式あるいは連続式のいずれを適用してもよい。
 本製造方法では、触媒の使用は任意である。すなわち、触媒の存在下で行ってもよく、非存在下で行ってもよい。実施例でも述べるように、触媒の非存在下でもほぼ定量的に反応が進行するため、精製工程の複雑化を招くことなく、効率よく化合物(I)を得ることができる。
 触媒を用いる場合には、触媒として遷移金属の塩化物、オキシ塩化物、オキシフッ化塩化物を用いることができる。遷移金属としては鉄、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛などが挙げられる。塩化物において複数の原子価を取ることができる遷移金属である場合、遷移金属の価数に制限はなく、異なる価数の遷移金属を含む塩化物を用いてもよい。例えば塩化鉄を用いる場合、塩化第1鉄(FeCl)や塩化第2鉄(FeCl)のいずれを用いてもよく、これらの混合物を用いてもよい。また、塩化物は異なる複数の金属を含む混合塩化物でも良い。触媒の仕込み量は、化合物(II)に対して0.1モル%から30モル%、0.5モル%から15モル%、あるいは1モル%から10モル%の範囲から選択すればよい。触媒を添加することによってより大きな速度で反応が進行するため、反応時間を大幅に短縮することが可能である。
 触媒を用いる場合、触媒を単独で用いてもよく、触媒を担体に担持して用いてもよい。担体に担持する場合、単体としてはシリカゲル、アルミナ、活性炭、ゼオライトなどの多孔質体を用いることができる。
 具体的な実施形態の一つとして、以下のような手順が例示される。反応器に化合物(II)を加え、さらに、受酸剤またはラジカル開始剤を加える。その後、上述の圧力と温度に設定して、反応系に塩素を加える。光照射下で反応を行う場合には、反応系に光照射が可能なように光源を用意し、光照射しながら反応系に塩素を加える。加えた塩素のモル数が化合物(II)のモル数とほぼ等しくなった時点で塩素の供給を停止する。この後、反応液を取り出し、蒸留することで目的とする化合物(I)を得ることができる。蒸留の前に反応液を水やアルカリ水溶液などで洗浄してもよい。
 一実施形態において、上記の製造方法により得られた化合物(I)を出発原料とし、脱ハロゲン化水素化することによりヒドロクロロフルオロオレフィンやクロロフルオロオレフィンを製造する方法について述べる。この方法では、以下の反応式(2)に従い、液相中または気相中、化合物(I)に対して塩基または活性炭などの脱ハロゲン化水素剤を用いて脱ハロゲン化水素を行う。以下、この反応で得られるヒドロクロロフルオロオレフィンやクロロフルオロオレフィンを総じて化合物(III)と記す。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
 上述したように、脱ハロゲン化水素剤としては塩基、および活性炭が挙げられる。塩基としてはアルカリ金属やアルカリ土類金属の水酸化物、アルカリ金属やアルカリ土類金属の炭酸塩、アルカリ金属やアルカリ土類金属の金属アルコキシドなどを用いることができる。金属アルコキシドのアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、t-ブトキシ基などの炭素数1から4の直鎖または分岐アルコキシ基が挙げられる。化合物(I)と塩基との反応は主にE2脱離機構で進むため、化合物(I)と塩基は1:1のモル比で反応する。
 活性炭を用いる場合、その種類に限定はなく、例えば松や竹、ヤシ殻などの植物、あるいは石炭から調製された活性炭などが挙げられる。活性炭の形状にも限定はなく、粉末状、粒状、繊維状、棒状でもよい。活性炭のBET(Brunauer-Emmett-Teller)比表面積は、例えば10m/g以上3000m/g以下、20m/g以上2500m/g以下、あるいは50m/g以上2000m/g以下である。
 液相中で反応を行う場合、溶媒の非存在下で行ってもよく、溶媒を用いて行ってもよい。溶媒としては、水、メタノールやエタノール、イソプロパノール、t-ブタノールなどのアルコール、テトラヒドロフランやジオキサンなどのエーテル、トルエンやキシレンなどの芳香族炭化水素、あるいはこれらの溶媒の混合溶媒が挙げられる。互いに相溶しない溶媒を複数用いて二層系で反応を行う場合には、層間移動触媒を用いてもよい。層間移動触媒としては、四級アンモニウム塩や四級ホスホニウム塩、スルホニウム塩などのオニウム塩、18-クラウン-6、ジベンゾ-18-クラウン-6などのクラウンエーテルなど、公知の層間移動触媒を用いればよい。
 液相中での反応では、バッチ式、フロー式のいずれの方式を適用してもよい。バッチ式では、ガラスやフッ素樹脂、ステンレスなどで作製される反応容器内に化合物(I)、あるいはその溶液(または溶媒との混合物)を加え、これに対して塩基、塩基の溶液(または溶媒との混合物)、活性炭、または活性炭と溶媒の混合物(すなわち、活性炭分散液)を加えることで行われる。あるいは、塩基、塩基の溶液(または溶媒との混合物)、活性炭、または活性炭分散液を反応容器に準備し、これに対して化合物(I)、あるいはその溶液(または溶媒との混合物)を加えてもよい。
 塩基を用いる場合、その量は反応させる化合物(I)に対して0.8当量以上5当量以下、0.8当量以上3当量以下、あるいは0.8当量以上1.5当量の範囲で適宜選択することができる。一方活性炭を用いる場合、その量は反応させる化合物(I)に対して0.1当量以上5当量以下、0.1当量以上3当量以下、あるいは0.3当量以上1.5当量の範囲で適宜選択することができる。
 常圧で反応する場合、反応温度は生成する化合物(III)の常圧における沸点以上であることが好ましい。具体的には、55℃以上75℃以下が好ましい。この温度を選択することで生成する化合物(III)が反応系から優先的に気化するため、化合物(III)を容易に回収することができる。
 加圧下で反応する場合、オートクレーブなどの密閉可能な反応容器を用い、反応容器内が0.1MPa以上10MPa以下、0.05MPa以上5MPa、または0.05MPa以上1MPaの範囲から任意に選択される圧力となるように化合物(I)、および塩基もしくは活性炭を反応容器に加える。反応温度は、上記範囲から適宜選択すればよい。必要に応じて溶媒を加えてもよい。
 反応のモニターは、ガスクロマトグラフィー、液体クロマトグラフィー、薄層クロマトグラフィーなどによって行うことができる。
 フロー式では、ガラスやフッ素樹脂、ステンレスなどで作製されるカラム状の反応容器に塩基または活性炭を充填して脱ハロゲン化水素剤の層を形成し、この層に対して化合物(I)、あるいはその溶液(または溶媒との混合物)を連続的に注入することで行えばよい。脱ハロゲン化水素剤の層は、0.2g/cm3以上1.0g/cm3以下、あるいは0.25g/cm3以上0.7g/cm3以下の密度となるように脱ハロゲン化水素剤を充填することで形成すればよい。フロー式においての反応温度と圧力は上述した範囲から任意に選択することができる。
 化合物(III)の精製は蒸留によって行われる。この反応では、出発原料である化合物(I)の構造と反応条件により、化合物(III)は組成の異なる化合物の混合物として、あるいは同一の組成を有する幾何異性体の混合物として得られることがある。この場合には、精密蒸留を行うことで単一の化合物を純度良く得ることができる。溶媒を用いる場合、必要に応じて分液、あるいは抽出を行えばよい。
 気相反応を適用する場合、化合物(I)が気体として存在できる条件下、化合物(I)を塩基、または活性炭と処理して行われる。すなわち、常圧または加圧下、その圧力で化合物(I)が気体として存在する温度で反応が行われる。化合物(I)の蒸気圧にも依存するが、圧力は例えば常圧、0.1MPa以上1MPa以下、あるいは0.1MPa以上0.5MPaの範囲から適宜選択される。温度は、50℃以上500℃以下、100℃以上350℃以下、160℃以上330℃、または200℃以上300℃の範囲から適宜選択される。
 液相反応と同様、気相反応においてもバッチ式、フロー式のいずれの方式を適用してもよい。バッチ式では、オートクレーブなどの密閉可能な反応容器に化合物(I)、塩基もしくは活性炭、および必要に応じて溶媒を加え、反応容器を密閉した後、上記範囲から選択される温度、圧力の条件下で反応を行えばよい。この時、反応容器に窒素やアルゴンなどの不活性ガスを混合してもよい。反応終了後の化合物(III)の回収、精製方法は上述した方法と同様である。
 液相反応と同様、フロー式においても、ガラスやフッ素樹脂、ステンレスなどで作製されるカラム状の反応容器に塩基、または活性炭を充填して脱ハロゲン化水素剤の層を形成し、この層に対して化合物(I)、あるいはその溶液(または溶媒との混合物)を連続的に注入することで行えばよい。この場合、あらかじめ気化した化合物(I)、または化合物(I)と溶媒の混合ガスを反応容器に注入してもよく、液体状態の化合物(I)、または化合物(I)と溶媒の混合物を反応容器に注入し、反応容器を加熱して反応容器内で化合物(I)、および溶媒を気化させてもよい。バッチ式と同様、反応容器に不活性ガスを同時に注入してもよい。
 化合物(I)の注入速度は、その線速度vが0.1cm/s以上100cm/sとなるように調整することができる。線速度vは、以下の式から計算される。
           v=(W/100)×V/S
 ここで、Wは脱ハロゲン化水素剤の層に導入される物質中の化合物(I)のモル濃度(mol%)、Vは脱ハロゲン化水素剤の層に導入される全物質の流量(cm/s)、Sは脱ハロゲン化水素剤の層の断面積(cm)である。
 気相法における化合物(III)の回収、精製方法は液相反応のそれと同様である。
 上述した方法で反応式(2)に従って化合物(I)を脱ハロゲン化水素することで、高純度の化合物(III)を高収率で得ることができる。
[実施例1]
 パーフルオロアルコキシアルカン(以下、「PFA」と記す)被覆温度計、PFA製塩素導入ライン、PFA製ガス出口ライン(反応出口)、ポリテトラフルオロエチレン(以下、「PTFE」と記す)被覆の攪拌子を備えた500ml-PFA製三口フラスコを反応器として、(Z)1-クロロ-3,3,3-トリフルオロプロペン302.0g(2.23mol、1.00当量)、1M塩化カルシウム水溶液90.1gをそれぞれ加えた。反応出口には、フッ化物イオンを吸収する水トラップ(水量300g)を接続した。反応器を氷水バスで冷却、反応器の外側から365nmLEDランプ(オプトコード株式会社製)にて紫外光を照射し、塩素155.0g(2.19mol、0.98当量)を、内温が40℃を超えないように注意しながら、0.1g/minから0.6g/minの速度で導入した。塩素導入後、未反応分の塩素は窒素を用いてパージして反応液を得た。この反応液を二相分離し、有機相として反応粗体441.3gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は97.9%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は95.1%であった。また、この反応粗体および水相中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、有機相では4ppm、水相では189ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[実施例2]
 1M塩化カルシウム水溶液のかわりに0.8M炭酸水素ナトリウム水溶液90.1gを用いたこと以外は、実施例1と同様の操作を行った。その結果、反応粗体448.0gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は94.6%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は93.1%であった。また、この反応粗体および水相中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、有機相では1ppm、水相では39ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[実施例3]
 1M塩化カルシウム水溶液のかわりにハロゲンキラー(登録商標)(ホーリュウ化学株式会社製)6.0gを粉体で使用したこと以外は、実施例1と同様の操作を行って反応液を得た。得られた反応液を、1μmPTFEメンブランフィルターを備えた加圧濾過機で濾過した。その結果、反応粗体445.8gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は96.7%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は94.6%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、9ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[実施例4]
 1M塩化カルシウム水溶液のかわりにシリカゲル(和光純薬製60N)26.3gを用い、光源を高圧水銀ランプ(ウシオ電機株式会社製)に変更したこと以外は、実施例1と同様の操作を行って反応液を得た。得られた反応液を実施例4と同様の操作により濾過した。その結果、反応粗体425gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は100.0%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は93.4%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、5ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[実施例5]
 1M塩化カルシウム水溶液のかわりに無水塩化カルシウム27.1gを使用したこと以外は、実施例1と同様の操作を行った。その結果、反応粗体401gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は97.5%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は86.2%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、162ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[実施例6]
 1M塩化カルシウム水溶液ではなくV-70(2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル))6.9g(22.3mmol、0.01当量)を使用し、光源を使用しなかったこと以外は、実施例1と同様の操作を行った。その結果、反応粗体455.0gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は91.1%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は89.2%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、2ppmであり、反応出口の水トラップからは1ppmのフッ化物イオンが検出された。
[比較例1]
 1M塩化カルシウム水溶液を使用しなかったこと以外は、実施例1と同様の操作を行った。その結果、反応粗体448.5gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は96.7%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は95.5%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、45ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[比較例2]
 1M塩化カルシウム水溶液を使用せず、また、光源を高圧水銀ランプ(ウシオ電機株式会社製)に変更したこと以外は、実施例1と同様の操作を行った。その結果、反応粗体449gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は99.0%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は97.5%であった。また、この反応粗体中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、183ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
[比較例3]
 1M塩化カルシウム水溶液のかわりに水90.1gを使用したこと以外は、実施例1と同様の操作を行った。その結果、反応粗体447.7gを得た。得られた反応粗体をガスクロマトグラフィーで分析した結果、(Z)1-クロロ-3,3,3-トリフルオロプロペンの転化率は95.4%であり、1,1,2-トリクロロ-3,3,3-トリフルオロプロパンの収率は94.1%であった。また、この反応粗体および水相中のフッ化物イオンをイオンクロマトグラフィーで測定した結果、有機相には7ppm、水相は120ppmであり、反応出口の水トラップからはフッ化物イオンが検出されなかった。
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012
 転化率、収率は以下の式にしたがってそれぞれ算出した。
 転化率: 原料(Z)1-クロロ-3,3,3-トリフルオロプロペンGC純度[%]-反応粗体(Z)1-クロロ-3,3,3-トリフルオロプロペンGC純度[%]
 収率: (回収重量[g]×反応粗体1,1,2-トリクロロ-3,3,3-トリフルオロプロパンGC純度[%]/1,1,2-トリクロロ-3,3,3-トリフルオロプロパン分子量)/(原料(Z)1-クロロ-3,3,3-トリフルオロプロペン仕込み量[g]/(Z)1-クロロ-3,3,3-トリフルオロプロペン分子量)
<ガラス浸漬試験>
 PFA製被覆温度計、PTFE製撹拌子を備えたPFA製フラスコに実施例1から6および比較例1から3で得られた反応粗体50g(実施例1から2、比較例3では有機相25gと水相25g)を量りとり、当該反応粗体に杵型テストピース(グラスライニング,青色,長さ8cm,池袋琺瑯工業社製「3009」)を浸漬させ、内温40℃で3日間攪拌した。その後に取出したテストピースを、水洗、乾燥させて、目視で確認した。試験前と同様にテストピースに光沢がみられたものを「〇」、試験前と比べて光沢がみられなくなったものを「×」と評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
 実施例1から6の結果より、本実施形態を適用することにより反応は液相で進行し、化合物(II)から高い選択率で化合物(I)が速やかに合成できていることがわかる。また、ガラス浸漬試験の結果より、実施例1から6では、比較例1から3と比べて、反応液中に存在する遊離フッ化水素が少ないことがわかる。
 以上述べたように、本発明の実施形態により、特定の構造を有する飽和ヒドロクロロフルオロカーボンや飽和クロロフルオロカーボンを、工業的規模で簡便に、かつ低コストで製造することが可能である。
 

Claims (13)

  1.  式(I)で表される化合物を製造する方法であり、
    Figure JPOXMLDOC01-appb-C000001

     液相中、受酸剤またはラジカル開始剤の存在下、式(II)で表される化合物を塩素と反応させることを含む方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(I)と式(II)において、X、YおよびZは、独立して水素原子、塩素原子、およびフッ素原子から選択される。)
  2.  0℃以上200℃以下の温度で、前記式(II)で表される化合物を塩素と反応させる、請求項1に記載の方法。
  3.  前記受酸剤は、ハイドロタルサイト、シリカゲル、または、アルカリ金属またはアルカリ土類金属を含む化合物である、請求項1に記載の方法。
  4.  前記受酸剤は、アルカリ金属またはアルカリ土類金属の水溶液である、請求項1に記載の方法。
  5.  前記アルカリ金属またはアルカリ土類金属の水溶液は、塩化カルシウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸水素カリウム水溶液、炭酸水素カルシウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液から選ばれる、請求項4に記載の方法。
  6.  前記式(II)で表される化合物と塩素の反応は、光照射下で行われる、請求項1から5のいずれか一に記載の方法。
  7.  XとYとZの少なくとも一つは水素原子である、請求項1から請求項6のいずれか一に記載の方法。
  8.  Xは水素原子であり、Yは塩素原子である、請求項7に記載の方法。
  9.  Zは水素原子である、請求項8に記載の方法。
  10.  前記式(II)で表される化合物と塩素の反応は、触媒の存在下で行われる、請求項1から5のいずれか一に記載の方法。
  11.  前記触媒は、遷移金属の塩化物、オキシ塩化物、オキシフッ化塩化物から選択される、請求項10に記載の方法。
  12.  前記式(II)で表される化合物と塩素の反応は、触媒の非存在下で行われる、請求項1から5のいずれかに記載の方法。
  13.  式(III)で表される化合物を製造する方法であり、
     請求項1に記載の方法で製造された前記式(I)で表される化合物を脱ハロゲン化水素化することを含む方法。
    Figure JPOXMLDOC01-appb-C000003

    (式(III)において、X’、Y’、およびZ’は独立して水素、塩素、およびフッ素から選択され、X’が水素あるいはフッ素の時、Y’とZ’の少なくとも一方は塩素である。)
     
PCT/JP2019/036403 2018-09-25 2019-09-17 化合物の製造方法 WO2020066754A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548521A JPWO2020066754A1 (ja) 2018-09-25 2019-09-17 化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178240 2018-09-25
JP2018-178240 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066754A1 true WO2020066754A1 (ja) 2020-04-02

Family

ID=69950064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036403 WO2020066754A1 (ja) 2018-09-25 2019-09-17 化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2020066754A1 (ja)
WO (1) WO2020066754A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040903A (zh) * 2019-07-01 2022-02-11 大金工业株式会社 烷烃的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484504A (en) * 1977-12-15 1979-07-05 Tokuyama Soda Co Ltd Preparation of hexachloroethane
JP2016069369A (ja) * 2014-09-29 2016-05-09 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JP2016517345A (ja) * 2013-03-14 2016-06-16 ハネウェル・インターナショナル・インコーポレーテッド 2−クロロ−1,1,1,2−テトラフルオロプロパンを脱塩化水素化するための触媒
JP2017014160A (ja) * 2015-07-02 2017-01-19 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
WO2017110851A1 (ja) * 2015-12-25 2017-06-29 旭硝子株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484504A (en) * 1977-12-15 1979-07-05 Tokuyama Soda Co Ltd Preparation of hexachloroethane
JP2016517345A (ja) * 2013-03-14 2016-06-16 ハネウェル・インターナショナル・インコーポレーテッド 2−クロロ−1,1,1,2−テトラフルオロプロパンを脱塩化水素化するための触媒
JP2016069369A (ja) * 2014-09-29 2016-05-09 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
JP2017014160A (ja) * 2015-07-02 2017-01-19 旭硝子株式会社 1,2−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
WO2017110851A1 (ja) * 2015-12-25 2017-06-29 旭硝子株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040903A (zh) * 2019-07-01 2022-02-11 大金工业株式会社 烷烃的制造方法

Also Published As

Publication number Publication date
JPWO2020066754A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5615179B2 (ja) フッ素化されたオレフィンの合成のための方法
ES2655871T3 (es) Método para producir olefinas fluoradas
US9334205B2 (en) Process for the production of chlorinated propanes and propenes
JP2015129155A (ja) フッ化有機化合物の製造方法
KR20130140073A (ko) 2,3,3,3-테트라플루오로프로펜의 제조방법 및 2-클로로-1,1,1,2-테트라플루오로프로판의 정제방법
US20100181186A1 (en) Process for obtaining a purified hydrofluoroalkane
CA2844319A1 (en) Process for the production of chlorinated propenes
US7700815B2 (en) Method for producing fluorinated organic compounds
US8889924B2 (en) Process for the production of 1,3,3,3-tetrafluoropropene
JP2006193437A (ja) 1,1,3,3,3−ペンタフルオロプロペンの製造方法
JP5612581B2 (ja) フルオロオレフィン化合物の製造方法
JP6182989B2 (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
EP2739597B1 (en) Process for the production of chlorinated propenes
CN106458799B (zh) 用于以高收率生产1,1,2,3-四氯丙烯的方法
WO2020066754A1 (ja) 化合物の製造方法
ES2869987T3 (es) Proceso para la preparación de 3,3,3-trifluoropropeno
JP7287391B2 (ja) 含フッ素プロペンの製造方法
JP5439739B2 (ja) 含フッ素アルケン化合物とその製造方法
CA2859168C (en) Process for the production of chlorinated propanes and propenes
JP2019151629A (ja) 化合物の製造方法
WO2015166847A1 (ja) トランス-1-クロロ-3,3,3-トリフルオロプロペンの製造方法
EP3995479A1 (en) Alkane production method
US3211636A (en) Preparation of monochlorofluoroalkanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867770

Country of ref document: EP

Kind code of ref document: A1