WO2020063237A1 - 用于调整膜材蒸镀位置的方法和装置 - Google Patents

用于调整膜材蒸镀位置的方法和装置 Download PDF

Info

Publication number
WO2020063237A1
WO2020063237A1 PCT/CN2019/102797 CN2019102797W WO2020063237A1 WO 2020063237 A1 WO2020063237 A1 WO 2020063237A1 CN 2019102797 W CN2019102797 W CN 2019102797W WO 2020063237 A1 WO2020063237 A1 WO 2020063237A1
Authority
WO
WIPO (PCT)
Prior art keywords
formation position
actual
offset
displacement
film material
Prior art date
Application number
PCT/CN2019/102797
Other languages
English (en)
French (fr)
Inventor
黄炜赟
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/643,033 priority Critical patent/US11239423B2/en
Publication of WO2020063237A1 publication Critical patent/WO2020063237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a method and a device for adjusting a deposition position of a film material in a film deposition process using a mask plate assembly.
  • the open area on the FMM (Fine Metal Mask) is usually used to make the luminescent material pass through the FMM and adhere to the TFT (Thin Film Transistor) substrate to form an OLED (Organic Light Emitting Diode (organic light emitting diode) display panel.
  • the present disclosure provides a method for adjusting a deposition position of a film material in a film deposition process using a mask plate assembly, wherein the mask plate assembly includes a mask plate fixing frame and a mask plate fixed on the mask plate fixing frame.
  • a body comprising: obtaining a first offset between a plurality of second mark points on the mask assembly and a plurality of first mark points on the mask body; obtaining a plurality of third mark points on the substrate A second offset from a plurality of second mark points on the mask plate assembly, wherein the plurality of third mark points are formed by the mask plate assembly when the film material is evaporated on the substrate; A plurality of second mark points are formed on the substrate; and according to the first offset displacement and the second offset displacement, an actual offset between an actual formation position of the film material and a preset formation position is determined And adjusting the preset formation position of the film material according to the actual offset displacement between the actual formation position of the film material and the preset formation position.
  • the step of obtaining a first offset between a plurality of second mark points on the mask plate assembly and a plurality of first mark points on the mask plate body includes: First coordinates of a plurality of first marked points on the mask; measure second coordinates of a plurality of second marked points on the mask plate assembly; and subtract the first coordinates from the second coordinates to obtain the First offsets between the plurality of second mark points and the plurality of first mark points on the mask body.
  • the step of obtaining a second offset between a plurality of third mark points on the substrate and a plurality of second mark points on the mask assembly includes: measuring a plurality of first mark points on the substrate. Third coordinates of three marked points; and subtracting the second coordinates from the third coordinates to obtain a second between a plurality of third marked points on the substrate and a plurality of second marked points on the mask assembly Offset displacement.
  • the step of determining an actual offset displacement between an actual formation position of the film material and a preset formation position according to the first offset displacement and the second offset displacement includes: : Adding the first offset displacement and the second offset displacement to obtain the actual offset displacement of the plurality of third mark points; and for the first target mark point among the plurality of third mark points And the second target mark point, dividing the difference between the actual offset of the second target mark point and the first target mark point by the first target mark point and the second target mark The number of actual formation positions of the film material between the points is to obtain a first ratio; and for the actual formation position of the Mth film material between the first target mark point and the second target mark point, M and The product of the first ratio, plus the actual offset displacement of the first target mark point, to obtain the actual offset displacement between the actual formation position of the Mth film material and a preset formation position; M Is a positive integer greater than 0.
  • the step of adjusting the preset formation position of the film material according to an actual offset between the actual formation position of the film material and a preset formation position includes: when the When the actual offset between the actual formation position of the film material and the preset formation position is within a compensable range, based on the actual offset displacement between the actual formation position of the film material and the preset formation position, Adjusting the preset formation position of the film material; and the maximum compensation displacement corresponding to the compensable range when the actual offset displacement between the actual formation position of the film material and the preset formation position is outside the compensable range When the difference between them meets the threshold, the preset formation position of the film material is adjusted according to the maximum compensation displacement.
  • the step of adjusting the preset formation position of the film material based on an actual offset between the actual formation position of the film material and a preset formation position includes: based on the The actual offset between the actual formation position of the film material and the preset formation position determines the offset displacement of the pixel-defining layer; wherein the actual offset displacement between the actual formation position of the film material and the preset formation position is different from The offset corresponding to the pixel-defining layer has the same distance and the same direction; and the step of adjusting the preset formation position of the film material according to the maximum compensation displacement includes: according to the maximum compensation The displacement determines the offset displacement of the pixel-defining layer; wherein the maximum compensation displacement is equal to the distance corresponding to the offset displacement of the pixel-defining layer and has the same direction.
  • the step of adjusting the preset formation position of the film material based on an actual offset between the actual formation position of the film material and a preset formation position includes: based on the The actual offset between the actual formation position of the film material and the preset formation position determines the offset displacement of the corresponding opening area on the mask plate assembly; wherein between the actual formation position of the film material and the preset formation position The actual offset displacement is equal to the distance corresponding to the offset displacement of the corresponding opening area on the mask assembly, and the directions are opposite; and the preset formation position of the film is adjusted according to the maximum compensation displacement
  • the step includes: determining an offset displacement of the corresponding opening area on the mask assembly according to the maximum compensation displacement; wherein the maximum compensation displacement corresponds to a distance corresponding to the offset displacement of the corresponding opening area on the mask assembly Equal and opposite directions.
  • the present disclosure also provides a device for adjusting a film material vapor deposition position in a vapor deposition film material process using a mask plate assembly, wherein the mask plate assembly includes a mask plate fixing frame and a mask fixed on the mask plate fixing frame.
  • the template body the device includes: a first offset displacement acquisition module configured to obtain a first offset between a plurality of second mark points on the mask assembly and a plurality of first mark points on the mask body Displacement; a second offset displacement acquisition module configured to obtain a second offset displacement between a plurality of third mark points on the substrate and a plurality of second mark points on the mask assembly, wherein the plurality of The three mark points are formed on the substrate by the plurality of second mark points when a film material is vapor-deposited on the substrate by using the mask plate assembly; an actual offset displacement determining module is configured to be based on the A first offset displacement and the second offset displacement, determining an actual offset displacement between an actual formation position of the film material and a preset formation position; and a formation position adjustment module
  • the first offset acquisition module includes: a first coordinate acquisition submodule configured to acquire first coordinates of a plurality of first marker points on a mask body; a second coordinate measurement submodule, Configured to measure second coordinates of a plurality of second marked points on the mask assembly; and a first offset displacement calculation sub-module configured to subtract the first coordinate from the second coordinate to obtain the A first offset between a plurality of second marking points on the mask assembly and a plurality of first marking points on the mask body.
  • the second offset displacement acquisition module includes: a third coordinate measurement sub-module configured to measure third coordinates of a plurality of third mark points on the substrate; and a second offset displacement calculator A module configured to subtract the second coordinate from the third coordinate to obtain a second offset between a plurality of third mark points on the substrate and a plurality of second mark points on the mask assembly.
  • the actual offset displacement determination module includes a first actual offset displacement calculation sub-module configured to add the first offset displacement and the second offset displacement to obtain the actual offset displacement.
  • a first ratio calculation sub-module is configured to, for the first target marker point and the second target marker point among the plurality of third marker points, The difference between the actual offset of the target mark point and the first target mark point, divided by the number of actual formation positions of the film material between the first target mark point and the second target mark point, Obtain a first ratio; and a second actual offset displacement calculation sub-module configured to, for the actual formation position of the Mth film material between the first target mark point and the second target mark point, A product of the first ratio and an actual offset displacement of the first target mark point to obtain an actual offset displacement between an actual formation position of the Mth film material and a preset formation position; M is a positive integer greater than 0.
  • the formation position adjustment module includes: a first formation position adjustment sub-module configured to, when an actual offset between the actual formation position of the film material and a preset formation position is within a compensable range Adjusting the preset formation position of the film material based on the actual offset between the actual formation position of the film material and the preset formation position; and a second formation position adjustment submodule configured to When the actual offset displacement between the actual formation position of the film material and the preset formation position is outside the compensable range, and the difference between the maximum compensation displacement corresponding to the compensable range meets the threshold, The maximum compensation displacement is adjusted for a preset formation position of the film material.
  • the first formation position adjustment sub-module includes a first offset displacement determination unit configured to be based on an actual offset displacement between an actual formation position of the film material and a preset formation position, Determining an offset displacement of the pixel-defining layer; wherein the actual offset displacement between the actual formation position and the preset formation position of the film material is equal to the distance corresponding to the offset displacement of the pixel-defining layer and has the same direction;
  • the second formation position adjustment sub-module includes: a second offset displacement determining unit configured to determine an offset displacement of a pixel-defining layer according to the maximum compensation displacement; wherein the maximum compensation displacement and the pixel-defining layer are The offsets correspond to the same distance and direction.
  • the first formation position adjustment sub-module includes a third offset displacement determination unit configured to be based on an actual offset displacement between an actual formation position of the film material and a preset formation position To determine an offset displacement of a corresponding opening area on the mask plate assembly; wherein an actual offset displacement between an actual formation position and a preset formation position of the film material and an offset of a corresponding opening area on the mask plate assembly The distances corresponding to the displacements are equal and the directions are opposite; and the second formation position adjustment submodule includes: a fourth offset displacement determination unit configured to determine a corresponding opening area on the mask assembly according to the maximum compensation displacement. The displacement of the maximum compensation displacement is equal to the distance corresponding to the displacement displacement of the corresponding opening area on the mask assembly, and the directions are opposite.
  • FIG. 1 is a schematic structural diagram of a color mixing phenomenon in the related art
  • FIG. 2 shows a flowchart of a method for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure
  • FIG. 3A shows a schematic structural diagram of a mask body
  • FIG. 3B shows a schematic structural diagram of a mask assembly
  • FIG. 4A shows a schematic cross-sectional view of a mating structure of a mask assembly and a substrate during a vapor deposition process
  • FIG. 4B shows a schematic top view of the substrate during the evaporation process
  • FIG. 5 is a schematic structural diagram of no color mixing phenomenon after adjusting a preset formation position of a luminescent material
  • FIG. 6 shows a flowchart of a method for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram before and after adjustment of the pixel definition layer
  • FIG. 8 shows an adjustment flowchart for adjusting a preset formation position of a luminescent material
  • FIG. 9 shows a structural block diagram of a device for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure
  • FIG. 10 shows a structural block diagram of an apparatus for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure.
  • R represents a PDL (Pixel Definition Layer) opening area corresponding to a red pixel
  • G represents a PDL opening area corresponding to a green pixel
  • B represents a PDL opening area corresponding to a blue pixel.
  • the red light-emitting material 11 covers the PDL opening area of the green pixel, thereby causing a color mixing phenomenon.
  • Embodiments of the present disclosure provide a method and a device for adjusting a film evaporation position in an evaporation film material process using a mask plate assembly, so as to solve the problem that easily occurs when the FMM evaporation film material (for example, a luminescent material) is adopted in the related art.
  • FMM evaporation film material for example, a luminescent material
  • One or more of the problems such as insufficient accuracy, unevenness (for example, poor color mixing), and the like.
  • FIG. 2 there is shown a flowchart of a method for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure.
  • the mask assembly includes a mask mounting frame and a mask mounting body fixed on the mask mounting frame.
  • the method may specifically include the following steps:
  • Step 201 Obtain a first offset between a plurality of second mark points on the mask assembly and a plurality of first mark points on the mask body.
  • FIG. 3A and FIG. 3B a schematic structural diagram of a mask body and a mask assembly is shown.
  • the mask assembly 30 includes a mask body 31 and a mask frame 32.
  • a mask plate body 31 is first manufactured according to the designed drawings.
  • the mask body 31 includes a plurality of metal bars 311. Due to process conditions, a certain gap is left between any two metal bars 311, and the gap between any two metal bars 311 usually has the same width.
  • a plurality of open areas (not shown in FIGS. 3A and 3B) and a plurality of first marking points 302A, 302B are formed on each metal strip 311 (a plurality of first marks are exemplarily marked in the figure) Two of the dots).
  • the material of the film to be vapor-deposited such as a luminescent material, can pass through the open area on the metal strip 311 and be vapor-deposited on the substrate.
  • the mask body 31 is FMM.
  • the size of each opening area and the gap between two adjacent opening areas will affect the accuracy of the mask body 31, that is, FMM. Production accuracy.
  • a screen stretching operation is performed, that is, the prepared mask body 31 is fixed to the mask fixing frame 32 to form a mask assembly 30.
  • the mask body 31 and the mask fixing frame 32 can be fixed by welding.
  • the plurality of first marked points 302A and 302B are correspondingly changed into a plurality of second marked points 312A and 312B (only two of the plurality of second marked points are labeled as examples in the figure).
  • the plurality of second marking points 312A and 312B on the mask component 30 may be relatively different from those on the mask body 31.
  • the plurality of first mark points 302A, 302B are shifted.
  • the screen accuracy refers to the difference between the mask body 31 and the unfixed mask body 31 in the mask assembly 30 formed after the mask body 31 and the mask fixing frame 32 are fixed.
  • the second marked point refers to the first marked point after the Zhang net operation.
  • a first offset displacement of a plurality of second mark points 312A, 312B on the mask assembly 30 is obtained.
  • the first offset displacement refers to an offset displacement of the plurality of second mark points 312A and 312B on the mask assembly 30 relative to the plurality of first mark points 302A and 302B of the mask body 31.
  • Step 202 Obtain a second offset between a plurality of third mark points on the substrate and a plurality of second mark points on the mask plate assembly.
  • the plurality of third mark points are when the mask plate assembly is used on the substrate.
  • a plurality of second mark points are formed on the substrate.
  • FIG. 4A illustrates a schematic cross-sectional view of a mating structure of a mask plate assembly and a substrate during a vapor deposition process, wherein the mask plate assembly 30 is a portion taken along A-B in FIG. 3B.
  • FIG. 4B is a schematic top view of the substrate 430 in FIG. 4A during the evaporation process.
  • a luminescent material is vapor-deposited on the substrate 430 by using a mask plate assembly 30.
  • the mask plate assembly 30 includes an open area 410, a non-open area 420, and a plurality of second marks. Points 312A and 312B.
  • a film material is deposited on the substrate 430 through the mask plate assembly 30.
  • the substrate 430 includes a PDL open region 440 and a non-open region 450.
  • the luminescent material passes through the opening on the mask plate assembly 30
  • the region 410 is vapor-deposited on the substrate 430
  • a part of the light-emitting material is vapor-deposited outside the PDL opening region 440, resulting in a color mixing phenomenon.
  • Factors such as misalignment of the opening area 410 on the mask assembly 30 and the PDL opening area 440 on the substrate may affect the evaporation accuracy of the luminescent material.
  • Step 203 Determine an actual offset displacement between the actual formation position of the film material and the preset formation position according to the first offset displacement and the second offset displacement.
  • the preset of the luminescent material is calculated according to the first offset displacements of the plurality of second mark points on the mask plate assembly 30 and the second offset displacements of the plurality of third mark points on the substrate. The actual offset of the formation position.
  • Step 204 Adjust the preset formation position of the film material according to the actual offset between the actual formation position of the film material and the preset formation position.
  • the preset formation position of the luminescent material is adjusted according to the calculated actual displacement position of the luminescent material and the preset formation position.
  • the position of the PDL is adjusted according to the actual offset between the actual formation position of the luminescent material and the preset formation position.
  • the position of the opening region 410 on the mask assembly 30 is adjusted according to the actual offset between the actual formation position of the luminescent material and the preset formation position.
  • the PDL is re-produced according to the adjusted position of the PDL on another substrate, and then the luminescent material is evaporated by using the mask plate assembly 30; if the position of the opening area 410 on the mask plate assembly 30 is adjusted, it is re-made For the mask plate component, the PDL is re-produced on another substrate, and the position of the re-made PDL is unchanged, and the light-emitting material is vapor-deposited by using the re-made mask plate component.
  • the evaporation position of the luminescent material is re-determined so that the next time the luminescent material is evaporated, the previous offset displacement can be eliminated, as shown in Figure 5. It is shown that the red light-emitting material 41 covers the PDL opening area corresponding to the red pixel, the green light-emitting material 42 covers the PDL opening area of the green pixel, and the blue light-emitting material 43 covers the PDL opening area of the blue pixel, thereby improving poor color mixing.
  • the second offset displacements of the plurality of third mark points on the substrate and the plurality of third mark points are obtained. It is formed on the substrate by a plurality of second marking points when a mask material is used to vapor-deposit a film on the substrate.
  • the actual formation position and the predetermined formation of the luminescent material are determined according to the first offset displacement and the second offset displacement.
  • the actual offset between positions is adjusted according to the actual offset between the actual formation position of the luminescent material and the preset formation position.
  • the “actually formed position” or “predetermined formation position” of the film material not only refers to the absolute position where the film material is actually formed or preset to be formed, but also may refer to the relative position of the film material relative to The relative position of the substrate or other reference object may refer, for example, to the relative position of the film material with respect to the PDL.
  • FIG. 6 a flowchart of a method for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure is shown. , which can include the following steps:
  • Step 501 Obtain first coordinates of a plurality of first mark points on a mask body.
  • a plurality of metal strips 311 are first produced and the plurality of metal strips 311 are evenly distributed to form a plurality of opening areas on the metal strip 311 (in the figure) 3A and 3B) and a plurality of first marking points 302A, 302B.
  • the first coordinates of the plurality of first mark points on the manufactured mask body 31 can be determined when designing a drawing.
  • the first coordinates of the plurality of first mark points on the mask body 31 are obtained, that is, the first coordinates of the plurality of first mark points designed on the drawing when the mask body 31 is designed are obtained.
  • offset displacement eg, first offset displacement, second offset displacement, actual offset displacement, etc.
  • coordinates eg, first coordinates, second coordinates, etc.
  • first coordinates, second coordinates, etc. refers to the coordinates of the projection of different components or locations in a plane parallel to the substrate, unless explicitly stated otherwise, That is, the coordinates of different parts or positions in the same two-dimensional coordinate system in a plane parallel to the substrate, where the origin can be any fixed point in the plane.
  • two of the plurality of first marked points 302A and 302B on the reticle body 31 are formed as second marked points 312A and 312B, and wherein the first coordinates of the two first marked points 302A and 302B are first. They are (x10, y10) and (x11, y11).
  • Step 502 Measure the second coordinates of a plurality of second mark points on the mask assembly.
  • the prepared mask body 31 and the mask fixing frame 32 are fixed together to form a mask module 30.
  • a camera may be used to collect a plurality of second mark points 312A, The second coordinate of 312B.
  • the second coordinates of the second mark points 312A and 312B on the mask assembly 30 are (x20, y20) and (x21, y21), respectively.
  • Step 503 Subtract the first coordinate from the second coordinate to obtain a first offset between a plurality of second mark points on the mask assembly and a plurality of first mark points on the mask body.
  • the second coordinates of the plurality of second mark points 312A and 312B on the mask assembly 30 are subtracted from the first coordinates of the plurality of first mark points 302A and 302B corresponding to the mask body 31.
  • a first offset between a plurality of second mark points 312A, 312B on the mask assembly 30 and a plurality of first mark points 302A, 302B on the mask body is obtained.
  • the first offset displacement of the second marker point 312A And the first offset displacement of the second marker point 312B
  • Step 504 Measure the third coordinates of the plurality of third mark points on the substrate.
  • the luminescent material is vapor-deposited on the substrate 430 by using the mask plate assembly 30. Since a plurality of second mark points 312A and 312B are formed on the mask plate assembly 30, when the mask plate assembly 30 is used to vaporize the substrate 430, When the light-emitting material is plated, corresponding third mark points 460A and 460B are formed on the substrate 430 correspondingly. The third coordinates of the plurality of third marking points 460A, 460B on the substrate may be collected by a camera.
  • the third coordinates of the third mark point 460A formed by the second mark point 312A on the substrate 430 are (x30, y30), and the third coordinates of the third mark point 460B formed by the second mark point 312B on the substrate are (x31, y31).
  • Step 505 Subtract the second coordinate from the third coordinate to obtain a second offset between a plurality of third mark points on the substrate and a plurality of second mark points on the mask assembly.
  • the third coordinates of the plurality of third marking points 460A and 460B on the substrate 430 are subtracted from the second coordinates of the corresponding plurality of second marking points 312A and 312B on the mask assembly 30.
  • a second offset displacement of the plurality of third mark points 460A, 460B on the substrate is obtained.
  • the third coordinate (x30, y30) of the third marked point 460A formed by the second marked point 312A on the substrate is subtracted from the second coordinate (x20, y20) of the second marked point 312A to obtain the second marked point.
  • 312A the second offset of the third mark point 460A formed on the substrate
  • Step 506 Add the first offset displacement and the second offset displacement to obtain the actual offset displacements of the plurality of third marker points.
  • the second offsets of the plurality of third mark points on the substrate are added to the first offsets of the plurality of second mark points on the mask assembly to obtain a plurality of third marks.
  • the actual offset of the point is added to the first offsets of the plurality of second mark points on the mask assembly to obtain a plurality of third marks.
  • the first offset displacement is an offset displacement generated during the process of making a mask plate assembly during the production of the mask plate body 31 and fixing the mask plate body 31 and the mask plate fixing frame 32;
  • the second offset displacement uses the mask plate assembly 30 in When the light-emitting material is vapor-deposited on the substrate 430, the offset displacement generated by the evaporation process, the offset displacement generated by the mask assembly manufacturing process, and the offset displacement generated by the evaporation process ultimately lead to the actual formation position and preset of the light-emitting material. The actual offset between the formation positions.
  • the actual offset of the third mark point 460A formed by the second mark point 312A on the substrate Second mark point 312B Actual offset of the second mark 460B point formed on the substrate
  • Step 507 For the first target mark point and the second target mark point among the plurality of third mark points, divide the difference between the actual offset of the second target mark point and the first target mark point by the first The number of actually formed positions of the film material between a target mark point and a second target mark point obtains a first ratio.
  • the actual offset displacement of the second target mark point is subtracted from the actual offset of the first target mark point. Displacement to obtain the difference D between the second target mark point and the actual offset displacement of the first target mark point.
  • N is a positive integer greater than 0, and the above-mentioned difference D is divided by N to obtain a first ratio P.
  • the first target mark point is set as the third mark point 460A formed on the substrate by the second mark point 312A
  • the second target mark point is set as the third mark point on the substrate by the second mark point 312B.
  • 460B the difference between the actual offset of the second target mark point and the first target mark point First ratio / N. Since the difference D actually refers to the displacement difference, the calculated first ratio P is actually also a displacement vector.
  • Step 508 For the actual formation position of the Mth film material between the first target mark point and the second target mark point, multiply the product of M and the first ratio, plus the actual offset displacement of the first target mark point. To obtain the actual offset between the actual formation position of the Mth film material and the preset formation position; M is a positive integer greater than 0.
  • the actual offset of the point can be calculated to obtain the actual offset RM between the actual formation position of the Mth luminescent material and the preset formation position; where M is a positive integer greater than 0.
  • the number of actually formed positions of the luminescent material between the first target mark point 460A and the second target mark point 460B is 3, that is, N is 3.
  • the actual formation position of the second luminescent material, that is, M is 2, then
  • Step 509 when the actual offset between the actual formation position of the film material and the preset formation position is within a compensable range, based on the actual offset displacement between the actual formation position of the film material and the preset formation position, The preset formation position of the film material is adjusted.
  • the actual formation position of the luminescent material and the preset formation position are directly based on the actual Offset displacement to adjust the preset formation position of the luminescent material.
  • the first type determining the offset displacement of the PDL based on the actual offset displacement between the actual formation position of the film material and the preset formation position; wherein the actual offset displacement between the actual formation position of the film material and the preset formation position
  • the distances corresponding to the PDL offsets are equal and the directions are the same.
  • the position of the PDL can be adjusted to adjust the preset formation position of the luminescent material, and according to the actual offset between the actual formation position of the luminescent material and the preset formation position Displacement, to determine the offset of the PDL.
  • the actual offset displacement between the actual formation position and the preset formation position of the luminescent material is equal to the distance corresponding to the offset displacement of the PDL, and The direction is the same.
  • FIG. 1 An example of the actual offset between the actual formation position of the luminescent material and the preset formation position is shown in FIG. 1. Wherein, the actual formation position of the red light-emitting material is shifted to the right, which covers the open area of the PDL of the green pixel.
  • FIG. 7 An example of adjusting the offset of the PDL is shown in FIG. 7.
  • the open area of the PDL corresponding to the red light emitting material and the open area of the PDL corresponding to the green light emitting material may be shifted to the lower right.
  • the dotted line indicates the position before the PDL adjustment
  • the solid line indicates the position after the PDL adjustment
  • the distance between the solid line and the dotted line is the actual offset between the actual formation position of the luminescent material and the preset formation position.
  • the second type based on the actual offset between the actual formation position of the film material and the preset formation position, determining the offset displacement of the corresponding opening area on the mask assembly; where the actual formation position of the film material and the preset formation position are The actual offset between them is equal to the distance corresponding to the offset displacement of the corresponding opening area on the mask assembly, and the directions are opposite.
  • the position of the corresponding opening area on the mask plate assembly can be adjusted to adjust the predetermined formation position of the luminescent material.
  • the offset displacement of the corresponding opening area on the mask assembly is determined. In order to ensure that after adjusting the position of the opening area on the mask plate assembly, when the adjusted mask plate assembly is used to evaporate the light emitting material on the substrate, the light emitting material can be accurately formed in the opening area of the PDL.
  • the actual offset between the preset formation positions is equal to the distance corresponding to the offset displacement of the corresponding opening area on the mask assembly, and the directions are opposite.
  • the actual formation position of the red light-emitting material in FIG. 1 is shifted to the right, and the position of the opening region on the mask assembly can be shifted to the left, that is, the position of the opening region can be adjusted to the left when the mask assembly is manufactured. .
  • Step 510 When the actual offset between the actual formation position of the film material and the preset formation position is outside the compensable range, and the difference between the maximum compensated displacement corresponding to the compensable range meets the threshold, according to the maximum compensation Displacement to adjust the preset formation position of the film.
  • the actual offset displacement between the actual formation position of the luminescent material and the preset formation position is outside the compensable range, when the difference between the maximum compensation displacements corresponding to the compensable range is not very large, That is, when the difference between the maximum compensation displacement and the maximum compensation displacement is less than the threshold value, it may be considered to partially adjust the preset formation position of the luminescent material.
  • the first is to adjust the position of the PDL to partially adjust the preset formation position of the luminescent material.
  • the second is to adjust the position of the corresponding opening area on the mask assembly. To partially adjust the predetermined formation position of the luminescent material.
  • the first type determining the offset displacement of the PDL according to the maximum compensation displacement; wherein the maximum compensation displacement is equal to the distance corresponding to the offset displacement of the PDL and has the same direction.
  • the second type determining the offset displacement of the corresponding opening area on the mask assembly according to the maximum compensation displacement; wherein the maximum compensation displacement is equal to the distance corresponding to the offset displacement of the corresponding opening area on the mask assembly and has the opposite direction.
  • the actual offset displacement between the actual formation position of the luminescent material and the preset formation position is outside the compensable range, and the difference between the maximum compensation displacement corresponding to the compensable range does not satisfy the threshold, that is, the maximum
  • the difference between the compensation displacements is greater than the threshold value, the actual displacement displacement between the actual formation position of the luminescent material and the preset formation position is too large, and color mixing still occurs after some adjustments.
  • the manufacturing process of the FMM needs to be adjusted or when the mask body and the mask fixing frame are fixed, the strength of the stretching net is adjusted to Forming a mask assembly.
  • the new mask plate assembly is used to evaporate the luminescent material, and the actual offset between the actual formation position of the luminescent material and the preset formation position is calculated again to adjust the preset formation position of the luminescent material. If the second offset generated by the evaporation process is large, the mask assembly and the substrate can be re-aligned, or parameters such as the evaporation angle of the light-emitting material can be adjusted to re-evaporate the light-emitting material on the substrate. After the evaporation is completed, the actual offset between the actual formation position of the luminescent material and the preset formation position is recalculated to adjust the preset formation position of the luminescent material.
  • FIG. 8 an adjustment flowchart for adjusting a preset formation position of a luminescent material is shown.
  • the light-emitting material is vapor-deposited in the open area of the PDL on the substrate, and the red light-emitting material, the green light-emitting material, and the blue light-emitting material are usually vapor-deposited in three times, and different mask materials are used for different light-emitting materials.
  • the coordinates of the plurality of second marking points on the mask member of the red luminescent material R, the coordinates of the plurality of second marking points on the mask member of the green luminescent material G, and the blue light emission are measured, respectively.
  • the coordinates of the plurality of second marked points on the mask plate assembly of the material B are measured.
  • the measurement of the coordinates of the plurality of second marked points refers to the measurement of the second coordinates.
  • the actual formation position and the preset formation position of the red light-emitting material R are calculated respectively.
  • Actual offset displacement between, the actual offset displacement between the actual formation position of the green luminescent material G and the preset formation position, and the actual offset displacement between the actual formation position of the blue luminescent material B and the preset formation position are calculated respectively.
  • the preset formation position of the luminescent material is adjusted.
  • the luminescent material By re-evaporating the luminescent material to adjust the actual formation position of the luminescent material, and confirming the improvement of the color mixing phenomenon by detecting the evaporation result of the luminescent material, when the red luminescent material covers the PDL opening area of the red pixel and the green luminescent material covers When the PDL opening area of the green pixel and the blue light emitting material cover the PDL opening area of the blue pixel, the improvement of the color mixing phenomenon is good, which can be directly introduced into mass production.
  • the distance between the two PDL opening areas is increased, but this will cause a reduction in the aperture ratio.
  • the embodiments of the present disclosure can effectively improve the color mixing failure. Therefore, in terms of design, The distance between the two PDL opening regions can be reduced, thereby increasing the aperture ratio and increasing the life of the light emitting device.
  • a plurality of first marks on the mask component are obtained.
  • the evaporation position of the luminescent material is re-determined, so that the next time the luminescent material is vapor-deposited, the previous offset displacement can be eliminated, thereby improving poor color mixing.
  • the distance between two PDL opening regions can be reduced, thereby increasing the aperture ratio and increasing the life of the light emitting device.
  • FIG. 9 a structural block diagram of an apparatus for adjusting a film deposition position in a film deposition process using a mask assembly according to an embodiment of the present disclosure is shown.
  • the mask assembly includes a mask fixing frame and a mask body fixed on the mask fixing frame.
  • the apparatus 800 for adjusting the evaporation position of a film material includes:
  • a first offset displacement obtaining module 801 configured to obtain a first offset displacement between a plurality of second mark points on the mask assembly and a plurality of first mark points on the mask body;
  • the actual offset displacement determination module 803 is configured to determine an actual offset displacement between an actual formation position of the film material and a preset formation position according to the first offset displacement and the second offset displacement;
  • FIG. 10 a structural block diagram of an apparatus for adjusting a deposition position of a film material in a film deposition process using a mask assembly according to an embodiment of the present disclosure is shown.
  • the first offset and displacement acquisition module 801 includes:
  • a first coordinate acquisition sub-module 8011 configured to acquire first coordinates of a plurality of first mark points on a mask body
  • a second coordinate measurement sub-module 8012 configured to measure second coordinates of a plurality of second marked points on the mask assembly
  • the second offset acquisition module 802 includes:
  • a third coordinate measurement sub-module 8021 configured to measure third coordinates of a plurality of third marked points on the substrate
  • the second offset displacement calculation sub-module 8022 is configured to subtract the second coordinate from the third coordinate to obtain a second between a plurality of third mark points on the substrate and a plurality of second mark points on the mask assembly. Offset displacement.
  • the actual offset displacement determining module 803 includes:
  • a first actual offset displacement calculation sub-module 8031 configured to add the first offset displacement and the second offset displacement to obtain the actual offset displacements of the plurality of third marker points;
  • a first ratio calculation sub-module 8032 is configured to, for the first target mark point and the second target mark point among the plurality of third mark points, associate the second target mark point with the first target mark point. A difference between the actual offset and displacement, divided by the actual number of formed positions of the film material (for example, a luminescent material) between the first target mark point and the second target mark point to obtain a first ratio; as well as
  • the second actual offset displacement calculation sub-module 8033 is configured to multiply the product of M and the first ratio for the actual formation position of the Mth film material between the first target mark point and the second target mark point.
  • the actual offset of the first target mark point is used to obtain the actual offset between the actual formation position of the Mth film material and the preset formation position; M is a positive integer greater than 0.
  • the formation position adjustment module 804 includes:
  • the first formation position adjustment sub-module 8041 is configured to be based on the actual formation position of the film material and the preset formation position when the actual offset between the actual formation position of the film material and the preset formation position is within a compensable range. The actual offset between the two, adjust the preset position of the film material;
  • the second formation position adjustment sub-module 8042 is configured when the actual offset between the actual formation position of the film material and the preset formation position is outside the compensable range, and between When the difference value meets the threshold, the preset formation position of the film material is adjusted according to the maximum compensation displacement.
  • the first offset displacement determining unit 80411 is configured to determine an offset displacement of the PDL based on an actual offset displacement between the actual formation position of the film material and a preset formation position;
  • the actual displacement between the actual formation position of the film material and the preset formation position is equal to the distance corresponding to the displacement displacement of the PDL, and the directions are the same;
  • the second formation position adjustment sub-module 8042 includes:
  • a second offset displacement determining unit 80421, configured to determine an offset displacement of the PDL according to a maximum compensation displacement
  • the maximum compensation displacement is equal to the distance corresponding to the offset displacement of the PDL and has the same direction.
  • the first formation position adjustment sub-module 8041 includes:
  • the third offset displacement determining unit 80412 is configured to determine the offset displacement of the corresponding opening area on the mask assembly based on the actual offset displacement between the actual formation position of the film material and the preset formation position;
  • the actual displacement between the actual formation position of the film material and the preset formation position is equal to the distance corresponding to the displacement displacement of the corresponding opening area on the mask assembly, and the directions are opposite;
  • the second formation position adjustment sub-module 8042 includes:
  • the fourth offset displacement determining unit 80422 is configured to determine the offset displacement of the corresponding opening area on the mask assembly according to the maximum compensation displacement
  • the maximum compensation displacement is equal to the distance corresponding to the displacement displacement of the corresponding opening area on the mask assembly, and the directions are opposite.
  • the second offset displacements of the plurality of third mark points on the substrate are obtained.
  • a mask plate component is used to vapor-deposit a film on a substrate
  • a plurality of second marking points are formed on the substrate, and the actual formation position and the predetermined formation position of the luminescent material are determined according to the first offset displacement and the second offset displacement.
  • the actual offset displacement between the two is adjusted according to the actual offset displacement between the actual formation position of the luminescent material and the preset formation position.

Abstract

公开了在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法和装置,其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体。该方法包括:获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中所述多个第三标记点是当采用所述掩模板组件在所述基板上蒸镀膜材时由所述多个第二标记点在所述基板上形成的;根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整。

Description

用于调整膜材蒸镀位置的方法和装置
相关申请交叉引用
本申请主张于2018年9月28日提交的中国专利申请No.201811141088.3的优先权,其全部公开内容通过引用结合于此。
技术领域
本公开涉及显示技术领域,特别是涉及一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法和装置。
背景技术
目前,通常依靠FMM(Fine Metal Mask,精细金属掩模)上的开口区域,使得发光材料穿过FMM并粘附在带有TFT(Thin Film Transistor,薄膜晶体管)的基板上,以形成OLED(Organic Light Emitting Diode,有机发光二极管)显示面板。
随着OLED显示面板的PPI(Pixels Per Inch,像素密度)的不断提高,对FMM的制作精度、张网精度和发光材料的蒸镀精度的要求也越来越高。当精度不够或工艺稳定性不好时,会导致各种不良。
发明内容
本公开提供了一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法,其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体,所述方法包括:获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中所述多个第三标记点是当采用所述掩模板组件在所述基板上蒸镀膜材时由所述多个第二标记点在所述基板上形成的;根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整。
在一些实施例中,所述获取掩模板组件上的多个第二标记点与掩 模板本体上的多个第一标记点之间的第一偏移位移的步骤,包括:获取掩模板本体上的多个第一标记点的第一坐标;测量掩模板组件上的多个第二标记点的第二坐标;以及将所述第二坐标减去所述第一坐标,得到掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
在一些实施例中,所述获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移的步骤,包括:测量基板上的多个第三标记点的第三坐标;以及将所述第三坐标减去所述第二坐标,得到基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移。
在一些实施例中,所述根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移的步骤,包括:将所述第一偏移位移加上所述第二偏移位移,得到所述多个第三标记点的实际偏移位移;针对所述多个第三标记点中的第一目标标记点和第二目标标记点,将所述第二目标标记点与所述第一目标标记点的实际偏移位移之间的差值,除以所述第一目标标记点和所述第二目标标记点之间的膜材的实际形成位置数量,得到第一比值;以及针对所述第一目标标记点和所述第二目标标记点之间的第M个膜材的实际形成位置,将M与所述第一比值的乘积,再加上所述第一目标标记点的实际偏移位移,得到所述第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
在一些实施例中,所述根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步骤,包括:当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整;以及当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与所述可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据所述最大补偿位移,对所述膜材的预设形成位置进行调整。
在一些实施例中,所述基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步 骤,包括:基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定像素界定层的偏移位移;其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述像素界定层的偏移位移对应的距离相等,且方向相同;以及所述根据所述最大补偿位移,对所述膜材的预设形成位置进行调整的步骤,包括:根据所述最大补偿位移,确定像素界定层的偏移位移;其中所述最大补偿位移与所述像素界定层的偏移位移对应的距离相等,且方向相同。
在一些实施例中,所述基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步骤,包括:基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定所述掩模板组件上对应开口区域的偏移位移;其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反;以及所述根据所述最大补偿位移,对所述膜材的预设形成位置进行调整的步骤,包括:根据所述最大补偿位移,确定所述掩模板组件上对应开口区域的偏移位移;其中所述最大补偿位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
本公开还提供了一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置,其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体,所述装置包括:第一偏移位移获取模块,被配置为获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;第二偏移位移获取模块,被配置为获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中所述多个第三标记点是当采用所述掩模板组件在所述基板上蒸镀膜材时由所述多个第二标记点在所述基板上形成的;实际偏移位移确定模块,被配置为根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及形成位置调整模块,被配置为根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整。
在一些实施例中,所述第一偏移位移获取模块包括:第一坐标获取子模块,被配置为获取掩模板本体上多个第一标记点的第一坐标; 第二坐标测量子模块,被配置为测量掩模板组件上的多个第二标记点的第二坐标;以及第一偏移位移计算子模块,被配置为将所述第二坐标减去所述第一坐标,得到所述掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
在一些实施例中,所述第二偏移位移获取模块包括:第三坐标测量子模块,被配置为测量基板上的多个第三标记点的第三坐标;以及第二偏移位移计算子模块,被配置为将所述第三坐标减去所述第二坐标,得到基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移。
在一些实施例中,所述实际偏移位移确定模块包括:第一实际偏移位移计算子模块,被配置为将所述第一偏移位移加上所述第二偏移位移,得到所述多个第三标记点的实际偏移位移;第一比值计算子模块,被配置为针对所述多个第三标记点中的第一目标标记点和第二目标标记点,将所述第二目标标记点与所述第一目标标记点的实际偏移位移之间的差值,除以所述第一目标标记点和所述第二目标标记点之间的膜材的实际形成位置数量,得到第一比值;以及第二实际偏移位移计算子模块,被配置为针对所述第一目标标记点和所述第二目标标记点之间的第M个膜材的实际形成位置,将M与所述第一比值的乘积,再加上所述第一目标标记点的实际偏移位移,得到所述第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
在一些实施例中,所述形成位置调整模块包括:第一形成位置调整子模块,被配置为当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整;以及第二形成位置调整子模块,被配置为当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与所述可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据所述最大补偿位移,对所述膜材的预设形成位置进行调整。
在一些实施例中,所述第一形成位置调整子模块包括:第一偏移位移确定单元,被配置为基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定像素界定层的偏移位移;其中所述膜材 的实际形成位置与预设形成位置之间的实际偏移位移与所述像素界定层的偏移位移对应的距离相等,且方向相同;以及所述第二形成位置调整子模块包括:第二偏移位移确定单元,被配置为根据所述最大补偿位移,确定像素界定层的偏移位移;其中所述最大补偿位移与所述像素界定层的偏移位移对应的距离相等,且方向相同。
在一些实施例中,其中所述第一形成位置调整子模块包括:第三偏移位移确定单元,被配置为基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定所述掩模板组件上对应开口区域的偏移位移;其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反;以及所述第二形成位置调整子模块包括:第四偏移位移确定单元,被配置为根据所述最大补偿位移,确定所述掩模板组件上对应开口区域的偏移位移;其中所述最大补偿位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
附图说明
图1示出了相关技术的出现混色现象的结构示意图;
图2示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法的流程图;
图3A示出了掩模板本体的结构示意图;
图3B示出了掩模板组件的结构示意图;
图4A示出了蒸镀过程中掩模板组件与基板配合结构的截面示意图;
图4B示出了蒸镀过程中基板的俯视示意图;
图5示出了在调整发光材料的预设形成位置后无混色现象的结构示意图;
图6示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法的流程图;
图7示出了像素界定层调整前和调整后的结构示意图;
图8示出了对发光材料的预设形成位置进行调整的调整流程图;
图9示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置的结构框图;
图10示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置的结构框图。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。
在利用FMM蒸镀膜材的工艺中,当精度不够或工艺稳定性不好时,都会导致混色不良。例如,如图1所示,R表示红色像素对应的PDL(Pixel Definition Layer,像素界定层)开口区,G表示绿色像素对应的PDL开口区,B表示蓝色像素对应的PDL开口区。例如,由于蒸镀时的精度等问题,红色发光材料11覆盖绿色像素的PDL开口区,从而导致混色现象的发生。
本公开的实施例提供一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法和装置,以解决相关技术中在采用FMM蒸镀膜材(例如,发光材料)时容易出现的精度不够、不均匀(例如,混色不良)等问题的一个或多个。
在本公开的一种示例性方法实施例中,参照图2,示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法的流程图,其中掩模板组件包括掩模板固定框架以及固定在掩模板固定框架上的掩模板本体,该方法具体可以包括如下步骤:
步骤201,获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
参照图3A和图3B,示出了掩模板本体与掩模板组件的结构示意图。
掩模板组件30包括掩模板本体(mask body)31和掩模板固定框架(mask frame)32。在制作掩模板组件30时,首先根据设计好的图纸制作掩模板本体31。掩模板本体31包括多个金属条311。由于工艺条件,在任意两个金属条311之间留有一定的缝隙,并且任意两个金属条311之间的缝隙通常具有相同宽度。在每个金属条311上形成有多个开口区域(在图3A和图3B中未示出)和多个第一标记点302A、302B(图中仅示例性地标记出了多个第一标记点中的两个)。要被蒸镀的膜的材料,例如发光材料,可穿过金属条311上的开口区域并蒸镀 在基板上。
掩模板本体31为FMM,在金属条311上制作多个开口区域时,每个开口区域的尺寸以及相邻两个开口区域之间的间距(gap)都会影响掩模板本体31的精度,即FMM的制作精度。
然后,再进行张网操作,即将制作好的掩模板本体31固定到掩模板固定框架32,以形成掩模板组件30。可采用焊接的方式将掩模板本体31与掩模板固定框架32进行固定。经过张网过程后,多个第一标记点302A、302B对应地改变为多个第二标记点312A、312B(图中仅示例性地标记出了多个第二标记点中的两个)。在将掩模板本体31与掩模板固定框架32固定时,由于固定的力度不均等因素的影响,会使得掩模板组件30上的多个第二标记点312A、312B相对于掩模板本体31上的多个第一标记点302A、302B发生偏移。当偏移越大时,表示张网精度越低,当偏移越小时,表示张网精度越高。张网精度指的是在将掩模板本体31与掩模板固定框架32固定后,形成的掩模板组件30中的掩模板本体31与未固定的掩模板本体31之间的差异大小。第二标记点指代经张网操作后的第一标记点。
获取掩模板组件30上多个第二标记点312A、312B的第一偏移位移。第一偏移位移指的是掩模板组件30上的多个第二标记点312A、312B相对于掩模板本体31的多个第一标记点302A、302B的偏移位移。
步骤202,获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中多个第三标记点是当采用掩模板组件在基板上蒸镀膜材时由多个第二标记点在基板上形成的。
图4A示出了蒸镀过程中掩模板组件与基板配合结构的截面示意图,其中掩模板组件30为沿着图3B中A-B之间截取的部分。图4B示出了蒸镀过程中图4A中的基板430的俯视示意图。如图4A和图4B所示,在本公开实施例中,采用掩模板组件30在基板430上蒸镀发光材料,掩模板组件30包括开口区域410、非开口区域420,以及多个第二标记点312A和312B。通过掩模板组件30将膜材蒸镀在基板430上。基板430包括PDL开口区440和非开口区域450。
在一些实施例中,当掩模板组件30上的开口区域410(即金属条311上的开口区域)与基板430上的PDL开口区440未完全对准时,发光材料通过掩模板组件30上的开口区域410蒸镀在基板430上时, 会有部分发光材料蒸镀在PDL开口区440外,导致混色现象的发生。掩模板组件30上的开口区域410与基板上的PDL开口区440未完全对准等因素会影响发光材料的蒸镀精度。
由于在掩模板组件30上形成的多个第二标记点,当采用掩模板组件30在基板430上蒸镀发光材料时,会相应在基板430上形成对应的多个第三标记点460A、460B(图中仅示例性地标记出了多个第三标记点中的两个)。当发光材料的蒸镀精度不够时,基板上的多个第三标记点460A、460B相对于掩模板组件30上的多个第二标记点312A、312B发生偏移,从而获取基板上的多个第三标记点460A、460B的第二偏移位移。
步骤203,根据第一偏移位移和第二偏移位移,确定膜材的实际形成位置与预设形成位置之间的实际偏移位移。
在本公开实施例中,根据掩模板组件30上的多个第二标记点的第一偏移位移,以及基板上的多个第三标记点的第二偏移位移,计算发光材料的预设形成位置的实际偏移位移。
步骤204,根据膜材的实际形成位置与预设形成位置之间的实际偏移位移,对膜材的预设形成位置进行调整。
在本公开实施例中,根据计算得到的发光材料的实际形成位置与预设形成位置之间的实际偏移位移,对发光材料的预设形成位置进行调整。
在一些实施例中,根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,调整PDL的位置。在可替换实施例中,根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,调整掩模板组件30上的开口区域410的位置。
若调整PDL的位置,在另外的基板上根据调整后的PDL的位置重新制作PDL,再采用掩模板组件30蒸镀发光材料;若调整掩模板组件30上的开口区域410的位置,则重新制作掩模板组件,在另外的基板上重新制作PDL,重新制作的PDL的位置不变,采用重新制作好的掩模板组件蒸镀发光材料。
通过发光材料的实际形成位置与预设形成位置之间的实际偏移位移,重新确定发光材料的蒸镀位置,以便下次蒸镀发光材料时,可以消除之前的偏移位移,如图5所示,使得红色发光材料41覆盖红色像 素对应的PDL开口区,绿色发光材料42覆盖绿色像素的PDL开口区,蓝色发光材料43覆盖蓝色像素的PDL开口区,改善混色不良。
在本公开实施例中,通过获取掩模板组件上的多个第二标记点的第一偏移位移,获取基板上的多个第三标记点的第二偏移位移,多个第三标记点是当采用掩模板组件在基板上蒸镀膜材时由多个第二标记点在基板上形成的,根据第一偏移位移和第二偏移位移,确定发光材料的实际形成位置与预设形成位置之间的实际偏移位移,根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,对发光材料的预设形成位置进行调整。通过掩模板组件上的第二标记点和基板上的第三标记点的偏移位移,确定发光材料的实际形成位置与预设形成位置之间的实际偏移位移,基于发光材料的实际形成位置与预设形成位置之间的实际偏移位移,重新确定发光材料的蒸镀位置,以便下次蒸镀发光材料时,可以消除之前的偏移位移,从而改善混色不良。
应当理解,在本公开的描述中,膜材的“实际形成位置”或“预设形成位置”不仅仅指的是膜材实际形成或预设形成的绝对位置,也可能指代膜材相对于基板或其他参照物的相对位置,例如可以指代膜材相对于PDL的相对位置。
在本公开的另一种示例性方法实施例中,参照图6,示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法的流程图,具体可以包括如下步骤:
步骤501,获取掩模板本体上的多个第一标记点的第一坐标。
在本公开实施例中,在采用设计的图纸制作掩模板本体31时,首先制作形成多个金属条311,且多个金属条311均匀分布,在金属条311上形成多个开口区域(在图3A和图3B中未示出)和多个第一标记点302A、302B。
在忽略FMM制作精度(即加工掩模板本体31的精度)的情况下,制作好的掩模板本体31上的多个第一标记点的第一坐标是在设计图纸时就可确定的。获取掩模板本体31上多个第一标记点的第一坐标,也就是获取设计掩模板本体31时,图纸上设计好的多个第一标记点的第一坐标。
应当理解,在本公开的上下文中,除非另外明确说明,术语“偏移位移”(例如,第一偏移位移,第二偏移位移,实际偏移位移等)指 代不同的部件或位置在平行于基板的平面中的投影之间的位移。另外,在本公开的上下文中,除非另外明确说明,术语“坐标”(例如,第一坐标,第二坐标,等)指代不同的部件或位置在平行于基板的平面中的投影的坐标,即不同的部件或位置在平行于基板的平面中的同一个二维坐标系中的坐标,其中原点可以是该平面内的任一固定的点。
例如,掩模板本体31上的多个第一标记点的其中两个302A和302B张网后形成为第二标记点312A和312B,并且其中这两个第一标记点302A和302B的第一坐标分别为(x10,y10)和(x11,y11)。
步骤502,测量掩模板组件上的多个第二标记点的第二坐标。
在本公开实施例中,将制作好的掩模板本体31与掩模板固定框架32固定在一起,形成掩模板组件30,可以采用摄像头来采集掩模板组件30上的多个第二标记点312A、312B的第二坐标。
例如,掩模板组件30上的第二标记点312A和312B的第二坐标分别为(x20,y20)和(x21,y21)。
步骤503,将第二坐标减去第一坐标,得到掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
在本公开实施例中,将掩模板组件30上的多个第二标记点312A、312B的第二坐标,减去掩模板本体31上对应的多个第一标记点302A、302B的第一坐标,得到掩模板组件30上的多个第二标记点312A、312B与掩模板本体上的多个第一标记点302A、302B之间的第一偏移位移。
例如,第二标记点312A的第一偏移位移
Figure PCTCN2019102797-appb-000001
并且第二标记点312B的第一偏移位移
Figure PCTCN2019102797-appb-000002
步骤504,测量基板上的多个第三标记点的第三坐标。
在本公开实施例中,采用掩模板组件30在基板430上蒸镀发光材料,由于在掩模板组件30上形成多个第二标记点312A、312B,当采用掩模板组件30在基板430上蒸镀发光材料时,会相应在基板430上形成对应的多个第三标记点460A、460B。可以采用摄像头采集基板上的多个第三标记点460A、460B的第三坐标。
例如,第二标记点312A在基板430上形成的第三标记点460A的第三坐标为(x30,y30),并且第二标记点312B在基板上形成的第三标记点460B的第三坐标为(x31,y31)。
步骤505,将第三坐标减去第二坐标,得到基板上的多个第三标记 点与掩模板组件上的多个第二标记点之间的第二偏移位移。
在本公开实施例中,将基板430上的多个第三标记点460A、460B的第三坐标,减去掩模板组件30上的对应的多个第二标记点312A、312B的第二坐标,得到基板上的多个第三标记点460A、460B的第二偏移位移。
例如,将第二标记点312A在基板上形成的第三标记点460A的第三坐标(x30,y30),减去第二标记点312A的第二坐标(x20,y20),得到第二标记点312A在基板上形成的第三标记点460A的第二偏移位移
Figure PCTCN2019102797-appb-000003
将第二标记点312B在基板上形成的第三标记点460B的第三坐标(x31,y31),减去第二标记点312B的第二坐标(x21,y21),得到第二标记点312B在基板上形成的第三标记点460B的第二偏移位移
Figure PCTCN2019102797-appb-000004
步骤506,将第一偏移位移加上第二偏移位移,得到多个第三标记点的实际偏移位移。
在本公开实施例中,将基板上的多个第三标记点的第二偏移位移,加上掩模板组件上的多个第二标记点的第一偏移位移,得到多个第三标记点的实际偏移位移。
第一偏移位移是制作掩模板本体31和将掩模板本体31与掩模板固定框架32固定时,掩模板组件张网工艺产生的偏移位移;第二偏移位移是采用掩模板组件30在基板430上蒸镀发光材料时,蒸镀工艺产生的偏移位移,掩模板组件制作工艺产生的偏移位移和蒸镀工艺产生的偏移位移,最终导致了发光材料的实际形成位置与预设形成位置之间的实际偏移位移。
例如,第二标记点312A在基板上形成的第三标记点460A的实际偏移位移
Figure PCTCN2019102797-appb-000005
第二标记点312B在基板上形成的第二标记460B点的实际偏移位移
Figure PCTCN2019102797-appb-000006
步骤507,针对多个第三标记点中的第一目标标记点和第二目标标记点,将第二目标标记点与第一目标标记点的实际偏移位移之间的差值,除以第一目标标记点和第二目标标记点之间的膜材的实际形成位置数量,得到第一比值。
在本公开实施例中,针对多个第三标记点中的第一目标标记点和第二目标标记点,将第二目标标记点的实际偏移位移减去第一目标标 记点的实际偏移位移,得到第二目标标记点与第一目标标记点的实际偏移位移之间的差值D。
由于制作的第三标记点数量有限,在第一目标标记点和第二目标标记点之间会存在多个发光材料的实际形成位置数量,当第一目标标记点和第二目标标记点之间的发光材料的实际形成位置数量为N时,N为大于0的正整数,将上述差值D除以N,得到第一比值P。
例如,将第一目标标记点设定为第二标记点312A在基板上形成的第三标记点460A,将第二目标标记点设定为第二标记点312B在基板上形成的第三标记点460B,第二目标标记点与第一目标标记点的实际偏移位移之间的差值
Figure PCTCN2019102797-appb-000007
则第一比值
Figure PCTCN2019102797-appb-000008
/N,由于差值D实际上指的是位移差,因此,计算得到的第一比值P实际上也是一个位移矢量。
步骤508,针对第一目标标记点和第二目标标记点之间的第M个膜材的实际形成位置,将M与第一比值的乘积,再加上第一目标标记点的实际偏移位移,得到第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
在本公开实施例中,对于第一目标标记点和第二目标标记点之间的第M个发光材料的实际形成位置,将M乘以第一比值P,其乘积再加上第一目标标记点的实际偏移位移,就可计算得到第M个发光材料的实际形成位置与预设形成位置之间的实际偏移位移RM;其中M为大于0的正整数。
例如,第一目标标记点460A和第二目标标记点460B之间的发光材料的实际形成位置数量为3,即N为3,对于第一目标标记点460A和第二目标标记点460B之间的第2个发光材料的实际形成位置,即M为2,则
Figure PCTCN2019102797-appb-000009
步骤509,当膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,对膜材的预设形成位置进行调整。
在本公开实施例中,当发光材料的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,直接根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,对发光材料的预设形成位置进行调整。
具体可包括以下两种调整方式:
第一种:基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定PDL的偏移位移;其中膜材的实际形成位置与预设形成位置之间的实际偏移位移与PDL的偏移位移对应的距离相等,且方向相同。
由于发光材料是形成在PDL的开口区内,因此可通过调整PDL的位置,以对发光材料的预设形成位置进行调整,根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,确定PDL的偏移位移。为了保证调整PDL之后,发光材料可以准确形成在PDL的开口区内,因此,发光材料的实际形成位置与预设形成位置之间的实际偏移位移与PDL的偏移位移对应的距离相等,且方向相同。
发光材料的实际形成位置与预设形成位置之间的实际偏移位移的示例如图1所示。其中,红色发光材料的实际形成位置向右偏移,其覆盖绿色像素的PDL的开口区。
对PDL的偏移位移进行调整的示例如图7所示。在一些实施例中,可以将红色发光材料对应的PDL的开口区、以及绿色发光材料对应的PDL的开口区向右下偏移。其中,虚线表示PDL调整之前的位置,实线表示PDL调整之后的位置,且实线与虚线之间的距离为发光材料的实际形成位置与预设形成位置之间的实际偏移位移。
第二种:基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定掩模板组件上对应开口区域的偏移位移;其中膜材的实际形成位置与预设形成位置之间的实际偏移位移与掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
由于是通过掩模板组件上的开口区域在基板上的PDL蒸镀发光材料的,因此,可通过调整掩模板组件上对应开口区域的位置,以对发光材料的预设形成位置进行调整。根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,确定掩模板组件上对应开口区域的偏移位移。为了保证在调整掩模板组件上的开口区域的位置之后,通过调整后的掩模板组件在基板上蒸镀发光材料时,发光材料可以准确形成在PDL的开口区内,发光材料的实际形成位置与预设形成位置之间的实际偏移位移与掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
例如,图1中红色发光材料的实际形成位置向右偏移,对应地可以将掩模板组件上的开口区域的位置向左偏移,即在制作掩模板组件时将开口区域的位置向左调整。
步骤510,当膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据最大补偿位移,对膜材的预设形成位置进行调整。
在本公开实施例中,当发光材料的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据可补偿范围对应的最大补偿位移对发光材料的预设形成位置进行调整。
需要说明的是,虽然发光材料的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,但是与可补偿范围对应的最大补偿位移之间的差值不是很大时,即与最大补偿位移之间的差值小于阈值时,可考虑对发光材料的预设形成位置进行部分调整。
对应的,也可采用以下两种方式,第一种是通过调整PDL的位置,以对发光材料的预设形成位置进行部分调整;第二种是通过调整掩模板组件上对应开口区域的位置,以对发光材料的预设形成位置进行部分调整。
第一种:根据最大补偿位移,确定PDL的偏移位移;其中最大补偿位移与PDL的偏移位移对应的距离相等,且方向相同。
第二种:根据最大补偿位移,确定掩模板组件上对应开口区域的偏移位移;其中最大补偿位移与掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
但是,当发光材料的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与可补偿范围对应的最大补偿位移之间的差值不满足阈值时,即与最大补偿位移之间的差值大于阈值时,发光材料的实际形成位置与预设形成位置之间的实际偏移位移太大,部分调整后仍然还是会出现混色。在这种情况下,如果掩模板组件制作工艺产生的第一偏移位移较大,则需要调整FMM的制作工艺或者在将掩模板本体与掩模板固定框架固定时,调整张网的力度,以形成掩模板组件。采用新的掩模板组件蒸镀发光材料,再次计算发光材料的实 际形成位置与预设形成位置之间的实际偏移位移,以对发光材料的预设形成位置进行调整。如果蒸镀工艺产生的第二偏移位移较大,则可将掩模板组件与基板进行重新对位,或者调整发光材料的蒸镀角度等参数,在基板上重新蒸镀发光材料。蒸镀完成后重新计算发光材料的实际形成位置与预设形成位置之间的实际偏移位移,以对发光材料的预设形成位置进行调整。
参照图8,示出了对发光材料的预设形成位置进行调整的调整流程图。
在一些实施例中,在不考虑第一偏移位移的情况下,可以通过下列过程来进行调整发光材料的预设形成位置。
在基板上的PDL的开口区蒸镀发光材料,通常分3次分别蒸镀红色发光材料、绿色发光材料和蓝色发光材料,且每次蒸镀不同发光材料所使用的掩模板组件不同。分别对红色发光材料R的掩模板组件上的多个第二标记点的坐标进行测定、对绿色发光材料G的掩模板组件上的多个第二标记点的坐标进行测定、以及对蓝色发光材料B的掩模板组件上的多个第二标记点的坐标进行测定,其中,对多个第二标记点的坐标进行测定指的是对第二坐标的测定。
采用各自的掩模板组件在基板上蒸镀发光材料后,会在基板相应区域形成对应的多个第三标记点,分别对基板上蒸镀红色发光材料R后的多个第三标记点的第三坐标进行测定,对基板上蒸镀绿色发光材料G后的多个第三标记点的第三坐标进行测定,以及对基板上蒸镀蓝色发光材料B后的多个第三标记点的第三坐标进行测定。
然后,根据掩模板组件上的多个第二标记点的第二坐标,以及基板上的多个第三标记点的第三坐标,分别计算得到红色发光材料R的实际形成位置与预设形成位置之间的实际偏移位移,绿色发光材料G的实际形成位置与预设形成位置之间的实际偏移位移和蓝色发光材料B的实际形成位置与预设形成位置之间的实际偏移位移。
接着,通过调整PDL的位置,或者调整掩模板组件上对应开口区域的位置,以对发光材料的预设形成位置进行调整。通过重新蒸镀发光材料,以调整发光材料的实际形成位置,并通过检测发光材料的蒸镀结果对混色现象的改善结果进行确认,当红色发光材料覆盖红色像素的PDL开口区、绿色发光材料覆盖绿色像素的PDL开口区和蓝色发 光材料覆盖蓝色像素的PDL开口区时,表示混色现象的改善结果良好,可直接导入量产,当还是存在大比例的混色现象时,表示混色现象的改善结果不好,因此,需要重新测定掩模板组件上的多个第二标记点的第二坐标,以及基板上的多个第三标记点的第三坐标,并重新对发光材料的预设形成位置进行调整。
需要说明的是,由于采用掩模板组件在基板上的PDL的多个开口区一次制作同一种颜色的发光材料,因此,在对发光材料的预设形成位置进行调整时,并不是针对每一个发光材料分别进行调整,而是根据各个发光材料的实际形成位置与预设形成位置之间的实际偏移位移,对所有发光材料的预设形成位置做一个连续的、均匀的调整,即根据各个发光材料的实际形成位置与预设形成位置之间的实际偏移位移,进行一次调整。
此外,通常情况下,为了降低混色现象的发生率,会增加两个PDL开口区之间的距离,但是这样会造成开口率的降低,本公开实施例可以有效改善混色不良,因此,在设计上可以减小两个PDL开口区之间的距离,从而提高开口率,提高发光器件的寿命。
在本公开实施例中,通过获取掩模板本体上多个第一标记点的第一坐标,以及掩模板组件上的多个第二标记点的第二坐标,得到掩模板组件上的多个第二标记点的第一偏移位移;通过测量基板上的多个第三标记点的第三坐标,将第三坐标减去第二坐标,得到基板上的多个第三标记点的第二偏移位移;将第一偏移位移加上第二偏移位移,得到多个第三标记点的实际偏移位移,进而得到发光材料的实际形成位置与预设形成位置之间的实际偏移位移。基于发光材料的实际形成位置与预设形成位置之间的实际偏移位移,重新确定发光材料的蒸镀位置,以便下次蒸镀发光材料时,可以消除之前的偏移位移,从而改善混色不良;同时,可减小两个PDL开口区之间的距离,从而提高开口率,提高发光器件的寿命。
在本公开的一种示例性装置实施例中,参照图9,示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置的结构框图。其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体。
本公开实施例的用于调整膜材蒸镀位置的装置800,包括:
第一偏移位移获取模块801,被配置为获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;
第二偏移位移获取模块802,被配置为获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中多个第三标记点是当采用掩模板组件在基板上蒸镀膜材时由多个第二标记点在基板上形成的;
实际偏移位移确定模块803,被配置为根据第一偏移位移和第二偏移位移,确定膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及
形成位置调整模块804,被配置为根据膜材的实际形成位置与预设形成位置之间的实际偏移位移,对膜材的预设形成位置进行调整。
参照图10,示出了本公开实施例的一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置的结构框图。
在图9的基础上,可选的,所述第一偏移位移获取模块801,包括:
第一坐标获取子模块8011,被配置为获取掩模板本体上多个第一标记点的第一坐标;
第二坐标测量子模块8012,被配置为测量所述掩模板组件上的多个第二标记点的第二坐标;以及
第一偏移位移计算子模块8013,被配置为将第二坐标减去第一坐标,得到掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
可选的,所述第二偏移位移获取模块802,包括:
第三坐标测量子模块8021,被配置为测量基板上的多个第三标记点的第三坐标;以及
第二偏移位移计算子模块8022,被配置为将第三坐标减去第二坐标,得到基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移。
可选的,所述实际偏移位移确定模块803,包括:
第一实际偏移位移计算子模块8031,被配置为将所述第一偏移位移加上所述第二偏移位移,得到所述多个第三标记点的实际偏移位移;
第一比值计算子模块8032,被配置为针对所述多个第三标记点中的第一目标标记点和第二目标标记点,将所述第二目标标记点与所述 第一目标标记点的实际偏移位移之间的差值,除以所述第一目标标记点和所述第二目标标记点之间的膜材(例如,发光材料)的实际形成位置数量,得到第一比值;以及
第二实际偏移位移计算子模块8033,被配置为针对第一目标标记点和第二目标标记点之间的第M个膜材的实际形成位置,将M与第一比值的乘积,再加上第一目标标记点的实际偏移位移,得到第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
可选的,所述形成位置调整模块804,包括:
第一形成位置调整子模块8041,被配置为当膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,对膜材的预设形成位置进行调整;
第二形成位置调整子模块8042,被配置为当膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据最大补偿位移,对膜材的预设形成位置进行调整。
可选的,所述第一形成位置调整子模块8041,包括:
第一偏移位移确定单元80411,被配置为基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定PDL的偏移位移;
其中膜材的实际形成位置与预设形成位置之间的实际偏移位移与PDL的偏移位移对应的距离相等,且方向相同;
所述第二形成位置调整子模块8042,包括:
第二偏移位移确定单元80421,被配置为根据最大补偿位移,确定PDL的偏移位移;
其中最大补偿位移与PDL的偏移位移对应的距离相等,且方向相同。
可选的,所述第一形成位置调整子模块8041,包括:
第三偏移位移确定单元80412,被配置为基于膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定掩模板组件上对应开口区域的偏移位移;
其中膜材的实际形成位置与预设形成位置之间的实际偏移位移与 掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反;
所述第二形成位置调整子模块8042,包括:
第四偏移位移确定单元80422,被配置为根据最大补偿位移,确定掩模板组件上对应开口区域的偏移位移;
其中最大补偿位移与掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
在本公开实施例中,通过获取掩模板组件上的多个第二标记点的第一偏移位移,获取基板上的多个第三标记点的第二偏移位移,第三标记点是当采用掩模板组件在基板上蒸镀膜材时由多个第二标记点在基板上形成的,根据第一偏移位移和第二偏移位移,确定发光材料的实际形成位置与预设形成位置之间的实际偏移位移,根据发光材料的实际形成位置与预设形成位置之间的实际偏移位移,对发光材料的预设形成位置进行调整。通过掩模板组件上的第二标记点和基板上的第三标记点的偏移位移,确定发光材料的实际形成位置与预设形成位置之间的实际偏移位移,基于发光材料的实际形成位置与预设形成位置之间的实际偏移位移,重新确定发光材料的蒸镀位置,以便下次蒸镀发光材料时,可以消除之前的偏移位移,从而改善混色不良。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本公开所必须的。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法和装置,进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (14)

  1. 一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的方法,其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体,所述方法包括:
    获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;
    获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中所述多个第三标记点是当采用所述掩模板组件在所述基板上蒸镀膜材时由所述多个第二标记点在所述基板上形成的;
    根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及
    根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整。
  2. 根据权利要求1所述的方法,其中所述获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移的步骤,包括:
    获取掩模板本体上的多个第一标记点的第一坐标;
    测量掩模板组件上的多个第二标记点的第二坐标;以及
    将所述第二坐标减去所述第一坐标,得到掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
  3. 根据权利要求2所述的方法,其中所述获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移的步骤,包括:
    测量基板上的多个第三标记点的第三坐标;以及
    将所述第三坐标减去所述第二坐标,得到基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移。
  4. 根据权利要求1所述的方法,其中所述根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移的步骤,包括:
    将所述第一偏移位移加上所述第二偏移位移,得到所述多个第三 标记点的实际偏移位移;
    针对所述多个第三标记点中的第一目标标记点和第二目标标记点,将所述第二目标标记点与所述第一目标标记点的实际偏移位移之间的差值,除以所述第一目标标记点和所述第二目标标记点之间的膜材的实际形成位置数量,得到第一比值;以及
    针对所述第一目标标记点和所述第二目标标记点之间的第M个膜材的实际形成位置,将M与所述第一比值的乘积,再加上所述第一目标标记点的实际偏移位移,得到所述第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
  5. 根据权利要求1所述的方法,其中所述根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步骤,包括:
    当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整;以及
    当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围外,且与所述可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据所述最大补偿位移,对所述膜材的预设形成位置进行调整。
  6. 根据权利要求5所述的方法,其中所述基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步骤,包括:
    基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定像素界定层的偏移位移;
    其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述像素界定层的偏移位移对应的距离相等,且方向相同;以及
    所述根据所述最大补偿位移,对所述膜材的预设形成位置进行调整的步骤,包括:
    根据所述最大补偿位移,确定像素界定层的偏移位移;
    其中所述最大补偿位移与所述像素界定层的偏移位移对应的距离相等,且方向相同。
  7. 根据权利要求5所述的方法,其中所述基于所述膜材的实际形 成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整的步骤,包括:
    基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定所述掩模板组件上对应开口区域的偏移位移;
    其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反;以及
    所述根据所述最大补偿位移,对所述膜材的预设形成位置进行调整的步骤,包括:
    根据所述最大补偿位移,确定所述掩模板组件上对应开口区域的偏移位移;
    其中所述最大补偿位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
  8. 一种在利用掩模板组件的蒸镀膜材工艺中调整膜材蒸镀位置的装置,其中所述掩模板组件包括掩模板固定框架以及固定在所述掩模板固定框架上的掩模板本体,所述装置包括:
    第一偏移位移获取模块,被配置为获取掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移;
    第二偏移位移获取模块,被配置为获取基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移,其中所述多个第三标记点是当采用所述掩模板组件在所述基板上蒸镀膜材时由所述多个第二标记点在所述基板上形成的;
    实际偏移位移确定模块,被配置为根据所述第一偏移位移和所述第二偏移位移,确定所述膜材的实际形成位置与预设形成位置之间的实际偏移位移;以及
    形成位置调整模块,被配置为根据所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整。
  9. 根据权利要求8所述的装置,其中所述第一偏移位移获取模块包括:
    第一坐标获取子模块,被配置为获取掩模板本体上多个第一标记点的第一坐标;
    第二坐标测量子模块,被配置为测量掩模板组件上的多个第二标记点的第二坐标;以及
    第一偏移位移计算子模块,被配置为将所述第二坐标减去所述第一坐标,得到所述掩模板组件上的多个第二标记点与掩模板本体上的多个第一标记点之间的第一偏移位移。
  10. 根据权利要求9所述的装置,其中所述第二偏移位移获取模块包括:
    第三坐标测量子模块,被配置为测量基板上的多个第三标记点的第三坐标;以及
    第二偏移位移计算子模块,被配置为将所述第三坐标减去所述第二坐标,得到基板上的多个第三标记点与掩模板组件上的多个第二标记点之间的第二偏移位移。
  11. 根据权利要求8所述的装置,其中所述实际偏移位移确定模块包括:
    第一实际偏移位移计算子模块,被配置为将所述第一偏移位移加上所述第二偏移位移,得到所述多个第三标记点的实际偏移位移;
    第一比值计算子模块,被配置为针对所述多个第三标记点中的第一目标标记点和第二目标标记点,将所述第二目标标记点与所述第一目标标记点的实际偏移位移之间的差值,除以所述第一目标标记点和所述第二目标标记点之间的膜材的实际形成位置数量,得到第一比值;以及
    第二实际偏移位移计算子模块,被配置为针对所述第一目标标记点和所述第二目标标记点之间的第M个膜材的实际形成位置,将M与所述第一比值的乘积,再加上所述第一目标标记点的实际偏移位移,得到所述第M个膜材的实际形成位置与预设形成位置之间的实际偏移位移;M为大于0的正整数。
  12. 根据权利要求8所述的装置,其中所述形成位置调整模块包括:
    第一形成位置调整子模块,被配置为当所述膜材的实际形成位置与预设形成位置之间的实际偏移位移位于可补偿范围内时,基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,对所述膜材的预设形成位置进行调整;以及
    第二形成位置调整子模块,被配置为当所述膜材的实际形成位置 与预设形成位置之间的实际偏移位移位于可补偿范围外,且与所述可补偿范围对应的最大补偿位移之间的差值满足阈值时,根据所述最大补偿位移,对所述膜材的预设形成位置进行调整。
  13. 根据权利要求12所述的装置,其中所述第一形成位置调整子模块包括:
    第一偏移位移确定单元,被配置为基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定像素界定层的偏移位移;
    其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述像素界定层的偏移位移对应的距离相等,且方向相同;以及
    所述第二形成位置调整子模块包括:
    第二偏移位移确定单元,被配置为根据所述最大补偿位移,确定像素界定层的偏移位移;
    其中所述最大补偿位移与所述像素界定层的偏移位移对应的距离相等,且方向相同。
  14. 根据权利要求12所述的装置,其中所述第一形成位置调整子模块包括:
    第三偏移位移确定单元,被配置为基于所述膜材的实际形成位置与预设形成位置之间的实际偏移位移,确定所述掩模板组件上对应开口区域的偏移位移;
    其中所述膜材的实际形成位置与预设形成位置之间的实际偏移位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反;以及
    所述第二形成位置调整子模块包括:
    第四偏移位移确定单元,被配置为根据所述最大补偿位移,确定所述掩模板组件上对应开口区域的偏移位移;
    其中所述最大补偿位移与所述掩模板组件上对应开口区域的偏移位移对应的距离相等,且方向相反。
PCT/CN2019/102797 2018-09-28 2019-08-27 用于调整膜材蒸镀位置的方法和装置 WO2020063237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,033 US11239423B2 (en) 2018-09-28 2019-08-27 Method and device for modifying film deposition position

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811141088.3A CN109285972B (zh) 2018-09-28 2018-09-28 一种发光材料的位置调整方法及装置
CN201811141088.3 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063237A1 true WO2020063237A1 (zh) 2020-04-02

Family

ID=65181880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102797 WO2020063237A1 (zh) 2018-09-28 2019-08-27 用于调整膜材蒸镀位置的方法和装置

Country Status (3)

Country Link
US (1) US11239423B2 (zh)
CN (1) CN109285972B (zh)
WO (1) WO2020063237A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285972B (zh) 2018-09-28 2021-01-22 京东方科技集团股份有限公司 一种发光材料的位置调整方法及装置
CN111969005B (zh) * 2019-05-20 2021-09-17 京东方科技集团股份有限公司 显示面板和制造显示面板的方法
CN110188502B (zh) * 2019-06-10 2023-06-27 京东方科技集团股份有限公司 掩膜版的设计方法、制作方法和设计系统
CN110901214A (zh) * 2019-12-04 2020-03-24 深圳市腾深显示技术有限公司 张拉对位方法及装置
CN111218645B (zh) * 2020-02-28 2022-02-11 云谷(固安)科技有限公司 掩膜板张网方法、掩膜板张网装置及掩膜板
CN113410151B (zh) * 2021-06-01 2022-10-14 云谷(固安)科技有限公司 一种确定掩膜版的位置偏移量的方法、装置及设备
CN114318235B (zh) * 2021-12-01 2024-02-09 昆山工研院新型平板显示技术中心有限公司 蒸镀方法和蒸镀系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650819A (zh) * 2011-08-03 2012-08-29 京东方科技集团股份有限公司 掩模板和掩膜板的定位方法
WO2018147339A1 (ja) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ 蒸着マスク、蒸着マスクのアライメント方法、及び蒸着マスク固定装置
CN109285972A (zh) * 2018-09-28 2019-01-29 京东方科技集团股份有限公司 一种发光材料的位置调整方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100446B1 (ko) 2012-12-10 2020-04-14 삼성디스플레이 주식회사 박막 증착용 마스크 조립체 및 이의 제조 방법
KR102084712B1 (ko) * 2013-05-30 2020-03-05 삼성디스플레이 주식회사 표시 장치용 기판 및 박막 증착 방법
KR102411542B1 (ko) * 2015-05-19 2022-06-22 삼성디스플레이 주식회사 유기 발광 표시 장치의 픽셀 패터닝 및 픽셀 위치 검사 방법과 그 패터닝에 사용되는 마스크
CN204714884U (zh) * 2015-06-04 2015-10-21 昆山国显光电有限公司 调整蒸镀偏位的装置
KR102420460B1 (ko) * 2016-01-15 2022-07-14 삼성디스플레이 주식회사 마스크 프레임 조립체, 표시 장치의 제조 장치 및 표시 장치의 제조 방법
CN105867066B (zh) * 2016-06-27 2021-01-22 京东方科技集团股份有限公司 掩膜板、显示基板的制作方法、显示基板及显示装置
CN106637074B (zh) * 2017-01-09 2019-02-22 昆山国显光电有限公司 蒸镀掩膜板、oled基板及测量蒸镀像素偏位的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650819A (zh) * 2011-08-03 2012-08-29 京东方科技集团股份有限公司 掩模板和掩膜板的定位方法
WO2018147339A1 (ja) * 2017-02-10 2018-08-16 株式会社ジャパンディスプレイ 蒸着マスク、蒸着マスクのアライメント方法、及び蒸着マスク固定装置
CN109285972A (zh) * 2018-09-28 2019-01-29 京东方科技集团股份有限公司 一种发光材料的位置调整方法及装置

Also Published As

Publication number Publication date
US11239423B2 (en) 2022-02-01
US20210217959A1 (en) 2021-07-15
CN109285972B (zh) 2021-01-22
CN109285972A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2020063237A1 (zh) 用于调整膜材蒸镀位置的方法和装置
US9705082B2 (en) Masks, method to inspect and adjust mask position, and method to pattern pixels of organic light-emitting display device utilizing the masks
US9605336B2 (en) Mask, method for manufacturing the same and process device
WO2016169387A1 (zh) 像素结构、掩膜板、有机电致发光显示面板及显示装置
US20210296392A1 (en) Flat Panel Array with the Alignment Marks in Active Area
US20180230585A1 (en) Metal mask plate and fabrication method thereof
US20220216412A1 (en) Mask and manufacturing method therefor
CN107994136B (zh) 掩膜板及其制作方法
WO2022016988A1 (zh) 显示面板母板及制备方法
US20160281208A1 (en) Metal Mask
CN103160775B (zh) 蒸镀掩膜板对位系统
US20210336146A1 (en) Evaporation mask, oled panel and system, and evaporation monitoring method
US8507858B2 (en) Pattern measurement apparatus and pattern measurement method
CN107201498B (zh) 一种掩膜条的接合方法、接合装置、掩膜版
WO2020233487A1 (zh) 像素结构、显示基板、掩膜板及蒸镀方法
JPWO2019038861A1 (ja) 蒸着マスク、表示パネルの製造方法、及び表示パネル
TW201839504A (zh) 蒸鍍遮罩、蒸鍍遮罩裝置之製造方法及蒸鍍遮罩之製造方法
WO2018147339A1 (ja) 蒸着マスク、蒸着マスクのアライメント方法、及び蒸着マスク固定装置
US20190105699A1 (en) Screen stretcher device
US20220123068A1 (en) Display panel, mask, mask assembly, and method of manufacturing mask assembly
CN110066975B (zh) 掩膜板、蒸镀装置、蒸镀方法以及掩膜板中蒸镀开口的设计方法
WO2015169087A1 (zh) 掩模板及其制作方法、掩模组件
TWI489223B (zh) 基板上的圖案化方法
TWI725319B (zh) 掩模組件
TW201602734A (zh) 面對面近接式曝光系統、液晶顯示器、有機發光二極體顯示器及使用該曝光系統將光罩之圖案轉移於樣本上的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866013

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19866013

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19866013

Country of ref document: EP

Kind code of ref document: A1