WO2020066118A1 - Centrale nucléaire, dispositif d'injection d'oxygène, élément de mesure de concentration d'oxygène dissous et procédé de suppression de corrosion pour centrale nucléaire - Google Patents

Centrale nucléaire, dispositif d'injection d'oxygène, élément de mesure de concentration d'oxygène dissous et procédé de suppression de corrosion pour centrale nucléaire Download PDF

Info

Publication number
WO2020066118A1
WO2020066118A1 PCT/JP2019/019889 JP2019019889W WO2020066118A1 WO 2020066118 A1 WO2020066118 A1 WO 2020066118A1 JP 2019019889 W JP2019019889 W JP 2019019889W WO 2020066118 A1 WO2020066118 A1 WO 2020066118A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
purification system
power plant
nuclear power
oxygen
Prior art date
Application number
PCT/JP2019/019889
Other languages
English (en)
Japanese (ja)
Inventor
亮介 清水
麻由 佐々木
太田 信之
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2020066118A1 publication Critical patent/WO2020066118A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a nuclear power plant, an oxygen injector, a dissolved oxygen concentration meter, and a method for suppressing corrosion of a nuclear power plant.
  • the boiling water reactor employs a direct cycle. For this reason, the cooling water receives heat in the reactor core and turns into steam as steam and moves to the turbine system to drive the turbine, while also serving as a neutron moderator in the reactor core.
  • Oxygen and hydrogen peroxide are one of the causes of stress corrosion cracking (SCC) of stainless steel and nickel-based alloys.
  • One is a technology to reduce the concentration of oxygen and hydrogen peroxide by injecting hydrogen and promoting a recombination reaction in the core.
  • the other is a technique of injecting a catalyst such as a noble metal to promote the recombination reaction.
  • Patent Document 1 discloses a configuration for suppressing the adhesion of precious metals to pipes and increasing the amount of precious metals injected into cooling water in a reactor pressure vessel by supplying hydrogen to water supplied to the reactor pressure vessel.
  • a hydrogen injection device for injection is attached, and a noble metal injection device is provided on the downstream side of the oxidizing agent injection device in the purification system piping and on the upstream side of the junction with the water supply piping for supplying water of the condenser to the reactor pressure vessel.
  • a boiling water nuclear power plant is disclosed.
  • Patent Document 1 Application of the technology and the like described in Patent Document 1 makes it possible to suppress SCC of stainless steel and nickel-based alloys.
  • FAC flow accelerated corrosion
  • the problem of flow accelerated corrosion (FAC) of carbon steel materials due to a decrease in oxygen concentration in reactor water is reduced. Has occurred. This is because when the concentration of dissolved oxygen is less than several ppb, the corrosion rate of carbon steel increases significantly.
  • FAC also occurs in nuclear power plants to which only hydrogen injection is applied, but when a catalyst such as a noble metal is injected together with hydrogen injection, the degree of decrease in the concentration of dissolved oxygen on the surface of piping or the like becomes even greater.
  • An object of the present invention is to suppress stress corrosion cracking (SCC) of stainless steel, nickel-based alloy, and the like constituting structures and equipment in a reactor pressure vessel in a nuclear power plant into which a catalyst such as hydrogen and a precious metal is injected. And suppression of flow accelerated corrosion (FAC) of carbon steel constituting piping and equipment of a reactor coolant purification system (CUW).
  • SCC stress corrosion cracking
  • AAC flow accelerated corrosion
  • a nuclear power plant includes a reactor pressure vessel having a reactor core, a water supply system pipe for supplying water to the reactor pressure vessel, and a reactor purification system pipe connected to the reactor pressure vessel.
  • a regenerative heat exchanger, a non-regenerative heat exchanger, and a reactor purification system purification facility are installed in the system piping.
  • the reactor purification system piping is connected to join the water supply system piping, and hydrogen and catalyst are added to the reactor water.
  • An oxygen injection device is installed at a portion of the reactor purification system piping upstream of the pipe containing carbon steel, and an oxygen injection device is installed at the downstream side of the regenerative heat exchanger of the reactor purification system piping.
  • a dissolved oxygen concentration meter is installed at a portion on the upstream side of the junction with the water supply system piping.
  • ADVANTAGE OF THE INVENTION in a nuclear power plant into which a catalyst such as hydrogen and a precious metal is injected, suppression of stress corrosion cracking (SCC) of stainless steel, nickel-based alloy, etc. constituting structures and equipment in a reactor pressure vessel And suppression of flow accelerated corrosion (FAC) of carbon steel constituting piping and equipment of a reactor coolant purification system (CUW).
  • SCC stress corrosion cracking
  • AAC flow accelerated corrosion
  • FIG. 1 is a schematic configuration diagram illustrating a part of a nuclear power plant according to a first embodiment.
  • FIG. 7 is a schematic configuration diagram illustrating a part of a nuclear power plant according to a second embodiment.
  • the present invention provides hydrogen and noble metals in reactor water to suppress stress corrosion cracking (SCC) of structures and equipment in a reactor pressure vessel used in a nuclear power plant including a boiling water reactor (BWR).
  • SCC stress corrosion cracking
  • BWR boiling water reactor
  • the present invention relates to a technique for suppressing flow accelerated corrosion (FAC) of pipes and equipment made of carbon steel when injecting a catalyst.
  • FAC flow accelerated corrosion
  • the present invention injects oxygen from a reactor coolant purification system (CUW).
  • CUW reactor coolant purification system
  • the oxygen is injected from a place where the corrosion of the carbon steel piping of the CUW as wide as possible can be suppressed. That is, when all the CUW pipes are made of carbon steel, the CUW is performed from as far upstream as possible.
  • stainless steel may be employed upstream of the CUW purification facility, and carbon steel may be employed downstream of the purification facility. In such a case, oxygen is injected downstream of the purification facility.
  • monitoring is performed by installing a dissolved oxygen concentration meter at the outlet near the regenerative heat exchanger and monitoring the oxygen injection device.
  • the dissolved oxygen concentration at the outlet near the regenerative heat exchanger is controlled to 40 ppb or more.
  • the dissolved oxygen concentration is desirably 500 ppb or less from the viewpoint of preventing pitting of carbon steel.
  • FIG. 1 is a schematic configuration diagram showing a part of the nuclear power plant according to the first embodiment.
  • the reactor pressure vessel 2 is connected to a reactor purification system pipe 4.
  • the reactor pressure vessel 2 has a reactor core 1.
  • the reactor water passes through the regenerative heat exchanger 5, the non-regenerative heat exchanger 6, and the reactor purification system purification facility 7, is reheated by the regenerative heat exchanger 5, and the water supply system pipe 3 It is connected to return to the reactor pressure vessel 2 via.
  • the reactor water is cooled by the regenerative heat exchanger 5 and the non-regenerative heat exchanger 6 in the process of flowing through the reactor purification system pipe 4, and is purified by the reactor purification system purification facility 7.
  • the purified reactor water after being reheated, merges into the water supply system pipe 3.
  • ⁇ ⁇ Hydrogen is injected from the water supply piping 3.
  • a catalyst such as a noble metal is injected from a water supply pipe 3 or a reactor purification pipe 4.
  • Oxygen and hydrogen peroxide in the reactor water generated in the reactor core 1 undergo a recombination reaction with hydrogen and become water by injecting a catalyst such as hydrogen and a noble metal.
  • a catalyst such as hydrogen and a noble metal.
  • the concentration of dissolved oxygen in the reactor water is reduced, so that SCC of structures, equipment, and the like in the reactor pressure vessel 2 can be suppressed.
  • Reactor water having a reduced dissolved oxygen concentration causes FAC when the reactor purification system piping 4 is made of carbon steel.
  • an oxygen injection device 8 is installed in a portion of the reactor purification system pipe 4 that is upstream of the regenerative heat exchanger 5 and downstream of the reactor pressure vessel 2.
  • oxygen can be supplied to the portion of the reactor purification system piping 4 that is constituted by the carbon steel piping, and FAC due to a decrease in oxygen concentration can be suppressed.
  • the oxygen injection device 8 is outside the containment vessel (a part of the containment vessel is indicated by a two-dot chain line in the figure. A portion closer to the reactor pressure vessel 2 than the two-dot chain line corresponds to the inside).
  • a part of the reactor purification system piping 4 is made of carbon steel piping, it is desirable to install the piping upstream of the part.
  • the substance injected by the oxygen injection device 8 may be hydrogen peroxide, but is preferably oxygen gas.
  • the present invention is directed to a nuclear power plant into which catalysts such as hydrogen and precious metals are injected.
  • the injected catalyst such as a noble metal is used for the regenerative heat exchanger 5, the non-regenerative heat exchanger 6, and the reactor purification system in the reactor purification system piping 4 in addition to the structures and equipment in the reactor pressure vessel 2. It is also attached to the purification equipment 7. Therefore, the oxygen injected by the oxygen injection device 8 is consumed while passing through the above-described equipment and facilities, and the dissolved oxygen concentration decreases. As a result, the outlet of the regenerative heat exchanger 5 downstream of the reactor purification system purification equipment 7 has the lowest dissolved oxygen concentration.
  • the oxygen concentration meter 9 (dissolved oxygen concentration meter) is installed near the outlet to measure the dissolved oxygen concentration. Using the dissolved oxygen concentration measured by the oxygen concentration meter 9, the amount of oxygen injected by the oxygen injector 8 is controlled so that the dissolved oxygen concentration becomes a concentration capable of suppressing FAC. This concentration is at least 40 ppb. If it is less than 40 ppb, FAC tends to occur in the carbon steel pipe.
  • oxygen is injected into an upstream portion of a pipe containing carbon steel, and a downstream side of the regenerative heat exchanger 5 and a junction with the water supply pipe 3 are joined.
  • a downstream side of the regenerative heat exchanger 5 and a junction with the water supply pipe 3 are joined.
  • a signal line from the oximeter 9 to the oxygen injector 8 is indicated by a broken arrow.
  • the calculation for using the value of the dissolved oxygen concentration measured by the oximeter 9 for control may be performed by either the oxygen injector 8 or the oximeter 9. Therefore, the control unit may be provided in either the oxygen injector 8 or the oximeter 9 or may be provided with an independent control unit.
  • the oxygen injector 8 and the oxygen concentration meter 9 were not installed at the positions shown in this figure. Therefore, in order to apply the present invention to an existing nuclear power plant, the oxygen injection device 8 and the oxygen concentration meter 9 are additionally installed. These are also included in the present invention as parts.
  • FIG. 2 is a schematic configuration diagram illustrating a part of the nuclear power plant according to the second embodiment.
  • a corrosion-resistant material such as stainless steel is used for the piping on the upstream side of the reactor purification system purification facility 7, and the carbon steel is used for the piping on the downstream side of the reactor purification system purification facility 7. This is the case of a nuclear power plant that uses.
  • an oxygen injection device 8 is installed in a pipe downstream of the reactor purification system purification facility 7 (near the outlet of the reactor purification system purification facility 7) to inject oxygen.
  • the installation position of the oxygen concentration meter 9 is the same as in the first embodiment.
  • Reactor core Reactor core
  • 2 Reactor pressure vessel
  • 3 Water supply system piping
  • 4 Reactor purification system piping
  • 5 Regeneration heat exchanger
  • 6 Non-regeneration heat exchanger
  • 7 Reactor purification system purification equipment
  • 8 Oxygen injector
  • 9 Oxygen meter.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

L'invention concerne une centrale nucléaire qui comprend : une cuve sous pression de réacteur nucléaire ayant un cœur de réacteur ; des tuyaux de système d'alimentation en eau pour alimenter en eau la cuve sous pression de réacteur nucléaire ; et des tuyaux de système de purification de réacteur nucléaire raccordés à la cuve sous pression de réacteur nucléaire. Un échangeur de chaleur régénératif, un échangeur de chaleur non régénératif et un équipement de purification de système de purification de réacteur nucléaire sont installés dans les tuyaux de système de purification de réacteur nucléaire. Les tuyaux due système de purification de réacteur nucléaire sont raccordés aux tuyaux de système d'alimentation en eau et fusionnent ainsi avec eux et injectent de l'hydrogène et un catalyseur dans l'eau de réacteur. Un dispositif d'injection d'oxygène est installé sur une partie côté amont des tuyaux de système de purification de réacteur nucléaire, ladite partie comprenant de l'acier au carbone. Un élément de mesure de concentration d'oxygène dissous est installé dans les tuyaux de système de purification de réacteur nucléaire en aval de l'échangeur de chaleur régénératif et en amont d'une section fusionnant avec les tuyaux de système d'alimentation en eau. En conséquence, dans la centrale nucléaire, dans laquelle de l'hydrogène et un catalyseur tel qu'un métal précieux sont injectés, il est possible d'obtenir à la fois la suppression de la fissuration par corrosion sous contrainte (SCC) de l'acier inoxydable, de l'alliage à base de nickel, etc. constituant les structures et appareils à l'intérieur de la cuve sous pression de réacteur nucléaire et la suppression de la corrosion d'accélération d'écoulement (FAC) de l'acier au carbone constituant les tuyaux, appareils, etc. d'un système de purification de matière de refroidissement de réacteur nucléaire (CUW).
PCT/JP2019/019889 2018-09-28 2019-05-20 Centrale nucléaire, dispositif d'injection d'oxygène, élément de mesure de concentration d'oxygène dissous et procédé de suppression de corrosion pour centrale nucléaire WO2020066118A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183268 2018-09-28
JP2018183268A JP6887410B2 (ja) 2018-09-28 2018-09-28 原子力発電プラント、酸素注入装置、溶存酸素濃度計及び原子力発電プラントの腐食抑制方法

Publications (1)

Publication Number Publication Date
WO2020066118A1 true WO2020066118A1 (fr) 2020-04-02

Family

ID=69949898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019889 WO2020066118A1 (fr) 2018-09-28 2019-05-20 Centrale nucléaire, dispositif d'injection d'oxygène, élément de mesure de concentration d'oxygène dissous et procédé de suppression de corrosion pour centrale nucléaire

Country Status (2)

Country Link
JP (1) JP6887410B2 (fr)
WO (1) WO2020066118A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125498A (ja) * 1990-09-18 1992-04-24 Toshiba Corp 原子力発電設備
JPH04223299A (ja) * 1990-04-02 1992-08-13 General Electric Co <Ge> オンライン式沸騰水型原子炉の運転寿命の改善
JP2017181351A (ja) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 原子力プラント及びこれの貴金属注入方法
JP2017181350A (ja) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 沸騰水型原子炉の腐食環境緩和方法及び原子力プラント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223299A (ja) * 1990-04-02 1992-08-13 General Electric Co <Ge> オンライン式沸騰水型原子炉の運転寿命の改善
JPH04125498A (ja) * 1990-09-18 1992-04-24 Toshiba Corp 原子力発電設備
JP2017181351A (ja) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 原子力プラント及びこれの貴金属注入方法
JP2017181350A (ja) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 沸騰水型原子炉の腐食環境緩和方法及び原子力プラント

Also Published As

Publication number Publication date
JP6887410B2 (ja) 2021-06-16
JP2020051963A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
JP5637867B2 (ja) プラントの運転方法及びシステム
JP2996890B2 (ja) 水冷型原子炉又は関連設備の金属構成部の表面における割れの開始又は進展を緩和する方法及び表面に割れを有している金属構成部
JP5651580B2 (ja) 発電プラントの水質管理方法及びシステム
WO2020066118A1 (fr) Centrale nucléaire, dispositif d&#39;injection d&#39;oxygène, élément de mesure de concentration d&#39;oxygène dissous et procédé de suppression de corrosion pour centrale nucléaire
JP4634709B2 (ja) 原子炉構造材の腐食低減方法
EP2180483B1 (fr) Procédé d&#39;inhibition de l&#39;adhésion d&#39;une substance radioactive
JP2000352597A (ja) 原子力発電プラントおよびその運転方法
JP6446384B2 (ja) 原子力プラント及びこれの貴金属注入方法
JPH08220293A (ja) 原子力発電プラントの運転方法
JP2024002814A (ja) 原子力プラントの信頼性改善方法
KR102309765B1 (ko) 원자로의 강 표면의 내부-윤곽 부동태화 방법
JP7132162B2 (ja) 炭素鋼配管の腐食抑制方法
JP4420838B2 (ja) 原子力発電プラントの水素の注入方法
JP4437256B2 (ja) 炭素鋼の腐食減肉防止方法
JP2004020411A (ja) 原子力発電プラントおよびその運転方法
JP4722026B2 (ja) 原子力発電プラントの水素注入方法
JP2818943B2 (ja) 原子力プラント及びその運転方法
JPS62182290A (ja) 部材の水素脆化防止方法
JP2815424B2 (ja) 放射性気体廃棄物処理装置
JP2006250828A (ja) 原子力発電プラントの実効水素の注入方法
JPH10319181A (ja) 原子力プラント及びその水質制御方法と装置
JPH10115696A (ja) 原子力プラントの水素・酸素注入停止方法及び緊急用水素・酸素注入装置
JP6077260B2 (ja) Bwrプラント冷却水への亜鉛注入方法及びそのシステム
JPS61201801A (ja) 原子力発電プラントのエロ−ジヨン防止法
JP2010038789A (ja) 原子炉構造材の腐食抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866213

Country of ref document: EP

Kind code of ref document: A1