WO2020063745A1 - 一种滚筒法直接干化无机污泥的方法及装置 - Google Patents

一种滚筒法直接干化无机污泥的方法及装置 Download PDF

Info

Publication number
WO2020063745A1
WO2020063745A1 PCT/CN2019/108152 CN2019108152W WO2020063745A1 WO 2020063745 A1 WO2020063745 A1 WO 2020063745A1 CN 2019108152 W CN2019108152 W CN 2019108152W WO 2020063745 A1 WO2020063745 A1 WO 2020063745A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
slag
drum
drying
tail gas
Prior art date
Application number
PCT/CN2019/108152
Other languages
English (en)
French (fr)
Inventor
王英杰
肖永力
李永谦
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to BR112021004122-2A priority Critical patent/BR112021004122A2/pt
Priority to JP2021516959A priority patent/JP7190560B2/ja
Priority to KR1020217011900A priority patent/KR20210059774A/ko
Priority to US17/278,435 priority patent/US11891318B2/en
Priority to EP19866463.3A priority patent/EP3858792B1/en
Publication of WO2020063745A1 publication Critical patent/WO2020063745A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/126Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using drum filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0463Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall
    • F26B11/0468Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for disintegrating, crushing, or for being mixed with the materials to be dried
    • F26B11/0472Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for disintegrating, crushing, or for being mixed with the materials to be dried the elements being loose bodies or materials, e.g. balls, which may have a sorbent effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
    • F26B3/205Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor the materials to be dried covering or being mixed with heated inert particles which may be recycled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/028Methods of cooling or quenching molten slag with the permanent addition of cooled slag or other solids
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/056Drums whereby slag is poured on or in between
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/064Thermally-conductive removable bodies, e.g. balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to solid waste treatment / sludge drying technology, in particular to a method and a device for directly drying inorganic sludge by a drum method.
  • the water content of the sludge from the sewage treatment plant after mechanical dewatering is generally between 75% and 85%. If the water content of the sludge is reduced to less than 20%, the conventional sludge drying technology usually uses electric heating or The steam heating method requires a large amount of energy, resulting in high cost of sludge drying.
  • CN200510048978.6 uses boiler waste heat
  • CN200510049554.1 and CN200510049556.0 use power plant flue gas waste heat
  • CN200410052759.0 discloses a reflux type temperature-controllable sludge drying device and method, which uses Dry sludge with a particle size larger than 4 mm is mixed with wet sludge and the sludge is cut into smaller pieces by a steel wire mesh and entered into a rotary kiln, which can improve the efficiency of subsequent hot air drying, but the moisture content of the sludge is too high. High is impossible.
  • CN03155966.2 discloses the use of a negative pressure sealing method, which cuts off the channels of various viruses generated during the sludge treatment process from spreading and spreading to the outside, and can also prevent the system from polluting the air and the space in the system during the movement.
  • the virus leaks and spreads to the outside world, but because all process devices are concentrated in mobile equipment, its processing capacity must be relatively low, and continuous operations cannot be achieved.
  • the present invention proposes a process route and an implementation method for drying sludge by using waste heat of metallurgical slag.
  • the purpose of the present invention is to provide a method and a device for directly drying inorganic sludge by a roller method.
  • the hot slag roller method is used to mix slag and sludge in a certain proportion, thereby realizing one-step solution of slag cooling and granulation. And inorganic sludge drying.
  • a method for drying inorganic sludge by using slag comprising the steps of: mixing slag and sludge, and separating the steel slag and the dry sludge after the water content of the sludge is reduced to 3% to 15%.
  • the mixing mass ratio of the slag and the sludge is 1.5 to 3.
  • the mixing and drying are performed in a batch, fed-batch or semi-batch manner.
  • a combination of screening and spinning is used to achieve the separation of steel slag and dry sludge.
  • the steel slag and the dry sludge are separated by a sieving method, and the mesh number of the sieve is not less than 60 mesh.
  • the method further comprises steps of tail gas treatment and tail mud treatment.
  • the tail gas treatment includes adopting a wet alkali washing and / or activated carbon adsorption method to treat the dust and sulfide present in the tail gas generated by drying the sludge and discharge the treated tail gas;
  • the tail mud treatment includes discharging the generated dust After wet washing or spraying, they are aggregated, mixed with the sludge to be dried, and then mixed with slag for drying treatment.
  • the mixing of slag and sludge is performed in a drum containing steel balls.
  • the method includes conveying the slag and the sludge into the rollers containing the steel balls by corresponding conveying devices, and after the water content of the sludge is reduced to 3% to 15%, the mixture of the steel slag and the dry sludge
  • the sludge conveying device at the exit end of the drum is transported to the sludge separation device to separate the steel slag from the dry sludge; the dust and sulfide present in the tail gas generated during the drying of the sludge enter the tail gas treatment device through the drum outlet.
  • the dust separated by the tail gas treatment enters the tail mud mixing device through the dust sludge outlet of the tail gas treatment device, and is mixed with the sludge to be dried and input into the drum through a mud conveying pipe.
  • the original moisture content of the inorganic sludge is 70% to 99%, and the slag and the inorganic sludge are added in a flow-feeding or semi-flow-feeding manner.
  • the processing capacity of the inorganic sludge is 10t / h to 80t / h.
  • the processing capacity is 30t / h ⁇ 120t / h.
  • the temperature of the sludge after mixing and drying is in the range of 100-130 ° C.
  • the deviation between the moisture content of the tailings and the moisture content of the inorganic sludge to be dried does not exceed ⁇ 5%.
  • a method for directly drying inorganic sludge by a drum method includes the following steps:
  • the slag and sludge are sent to the drum by their respective conveying devices according to a certain mass ratio.
  • the slag and sludge are mixed, heat-exchanged, dehydrated, cooled and broken under the action of the drum rotation and the rolling of the steel ball. And sludge are cooled and dried and discharged directly;
  • the original moisture content of inorganic sludge is 70% to 99%, and the target moisture content after drying is 3% to 15%.
  • the sludge flow rate (by mass) of slag and inorganic sludge is 1.5 to 3.0, which can be dried.
  • the amount of inorganic sludge is 10t / h ⁇ 80t / h;
  • the slag and sludge generate steam and dust after being processed by the drum.
  • the dust is carried into the exhaust gas treatment device by the steam, and the dust is collected by wet washing or spraying, and then sent to the tailing compounding device through the conveying equipment.
  • the sludge pump and other conveying equipment are regularly sent to the drum for drying treatment to achieve zero discharge of undried sludge.
  • the mixed sludge moisture content and the original sludge moisture content should not be too different. Large, this moisture content deviation should not exceed ⁇ 5%.
  • the sieving method is adopted in step 2) for separating the sludge, and the number of meshes is not less than 60 mesh.
  • the device for directly drying inorganic sludge by the drum method according to the present invention includes: a drum, which contains a plurality of steel balls; a sludge conveying device, whose inlet end corresponds to the outlet of the drum; a sludge separation device, whose inlet end corresponds to The outlet of the sludge conveying device corresponds to different silos; the exhaust gas treatment device has an air inlet connected to the outlet of the drum through a conveying pipe; the tailings mixing device has an inlet connected to the exhaust gas treatment through a conveying pipe.
  • the dust and mud outlet of the device a mud conveying pipe for connecting the outlet of the tailings mixing device to the inlet of the drum; a sludge pump provided on the mud conveying pipe for pumping the sludge to the drum.
  • the sludge separation device adopts a screening method, and the mesh number of the screen is not less than 60 mesh.
  • the invention adopts a hot state slag drum process, and simultaneously sends slag and inorganic sludge to a drum at a certain ratio through a slag feeding device and a sludge conveying system, and uses the rotation of the drum to fully mix the slag and mud.
  • a slag feeding device and a sludge conveying system uses the rotation of the drum to fully mix the slag and mud.
  • cold particles and slags and dried sludge that meet the water content requirements are obtained.
  • the device of the invention can realize fast, stable and continuous treatment of slag granulation and sludge drying.
  • the slag and sludge can be transported in appropriate containers by their respective conveying devices according to a certain mass ratio.
  • a suitable stirring device may be provided in the container to fully stir and contact the slag and sludge.
  • the container itself can be rotated by external power.
  • the container is a drum, which is filled with a certain size and a certain number of steel balls.
  • the slag and sludge complete the physical processes of mixing, heat exchange, dehydration, cooling and crushing under the action of the rotation of the drum and the rolling of the steel ball, and then the slag is cooled, granulated, and the sludge meeting the target moisture content of the sludge is dried directly. ⁇ process.
  • the mass ratio of slag and sludge in the container is 1.5 to 3. If the mass ratio of the sludge in the container is less than 1.5, a pre-mechanical drying process must be set on the site to control the moisture content of the OG sludge to below 40%, which seriously affects the sludge drying efficiency, cannot achieve continuous production, and significantly increases equipment investment. , Lost the advantages of the drum sludge drying process. If the mass ratio of slag and sludge exceeds 3, the temperature of the sludge will be too high. If it exceeds 250 ° C, water needs to be added to control the temperature, which seriously affects the output of the dried sludge.
  • slag and sludge can be added in batch, fed or semi-fed mode.
  • slag and sludge are added to the container according to the mass ratio of the present invention. After the drying is completed, the sludge mixture is poured out, and the next batch of mixing and drying is performed. Dry out.
  • Feeding refers to continuously adding molten slag and sludge to the container at a certain flow rate, while the mixed and dried sludge in the container is continuously discharged outward.
  • Semi-fluid addition means that the addition of slag and / or sludge is not continuous, but a certain amount of slag and / or sludge is added at intervals depending on the mixing and drying conditions in the container.
  • the flow rate of the slag entering the drum is 30t / h to 120t / h
  • the flow rate of the dryable inorganic sludge is 10t / h to 80t / h.
  • the sludge sludge flow ratio of the sludge is 1.5 to 3.0.
  • the original moisture content of the inorganic sludge (without drying in any way) is 70% to 99%, and the target moisture content after drying is 3% to 15%.
  • the present invention adopts a combination of screening and spinning to achieve steel slag and Isolation of dry sludge.
  • the present invention preferably adopts a screening method.
  • the number of meshes is not less than 60 meshes, and generally the number of meshes is 80 to 100 meshes.
  • Dust, sulfide, and other substances that are harmful to the environment exist in the tail gas produced by the drum method drying sludge, which need to be treated by environmental protection before being discharged.
  • Its tail gas treatment process includes wet alkali washing and activated carbon adsorption to achieve environmental protection emissions.
  • the slag and sludge are processed by the drum, a large amount of steam and dust are generated, and the dust is carried into the exhaust gas treatment device by the steam.
  • the dust is collected in the tail gas treatment device after wet washing or spraying, and then sent to the tailings mixing device through conveying equipment such as a sludge pump, mixed with the original sludge and stirred, and sent in regularly by the conveying equipment such as a sludge pump.
  • the drum is dried to achieve zero discharge of undried sludge.
  • the moisture content of the tailing sludge and the original sludge should not differ too much, so as not to affect the subsequent sludge transportation and drying efficiency. Generally, this moisture content deviation should not exceed ⁇ 5%.
  • the present invention can efficiently utilize the high heat of the slag according to different needs (target moisture content), and achieve fast, stable and continuous direct drying of inorganic sludge.
  • Chemical separation and sludge separation are conducive to the subsequent utilization of granulated slag and mud powder, and increase the added value of dry sludge.
  • the present invention uses a roller technology for processing hot steel slag, which has a simple structure and is easy to operate.
  • FIG. 1 is a flow chart of the drying process of the inorganic sludge by the roller method of the present invention.
  • FIG. 2 is a schematic structural diagram of a drum method inorganic sludge drying device according to the present invention.
  • a method for directly drying inorganic sludge by a drum method according to the present invention includes the following steps:
  • the slag and sludge are fed into the drum by their respective conveying devices according to a certain ratio.
  • the slag and sludge are mixed, heat-exchanged, dehydrated, cooled and crushed by the rotation of the drum and the rolling of steel balls.
  • the sludge is cooled and dried and discharged directly; the original moisture content of the inorganic sludge is 70% to 99%, and the target moisture content after drying is 3% to 15%; the sludge flow ratio of the slag to the inorganic sludge is 1.5 ⁇ 3.0, the mass of dryable inorganic sludge is 10t / h ⁇ 80t / h.
  • the combination of screening and spinning is used to realize the separation of steel slag and dry sludge.
  • Adopt wet alkaline washing and activated carbon adsorption methods to treat dust, sulfide, and organic compounds in the tail gas produced by drum drying sludge and discharge after treatment.
  • the slag and sludge will generate steam and dust during the drum treatment process.
  • the dust is carried by the steam into the tail gas treatment device.
  • the dust is collected by wet washing or spraying, and then sent to the tail mud mixing device through the conveying equipment. It is mixed and stirred with the original sludge, and is periodically and quantitatively sent to the drum device by the conveying equipment such as a sludge pump for drying treatment, thereby achieving zero discharge of undried sludge; the water content of the tailed sludge after mixing and mixing with the water content of the original sludge
  • the rates should not differ too much, and the deviation should not exceed ⁇ 5%.
  • the sieving method is adopted in step 2) for separating the sludge, and the number of meshes is not less than 60 mesh.
  • the device for directly drying inorganic sludge by the drum method includes: a drum 1 containing a plurality of steel balls; a sludge conveying device 2 whose inlet end corresponds to the exit of the drum 1; The inlet end of the sludge separation device 3 corresponds to the outlet of the sludge conveying device 2 and its outlet corresponds to different silos; the exhaust gas treatment device 4 has an air inlet connected to the outlet of the drum 1 through a conveying pipe; The inlet of the matching device 5 is connected to the dust and mud outlet of the tail gas treatment device 4 through a transmission pipe; the outlet of the tailing mixing device 5 is connected to the inlet of the drum 1 through a mud conveying pipe and a sludge pump.
  • the sludge separation device adopts a screening method, and the mesh number of the screen is not less than 60 mesh.
  • the invention adopts a hot state slag drum method processing process, which uses a slag feeding device and a sludge conveying system to respectively send slag and inorganic sludge to a drum at a certain ratio, and uses the drum rotation to fully mix the slag and the sludge.
  • the sludge undergoes mass and heat transfer to obtain cold pellets and dried sludge that meets the moisture content requirements.
  • the device of the invention can realize rapid, stable and low-cost treatment of slag granulation and sludge drying.
  • the metallurgical slag 100 is firstly continuously fed into the rotating drum 1 by being coated with the slag.
  • the inorganic sludge is sent into the drum 1 at a set flow rate through the sludge conveying device, and the steel balls in the drum 1 Under the action of the cylinder, the slag and the water-containing sludge are fully mixed.
  • the slag is granulated, the sludge is dehydrated, and then the sludge 200 is sent into the sealed sludge conveying device 2
  • the sludge separation device 3 performs processing, and the separated materials enter different storage bins according to the composition and classification; the exhaust gas generated during the drum drying sludge process is treated and purified by the exhaust gas treatment device 4 and discharged up to the standard;
  • the tailings are driven into the inlet of the tailings mixing device 5 by a sludge conveying pump, mixed with the sludge produced by the sludge source, and evenly stirred by a stirrer.
  • the sludge pumps are driven into the sludge conveying pipeline according to the specified concentration and sent to the drum 1. .
  • a single roller device treats 180,000 tons of high temperature steel slag per year.
  • OG slurry with a water content of 80% is pumped into the roller device.
  • the sludge (100-130 °C) after the rapid treatment such as drum cooling and dehydration is directly sent to the sludge separation device by the conveying device, and the sludge is dried to a moisture content of about 3%, and the entire process takes only 5 minutes; sufficient heat exchange
  • the subsequent roller steel slag and dried sludge are continuously discharged from the lower part of the sludge separation device, and the granulated slag and mud powder after screening or even spinning are sent to different silos respectively, waiting for the truck to send to the user.
  • the OG slurry with a water content of 70% is pumped into the drum device, and the high-temperature steel slag is cooled with the water of the OG slurry, and the slag is used to dry the sludge; the target moisture content of the sludge is set to 15 %, The flow ratio of slag / mud into the drum is 1.5: 1.0.
  • the sludge (100-130 °C) after the rapid treatment such as drum cooling and dehydration is directly sent to the sludge separation device by the conveying device, and the sludge is dried to a moisture content of about 3%, and the entire process takes 5 minutes; after sufficient heat exchange
  • the drum steel slag and the dried sludge are continuously discharged from the lower part of the sludge separation device, and the slag and mud powder after screening or even spinning are sent to different silos respectively, waiting for the truck to send to the user.
  • the OG slurry with a water content of 95% is pumped into the drum device, and the high-temperature steel slag is cooled with the moisture of the OG slurry, and the slag is used to dry the sludge; the target moisture content of the sludge is set to 3 %,
  • the flow ratio of slag / mud into the drum is 3.0: 1.0.
  • the sludge (100-130 °C) after the rapid treatment such as drum cooling and dehydration is directly sent to the sludge separation device by the conveying device, and the sludge is dried to a moisture content of about 3%, and the entire process takes 5 minutes; after sufficient heat exchange
  • the drum steel slag and the dried sludge are continuously discharged from the lower part of the sludge separation device, and the slag and mud powder after screening or even spinning are sent to different silos respectively, waiting for the truck to send to the user.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the batch feeding mode is adopted, and the OG slurry with a water content of 80% is pumped into the drum device, and the high temperature steel slag is cooled by the water of the OG slurry, and the slag is used to dry the sludge;
  • the target moisture content of the sludge is 3%, and the slag / sludge mass ratio in the drum is 1.9: 1.0.
  • the sludge (100-130 °C) after the rapid treatment such as drum cooling and dehydration is directly sent to the sludge separation device by the conveying device, and the sludge is dried to a moisture content of about 3%, and the entire process takes only 5 minutes; sufficient heat exchange
  • the steel drum slag and the dried sludge are discharged from the lower part of the sludge separation device, and the granulated slag and mud powder after screening or even spinning are sent to different silos respectively, waiting for the truck to send to the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种滚筒法直接干化无机污泥的方法及装置,该方法包括如下步骤:1)滚筒渣泥混合干化:熔渣和污泥分别按比例被送进滚筒(1),在滚筒(1)和钢球滚动的作用下完成混合、换热、脱水、冷却和破碎,熔渣和污泥分别实现冷却、破碎和干化并直接排出;2)渣泥分离:采用筛分、旋分结合方式,实现钢渣和干污泥分离;3)尾气处理:采用湿法碱洗、活性炭吸附方法,将干化污泥所产生的尾气中存在粉尘、硫化物、有机化合物处理后排放;4)尾泥处理:熔渣和污泥在滚筒法处理过程中产生蒸汽和粉尘,粉尘由蒸汽携带进入尾气处理装置(4)中,粉尘经湿法洗涤或喷淋后聚集,然后经由输送设备送入尾泥混配装置(5)中,与原始污泥混合搅拌后,送入滚筒(1)进行干化处理,进而实现未干化污泥零排放。

Description

一种滚筒法直接干化无机污泥的方法及装置 技术领域
本发明涉及固废处理/污泥干化技术,特别涉及一种滚筒法直接干化无机污泥的方法及装置。
背景技术
随着经济发展和城市人口的迅速增长,工业和城市污水的处理率不断提高,污水处理厂的污泥数量与日俱增,污泥处置技术相对落后,污泥围城的现象越来越严重,污泥干化是实现污泥无害化、减量化和资源化的必要环节。从污水处理厂出来的污泥通过机械脱水后含水率一般在75%-85%之间,如果将污泥的含水率降到20%以下,常规的污泥干化技术通常是采用电加热或蒸汽加热的方式,需要消耗大量能源,导致污泥干化成本高企。
现有污泥干化技术中,CN200510048978.6利用锅炉余热;CN200510049554.1和CN200510049556.0利用电厂烟气余热;CN200410052759.0则公开一种回流式可控温污泥干化装置与方法,利用粒径大于4毫米的干化污泥回流与湿污泥混合,利用钢丝网将污泥切割成较小的块体后进入回转窑,可提高后续热风烘干的效率,但污泥含水率过高是无法实现的。CN03155966.2公开的采用负压密闭方式,在切断了污泥处理过程中所产生的各种病毒向外传播与蔓延渠道的同时,也可避免系统在移动过程中系统空间的污染空气及所带的病毒向外界泄漏传播,但由于所有工艺装置均集中在移动设备中,其处理能力必定相对较低,无法实现连续化作业。
同时,我国作为钢铁大国,年产钢接近10亿吨,每年产生的钢铁渣超过2亿吨,每吨炉渣蕴含的热能相当于60公斤标煤,由于炉渣是热的不良导体,炉渣的余热回收进展缓慢,巨量热能白白浪费。
为了解决传统污泥干化成本高从而影响污泥处置,而钢铁渣余热又无法有效利用的难题,本发明提出了利用冶金熔渣余热干化污泥的工艺路线和实施方法。
发明内容
本发明的目的在于提供一种滚筒法直接干化无机污泥的方法及装置,利用热态渣滚筒法处理技术,将熔渣与污泥按一定比例混合,进而实现一步解决熔渣冷却粒化和无机污泥干化两个难题。
为达到上述目的,本发明的技术方案是:
一种利用熔渣干化无机污泥的方法,其包括如下步骤:混合熔渣与污泥,待污泥含水量降低到3%~15%后,分离钢渣和干污泥。
优选地,熔渣与污泥的混合质量比为1.5~3。
优选地,采用分批、流加或半流加方式进行混合和干燥。
优选地,采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离。进一步优选地,采用筛分方式分离钢渣和干污泥,筛网目数不小于60目。
优选地,所述方法还包括尾气处理和尾泥处理步骤。进一步优选地,尾气处理包括,采用湿法碱洗和/或活性炭吸附方法,将干化污泥所产生的尾气中存在的粉尘、硫化物处理后排放;尾泥处理包括,将所产生的粉尘经湿法洗涤或喷淋后聚集,与待干化污泥混合搅拌后与熔渣混合进行干化处理。
优选地,在容纳有钢球的滚筒中进行熔渣与污泥的混合。
优选地,所述方法包括,熔渣和污泥分别由相应的输送装置输送入容纳有钢球的滚筒中,待污泥含水量降低到3%~15%后,钢渣和干污泥的混合物由位于滚筒出口端的渣泥输送装置输送到渣泥分离装置,进行钢渣与干污泥的分离;干化污泥过程中所产生的尾气中存在的粉尘、硫化物由滚筒出口进入尾气处理装置,处理后排放;尾气处理分离出的粉尘经由尾气处理装置的尘泥出口进入尾泥混配装置,与待干化的污泥混合后经由泥浆输送管道输入所述滚筒内。
优选地,无机污泥原始含水率为70%~99%,采用流加或半流加的方式添加熔渣和无机污泥,无机污泥的处理量为10t/h~80t/h,熔渣的处理量为30t/h~120t/h。
优选地,混合、干化后的渣泥的温度在100~130℃的范围内。
优选地,尾泥含水率与待干化无机污泥的含水率偏差不超过±5%。
还提供一种滚筒法直接干化无机污泥的方法,其包括如下步骤:
1)滚筒渣泥混合干化
熔渣和污泥分别由各自的输送装置按一定的质量比例被送进滚筒,熔渣、污泥 在滚筒转动和钢球滚动的作用下完成混合、换热、脱水、冷却和破碎,熔渣和污泥实现冷却和干化并直接排出;
无机污泥原始含水率为70%~99%,干化后目标含水率为3%~15%;熔渣与无机污泥的渣泥流量比(以质量计)为1.5~3.0,可干化无机污泥的量为10t/h~80t/h;
2)渣泥分离
采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离;
3)尾气处理
采用湿法碱洗、活性炭吸附方法,将滚筒法干化污泥所产生的尾气中存在粉尘、硫化物处理后排放;
4)尾泥处理
熔渣和污泥经过滚筒处理后产生蒸汽和粉尘,粉尘由蒸汽携带进入尾气处理装置中,粉尘经湿法洗涤或喷淋后聚集,然后经由输送设备送入尾泥混配装置中,与原始污泥混合搅拌后由污泥泵等输送设备定期送入滚筒进行干化处理,实现未干化污泥零排放;经混合搅拌后的尾泥含水率与无机污泥原始含水率不应相差过大,这个含水率偏差不应超过±5%。
优选的,步骤2)渣泥分离采用筛分方式,筛网目数不小于60目。
本发明所述的滚筒法直接干化无机污泥的装置包括:滚筒,其内容纳若干钢球;渣泥输送装置,其进口端对应所述滚筒的出口;渣泥分离装置,其进口端对应所述渣泥输送装置的出口,其出口对应不同料仓;尾气处理装置,其进气口通过输送管道连接所述滚筒的出口;尾泥混配装置,其进口通过输送管道连接所述尾气处理装置的尘泥出口;泥浆输送管道,用于将尾泥混配装置的出口连接至所述滚筒进口;污泥泵,设置在泥浆输送管道上,用于将污泥泵送至滚筒。
优选的,所述渣泥分离装置采用筛分方式,筛网目数不小于60目。
本发明采用热态渣滚筒工艺,通过熔渣进料装置和污泥输送系统分别将熔渣和无机污泥按一定比例同步地输送至滚筒中,利用滚筒转动充分混合渣和泥,渣泥经过传质传热过程得到冷态粒渣和满足含水率要求的干化污泥。本发明装置可实现熔渣粒化和污泥干化的快速、稳定、连续化处理。
在本发明方法中:
(1)渣泥混合干化工艺
熔渣和污泥可分别由各自的输送装置按一定的质量比例输送中合适的容器中。容器中可设有合适的搅拌装置,以使熔渣和污泥充分搅拌和接触。优选地,容器自身可在外部动力的带动下发生转动。
优选地,该容器是滚筒,其中装有一定尺寸、一定数量的钢球。熔渣、污泥在滚筒转动和钢球滚动的作用下完成混合、换热、脱水、冷却和破碎等物理过程,进而实现熔渣冷却、粒化和满足污泥目标含水率的污泥直接干化过程。
在整个干化过程中,熔渣和污泥经过几分钟的时间快速实现冷却和干化并直接排出。
通常,容器中熔渣和污泥的质量比为1.5~3。若容器中渣泥质量比小于1.5,则现场需设置前置机械干化工艺将OG泥含水率控制到40%以下,这严重影响污泥干化效率,无法实现连续生产,并且大幅增加设备投入,丧失了滚筒污泥干化工艺的优势。若熔渣和污泥的质量比超过3,渣泥的温度将过高,如超过250℃,需补水以控制温度,严重影响干化污泥产量。
混合、干化时,可采用分批、流加或半流加方式添加熔渣和污泥。分批时每次混合、干化时,按照本发明所述的质量比在容器中加入熔渣和污泥,待完成干化后,倒出渣泥混合物,在进行下一批次的混合和干化。流加指不停地向容器中以一定的流量加入熔渣和污泥,同时容器内完成混合、干化的渣泥不停地向外排出。半流加指熔渣和/或污泥的添加并不连续,而是根据容器内混合和干化情况,间隔一段时间添加一定量的熔渣和/或污泥。
一般地,以流加方式进行混合干化时,熔渣进入滚筒的流量为30t/h~120t/h,可干化无机污泥的流量为10t/h~80t/h,熔渣与无机污泥的渣泥流量比为1.5~3.0。
一般地,无机污泥原始含水率(未经任何方式干化)为70%~99%,干化后目标含水率为3%~15%。
(2)渣泥分离工艺
经过冷却和干化后的渣、泥是充分混合在一起的,需要进行渣、泥分离以利于后续资源化利用。一般地,钢渣和干化污泥在物理特性上是有较为明显区别的,主要体现在密度和粒径等方面有所差异,因此本发明采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离。鉴于钢渣与干污泥粒径存在数量级的差距,本发明优选采用筛分方式,筛网目数不小于60目,一般地筛网目数为80~100目。
(3)尾气处理工艺
滚筒法干化污泥所产生的尾气中存在粉尘、硫化物等对环境有所危害的物质,需经过环保处理才能排放。其尾气处理工艺包括湿法碱洗、活性炭吸附,以实现环保排放。
(4)尾泥处理工艺
熔渣和污泥经过滚筒处理后会产生大量的蒸汽和粉尘,粉尘由蒸汽携带进入尾气处理装置中。粉尘在尾气处理装置中经湿法洗涤或喷淋后聚集,然后经由污泥泵等输送设备送入尾泥混配装置中,与原始污泥混合搅拌,由污泥泵等输送设备定期送入滚筒进行干化处理,进而实现未干化污泥零排放。经混合搅拌后的尾泥含水率与原始污泥含水率不应相差过大,以免影响后续污泥输送、干化的效率。一般地,这个含水率偏差不应超过±5%。
本发明的有益效果:
与现有利用电厂等尾气热源干化污泥技术相比,本发明可根据不同需求(目标含水率),高效利用了熔渣的高热量,实现了快速、稳定、连续的无机污泥直接干化、渣泥分离,有利于粒渣和泥粉后续资源化利用,提升了干污泥的附加值。本发明在工艺装备实现方面,利用处理热态钢渣的滚筒技术,结构简单,易操作。
附图说明
图1为本发明滚筒法无机污泥干化工艺的流程图。
图2为本发明滚筒法无机污泥干化装置的结构示意图。
具体实施方式
参见图1,本发明一种滚筒法直接干化无机污泥的方法,其包括如下步骤:
1)滚筒法渣、泥混合干化
熔渣和污泥分别由各自的输送装置按一定的比例被送进滚筒,熔渣、污泥在滚筒转动和钢球滚动的作用下完成混合、换热、脱水、冷却和破碎,熔渣和污泥实现冷却和干化并直接排出;无机污泥原始含水率为70%~99%,干化后目标含水率为3%~15%;熔渣与无机污泥的渣泥流量比为1.5~3.0,可干化无机污泥的质量为10t/h~80t/h。
2)渣泥分离
采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离。
3)尾气处理
采用湿法碱洗、活性炭吸附方法,将滚筒法干化污泥所产生的尾气中存在粉尘、硫化物、有机化合物处理后排放。
4)尾泥处理
熔渣和污泥在滚筒处理过程中会产生蒸汽和粉尘,粉尘由蒸汽携带进入尾气处理装置中,粉尘经湿法洗涤或喷淋后聚集,然后经由输送设备送入尾泥混配装置中,与原始污泥混合搅拌,由污泥泵等输送设备定期、定量送入滚筒装置进行干化处理,进而实现未干化污泥零排放;经混合搅拌后的尾泥含水率与原始污泥含水率不应相差过大,偏差不应超过±5%。
优选的,步骤2)渣泥分离采用筛分方式,筛网目数不小于60目。
参见图2,本发明所述的滚筒法直接干化无机污泥的装置,其包括:滚筒1,其内容纳若干钢球;渣泥输送装置2,其进口端对应所述滚筒1的出口;渣泥分离装置3,其进口端对应所述渣泥输送装置2的出口,其出口对应不同料仓;尾气处理装置4,其进气口通过输送管道连接所述滚筒1的出口;尾泥混配装置5,其进口通过输送管道连接所述尾气处理装置4的尘泥出口;尾泥混配装置5出口通过泥浆输送管道及污泥泵连接至所述滚筒1进口。
优选的,所述渣泥分离装置采用筛分方式,筛网目数不小于60目。
本发明采用热态渣滚筒法处理工艺,通过熔渣进料装置和污泥输送系统分别将熔渣和无机污泥按一定比例同步地输送至滚筒中,利用滚筒转动充分混合渣和泥,渣泥经过传质传热过程得到冷态粒渣和满足含水率要求的干化污泥。本发明装置可实现熔渣粒化和污泥干化的快速、稳定、低成本处理。
工作过程如下:
冶金熔渣100首先由熔渣渣包被连续地送进转动的滚筒1,同时无机污泥由产生地经污泥输送装置按设定的流量被送进滚筒1,在滚筒1中的钢球和筒体共同作用下,熔渣和含水污泥充分混合,经过传热、传质过程后,熔渣得到粒化,污泥完成脱水,然后渣泥200经由密封的渣泥输送装置2送入渣泥分离装置3进行处理,分离后的物料根据成分和分类进入不同料仓;在滚筒干化污泥过程中产生的废气由 尾气处理装置4处理净化后达标排放;尾气处理装置4所产生的尾泥经污泥输送泵打入尾泥混配装置5入口,与污泥源产生的泥浆混合,经搅拌器搅拌均匀后按规定浓度由污泥泵打入泥浆输送管道,送入滚筒1中。
实施例一:
某钢厂滚筒法钢渣粒化和OG泥干化综合处理工艺,单台滚筒装置每年处理高温钢渣18万吨,在处理钢渣的过程中,将含水率80%的OG泥浆泵入滚筒装置内,利用OG泥浆的水分冷却高温钢渣,同时利用钢渣的显热干化污泥;设定污泥目标含水率为3%,渣/泥进入滚筒的流量比为1.9:1.0,每年可干化OG泥9.5万吨。经过滚筒冷却、脱水等快速处理后的渣泥(100-130℃)被输送装置直接送入渣泥分离装置,污泥被干化到含水率3%左右,整个过程仅需要5min;充分换热后的滚筒钢渣和干化污泥从渣泥分离装置下部连续放出,经过筛分甚至旋分后的粒渣和泥粉分别送入不同料仓,等待卡车送至用户使用。
实施例二:
在处理钢渣的过程中,将含水率70%的OG泥浆泵入滚筒装置内,利用OG泥浆的水分冷却高温钢渣,同时利用钢渣的显热干化污泥;设定污泥目标含水率为15%,渣/泥进入滚筒的流量比为1.5:1.0。经过滚筒冷却、脱水等快速处理后的渣泥(100-130℃)被输送装置直接送入渣泥分离装置,污泥被干化到含水率3%左右,整个过程需要5min;充分换热后的滚筒钢渣和干化污泥从渣泥分离装置下部连续放出,经过筛分甚至旋分后的粒渣和泥粉分别送入不同料仓,等待卡车送至用户使用。
实施例三:
在处理钢渣的过程中,将含水率95%的OG泥浆泵入滚筒装置内,利用OG泥浆的水分冷却高温钢渣,同时利用钢渣的显热干化污泥;设定污泥目标含水率为3%,渣/泥进入滚筒的流量比为3.0:1.0。经过滚筒冷却、脱水等快速处理后的渣泥(100-130℃)被输送装置直接送入渣泥分离装置,污泥被干化到含水率3%左右,整个过程需要5min;充分换热后的滚筒钢渣和干化污泥从渣泥分离装置下部连续 放出,经过筛分甚至旋分后的粒渣和泥粉分别送入不同料仓,等待卡车送至用户使用。
实施例四:
在处理钢渣的过程中,采用分批加料的模式,将含水率80%的OG泥浆泵入滚筒装置内,利用OG泥浆的水分冷却高温钢渣,同时利用钢渣的显热干化污泥;设定污泥目标含水率为3%,滚筒内的渣/泥质量比为1.9:1.0。经过滚筒冷却、脱水等快速处理后的渣泥(100-130℃)被输送装置直接送入渣泥分离装置,污泥被干化到含水率3%左右,整个过程仅需要5min;充分换热后的滚筒钢渣和干化污泥从渣泥分离装置下部放出,经过筛分甚至旋分后的粒渣和泥粉分别送入不同料仓,等待卡车送至用户使用。

Claims (13)

  1. 一种利用熔渣干化无机污泥的方法,其特征是,包括如下步骤:混合熔渣与污泥,待污泥含水量降低到3%~15%后,分离钢渣和干污泥。
  2. 如权利要求1所述的利用熔渣干化无机污泥的方法,其特征是,熔渣与污泥的混合质量比为1.5~3。
  3. 如权利要求1所述的利用熔渣干化无机污泥的方法,其特征是,采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离。
  4. 如权利要求1所述的利用熔渣干化无机污泥的方法,其特征是,所述方法还包括尾气处理和尾泥处理步骤。
  5. 如权利要求4所述的利用熔渣干化无机污泥的方法,其特征是,
    所述尾气处理包括,采用湿法碱洗和/或活性炭吸附方法,将干化污泥所产生的尾气中存在的粉尘、硫化物和有机化合物处理后排放;
    所述尾泥处理包括,将所产生的粉尘经湿法洗涤或喷淋后聚集,与待干化污泥混合搅拌后,与熔渣混合进行干化处理。
  6. 如权利要求1所述的利用熔渣干化无机污泥的方法,其特征是,在容纳有钢球的滚筒中进行熔渣与污泥的混合。
  7. 如权利要求6所述的利用熔渣干化无机污泥的方法,其特征是,所述方法包括,熔渣和污泥分别由相应的输送装置输送入容纳有钢球的滚筒中,待污泥含水率降低到3%~15%后,钢渣和干污泥的混合物由位于滚筒出口端的渣泥输送装置输送到渣泥分离装置,进行钢渣与干污泥的分离;干化污泥过程中所产生的尾气中存在的粉尘、硫化物和有机化合物由滚筒出口进入尾气处理装置,处理后达标排放;尾气处理过程中分离出来的粉尘经由尾气处理装置的尘泥出口进入尾泥混配装置,与待干化的污泥混合后经由泥浆输送管道输入至所述滚筒内。
  8. 如权利要求3所述的利用熔渣干化无机污泥的方法,其特征是,所述渣泥分离装置采用筛分方式,筛网目数不小于60目。
  9. 如权利要求1所述的利用熔渣干化无机污泥的方法,其特征是,以分批、流加或半流加方式进行混合和干化。
  10. 一种滚筒法直接干化无机污泥的方法,其特征是,包括如下步骤:
    1)滚筒渣泥混合干化
    熔渣和污泥分别由各自的输送装置按一定的流量比例被送进滚筒,熔渣、污泥在滚筒转动和钢球滚动的作用下完成混合、换热、脱水、冷却和破碎,熔渣和污泥实现冷却和干化并直接排出;其中,无机污泥原始含水率为70%~99%,干化后目标含水率为3%~15%;熔渣与无机污泥的渣泥流量比为1.5~3.0,无机污泥的流量为10t/h~80t/h;
    2)渣泥分离
    采用筛分和旋分相结合的方式,实现钢渣和干污泥的分离;
    3)尾气处理
    采用湿法碱洗、活性炭吸附方法,将滚筒法干化污泥所产生的尾气中存在粉尘、硫化物、有机化合物处理后排放;
    4)尾泥处理
    尾气处理过程中产生的粉尘经湿法洗涤或喷淋后聚集,然后经由输送设备送入尾泥混配装置中,与原始污泥混合搅拌后,由污泥泵定期送入滚筒进行干化处理;经混合搅拌后的尾泥含水率与无机污泥原始含水率原始污泥含水率偏差不超过±5%。
  11. 如权利要求10所述的滚筒法直接干化无机污泥的方法,其特征是,步骤2)渣泥分离采用筛分方式,筛网目数不小于60目。
  12. 一种用于滚筒法直接干化无机污泥的装置,其特征在于,包括:
    滚筒,其容纳若干钢球;
    渣泥输送装置,其进口端对应所述滚筒的出口;
    渣泥分离装置,其进口端对应所述渣泥输送装置的出口,其出口对应不同料仓;
    尾气处理装置,其进气口通过输送管道连接所述滚筒的出口;
    尾泥混配装置,其进口通过输送管道连接所述尾气处理装置的尘泥出口;
    泥浆输送管道,用于连接尾泥混配装置的出口与滚筒的进口;
    污泥泵,设置在泥浆输送管道上,用于将污泥泵送至滚筒。
  13. 如权利要求12所述的用于滚筒法直接干化无机污泥的装置,其特征在于,所述渣泥分离装置采用筛分方式,筛网目数不小于60目。
PCT/CN2019/108152 2018-09-29 2019-09-26 一种滚筒法直接干化无机污泥的方法及装置 WO2020063745A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021004122-2A BR112021004122A2 (pt) 2018-09-29 2019-09-26 método e aparelho para secagem direta de lodo inorgânico com processo de extração por tambor
JP2021516959A JP7190560B2 (ja) 2018-09-29 2019-09-26 回転バレル法で無機性汚泥を直接乾燥する方法及び装置
KR1020217011900A KR20210059774A (ko) 2018-09-29 2019-09-26 드럼 방식의 무기 슬러지 직접 건조 방법 및 장치
US17/278,435 US11891318B2 (en) 2018-09-29 2019-09-26 Method and apparatus for direct drying of inorganic sludge with drum drawing process
EP19866463.3A EP3858792B1 (en) 2018-09-29 2019-09-26 Method and apparatus for direct drying of inorganic sludge with drum drawing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811145994.0A CN109293194B (zh) 2018-09-29 2018-09-29 一种滚筒法直接干化无机污泥的方法及装置
CN201811145994.0 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020063745A1 true WO2020063745A1 (zh) 2020-04-02

Family

ID=65165021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108152 WO2020063745A1 (zh) 2018-09-29 2019-09-26 一种滚筒法直接干化无机污泥的方法及装置

Country Status (8)

Country Link
US (1) US11891318B2 (zh)
EP (1) EP3858792B1 (zh)
JP (1) JP7190560B2 (zh)
KR (1) KR20210059774A (zh)
CN (1) CN109293194B (zh)
BR (1) BR112021004122A2 (zh)
TW (1) TWI815980B (zh)
WO (1) WO2020063745A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094030A (zh) * 2020-09-17 2020-12-18 毅康科技有限公司 一种污泥干燥破碎处理装置
CN116481287A (zh) * 2023-06-25 2023-07-25 德州斯诺威机械有限公司 一种颗粒饲料加工在线烘干装置
EP4190919A4 (en) * 2020-07-31 2023-12-06 Baoshan Iron & Steel Co., Ltd. METHOD AND INTEGRATED DRYING DEVICE FOR DRY GRANULAR SLAG AND SLUDGE

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293194B (zh) * 2018-09-29 2022-07-26 宝山钢铁股份有限公司 一种滚筒法直接干化无机污泥的方法及装置
CN111253045A (zh) * 2020-02-01 2020-06-09 肇庆泉兴生态科技有限公司 一种钢渣基城镇污泥脱水剂及其脱水方法
CN114057371B (zh) * 2020-07-31 2023-11-14 宝山钢铁股份有限公司 一种基于颗粒热源的污泥干化处理方法
CN114057372B (zh) * 2020-07-31 2023-11-14 宝山钢铁股份有限公司 有机污泥的滚筒渣余热干化方法
CN112503856A (zh) * 2020-12-07 2021-03-16 张绪祎 用湿泥料干燥冷淬液态熔融料的方法
CN113800731A (zh) * 2021-09-14 2021-12-17 蕉岭伟态环保有限责任公司 一种城市污泥无害化环保处理系统
CN115253400B (zh) * 2022-08-08 2023-08-11 无锡市曜通环保机械有限公司 连续式旋流澄清处理设备
US20240102118A1 (en) * 2022-09-22 2024-03-28 Shandong University System and method for delivering fluidized powder based on flue gas carrying waste slag and instant cooling steel slag
CN116920536A (zh) * 2023-05-11 2023-10-24 国电环境保护研究院有限公司 燃煤烟气和脱硫废水处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186422A (zh) * 2007-12-14 2008-05-28 东南大学 闭式多室流化床污泥干燥方法
CN201327265Y (zh) * 2008-08-22 2009-10-14 北京中矿环保科技股份有限公司 一种干化污泥的系统及相应的热电厂与有污泥产出的系统
JP2011163648A (ja) * 2010-02-09 2011-08-25 Tsukishima Kikai Co Ltd 有機性含水廃棄物の乾燥方法及びその設備
CN105731754A (zh) * 2016-02-24 2016-07-06 同济大学 一种利用炉渣余热干化污泥的处理装置及方法
KR101729994B1 (ko) * 2015-10-28 2017-04-25 주식회사 한미엔텍 열매체를 이용한 저온 슬러지 건조장치 및 그 건조방법
CN109293194A (zh) * 2018-09-29 2019-02-01 宝山钢铁股份有限公司 一种滚筒法直接干化无机污泥的方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165268A (en) * 1963-01-08 1965-01-12 Harsco Corp Method and apparatus for processing ferrous slag
US3909410A (en) * 1973-02-20 1975-09-30 Young W Elmo Process for treating sewage sludge
JPS62294140A (ja) * 1986-06-11 1987-12-21 Nippon Jiryoku Senko Kk 製鉄所から発生するスラグの処理方法
US4787323A (en) * 1987-08-12 1988-11-29 Atlantic Richfield Company Treating sludges and soil materials contaminated with hydrocarbons
JPH0741269B2 (ja) * 1991-08-12 1995-05-10 日本ケミテック株式会社 汚泥からの金属回収方法
TW585924B (en) * 2002-04-03 2004-05-01 Kobe Steel Ltd Method for making reduced iron
CN1329332C (zh) * 2004-08-31 2007-08-01 宝山钢铁股份有限公司 滚筒法高粘度熔态炉渣的处理方法
RU2293070C2 (ru) 2005-04-18 2007-02-10 Василий Михайлович Кнатько Способ комплексной переработки и утилизации осадков сточных вод
JP2009233563A (ja) 2008-03-27 2009-10-15 Metawater Co Ltd 汚泥乾燥機の運転制御方法
CN101885574A (zh) * 2009-05-14 2010-11-17 武汉东海石化重型装备有限公司 市政污泥热氧化处理成套装备
US9016477B2 (en) * 2012-03-19 2015-04-28 Mid-American Gunite, Inc. Method and system for processing slag material
RU2545574C2 (ru) 2012-11-16 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский государственный университет" Способ переработки осадков сточных вод
CN104512988A (zh) * 2013-09-29 2015-04-15 宝山钢铁股份有限公司 一种利用不锈钢熔渣处理重金属污泥的方法
CN105399304B (zh) * 2015-12-25 2017-12-01 柳建国 生物污泥干化和焚烧循环处理方法及其成套设备
CN105948459A (zh) * 2016-05-19 2016-09-21 山东齐盛机电工程有限公司 一种污泥干化焚烧处置方法
CN107557505A (zh) * 2016-06-30 2018-01-09 宝山钢铁股份有限公司 适合全量钢渣处理的滚筒法处理工艺及处理装置
KR101736191B1 (ko) * 2016-09-01 2017-05-16 주식회사 한미엔텍 자생 그래뉼을 이용한 슬러지 건조장치 및 그 건조방법
RU2666862C1 (ru) 2017-04-20 2018-09-12 ООО "СтройИнвестТопаз" Способ обезвреживания механически обезвоженных осадков сточных вод

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186422A (zh) * 2007-12-14 2008-05-28 东南大学 闭式多室流化床污泥干燥方法
CN201327265Y (zh) * 2008-08-22 2009-10-14 北京中矿环保科技股份有限公司 一种干化污泥的系统及相应的热电厂与有污泥产出的系统
JP2011163648A (ja) * 2010-02-09 2011-08-25 Tsukishima Kikai Co Ltd 有機性含水廃棄物の乾燥方法及びその設備
KR101729994B1 (ko) * 2015-10-28 2017-04-25 주식회사 한미엔텍 열매체를 이용한 저온 슬러지 건조장치 및 그 건조방법
CN105731754A (zh) * 2016-02-24 2016-07-06 同济大学 一种利用炉渣余热干化污泥的处理装置及方法
CN109293194A (zh) * 2018-09-29 2019-02-01 宝山钢铁股份有限公司 一种滚筒法直接干化无机污泥的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4190919A4 (en) * 2020-07-31 2023-12-06 Baoshan Iron & Steel Co., Ltd. METHOD AND INTEGRATED DRYING DEVICE FOR DRY GRANULAR SLAG AND SLUDGE
CN112094030A (zh) * 2020-09-17 2020-12-18 毅康科技有限公司 一种污泥干燥破碎处理装置
CN112094030B (zh) * 2020-09-17 2022-12-13 毅康科技有限公司 一种污泥干燥破碎处理装置
CN116481287A (zh) * 2023-06-25 2023-07-25 德州斯诺威机械有限公司 一种颗粒饲料加工在线烘干装置
CN116481287B (zh) * 2023-06-25 2023-08-18 德州斯诺威机械有限公司 一种颗粒饲料加工在线烘干装置

Also Published As

Publication number Publication date
TW202026255A (zh) 2020-07-16
US20210347665A1 (en) 2021-11-11
BR112021004122A2 (pt) 2021-05-25
TWI815980B (zh) 2023-09-21
US11891318B2 (en) 2024-02-06
EP3858792B1 (en) 2024-02-07
EP3858792A1 (en) 2021-08-04
CN109293194A (zh) 2019-02-01
CN109293194B (zh) 2022-07-26
JP7190560B2 (ja) 2022-12-15
KR20210059774A (ko) 2021-05-25
EP3858792A4 (en) 2021-10-06
JP2022501187A (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020063745A1 (zh) 一种滚筒法直接干化无机污泥的方法及装置
WO2013026263A1 (zh) 脱水污泥再处理方法
CN112520769B (zh) 利用水泥厂废烟气及其余热进行赤泥脱碱同时回收氧化铝的工艺及装置
CN109179469A (zh) 一种利用电石渣生产活性氧化钙的装置及方法
CN108585009A (zh) 一种利用白泥制备铝酸钙粉的生产线及其工艺
CN104446064A (zh) 烟气脱硫生产水泥的装置及方法
KR20220144816A (ko) 고로 용융 슬래그 과립화와 폐열 회수 이용 장치 및 방법
CN110330211A (zh) 一种高温钢渣与污泥耦合干化的工艺及装置
JP2023537699A (ja) 乾式造粒スラグと汚泥の連合乾燥のプロセスおよび装置
CN209872794U (zh) 一种利用白泥制备高铝水泥的生产线
CN110183122B (zh) 基于工业余热协同处置固废制备胶凝材料的系统及方法
CN102653403B (zh) 一种回收电石渣制备电石的工艺方法
CN111635249A (zh) 一种轻质高强度陶粒及其制备方法
CN115722518B (zh) 一种建筑装修垃圾低碳高效资源化处置系统及其方法
CN114057371B (zh) 一种基于颗粒热源的污泥干化处理方法
CN102719665B (zh) 利用炼钢污泥生产炼钢用造渣剂的工艺方法
CN111689788B (zh) 一种碱泥基陶粒及其制备方法
CN104529205A (zh) 水泥生产装置及方法
RU2800936C2 (ru) Способ прямого обезвоживания неорганических осадков посредством процесса барабанного типа и устройство для его осуществления
CN114057372B (zh) 有机污泥的滚筒渣余热干化方法
CN102658007A (zh) 利用电石渣生产钝化氧化钙脱硫剂的方法
CN102745915A (zh) 资源再生型高活性石灰的生产装置及方法
CN202988947U (zh) 一种流化床污泥干化系统
CN115744904B (zh) 一种短流程脱硫柱状活性焦的制备装置及方法
CN115446075B (zh) 电石渣浆处理系统及处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866463

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004122

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021516959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011900

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019866463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019866463

Country of ref document: EP

Effective date: 20210429

ENP Entry into the national phase

Ref document number: 112021004122

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210304