WO2020063706A1 - 一种投影幕及投影系统 - Google Patents

一种投影幕及投影系统 Download PDF

Info

Publication number
WO2020063706A1
WO2020063706A1 PCT/CN2019/107998 CN2019107998W WO2020063706A1 WO 2020063706 A1 WO2020063706 A1 WO 2020063706A1 CN 2019107998 W CN2019107998 W CN 2019107998W WO 2020063706 A1 WO2020063706 A1 WO 2020063706A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
projection screen
projection
functional layer
Prior art date
Application number
PCT/CN2019/107998
Other languages
English (en)
French (fr)
Inventor
王杰
孙微
王霖
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020063706A1 publication Critical patent/WO2020063706A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the invention relates to a projection screen and a projection system including the projection screen.
  • the projection screen As an important component of the projection display system, has a great influence on the display effect. Further, the contrast of the projection screen is an important parameter for measuring the visual effect of the display. Generally speaking, the larger the contrast, the clearer the image, the stronger the detail expression, and the more obvious the gray level; the smaller the contrast, the more blurred the screen display. The worse the detail integrity of the entire picture.
  • stray light in the environment is the main factor affecting the contrast of the reflective projection screens, because the reflective projection screen not only reflects the light of the projector but also reflects the stray light in the environment, which makes the screen displayed by the entire projection screen
  • the contrast of the affected by the ambient light is much lower than the contrast of the projector itself, which greatly affects the image quality of the projection display system.
  • reflective projection screens with anti-ambient light usually adopt microstructure coating technology, that is, the upper surface of the microstructure is provided with a light absorbing material to absorb stray light in the environment, and the lower surface of the microstructure is provided with a reflective material for reflecting the Projection of light to achieve the purpose of resisting ambient light, but this type of reflective projection screen structure can not completely absorb stray light in the environment, there are still some other angles of stray light are reflected to the viewer's perspective, making the reflective projection screen resistant Ambient light capabilities are very limited.
  • the present invention proposes a projection screen, which has the characteristics of simple structure, easy processing, low cost, and high contrast.
  • a projection screen includes a substrate, a functional layer, and a light absorbing layer for absorbing light, which are sequentially arranged from a light incident side;
  • the functional layer includes a plurality of microstructures connected to the surface of the light absorbing layer, the microstructures are used to reflect an incident part of the projected light, and the microstructure reflects part of the ambient light incident at multiple angles to the light absorption Floor.
  • the microstructure is a circular or elliptical mesa structure.
  • the microstructures are distributed in an array, periodically in a vertical direction, or periodically in a horizontal direction; further, the periodic arrangement in a certain direction is used to improve the availability in this direction. Perspective.
  • a reflective layer is provided on a surface of the microstructure facing the light absorbing layer, and the reflective layer is a metal reflective layer or a diffuse reflective layer.
  • a reflective layer is provided on the surface of the microstructure to increase reflection of the projected light.
  • the gap is filled with a transparent material having a refractive index lower than the refractive index of the microstructure, so that as much of the projection light as possible is returned to the viewer's eyes through total reflection.
  • the projection screen further includes a diffusion layer provided on a light emitting surface of the substrate, the substrate includes a first surface and a second surface, and the functional layer and the diffusion layer are formed on the substrate by integral molding. The first and second surfaces of the substrate are described to reduce the production process of the projection screen and save costs.
  • the projection screen further includes a diffusion layer provided on a light emitting surface of the substrate, the substrate includes a first surface and a second surface, and the functional layer and the diffusion layer are formed on the substrate by bonding.
  • the first surface and the second surface of the substrate, and the diffusion layer is a bulk diffusion structure or a surface diffusion structure.
  • the diffusion layer can increase the divergence angle of the projection light to improve the viewing angle of the projection screen.
  • the projector is a telephoto projector, and the telephoto projector emits projection light from the light incident side toward the projection screen.
  • the functional layer in the projection screen of the present invention has a circular truncated body structure, and the microstructure includes a horizontal plane in contact with the light absorption layer. Since the horizontal plane of the functional layer is in contact with the light absorbing layer, the ambient light incident on the horizontal plane is absorbed by the light absorbing layer, and the ambient light incident on the inclined surface of the microstructure is also reflected by the light absorbing layer after being reflected toward the horizontal plane.
  • the circular table body microstructure of the present invention can reflect ambient light incident at multiple angles, and can absorb ambient light as much as possible, thereby obtaining a high-contrast image.
  • the microstructure of the round table in this case can further improve the viewing angle of the projected light that is emitted by reflecting the projection light.
  • beneficial effects of the present invention are not limited to the above-mentioned effects, but may be any beneficial effects described herein.
  • FIG. 1 is a schematic structural diagram of a projection screen of the present invention.
  • FIG. 2 is a schematic structural diagram of a functional layer of a projection screen of the present invention.
  • FIG 3 is a schematic cross-sectional view of a microstructure of a functional layer according to the present invention.
  • FIG. 4 is a schematic diagram of a projection light optical path according to the present invention.
  • FIG. 5 is a schematic diagram of an ambient light optical path according to the present invention.
  • FIG. 6 is a cross-sectional view of a functional layer and a schematic view of projection light according to the present invention.
  • FIG. 7 is a cross-sectional view of a functional layer and a schematic diagram of projected light according to the present invention.
  • the vertical direction of the projection screen is the vertical direction of the screen
  • the horizontal direction of the projection screen is the left and right direction of the screen.
  • the “screen up-down direction” and “screen left-right direction” described in the other drawings of the present invention are the same.
  • the projection screen of the present invention includes a diffusion layer 40, a substrate 10, a functional layer 20, and a light absorption layer 30 in this order from the light incident side.
  • the diffusion layer 40 and the functional layer 20 are disposed on two opposite surfaces of the substrate 10.
  • the layer 20 is connected to the light absorbing layer 30.
  • the light absorbing layer 30 is used to absorb the projection light incident on the light absorbing layer 30 and the ambient light and other stray light incident from other directions.
  • the light absorbing layer 30 may be a body absorbing layer made of a light absorbing material.
  • the light absorbing material is preferably a black light absorbing material.
  • the “body absorbing layer” in the present invention means that the light absorbing layer 30 contains a light absorbing material. At this time, the light absorbing material is a light absorbing material inside the light absorbing layer 30.
  • the absorption rate of 30 pairs of visible light is greater than or equal to 90%.
  • the light absorbing layer 30 may be a surface absorbing layer made by coating a light absorbing material on a surface of the substrate facing the functional layer 20, and the light absorbing material is preferably a black light absorbing material. At this time, light absorption is achieved.
  • the role is to absorb the light-absorbing material coated on the surface of the substrate. Specifically, it can be achieved by coating a layer of light-absorbing material, or by coating multiple layers of light-absorbing material to increase the light absorption of the light-absorbing layer.
  • the absorption of visible light is 90% or more.
  • the functional layer 20 includes a plurality of circular stage microstructures 201, as shown in FIG. 2, where the microstructures 201 may be an array distribution or a periodic distribution in a certain direction.
  • each The microstructure units 201 are periodically arranged in the horizontal direction (left and right of the screen), and are arranged in the vertical direction (up and down direction of the screen) to further increase the viewing angle of the projection screen in the horizontal direction and compress the viewing angle in the vertical direction. , Thereby increasing the brightness gain of the projection screen in the vertical direction.
  • the distribution of the microstructures 201 of the functional layer 20 may also be periodically arranged in the vertical direction (up and down direction of the screen) and misaligned in the horizontal direction (left and right direction of the screen) to improve The viewing angle of the projection screen in the vertical direction and the viewing angle of the horizontal direction are compressed to further increase the brightness gain of the projection screen in the horizontal direction.
  • the microstructures 201 can be arranged in a vertical and horizontal direction periodically. Cloth, which can increase the viewing angle of the projection screen in vertical and horizontal directions at the same time.
  • the microstructure 201 includes organic materials such as PET, PC, PVC, PMMA, etc., and can be made by a transfer method such as UV curing or thermal curing.
  • the functional layer 20 includes a plurality of elliptical stage microstructures.
  • the elliptical stage includes a first elliptical surface connected to the light absorbing layer and a second elliptical surface connected to the substrate.
  • the second elliptical surface is a similar ellipse.
  • the "similar ellipse" refers to that the first elliptical surface and the second elliptical surface have the same shape and different areas, that is, the first elliptical surface can be enlarged or reduced in proportion to the second elliptical surface.
  • the ellipses are coincident.
  • the line connecting the two focal points of the first elliptical surface is parallel to the line connecting the two focal points of the second elliptical surface, so that the reflecting surface of the elliptical table reflects the projected light toward the audience side as much as possible.
  • the line connecting the focal points of the first elliptical surface and the second elliptical surface is parallel to the horizontal direction. At this time, the viewing angle in the horizontal direction is enlarged, the viewing angle in the vertical direction is compressed, and the gain in the vertical direction is improved.
  • the line connecting the focal points of the first ellipse and the second ellipse is perpendicular to the horizontal direction (parallel to the vertical direction). At this time, the viewing angle in the vertical direction is enlarged, the viewing angle in the horizontal direction is compressed, and the gain in the horizontal direction is increased. Get promoted.
  • the gap may be an air gap that does not require any filling, or may be filled with a transparent material having a refractive index lower than that of the functional layer 20.
  • a transparent material having a refractive index lower than that of the functional layer 20.
  • the incident angle of the incident light on the bevel of the circular microstructure is greater than the incident angle of the projected light, so it is more likely to be absorbed by the light absorbing layer 30 after total reflection.
  • a reflective layer 2001 is provided on a surface of the microstructure of the functional layer 20 facing the light absorbing layer 30 to further increase the light reflection efficiency of the functional layer 20 to increase the projection light gain.
  • the reflection layer 2001 can be a metal reflection layer such as aluminum silver powder, which is made by coating or spraying, or a scattering particle coating with a high reflectance, that is, a diffuse reflection layer. Some materials are sufficient, so I won't repeat them here.
  • the substrate 10 includes a first surface connected to the functional layer 20 and a second surface connected to the diffusion layer opposite to the first surface, wherein the functional layer 20 is preferably integrally formed with the substrate, that is, on the substrate 10
  • the microstructure 201 is made on the surface by a transfer method.
  • integral molding is that it saves the bonding process of the substrate 10 and the microstructure 201, which can further improve production efficiency.
  • the functional layer 20 can also be made by optical adhesive bonding after being prepared separately from the substrate 10.
  • the diffusion layer 40 may be a bulk diffusion structure containing diffusion particles inside, or a diffusion layer 40 may be provided on the opposite side of the surface connected to the substrate.
  • the bulk diffusion structure is provided with bulk scattering particles.
  • the diffusion layer 40 having the diffusion particles can be obtained using a precision optical coating device.
  • the bulk diffusion particles are, for example, inorganic particles such as silica and titanium dioxide particles, or organic particles such as acrylic resin and epoxy resin particles.
  • the surface of the surface diffusion film has a rough structure and can be obtained by a roll-to-roll embossing process.
  • the diffusion layer 40 is made separately, it is connected to the substrate by means of bonding; it can be understood that the diffusion layer 40 can also be integrally formed with the substrate 10, that is, the second portion of the substrate 10
  • the diffusion layer 40 is formed on the surface by a transfer method.
  • integral molding is that the bonding process of the substrate 10 and the diffusion layer 40 is saved, and the production efficiency can be further improved.
  • the functional layer 20, the substrate 10, and the diffusion layer 40 may be integrally formed. At this time, the functional layer 20 and the diffusion layer 40 are formed on two opposite surfaces of the substrate 10, that is, the function The layer 20 is formed on the first surface of the substrate 10, and the diffusion layer 40 is formed on the second surface of the substrate 10, where the first surface and the second surface are opposite to each other.
  • the advantages of this structure are to save raw materials, simplify the production process, and The strength of the projection screen can be further improved.
  • the disadvantage is that the selection of raw materials is limited, and the optical effects of each layer cannot be fully exerted.
  • the functional layer 20, the substrate 10, and the diffusion layer 40 of the present invention can also be prepared separately, and then the functional layer 20, the substrate 10, and the diffusion layer 40 are bonded together by a bonding process.
  • the advantage of this structure is that each layer is independent Made, it will be more flexible in the selection of raw materials, and can play the optical effect of each layer.
  • the functional layer 20 and the substrate 10 are integrally formed, and the diffusion layer 40 is prepared separately, and then the diffusion layer 40 and the integrally formed functional layer 20 and the substrate 10 are adhered together; a changeable embodiment, The functional layer 20 is prepared separately, the substrate 10 and the diffusion layer 40 are integrally formed, and then the diffusion layer 40 and the integrally formed functional layer 20 and the substrate 10 are bonded together.
  • the optical schematic diagram of the projection screen structure of the present case in which the functional layer 20 uses a circular stage microstructure as an example, and the projection light P1 from the projector is incident on the projection screen in a direction approximately perpendicular to the plane of the screen (telephoto projection).
  • the plane of the projection screen is a plane composed of the vertical direction of the screen and the horizontal direction of the screen.
  • the projection light P1 from the projector is totally reflected on the inner surface of the round table microstructure of the functional layer 20, and the outgoing light reflected by the inner surface of the round table microstructure returns to the viewer side in the form of crossing each other, thereby expanding the level And vertical viewing angles.
  • the diffused layer 40 can further diffuse the emitted light, so that the viewing angle can be further expanded.
  • the invention can not only increase the viewing angle in the horizontal direction, but also increase the viewing angle in the vertical direction.
  • FIG. 5 is a cross-sectional view of the situation where ambient light is incident on a projection screen.
  • a part of the ambient light A2 is directly incident on the surface of the round table microstructure of the functional layer 20 that is in contact with the light absorbing layer 30 and absorbed by the light absorbing layer 30, and another part of the ambient light A1 is not directly incident on the functional layer 20.
  • the surface that is in contact with the light absorbing layer 30 is incident on the reflecting surface of the circular table microstructure in the functional layer 20, and then reflected by the emitting surface and incident on the circular table microstructure and the light absorbing layer 30 and absorbed by the light absorbing layer 30. .
  • the ambient light A2 perpendicular to the screen plane is directly absorbed by the light absorbing layer 30, and a part of the ambient light A1 deviating from the normal of the screen plane is absorbed by the light absorbing layer 30 after being reflected by the reflecting surface. Therefore, the high-angle ambient light A1 can be absorbed by the light absorbing layer 30 as the ambient light A2.
  • the absorption of ambient light incident from multiple angles is considered, so a round table microstructure is adopted in the functional layer 20, so that the light absorbing layer can absorb the ambient light incident from various angles, and realize 360 ° anti-ambient light, This greatly improves the contrast of the projection screen.
  • FIG. 6 illustrates a cross-sectional view of the microstructure of the functional layer in the projection screen.
  • the cross-sectional view is a trapezoid, where the included angle ⁇ of the extension lines of the two waists of the trapezoid is an acute angle. Since the projection light from the projector and incident perpendicular to the screen plane (the light of the telephoto projector is equivalent to the normal incidence) is reflected on the circular table surface of the functional layer 20, the reflected light is no longer parallel to the direction perpendicular to the screen plane. As a result, the functional layer 20 has the effect of diffusing the projected light.
  • the cross-sectional view of the functional layer 20 is described as trapezoid.
  • the angle between the incident projection light and the waist of the trapezoid is ⁇
  • the angle between the reflected light and the normal direction of the vertical screen plane is ⁇ 1 And ⁇ 2
  • ⁇ 1 ⁇ 2
  • ⁇ 2 the angle between the reflected light reflected by one waist of the trapezoid and the other waist normal
  • the included angle ⁇ of the extension lines of the two waists of the trapezoidal section of the functional layer 20 needs to satisfy the following relationship:
  • an appropriate angle ⁇ can be confirmed from the refractive index n 2 of the material constituting the functional layer 20 and the refractive index n 1 of the outer material, and the diffusion angle obtained by the functional layer 20 can be calculated.
  • FIG. 7 is a sectional view of the microstructure of the functional layer in the projection screen.
  • the sectional view is a trapezoid, and the included angle ⁇ between the extension lines of the two waists of the trapezoid is an obtuse angle. Since the projection light (telephoto projector) from the projector and incident perpendicular to the screen plane is reflected on the circular table surface of the functional layer 20, the reflected light is no longer parallel to the direction of the vertical screen plane. As a result, the functional layer 20 has the effect of making the projection light diffuse.
  • the cross-sectional view of the functional layer 20 is described as a trapezoid.
  • the included angle between the incident projection light and the trapezoid's waist is ⁇
  • the angle between the reflected light reflected by one waist of the trapezoid and the other waist normal is ⁇ , according to the geometric relationship shown in FIG. 7:
  • ⁇ 1 2 ⁇ -180
  • the included angle ⁇ of the extension lines of the two waists of the trapezoidal section of the functional layer 20 needs to satisfy the following relationship:
  • the projection screen in the present invention is used in combination with a telephoto projector so that the exiting light reflected by the functional layer has a diffusion angle.
  • the full-function layer is used together with a diffusion material such as a diffusion layer or a bulk diffusion film formed on the screen surface, which can effectively expand the screen viewing angle.
  • the circular layer microstructure is used in the functional layer of the present invention, thereby taking into account the ambient light incident at multiple angles, so that the black light-absorbing layer can absorb more ambient light, and thus can significantly improve the contrast of the screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种投影幕,其包括从光入射侧依次设置的基板(10)、功能层(20)和用于吸收光线的吸光层(30);其中,功能层(20)包含多个与吸光层(30)表面连接的微结构(201),微结构(201)为圆台体,多个微结构(201)用于对入射的投影光线进行反射。由于功能层(20)的水平面与吸光层(30)接触,入射在水平面上的环境光线被吸光层(30)吸收,而入射在功能层(20)微结构(201)倾斜面上的环境光线也在被反射向水平面后被吸光层(30)吸收,投影屏幕能够尽可能的对环境光线进行吸收,从而获得高对比度图像。

Description

一种投影幕及投影系统 技术领域
本发明涉及一种投影幕及包括该投影幕的投影系统。
背景技术
现有的投影显示系统,投影幕作为投影显示系统的重要组件,对显示效果有很大的影响。进一步的,投影幕的对比度是衡量显示视觉效果的重要参数,一般而言,对比度越大,图像越清晰、细节表现力更强、灰度层次更明显;而对比度越小,画面显示越模糊,整个画面的细节完整性表现越差。
现有的反射式投影幕,环境中的杂散光是影响反射式投影幕对比度的主要因素,因为反射式投影幕不仅反射投影机的光线同时也反射环境中杂散光,使得整个投影幕所显示画面的对比度受到环境光的影响远远低于投影机自身的对比度,大大影响了投影显示系统的图像质量。目前具有抗环境光的反射式投影幕通常采用微结构镀膜技术,即微结构的上表面设置吸光材料用于吸收环境中的杂散光,而微结构的下表面设置反射材料用于反射投影机的投影光线,以实现抗环境光的目的,但此种反射式投影幕结构并不能完全吸收环境中的杂散光,仍然有一些其它角度的杂散光被反射向观众视角,使得反射式投影幕的抗环境光能力非常有限。
发明内容
为解决上述技术问题,本发明提出一种投影幕,该投影幕具有结构简单、加工容易、成本低以及对比度高的特点。
一种投影幕,其包括从光入射侧依次设置的基板、功能层和用于吸收光线的吸光层;
其中,所述功能层包含多个与吸光层表面连接的微结构,所述微结构用于对入射的部分投影光线进行反射,所述微结构将多角度入射的部分环境光反射到所述吸光层。
在一实施方式中,所述微结构为圆台或椭圆台结构。
在一实施方式中,所述微结构分布方式为阵列排布、竖直方向周期性排列或水平方向周期性排列;进一步通过在某一方向上的周期性排布,以提高在此方向上的可视角。
在一实施方式中,所述微结构面向所述吸光层的表面设置反射层,所述反射层为金属反射层或漫反射层,微结构表面设置反射层增加对投影光线的反射。
在一实施方式中,所述微结构之间存在间隙,所述间隙为空气间隙,其中空气的折射率小于微结构材料的折射,使得尽可能多的投影光线通过全反射回到观众眼中。
在一变更实施方式中,所述间隙为填充有折射率小于所述微结构折射率的透明材料,使得尽可能多的投影光线通过全反射回到观众眼中。
在一实施方式中,所述投影幕还包括设置在基板出光面的扩散层,所述基板包括第一表面和第二表面,所述功能层和所述扩散层通过一体成型的方式形成在所述基板的第一表面和第二表面,以减少投影幕的生产流程,节约成本。
在一实施方式中,所述投影幕还包括设置在基板出光面的扩散层,所述基板包括第一表面和第二表面,所述功能层和所述扩散层通过贴合的方式形成在所述基板的第一表面和第二表面,所述扩散层为体扩散结构或面扩散结构。其中扩散层可以增加投影光线的出射发散角度,以提高投影幕的可视角。
在一实施方式中。所述投影机长焦投影机,所述长焦投影机从所述光入射侧朝向所述投影幕发射投影光线。
本发明的投影幕中的功能层具有圆台体结构,该微结构包括与吸光层相接触的水平面。由于该功能层的水平面与吸光层接触,入射在该水平面上的环境光线被吸光层吸收,而入射在该微结构的倾斜面上的环境光线也在被反射向水平面后被吸光层吸收。另外本发明的圆台体微结构可对多个角度入射的环境光线进行反射,能够尽可能的对环境光线进行吸收,从而获得高对比度图像。另外由于长焦投影机的投影光线近似于垂直入射在投影幕,本案的圆台体微结构,通过对投影光线的反射,可进一步提高出射的投影光线的可视角。
应当理解,本发明的有益效果不限于上述效果,而可以是本文中说明的任何有益效果。
附图说明
图1为本发明的投影幕结构示意图。
图2为本发明的投影幕功能层的结构示意图。
图3为本发明的功能层微结构截面示意图。
图4为本发明的投影光光路示意图。
图5为本发明的环境光光路示意图。
图6为本发明的功能层剖视图及投影光示意图。
图7为本发明的功能层剖视图及投影光示意图。
具体实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示中的扩散层、功能层、黑色吸光层等组件的尺寸、比例等参数并不是按照实际的尺寸和比例示出的,仅是为了图示方便,但不是用于限定本发明的具体范围。
下文结合具体的图示对本发明进行更详细的说明,其中相对于投影幕前方的观看者来说,投影幕的垂直方向为画面上下方向,投影幕的水平方向为画面左右方向。在本发明的其他图示中说明的“画面上下方向”和“画面左右方向”同理。
如图1所示,本发明的投影幕从光入射侧依次包括扩散层40、基板10、功能层20及吸光层30,其中扩散层40和功能层20设置在基板10的两相对表面,功能层20与吸光层30相连接。
进一步,所述吸光层30用于吸收入射到吸光层30上的投影光以及从其他方向入射的环境光和其他杂散光,进一步,所述吸光层30可由吸光材料制成的体吸收层,所述吸光材料优选为黑色吸光材料,本发明的“体吸收层”指的是所述吸光层30内部包含有吸光材料,此时实现光吸收 作用的是吸光层30内部的吸光材料,其中吸光层30对可见光的吸收率大于或等于90%。
在一变更实施例,所述吸光层30可以是通过在基材面向功能层20的一表面涂覆吸光材料制成的面吸收层,所述吸光材料优选为黑色吸光材料,此时实现光吸收作用的是涂覆在基材表面的吸光材料,具体来说,可以涂覆一层吸光材料来实现,也可以通过涂覆多层吸光材料来提高吸光层的光吸收率,其中吸光层30对可见光的吸收率大于或等于90%。
进一步,所述功能层20包含有多个圆台微结构201,如图2所示,其中所述微结构201可以是阵列分布,也可以是在某个方向上的周期分布,具体来说,每个微结构单元201在水平方向(画面左右方向)周期性排列,在竖直方向(画面上下方向)错位排列,以进一步提高投影幕在水平方向的可视角,并压缩在竖直方向的可视角,进而提高投影幕在竖直方向的亮度增益。可以理解的是,在其它的适用场景里,功能层20的微结构201的分布也可以是在竖直方向(画面上下方向)周期性排列,在水平方向(画面左右方向)错位排列,以提高投影幕在竖直方向的可视角,并压缩在水平方向的可视角,进而提高投影幕在水平方向的亮度增益,可以理解的是,微结构201可以是在竖直方向和水平方向均周期排布,可同时提高投影幕在竖直方向和水平方向的可视角。进一步的,所述微结构201包括PET,PC,PVC,PMMA等有机材料,可采用UV固化或热固化等转印的方法制成。
在一变更实施方式中,所述功能层20包含有多个椭圆台微结构,所述椭圆台包括与吸光层连接的第一椭圆面和与基板连接的第二椭圆面,第一椭圆面和第二椭圆面为相似椭圆,此处的“相似椭圆”指的是第一椭圆面和第二椭台面的形状相同,面积不同,即第一椭圆面成比例的放大或缩小后可与第二椭圆面重合。进一步,所述第一椭圆面的两个焦点的连线平行于第二椭圆面的两个焦点的连线,以使得所述椭圆台的反射面尽可能的将投影光线反射向观众侧。进一步,所述第一椭圆面和第二椭圆面的焦点的连线平行于水平方向,此时水平方向的视角被扩大,竖直方向视角被压缩,竖直方向的增益得到提升;可以理解的是,所述第一椭圆面和第二椭圆面的焦点的连线垂直于水平方向(平行于竖直方向),此时竖直方向的视角被扩大,水平方向视角被压缩,水平方向的增益得 到提升。
所述多个圆台体微结构201之间存在间隙,其中所述间隙可以为不需要任何填充的空气间隙,也可以是填充有折射率小于功能层20的透明材料,使得在光线进入功能层的间隙界面时,大部分符合全反射条件的投影光线通过反射进入观众视角。对于环境光线而言,其入射在圆台体微结构斜面的入射角大于投影光线的入射角,因此更容易发生全反射后被吸光层30吸收。
在一变更实施例中,如图3所示,所述功能层20的微结构面向吸光层30的表面设置反射层2001,进一步增加功能层20对光线的反射效率,以提高投影光增益,其所述反射层2001可以为铝银粉等金属反射层,通过涂覆、喷涂的方式制成,也可以是具有高反射率的散射颗粒涂层,即漫反射层,对于具体的材料选择,以现有的材料即可,此处不再赘述。
进一步,所述基板10包含与功能层20连接的第一面,及与第一面相对的与扩散层连接的第二面,其中所述功能层20优选与基板一体成型,即在基板10的表面通过转印的方法制成微结构201,一体成型的优势在于节省了基板10与微结构201的贴合工艺,可进一步提高生产效率。可以理解的是,功能层20也可以是与基板10分开制备后通过光学胶粘接制成。
进一步,所述基板10的第二面于所述扩散层40连接,所述扩散层40可以为内部含有扩散粒子的体扩散结构,也可以为与基板相连接的面的相对面设置扩散层40的面扩散结构,体扩散结构中设置有体散射粒子,可以使用精密光学涂布设备得到有扩散粒子的扩散层40。该体扩散粒子例如为二氧化硅、二氧化钛颗粒等无机颗粒或者丙烯酸树脂、环氧系树脂颗粒等有机颗粒。表面扩散膜的表面具有粗糙结构,可以通过卷对卷的压印工艺而获得。
本发明的投影幕结构,扩散层40是通过单独制成后,通过贴合的方式与基板连接;可以理解的是,扩散层40也可以是与基板10一体成型,即在基板10的第二面通过转印的方式形成扩散层40,一体成型的优势在于节省了基板10和扩散层40的贴合工艺,可进一步提高生产效率。
因此,本发明的投影幕结构可总结如下,功能层20、基板10及扩散层40可以是一体成型的,此时,功能层20和扩散层40形成在基板10 的两个相反表面,即功能层20形成在基板10的第一表面上,扩散层40形成在基板10的第二表面上,其中第一表面和第二表面相对设置,此种结构的优势在于节省原材料,简化生产工艺,并可进一步提高投影幕的强度,劣势在于原材料的选取受限,不能充分发挥各层的光学效果。
另外本发明的功能层20、基板10及扩散层40也可以分别独立制备,然后通过贴合工艺将功能层20、基板10及扩散层40贴合在一起,此种结构的优势是各层独立制成,在原材料的选取上会更灵活,可成分发挥各层的光学效果。
可以理解的是,功能层20和基板10是一体成型的,而扩散层40是单独制备,然后将扩散层40与一体成型的功能层20和基板10贴合在一起;可变更的实施例,功能层20是单独制备,基板10和扩散层40是一体成型,然后将扩散层40与一体成型的功能层20和基板10贴合在一起。
进一步如图4所示,本案的投影幕结构光学示意图,其中功能层20以圆台微结构为例,来自投影机的投影光线P1以近似于垂直屏幕平面的方向入射到投影幕上(长焦投影光线),该投影幕平面为由画面上下方向和画面左右方向构成的平面。
来自投影机的投影光线P1在功能层20的圆台微结构中的内表面发生全反射,由圆台微结构的内表面反射的出射光线以相互交叉的形式回到观看者侧,由此扩大了水平及垂直方向的观看视角。另外,扩散层40能够进一步扩散该出射光线,从而能够进一步扩展观看视角。本发明相较于现有的梯形微结构,不仅可以增加水平方向的可视角,也可以增加垂直方向的可视角。
图5为环境光入射在投影幕上情况的剖视图。如图5所示,一部分环境光线A2直接入射在功能层20的圆台微结构中与吸光层30相接触的面,并被吸光层30吸收,另一部分环境光线A1不直接入射到功能层20中与吸光层30相接触的面上,而是入射到功能层20中圆台微结构的反射面上,然后经过发射面反射后入射到圆台微结构与吸光层30面上,并被吸光层30吸收。
根据图5可以看出,垂直于屏幕平面的环境光线A2会直接被吸光层30吸收,而偏离屏幕平面法线的部分环境光线A1经过反射面反射后被 吸光层30吸收。因此该大角度环境光线A1与环境光线A2一样能够被吸光层30吸收。
因此,本发明中考虑了对从多角度入射的环境光线的吸收,从而在功能层20中采用了圆台微结构,使得吸光层能够吸收由各个角度入射的环境光线,实现360°抗环境光线,从而大幅提高投影幕幕对比度。
下面结合图6和图7对不同圆锥角的功能层20微结构的投影幕中光线实现反射的原理进行说明;
图6中说明投影幕中功能层微结构的剖视图,该剖视图为一梯形,其中梯形的两个腰的延长线夹角θ为锐角。由于来自投影机并垂直于屏幕平面入射的投影光线(长焦投影机的光线相当于垂直入射)在功能层20的圆台面上发生反射,因此反射光线不再与垂直屏幕平面的方向平行。由此使得功能层20具有扩散投影光线的效果。
在图6中,以功能层20的剖视图为梯形进行说明,入射的投影光线与梯形的腰的夹角为σ,经过反射后的出射光线与垂直屏幕平面的法线方向的夹角为α 1和α 2,其中α 1=α 2,经过梯形的一个腰反射的反射光线与另一个腰法线的夹角为ω,则根据图6中所示的几何关系可知:
Figure PCTCN2019107998-appb-000001
α 2=180-2θ
假设功能层20的外侧的材料的折射率为n 1,构成功能层20的材料的折射率为n 2,为满足全反射条件,则需要满足下述关系:
Figure PCTCN2019107998-appb-000002
Figure PCTCN2019107998-appb-000003
因此功能层20剖面梯形的两个腰的延长线夹角θ需满足下述关系:
Figure PCTCN2019107998-appb-000004
出射光线与垂直屏幕平面的法线方向的夹角α 2满足:
Figure PCTCN2019107998-appb-000005
因此,根据构成功能层20的材料折射率n 2和外侧材料的折射率n 1就可以确认合适的夹角θ,并可以算出由功能层20得到的扩散角度。
图7投影幕中功能层微结构的剖视图,该剖视图为一梯形,其中梯形的两个腰的延长线夹角θ为钝角。由于来自投影机并垂直于屏幕平面入射的投影光线(长焦投影机)在功能层20的圆台面上发生反射,因此反射光线不再与垂直屏幕平面的方向平行。由此使得功能层20具有使扩散投影光线效果。
在图7中,以功能层20的剖视图为梯形进行说明,入射的投影光线与梯形的腰的夹角为σ,经过反射后的出射光线与垂直屏幕平面的法线方向的夹角为α 1和α 2,其中α 1=α 2,经过梯形的一个腰反射的反射光线与另一个腰法线的夹角为ω,则根据图7中所示的几何关系可知:
α 1=2θ-180
Figure PCTCN2019107998-appb-000006
假设功能层20的外侧的材料的折射率为n 1,构成功能层20的材料的折射率为n 2,为满足全反射条件,则需要满足下述关系:
Figure PCTCN2019107998-appb-000007
Figure PCTCN2019107998-appb-000008
因此功能层20剖面梯形的两个腰的延长线夹角θ需满足下述关系:
Figure PCTCN2019107998-appb-000009
出射光线与垂直屏幕的法线方向的夹角α 1满足:
Figure PCTCN2019107998-appb-000010
因此,根据构成功能层20的材料折射率n 2和功能层20的圆台面外侧材料的折射率n 1就可以确认合适的夹角θ,并可以算出由功能层20得到的扩散角度。
通过上述对于本发明中投影屏幕的结构、原理等说明可知,本发明中的投影屏幕与长焦投影机配合使用,使得经过功能层反射后的出射光线具有扩散角度。同时该全功能层与形成在屏幕表面的扩散层或体扩散薄膜等扩散材料一起使用,能够有效地扩大屏幕视角。
此外,在本发明的功能层中使用圆台体微结构,由此兼顾了多个角度入射的环境光线,使黑色吸光层能够更多地吸收环境光线,从而能够更加显著地提高屏幕的对比度。
本领域技术人员应当理解,依据设计要求和其他因素,可以在本发明随附的权利要求或其等同物的范围内进行各种修改、组合、次组合以及改变。

Claims (10)

  1. 一种投影幕,其包括从光入射侧依次设置的基板、功能层和用于吸收光线的吸光层;
    其中,所述功能层包含多个与吸光层表面连接的微结构,所述微结构用于对入射的投影光线进行反射,所述微结构将多角度入射的部分环境光反射到所述吸光层。
  2. 根据权利要求1所述的投影幕,其中,所述微结构为圆台或椭圆台结构。
  3. 根据权利要求1所述的投影幕,其中,所述微结构分布方式为竖直方向周期性排列、水平方向周期性排列或竖直方式和水平方向均周期性排列。
  4. 根据权利要求1所述的投影幕,其中,所述微结构面向所述吸光层的表面设置反射层,所述反射层为金属反射层或漫反射层。
  5. 根据权利要求1所述的投影幕,其中,所述微结构之间存在间隙,所述间隙为空气间隙。
  6. 根据权利要求5所述的投影幕,其中,所述间隙为填充有折射率小于所述微结构折射率的透明材料。
  7. 根据权利要求1所述的投影幕,其中,所述基板包括第一表面和第二表面,所述功能层和所述扩散层通过一体成型的方式形成在所述基板的第一表面和第二表面。
  8. 根据权利要求1所述的投影幕,其中,所述投影幕还包括设置在基板出光面的扩散层,所述基板包括第一表面和第二表面,所述功能层 和所述扩散层通过贴合的方式形成在所述基板的第一表面和第二表面。
  9. 根据权利要求7-8任一权利要求所述的投影幕,其中,所述扩散层为体扩散结构或面扩散结构。
  10. 一种投影系统,其包括:
    投影幕,其中,所述投影幕为根据权利要求1-9中任一权利要求所述的投影幕;以及
    长焦投影机,所述长焦投影机从所述光入射侧朝向所述投影幕发射投影光线。
PCT/CN2019/107998 2018-09-30 2019-09-26 一种投影幕及投影系统 WO2020063706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811153138.X 2018-09-30
CN201811153138.XA CN110967914B (zh) 2018-09-30 2018-09-30 一种投影幕及投影系统

Publications (1)

Publication Number Publication Date
WO2020063706A1 true WO2020063706A1 (zh) 2020-04-02

Family

ID=69949302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107998 WO2020063706A1 (zh) 2018-09-30 2019-09-26 一种投影幕及投影系统

Country Status (2)

Country Link
CN (1) CN110967914B (zh)
WO (1) WO2020063706A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750888B (zh) * 2020-11-11 2021-12-21 弘勝光電股份有限公司 長焦抗光幕

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138509A (ja) * 1997-05-19 1999-02-12 Dainippon Printing Co Ltd 反射型スクリーン
JP2012252226A (ja) * 2011-06-03 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
CN103345112A (zh) * 2013-07-05 2013-10-09 中国科学院半导体研究所 一种包含镜头和屏幕的正向投影装置
JP2014199375A (ja) * 2013-03-30 2014-10-23 大日本印刷株式会社 反射スクリーン、映像表示システム
CN207216263U (zh) * 2017-08-04 2018-04-10 深圳市光峰光电技术有限公司 全反射屏幕和投影系统
CN109976081A (zh) * 2017-12-14 2019-07-05 深圳光峰科技股份有限公司 屏幕和吸光膜的制备方法
CN110244508A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 屏幕和投影系统
CN110297385A (zh) * 2018-03-22 2019-10-01 深圳光峰科技股份有限公司 屏幕和投影系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160801B2 (ja) * 2007-03-02 2013-03-13 直史 山内 画像投影システム及びこれに用いるスクリーン
JP2010204572A (ja) * 2009-03-05 2010-09-16 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
CN207318927U (zh) * 2017-09-27 2018-05-04 深圳市真屏科技发展有限公司 可用作电子黑板的可提高对比度的超短焦投影屏幕

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138509A (ja) * 1997-05-19 1999-02-12 Dainippon Printing Co Ltd 反射型スクリーン
JP2012252226A (ja) * 2011-06-03 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
JP2014199375A (ja) * 2013-03-30 2014-10-23 大日本印刷株式会社 反射スクリーン、映像表示システム
CN103345112A (zh) * 2013-07-05 2013-10-09 中国科学院半导体研究所 一种包含镜头和屏幕的正向投影装置
CN207216263U (zh) * 2017-08-04 2018-04-10 深圳市光峰光电技术有限公司 全反射屏幕和投影系统
CN109976081A (zh) * 2017-12-14 2019-07-05 深圳光峰科技股份有限公司 屏幕和吸光膜的制备方法
CN110244508A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 屏幕和投影系统
CN110297385A (zh) * 2018-03-22 2019-10-01 深圳光峰科技股份有限公司 屏幕和投影系统

Also Published As

Publication number Publication date
CN110967914A (zh) 2020-04-07
CN110967914B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN207216263U (zh) 全反射屏幕和投影系统
EP3663852B1 (en) Total reflection screen and projection system
US7990614B2 (en) Projection screen
WO2020114224A1 (zh) 投影屏幕和投影系统
US11194243B2 (en) Projection screen and projection system
US11448952B2 (en) Screen and projection system
WO2021004301A1 (zh) 一种投影屏幕
US20150286124A1 (en) Reflecting screen
CN100526977C (zh) 一种高增益透射屏幕
US20220390823A1 (en) Transparent projection screen, and manufacturing method for same
WO2019179124A1 (zh) 屏幕和投影系统
US20210026231A1 (en) Curved screen and method of arranging microstructure therein, and projection system
US20180284593A1 (en) Rear projection screen
WO2019024369A1 (zh) 投影屏幕和投影系统
TWM577512U (zh) Short focal length projection anti-light curtain
WO2019192202A1 (zh) 屏幕及投影系统
WO2020063706A1 (zh) 一种投影幕及投影系统
JP5849440B2 (ja) 反射型スクリーン、及び反射型投射システム
WO2018166177A1 (zh) 透明显示装置
WO2019024366A1 (zh) 投影屏幕和投影系统
JP2013050646A (ja) 反射型スクリーン、及び反射型投射システム
TWI728110B (zh) 一種投影螢幕
WO2021004303A1 (zh) 一种投影屏幕
US9304244B1 (en) Light guide plate, backlight module, and liquid crystal display device
CN208673033U (zh) 一种投影屏幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866601

Country of ref document: EP

Kind code of ref document: A1