WO2020062221A1 - 一种半导体结构及其制造方法 - Google Patents

一种半导体结构及其制造方法 Download PDF

Info

Publication number
WO2020062221A1
WO2020062221A1 PCT/CN2018/109051 CN2018109051W WO2020062221A1 WO 2020062221 A1 WO2020062221 A1 WO 2020062221A1 CN 2018109051 W CN2018109051 W CN 2018109051W WO 2020062221 A1 WO2020062221 A1 WO 2020062221A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
semiconductor material
type semiconductor
periodic
Prior art date
Application number
PCT/CN2018/109051
Other languages
English (en)
French (fr)
Inventor
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to CN201880096930.8A priority Critical patent/CN112740417B/zh
Priority to PCT/CN2018/109051 priority patent/WO2020062221A1/zh
Priority to US16/819,567 priority patent/US11424353B2/en
Publication of WO2020062221A1 publication Critical patent/WO2020062221A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • the present invention relates to microelectronic technology, and in particular, to a semiconductor structure and a method for manufacturing the semiconductor structure.
  • High Electron Mobility Transistor is a heterojunction field effect transistor.
  • AlGaN / GaN heterostructure due to the strong two-dimensional electron gas in the AlGaN / GaN heterostructure, Generally, AlGaN / GaN HEMTs are depletion devices, making enhancement devices difficult to implement. In many places, the application of depletion devices has certain limitations. For example, in the application of power switching devices, enhanced (normally closed) switching devices are required. The enhanced gallium nitride switching device is mainly used in high-frequency devices, power switching devices, and digital circuits. Its research is of great significance.
  • a suitable method needs to be found to reduce the channel carrier concentration under the gate at zero gate voltage, for example, by arranging a p-type semiconductor material in the gate region.
  • this method has at least the following defects:
  • the p-type semiconductor material is set in the gate region. It is necessary to selectively etch p-type semiconductors in regions other than the gate. The precise process control of the etch thickness in the epitaxial direction is very difficult, and it is very easy to over-etch the p-type semiconductor. The semiconductor material etched below it, and the defects brought by the etching will cause a serious current collapse effect, which will also affect the stability and reliability of the device.
  • the present invention provides a semiconductor structure and a manufacturing method thereof, which solve the problems of complicated manufacturing processes, poor stability and poor reliability of the existing semiconductor structures.
  • the change curve of the component of the component change element in the epitaxial direction includes one or more combinations of the following change stages: a periodic change, an increasing change, and a decreasing change.
  • the p-type semiconductor material adopts a periodic structure, and the periodic structure includes at least one cycle sequentially superposed along the epitaxial direction, wherein each of the cycles includes a first periodic layer and a second periodic layer sequentially superposed along the epitaxial direction,
  • the composition change element exists only in the first periodic layer or the second periodic layer.
  • the gate region is defined on the surface of the barrier layer, and only one of the following two includes the composition change element: the p-type semiconductor material closest to the barrier layer A periodic layer and the barrier layer.
  • the p-type semiconductor material is a III-V compound
  • the first periodic layer includes at least one group III element and at least one group V element
  • the second periodic layer includes at least one group III element and At least one group V element
  • composition change element is a group III element or a group V element.
  • the group III element includes: Al, Ga, and In; and / or,
  • the group V element includes: N.
  • the p-type semiconductor material is selected from one or more of the following: p-type GaN, p-type AlGaN, and p-type InGaN;
  • the p-type GaN / AlGaN adopts a composite structure composed of GaN and AlGaN, the GaN in the p-type GaN / AlGaN is p-type doped, or the AlGaN in the p-type GaN / AlGaN is p-type. Doping, or both GaN and AlGaN in the p-type GaN / AlGaN is p-type doped.
  • the semiconductor structure further includes:
  • a source region and a drain region on both sides of the gate region are defined on a surface of the barrier layer;
  • the semiconductor structure further includes:
  • a source electrode disposed in the source region and forming an ohmic contact with the barrier layer
  • a drain electrode disposed in the drain region and forming an ohmic contact with the barrier layer.
  • the semiconductor structure further includes: a nucleation layer and a buffer layer sequentially prepared under the channel layer.
  • An embodiment of the present invention provides a method for manufacturing a semiconductor structure, including the following steps:
  • the p-type semiconductor material includes at least one composition change element whose composition changes in an epitaxial direction;
  • the selective etching is stopped when the p-type semiconductor material is etched in an epitaxial direction.
  • the p-type semiconductor material adopts a periodic structure, and the periodic structure includes at least one cycle sequentially superposed along the epitaxial direction, wherein each of the cycles includes a first periodic layer and a second periodic layer sequentially superposed along the epitaxial direction,
  • the composition change element exists only in the first periodic layer or the second periodic layer;
  • stopping the selective etching when the p-type semiconductor material is etched in an epitaxial direction includes:
  • the selective etching is stopped.
  • the gate region is defined on the surface of the barrier layer, and only one of the following two includes the composition change element: the p-type semiconductor material closest to the barrier layer A periodic layer and the barrier layer.
  • stopping the selective etching when the p-type semiconductor material is etched in an epitaxial direction includes:
  • the first periodic layer closest to the barrier layer includes the composition change element
  • the selective etching is performed on the first periodic layer closest to the barrier layer.
  • the composition change element disappears, the selective etching is stopped;
  • the barrier layer includes the composition change element
  • the selective etching is performed on the first periodic layer closest to the barrier layer, it is found that according to a result of the real-time monitoring process When the composition change element appears, the selective etching is stopped.
  • the method further includes:
  • forming a p-type semiconductor material over the barrier layer includes:
  • the p-type semiconductor material is selectively etched, and the p-type semiconductor material that retains a gate region above the barrier layer includes:
  • the p-type semiconductor material is selectively etched to retain the p-type semiconductor material in the groove.
  • a source region and a drain region on both sides of the gate region are defined on a surface of the barrier layer;
  • the method further includes:
  • the semiconductor structure above the drain region is etched to expose the barrier layer, and a drain electrode that forms an ohmic contact with the barrier layer is prepared in the drain region.
  • the method further includes:
  • a nucleation layer and a buffer layer were sequentially prepared.
  • the semiconductor structure and the manufacturing method thereof provided by the embodiments of the present invention can help reduce the process difficulty of etching the p-type semiconductor material by providing at least one composition change element in the p-type semiconductor material.
  • the composition change of elements in the p-type semiconductor material can be monitored to grasp the etching progress of the p-type semiconductor material, thereby controlling the selection in the epitaxial direction.
  • the process of sexual etching can not only avoid the part of the p-type semiconductor material that needs to be etched in the epitaxial direction from being completely etched, but also avoid the damage to the underlying semiconductor structure caused by over-etching, which reduces the damage caused by the etching. Defects, improve the stability and reliability of the device, and reduce the difficulty of the process.
  • FIGS. 1, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 5a, 5b, and 5c are schematic diagrams of the decomposition of the semiconductor structure structure during the preparation process according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a manufacturing process of a semiconductor structure according to an embodiment of the present invention.
  • 7, 8a, 8b, 9a, and 9b are schematic diagrams of component change curves of component change elements in a semiconductor structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for manufacturing a semiconductor structure according to an embodiment of the present invention. As shown in FIG. 6, the method for preparing the semiconductor structure includes the following steps:
  • a substrate 1 is provided.
  • the substrate 1 may be selected from a semiconductor material, a ceramic material, or a polymer material.
  • the substrate 1 is preferably made of sapphire, silicon carbide, silicon, lithium niobate, silicon-on-insulator (SOI), gallium nitride, or aluminum nitride.
  • Step 602 As shown in FIG. 2a, a channel layer 23 and a barrier layer 24 are sequentially prepared on the substrate 1.
  • the channel layer 23 and the barrier layer 24 may be semiconductor materials capable of forming a two-dimensional electron gas.
  • the channel layer 23 may be GaN
  • the barrier layer 24 may be AlGaN
  • the channel layer 23 and the barrier layer 24 constitute a heterostructure to form a two-dimensional electron gas.
  • the channel layer 23 and the barrier layer 24 may also be other materials, such as a GaAs-based material
  • the channel layer 23 is GaAs
  • the barrier layer 24 is AlGaAs.
  • a nucleation layer 21 and a buffer layer 22 may be sequentially grown on the substrate 1 before the channel layer 23 is grown.
  • a nucleation layer 21 prepared on the substrate 1 which may be One or more of AlN and AlGaN.
  • the GaN-based semiconductor structure may further include a buffer layer 22 prepared above the nucleation layer 21, and the buffer layer 22 may include GaN, AlGaN, AlInGaN One or more of them.
  • Step 603 As shown in FIG. 3a, a p-type semiconductor material 3 is formed over the barrier layer 24.
  • the p-type semiconductor material 3 includes at least one composition change element, and the composition of the composition change element changes in the epitaxial direction.
  • the p-type semiconductor material 3 may be selected from, for example, p-type NiO, p-type GaN, p-type AlGaN, or p-type polycrystalline GaN.
  • the variation curve of the composition in the epitaxial direction of the element may include one or more combinations of the following change stages: a periodic change, an increasing change, and a decreasing change.
  • the change curve of the composition change element can be composed of an increasing change stage (in the range of 0 nm to 10 nm in the epitaxial direction) and a decreasing change stage (in the range of 10 nm to 20 nm in the epitaxial direction).
  • the invention does not limit the specific change curve of the composition of the composition change element.
  • the p-type semiconductor material 3 may adopt a periodic structure, and the periodic structure includes at least one cycle sequentially superposed along the epitaxial direction, wherein each cycle includes a first In the periodic layer 31 and the second periodic layer 32, the composition change element exists only in the first periodic layer or the second periodic layer. This can effectively prevent the component monitoring system from over-etching the underlying semiconductor structure due to the reaction delay.
  • the p-type semiconductor material 3 may be grown in situ, or may be deposited by atomic layer deposition (ALD), chemical vapor deposition (CVD), or molecular beam epitaxy (MBE, Molecular Beam Epitaxy). ), Or plasma enhanced chemical vapor deposition (PECVD, Enhanced Chemical Deposition), or low pressure chemical vapor deposition (LPCVD, Low Pressure Chemical Vapor Deposition), or metal organic chemical vapor deposition (MOCVD, Metal-Organic Chemical Vapor) Deposition), or a combination thereof.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • PECVD plasma enhanced chemical vapor deposition
  • PECVD Enhanced Chemical Deposition
  • LPCVD low pressure chemical vapor deposition
  • MOCVD Metal-Organic Chemical Vapor
  • Step 604 Selectively etch the p-type semiconductor material 3, retain the p-type semiconductor material 3 in the gate region above the barrier layer 24, and monitor the composition of the element that changes the composition in real time during the selective etching process.
  • Step 605 Stop the selective etching when a preset change curve is detected.
  • the change curve of the component change element in the p-type semiconductor material 3 in the epitaxial direction may be a combination of multiple change stages.
  • the change stage closest to the barrier layer 24 in the epitaxial direction can be selected to judge When to stop selective etching.
  • the change phase is monitored to the end, it means that the p-type semiconductor material 3 has been etched in the epitaxial direction, and the selective etching may be stopped at this time. Taking the change curve of the composition change element shown in FIG.
  • FIG. 7 As an example, when the selective etching of the p-type semiconductor material 3 is started, as the etching process progresses, when the monitoring finds that the composition of the change element of the composition reaches FIG. 7 When the apex is shown, it means that the p-type semiconductor material 3 has already been etched by half of its thickness (a portion of 10 nm to 20 nm). At this time, the etching can be stopped after 10 nm. The semiconductor structure after the selective etching is stopped can be shown in FIG. 4a.
  • the p-type semiconductor material 3 when the p-type semiconductor material 3 adopts a periodic structure as shown in FIG. 3b, when a preset variation curve is monitored according to the result of the real-time monitoring process, the p-type semiconductor material 3 can be determined.
  • the first periodic layer closest to the barrier layer 31 has been etched in the epitaxial direction, and the selective etching may be stopped.
  • the composition change element is Al existing only in the second periodic layer 32.
  • the formed periodic structure is an L1 layer (5nm GaN), an L2 layer (5nm AlGaN), an L3 layer (5nm GaN), and an L4 layer (5nm AlGaN), which are sequentially stacked along the epitaxial direction
  • the L4 layer on the surface of the p-type semiconductor material 3 includes an Al element.
  • the etch rate can be slowed down, and the etching should be continued after the thickness of 5 nm is stopped to ensure that the p-type semiconductor material 3 is in the epitaxial direction.
  • the portion to be etched is just etched away without damaging the underlying semiconductor structure.
  • the semiconductor structure after the selective etching is stopped can be shown in FIG. 4b.
  • a gate region is defined on the surface of the barrier layer 24.
  • the following can be set: Only one of them includes a composition change element: the first periodic layer 31 and the barrier layer 24 of the p-type semiconductor material 3 closest to the barrier layer.
  • the first periodic layer 31 closest to the barrier layer 24 includes a composition change element
  • the first periodic layer 31 closest to the barrier layer 24 is selectively etched, it is found based on the results of the real-time monitoring process When the composition change element disappears, the selective etching may be stopped.
  • the composition of the first periodic layer 31 closest to the barrier layer 24 is AlGaN and the composition of the barrier layer 24 is GaN
  • the barrier layer 24 includes a composition change element
  • the first periodic layer 31 closest to the barrier layer 24 is selectively etched, when the composition change element is found to appear based on the results of the real-time monitoring process, the selectivity is stopped. Etching is sufficient.
  • the composition of the first periodic layer 31 closest to the barrier layer 24 is AlN and the composition of the barrier layer 24 is AlGaN, during the etching of the first periodic layer 31 closest to the barrier layer 24, It is only necessary to stop etching when the Ga element appears.
  • Step 606 As shown in FIG. 5a, a source electrode 6 is prepared in the source region to form an ohmic contact with the barrier layer 24; and a drain electrode 7 is prepared in the drain region to form an ohmic contact with the barrier layer 24.
  • the P-type semiconductor material 3 can be used directly as a gate electrode (as shown in FIG. 5a), or an electrode material 5 can be further fabricated on the P-type semiconductor material 3 as a gate electrode (as shown in FIG. 5b).
  • the source electrode 6, the drain electrode 7, and the electrode material 5 on the P-type semiconductor material 3 may be made of a metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material.
  • the specific preparation materials of the electrode material 5 on the drain electrode 7 and the P-type semiconductor material 3 are not limited.
  • the method for preparing a semiconductor structure provided by the embodiment of the present invention, by providing at least one composition change element in the p-type semiconductor material 3, it can help reduce the process when the p-type semiconductor material 3 is etched. Difficulty. Specifically, when the p-type semiconductor material 3 is selectively etched, the composition change of the composition change element in the p-type semiconductor material 3 can be monitored to grasp the etching progress of the p-type semiconductor material 3, thereby controlling the epitaxial process.
  • the selective etching process in the direction can not only avoid that the portion of the p-type semiconductor material 3 that needs to be etched in the epitaxial direction is not completely etched, but also avoid damage to the underlying semiconductor structure by excessive etching, which reduces the etching. Defects brought by the etch improve the stability and reliability of the device and reduce the difficulty of the process.
  • a p-type semiconductor material 3 may also be prepared.
  • a groove 4 extending toward the barrier layer 24 was formed in the gate region.
  • the groove etching process can be, for example, using a chlorine-based plasma etching. Due to the selectivity of fluorine-based plasma etching, the etching process will be etched to The barrier layer stops at 2400 hours. After the groove 4 is formed, as shown in FIG.
  • a p-type semiconductor material 3 covering the groove 4 is formed above the barrier layer 24; then, the p-type semiconductor material 3 is selectively etched to retain the groove 4 P-type semiconductor material 3 to form a semiconductor structure as shown in FIG. 4c.
  • the groove 4 can penetrate to the intermediate layer 242 of the sandwich structure of the barrier layer 24.
  • the intermediate layer 242 It can function as a stop layer in the local etching process for forming the groove 4 to protect the first outer interlayer 241 on the surface of the channel layer 23 from being damaged by the local etching process.
  • the present invention does not strictly limit the preparation depth of the grooves 4 as long as the p-type semiconductor material 3 inside the grooves 4 can pinch the n-type conductive layer under the gate to realize a semiconductor structure.
  • FIG. 4a is a schematic structural diagram of a semiconductor structure according to an embodiment of the present invention.
  • the semiconductor structure includes: a channel layer 23 and a barrier layer 24 prepared in this order, a gate region is defined above the barrier layer 24; and a p-type semiconductor material 3 formed on the gate region,
  • the p-type semiconductor material 3 includes at least one composition change element whose composition changes in the epitaxial direction.
  • the channel layer 23 and the barrier layer 24 are sequentially prepared on the substrate 1.
  • the substrate 1 may be selected from a semiconductor material, a ceramic material, or a polymer material.
  • the substrate 1 may be preferably selected from sapphire, silicon carbide, silicon, lithium niobate, silicon-on-insulator (SOI), gallium nitride, or aluminum nitride.
  • the channel layer 23 and the barrier layer 24 may be semiconductor materials capable of forming a two-dimensional electron gas.
  • the channel layer 23 may be GaN
  • the barrier layer 24 may be AlGaN
  • the channel layer 23 and the barrier layer 24 constitute a heterostructure to form a two-dimensional electron gas.
  • the channel layer 23 and the barrier layer 24 may also be other materials, such as a GaAs-based material
  • the channel layer 23 is GaAs
  • the barrier layer 24 is AlGaAs.
  • epitaxial layers such as a nucleation layer 21, a buffer layer 22 and the like under the channel layer 23 may be further prepared in order before the channel layer 23 is prepared.
  • a nucleation layer 21 prepared on the substrate 1 which may be One or more of AlN and AlGaN.
  • the GaN-based semiconductor structure may further include a buffer layer 22 prepared above the nucleation layer 21, and the buffer layer 22 may include GaN, AlGaN, AlInGaN One or more of them.
  • the p-type semiconductor material 3 may be selected according to the materials of the channel layer 23 and the barrier layer 24. Taking a GaN-based semiconductor structure as an example, the p-type semiconductor material 3 may be selected from one or more of the following: one or more of p-type GaN, p-type AlGaN, and p-type InGaN.
  • the composition change of the composition change element in the p-type semiconductor material 3 can be monitored to grasp the etching progress of the p-type semiconductor material 3, thereby controlling the epitaxial process.
  • the selective etching process in the direction can not only avoid that the portion of the p-type semiconductor material 3 that needs to be etched in the epitaxial direction is not completely etched, but also avoid damage to the underlying semiconductor structure by excessive etching, which reduces the etching. Defects brought by the etch improve the stability and reliability of the device and reduce the difficulty of the process.
  • the change curve of the composition change element composition in the p-type semiconductor material 3 in the epitaxial direction includes one or more combinations of the following change stages: periodic change, incremental change, and Decreasing changes.
  • the change curve of the component change element can be composed of an increasing change stage (in the range of 0 nm to 10 nm in the epitaxial direction) and a decreasing change stage (in the range of 10 nm to 20 nm in the epitaxial direction).
  • the change curve of the component change element can be composed of an increasing change stage (in the range of 0 nm to 10 nm in the epitaxial direction) and a decreasing change stage (in the range of 10 nm to 20 nm in the epitaxial direction).
  • composition change method of the composition change element in the p-type semiconductor material 3 can be adjusted according to the actual application scenario, as long as the composition monitoring element composition monitoring process can grasp the etching progress of the p-type semiconductor material 3, so that The portion of the p-type semiconductor material 3 that needs to be etched away in the epitaxial direction can be stopped in time when the etching is completed.
  • the present invention does not strictly limit the composition change mode of the composition change element in the p-type semiconductor material 3.
  • the p-type semiconductor material 3 may adopt a periodic structure.
  • the periodic structure includes at least one cycle sequentially superposed along the epitaxial direction, and each cycle includes a first A periodic layer 31 and a second periodic layer 32.
  • the composition change element exists only in the first periodic layer 31 or the second periodic layer 32. This can effectively prevent the component monitoring system from over-engraving the underlying semiconductor structure due to the reaction delay. eclipse. Taking the first periodic layer 31 as GaN and the second periodic layer 32 as AlGaN as an example, the composition change element is Al existing only in the second periodic layer 32.
  • the periodic structure of the formed p-type semiconductor material 3 is 5 nm, GaN, 5 nm, AlGaN, 5 nm, GaN, 5 nm, AlGaN, etc., and the composition changes
  • the variation curve of the component in the epitaxial direction is a “sawtooth” periodic change, as shown in FIG. 8a.
  • the preset preparation thickness of each periodic layer may not remain the same.
  • the first periodic layer 31 in the periodic structure of the p-type semiconductor material 3 may be 5 nm GaN and the second periodic layer The layer 32 is 6nm AlGaN.
  • the composition change element's composition in the epitaxial direction also shows a “sawtooth” periodic change, but the width of each “sawtooth” is wider than the area without “sawtooth”. This is shown in Figure 8b.
  • the composition of Al in the entire p-type semiconductor material actually changes periodically along the epitaxial direction.
  • the p-type semiconductor material 3 is selectively etched, it can be stopped when it is monitored that the first periodic layer 31 closest to the barrier layer 24 has been etched.
  • the periodic structure formed is an L1 layer (5nm GaN), an L2 layer (5nm AlGaN), an L3 layer (5nm GaN), and an L4 which are sequentially stacked along the epitaxial direction. Layer (5nm AlGaN).
  • the L4 layer located on the surface of the p-type semiconductor material 3 includes an Al element.
  • the monitoring found that the Al element disappeared it indicated that the L3 layer had been etched.
  • the Al element appears again after inspection it means that the L2 layer has been etched.
  • the Al element disappears again it means that the L1 layer has been etched.
  • the etch rate can be slowed down, and the etching can be stopped after continuing to etch a thickness of 5 nm to ensure that the p-type semiconductor material 3 is epitaxial
  • the portion to be etched in the direction is just etched away without damaging the underlying semiconductor structure.
  • the periodic structure of the p-type semiconductor material is described by taking the first periodic layer 31 as GaN and the second periodic layer 32 as AlGaN as an example, in fact, the p-type semiconductor material 3 may be other III- Group V compounds, or may be made of other materials.
  • the p-type semiconductor material 3 is a III-V compound
  • the first periodic layer 31 includes at least one Group III element and at least one Group V element
  • the second periodic layer 32 includes at least one Group III element and at least one Group V element
  • the composition change element is a group III element or a group V element.
  • the group III element may include: Al, Ga, and In; and / or, the group V element may include: N.
  • the invention does not strictly limit the types of specific elements included in the p-type semiconductor material.
  • the first periodic layer 31 in the periodic structure of the p-type semiconductor material 3 may be 5 nm GaN, and the second periodic layer 32 is 5 nm InGaN.
  • the formed periodic structure is 5nm GaN, 5nm InGaN, 5nm GaN, 5nm 5nm InGaN.
  • the preset preparation thickness of each periodic layer may not remain the same.
  • the first periodic layer 31 in the periodic structure of the p-type semiconductor material 3 may be 5 nm and the second periodic layer 32 6nm InGaN.
  • the p-type doping method of the p-type semiconductor material 3 is also variable.
  • the p-type doping can be performed only in the first periodic layer 31 or the second periodic layer 32, or Both the first periodic layer 31 and the second periodic layer 32 are p-type doped.
  • p-type semiconductor material 3 is p-type GaN / AlGaN
  • GaN in p-type GaN / AlGaN is p-type doped (eg, doped with Mg element)
  • AlGaN in p-type GaN / AlGaN is performed.
  • Both p-type doping, or GaN and AlGaN in p-type GaN / AlGaN are p-type doped.
  • the p-type semiconductor material 3 still uses the above-mentioned periodic structure, and the composition change element still exists only in the first periodic layer 31 or the second periodic layer 32, and the composition
  • the composition of the changing element is monotonic, such as an increasing change or a decreasing change.
  • the p-type semiconductor material 3 may include two cycles:
  • the first periodic layer 31 in the first period is 5 nm GaN, and the second periodic layer 32 is 5 nm Al 0.6 Ga 0.4 N;
  • the first periodic layer 31 in the second period is 5 nm GaN, and the second periodic layer 32 is 5 nm Al 0.5 Ga 0.5 N.
  • the composition of Al in the entire p-type semiconductor material 3 decreases along the epitaxial direction.
  • Al can be used as a composition change element, and the variation of the composition of Al in the epitaxial direction is still a “sawtooth” periodic change curve , But the height of each "tooth” is decreasing, as shown in Figure 9a.
  • the etching process can be controlled by monitoring the composition of the element Al, for example, when the first periodic layer 31 that has been etched to the closest to the barrier layer 24 is monitored in the epitaxial direction through the composition monitoring process, It is sufficient to stop the selective etching process.
  • the preset preparation thickness of the periodic layer in each cycle of the p-type semiconductor material 3 may not remain unchanged.
  • the p-type semiconductor material 3 may also include the following two cycles:
  • the first periodic layer 31 in the first period is 5 nm GaN, and the second periodic layer 32 is 6 nm Al 0.6 Ga 0.4 N;
  • the first periodic layer 31 in the second period is 5 nm GaN, and the second periodic layer 32 is 6 nm Al 0.5 Ga 0.5 N.
  • composition change curve of the composition change element may actually be a period of cyclic change, an increase of change, and a decrease of The present invention does not specifically limit the change curve of the composition of the composition change element in the epitaxial direction with any combination of the change stages.
  • a gate region is defined on the surface of the barrier layer 24.
  • the following can be set: Only one of them includes a composition change element: the first periodic layer 31 and the barrier layer 24 of the p-type semiconductor material 3 closest to the barrier layer 24.
  • the first periodic layer 31 closest to the barrier layer 24 includes a composition change element
  • the first periodic layer 31 closest to the barrier layer 24 is selectively etched, it is found based on the results of the real-time monitoring process When the composition change element disappears, the selective etching may be stopped.
  • the composition of the first periodic layer 31 closest to the barrier layer 24 is AlGaN and the composition of the barrier layer 24 is GaN
  • the barrier layer 24 includes a composition change element
  • the first periodic layer 31 closest to the barrier layer 24 is selectively etched, when the composition change element is found to appear based on the results of the real-time monitoring process, the selectivity is stopped Etching is sufficient.
  • the composition of the first periodic layer 31 closest to the barrier layer 24 is AlN and the composition of the barrier layer 24 is AlGaN, during the etching of the first periodic layer 31 closest to the barrier layer 24, It is only necessary to stop etching when the Ga element appears.
  • the semiconductor structure may further include a semiconductor layer formed in A recess 4 extending in the gate region toward the barrier layer 24, and the p-type semiconductor material 3 fills the recess 4.
  • the specific shape of the p-type semiconductor material 3 may be changed according to the width of the groove 4 corresponding to the gate region.
  • the middle portion of the p-type semiconductor material 3 is a T-shaped structure, when the width of the groove 4 is narrow (for example, less than 0.25um), the middle portion of the p-type semiconductor material 3 may also be
  • the folded state is not limited in the present invention.
  • the barrier layer 24 may also adopt a sandwich structure.
  • the sandwich structure includes a first outer interlayer 241 prepared on the surface of the channel layer 23, and sandwiched between the first outer interlayer 241. And a second outer interlayer 243 between the second interlayer 243 and the second outer interlayer 243. It should be understood that the materials of the first outer interlayer 241, the intermediate layer 242, and the second outer interlayer 243 may be adjusted according to the material of the channel layer 23.
  • the first outer interlayer 241 and the second outer interlayer 243 may be made of AlGaN or AlInGaN, and the intermediate layer 242 may be made of GaN.
  • the content of In and Ga can vary from 0 to 1.
  • the invention does not specifically limit the materials of the first outer interlayer 241, the intermediate layer 242, and the second outer interlayer 243.
  • the groove 4 can penetrate to the intermediate layer 242 of the sandwich structure of the barrier layer 24.
  • the intermediate layer 242 can stop during the local etching process for forming the groove 4 Layer to protect the first outer interlayer 241 on the surface of the channel layer 23 from being damaged by the groove etching process.
  • the present invention does not strictly limit the preparation depth of the grooves 4 as long as the p-type semiconductor material 3 inside the grooves 4 can pinch the n-type conductive layer under the gate to realize a semiconductor structure.
  • a source region and a drain region on both sides of the gate region are further defined on the surface of the barrier layer 24, and the source electrode 6 is disposed in the source region and connected to the potential.
  • the barrier layer 24 forms an ohmic contact
  • the drain electrode 7 is disposed in the drain region and forms an ohmic contact with the barrier layer 24.
  • the p-type semiconductor material 3 and the p-type semiconductor material 3 above the source region and above the drain region need to be etched.
  • the source electrode 6 and the drain electrode 7 are prepared by exposing the source region and the drain region on the surface of the barrier layer 24, and finally a semiconductor structure as shown in FIG. 5a is formed.
  • the P-type semiconductor material 3 may be directly used as a gate electrode (as shown in FIG. 5a), or an electrode material 5 may be fabricated on the P-type semiconductor material 3 as a gate electrode (as shown in FIG. 5b).
  • the source electrode 6, the drain electrode 7, and the electrode material 5 on the P-type semiconductor material 3 may be made of a metal material such as a nickel alloy, or may be made of a metal oxide or a semiconductor material. 6.
  • the specific materials for preparing the drain electrode 7 and the electrode material 5 on the P-type semiconductor material 3 are not limited.
  • a passivation layer 8 may be prepared on the surface of the exposed barrier layer 24 first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种半导体结构及其制造方法,解决了现有半导体结构的制造工艺复杂以及稳定性和可靠性差的问题。其中的半导体结构包括:依次叠加的沟道层(23)以及势垒层(24),其中,所述势垒层(24)的上方定义有栅极区域;以及形成于所述栅极区域的p型半导体材料(3),其中所述p型半导体材料(3)包括至少一种成分变化元素,所述成分变化元素的成分在外延方向上变化。

Description

一种半导体结构及其制造方法 技术领域
本发明涉及微电子技术,具体涉及一种半导体结构,以及制造该半导体结构的方法。
发明背景
高电子迁移率晶体管(HEMT,High Electron Mobility Transistor)是一种异质结场效应晶体管,以AlGaN/GaN异质结构为例,由于AlGaN/GaN异质结构中存在较强的二维电子气,通常AlGaN/GaN HEMT是耗尽型器件,使得增强型器件不易实现。而在许多地方耗尽型器件的应用又具有一定的局限性,比如在功率开关器件的应用中,就需要增强型(常关型)开关器件。增强型氮化镓开关器件主要用于高频器件、功率开关器件和数字电路等,它的研究具有十分重要的意义。
实现增强型氮化镓开关器件,需要找到合适的方法来降低零栅压时栅极下方的沟道载流子浓度,例如通过在栅极区域设置p型半导体材料。但是发明人发现该方法至少有如下缺陷:
栅极区域设置p型半导体材料,需要选择性刻蚀栅极以外的其他区域的p型半导体,而在外延方向上刻蚀厚度的精确工艺控制是非常难的,非常容易对p型半导体过刻而刻蚀到其下方的半导体材料,而且刻蚀中带来的缺陷,会引起严重的电流崩塌效应,同样会影响到器件的稳定性和可靠性。
发明内容
有鉴于此,本发明提供一种半导体结构及其制造方法,解决了现有半导体结构的制造工艺复杂以及稳定性差和可靠性差的问题。
本发明一实施例提供的一种半导体结构,包括:
依次叠加的沟道层以及势垒层,其中,所述势垒层的上方定义有栅极区域;以及
形成于所述栅极区域的p型半导体材料,其中所述p型半导体材料包括至少一种成分变化元素,所述成分变化元素的成分在外延方向上变化。
其中,所述成分变化元素的成分在外延方向上的变化曲线包括以下变化阶段 中的一种或多种组合:周期性变化、呈递增的变化、和呈递减的变化。
其中,所述p型半导体材料采用周期结构,所述周期结构包括沿外延方向依次叠加的至少一个周期,其中每个所述周期包括沿外延方向依次叠加的第一周期层和第二周期层,所述成分变化元素仅存在于所述第一周期层中或第二周期层中。
其中,所述势垒层的表面定义有所述栅极区域,其中,以下二者只有其中一个包括所述成分变化元素:所述p型半导体材料的最靠近所述势垒层的所述第一周期层以及所述势垒层。
其中,所述p型半导体材料为III-V族化合物,所述第一周期层包括至少一种III族元素和至少一种V族元素,所述第二周期层包括至少一种III族元素和至少一种V族元素;
其中,所述成分变化元素为III族元素或V族元素。
其中,所述III族元素包括:Al、Ga和In;和/或,
所述V族元素包括:N。
其中,所述p型半导体材料选自以下几种中的一种或多种:p型GaN、p型AlGaN、和p型InGaN;
其中,所述p型GaN/AlGaN采用GaN和AlGaN构成的复合结构,所述p型GaN/AlGaN中的GaN进行了p型掺杂,或所述p型GaN/AlGaN中的AlGaN进行了p型掺杂,或所述p型GaN/AlGaN中的GaN和AlGaN都进行了p型掺杂。
其中,所述半导体结构进一步包括:
形成于所述栅极区域并向所述势垒层延伸的凹槽,其中,所述p型半导体材料填充所述凹槽。
其中,所述势垒层的表面上定义有位于所述栅极区域两侧的源极区域和漏极区域;
其中,所述半导体结构进一步包括:
设置于所述源极区域并与所述势垒层形成欧姆接触的源电极;以及
设置于所述漏极区域并与所述势垒层形成欧姆接触的漏电极。
其中,所述半导体结构进一步包括:依次制备于所述沟道层下方的成核层和缓冲层。
本发明一实施例提供一种半导体结构的制造方法,包括以下步骤:
依次制备沟道层以及势垒层;
在所述势垒层上方形成p型半导体材料,其中,所述p型半导体材料包括至 少一种成分变化元素,所述成分变化元素的成分在外延方向上变化;
对所述p型半导体材料进行选择性刻蚀,保留所述势垒层上方的栅极区域的所述p型半导体材料,并在所述选择性刻蚀过程中实时监测所述成分变化元素的成分;以及
根据所述实时监测过程的结果,当所述p型半导体材料在外延方向上被刻蚀完毕时停止所述选择性刻蚀。
其中,所述p型半导体材料采用周期结构,所述周期结构包括沿外延方向依次叠加的至少一个周期,其中每个所述周期包括沿外延方向依次叠加的第一周期层和第二周期层,所述成分变化元素仅存在于所述第一周期层中或第二周期层中;
其中,所述根据所述实时监测过程的结果,当所述p型半导体材料在外延方向上被刻蚀完毕时停止所述选择性刻蚀包括:
当根据所述实时监测过程的结果判断为所述p型半导体材料的最靠近所述势垒层的所述第一周期层在外延方向上被刻蚀完毕时,停止所述选择性刻蚀。
其中,所述势垒层的表面定义有所述栅极区域,其中,以下二者只有其中一个包括所述成分变化元素:所述p型半导体材料的最靠近所述势垒层的所述第一周期层以及所述势垒层。
其中,所述根据所述实时监测过程的结果,当所述p型半导体材料在外延方向上被刻蚀完毕时停止所述选择性刻蚀包括:
当最靠近所述势垒层的所述第一周期层包括所述成分变化元素时,在对最靠近所述势垒层的所述第一周期层进行所述选择性刻蚀时,根据所述实时监测过程的结果发现所述成分变化元素消失时,停止所述选择性刻蚀;或,
当所述势垒层包括所述成分变化元素时,在对最靠近所述势垒层的所述第一周期层进行所述选择性刻蚀时,根据所述实时监测过程的结果发现所述成分变化元素出现时,停止所述选择性刻蚀。
其中,在所述势垒层上方形成p型半导体材料之前,所述方法进一步包括:
在所述栅极区域形成向所述势垒层延伸的凹槽;
其中,在所述势垒层上方形成p型半导体材料包括:
在所述势垒层上方形成覆盖所述凹槽的p型半导体材料;
其中,对所述p型半导体材料进行选择性刻蚀,保留所述势垒层上方的栅极区域的所述p型半导体材料包括:
对所述p型半导体材料进行选择性刻蚀,保留所述凹槽中的所述p型半导体 材料。
其中,所述势垒层的表面上定义有位于所述栅极区域两侧的源极区域和漏极区域;
其中所述方法进一步包括:
刻蚀掉所述源极区域上方的半导体结构以露出所述势垒层,在所述源极区域制备与所述势垒层形成欧姆接触的源电极;以及
刻蚀掉所述漏极区域上方的半导体结构以露出所述势垒层,在所述漏极区域制备与所述势垒层形成欧姆接触的漏电极。
其中,在制备所述沟道层之前,所述方法进一步包括:
依次制备成核层和缓冲层。
本发明实施例所提供的半导体结构及其制造方法,通过在p型半导体材料中设置至少一种成分变化元素,可有助于降低对p型半导体材料进行刻蚀时的工艺难度。具体而言,在对p型半导体材料进行选择性刻蚀时,可监测p型半导体材料中成分变化元素的成分变化,以掌握对p型半导体材料的刻蚀进度,从而控制在外延方向上选择性刻蚀的进程,既可避免p型半导体材料在外延方向上需要被刻蚀的部分没有被完全刻蚀掉,又可避免过度刻蚀对下层半导体结构的损伤,减少了刻蚀中带来的缺陷,提高了器件的稳定性和可靠性,同时降低了工艺难度。
附图简要说明
图1、2a、2b、3a、3b、3c、4a、4b、4c、4d、5a、5b和5c分别为本发明一实施例提供的半导体结构的结构在制备过程中的分解示意图。
图6为本发明一实施例提供的半导体结构的制备过程的流程示意图。
图7、8a、8b、9a和9b分别为本发明一实施例提供半导体结构中成分变化元素的成分变化曲线示意图。
实施本发明的方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
此外,在不同的实施例中可能使用重复的标号或标示。这些重复仅为了简单清楚地叙述本发明,不代表所讨论的不同实施例和/或结构之间具有任何关联性。
图6所示为本发明一实施例提供的一种半导体结构的制备方法的流程示意图。如图6所示,该半导体结构的制备方法包括如下步骤:
步骤601:如图1所示,提供一衬底1。衬底1可选自半导体材料、陶瓷材料或高分子材料等。例如,衬底1优选自蓝宝石、碳化硅、硅、铌酸锂、绝缘衬底硅(SOI)、氮化镓或氮化铝。
步骤602:如图2a所示,在衬底1上依次制备沟道层23以及势垒层24。沟道层23和势垒层24为可形成二维电子气的半导体材料即可。例如,以GaN基材料为例,沟道层23可采用GaN,势垒层24可采用AlGaN,沟道层23和势垒层24构成异质结构以形成二维电子气。当然,沟道层23和势垒层24也可为其他材料,例如为GaAs基材料,沟道层23为GaAs,势垒层24为AlGaAs。
在本发明一实施例中,为了提高器件性能,满足相关技术需求,在生长沟道层23之前,还可在衬底1上依次生长成核层21和缓冲层22。以GaN基半导体结构为例,为降低位错密度和缺陷密度,防止回熔,提升晶体质量等技术需求,可进一步包括制备于衬底1上方的成核层21,该成核层21可为AlN、AlGaN中的一种或多种。此外,为了缓冲衬底上方外延结构中的应力,避免外延结构开裂,该GaN基半导体结构还可进一步包括制备于成核层21上方的缓冲层22,该缓冲层22可包括GaN、AlGaN、AlInGaN中的一种或多种。
步骤603:如图3a所示,在势垒层24上方形成p型半导体材料3,p型半导体材料3包括至少一种成分变化元素,该成分变化元素的成分在外延方向上变化。
以GaN基半导体结构为例,p型半导体材料3可例如选自p型NiO、p型GaN、p型AlGaN、或p型多晶GaN等。
成分变化元素的成分在外延方向上的变化曲线可包括以下变化阶段中的一种或多种组合:周期性变化、呈递增的变化、和呈递减的变化。例如,如图7所示,成分变化元素的变化曲线可由递增的变化阶段(在外延方向的0nm~10nm范围内)和递减的变化阶段(在外延方向的10nm~20nm范围内)构成,然而本发明对成分变化元素的成分的具体变化曲线不做限定。
在本发明一实施例中,如图3b所示,p型半导体材料3可采用周期结构,周 期结构包括沿外延方向依次叠加的至少一个周期,其中每个周期包括沿外延方向依次叠加的第一周期层31和第二周期层32,成分变化元素仅存在于第一周期层中或第二周期层中,这样可有效避免成分监测系统因为反应延迟而造成对下层半导体结构的过度刻蚀。
该p型半导体材料3可以通过原位生长,也可以是通过原子层沉积(ALD,Atomic layer deposition)、或化学气相沉积(CVD,Chemical Vapor Deposition)、或分子束外延生长(MBE,Molecular Beam Epitaxy)、或等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)、或低压化学蒸发沉积(LPCVD,Low Pressure Chemical Vapor Deposition),或金属有机化合物化学气相沉积(MOCVD,Metal-Organic Chemical Vapor Deposition)、或其组合方式制得。应该理解,这里描述形成该p型半导体材料3的方法只是进行举例,本发明可以通过本领域的技术人员公知的任何方法形成该p型半导体材料3。
步骤604:对p型半导体材料3进行选择性刻蚀,保留势垒层24上方的栅极区域的p型半导体材料3,并在该选择性刻蚀过程中实时监测成分变化元素的成分。
步骤605:当监测到预设的变化曲线时即停止该选择性刻蚀。如前所述,p型半导体材料3中的成分变化元素在外延方向上的变化曲线可能是多种变化阶段的组合,此时可选择在外延方向上最靠近势垒层24的变化阶段来判断停止选择性刻蚀的时机。当该变化阶段被监测到结束时,则意味着p型半导体材料3在外延方向上已被刻蚀完毕,此时停止选择性刻蚀即可。以图7所示的成分变化元素的变化曲线为例,当对该p型半导体材料3开始进行选择性刻蚀时,随着刻蚀过程的进行,当监测发现成分变化元素的成分达到图7所示的顶点时,意味着该p型半导体材料3已经有一半的厚度(10nm~20nm的部分)被刻蚀掉,此时再接着刻蚀10nm后即可停止刻蚀。停止选择性刻蚀后的半导体结构可如图4a所示。
在本发明一实施例中,当p型半导体材料3采用如图3b所示周期结构时,当根据实时监测过程的结果,监测到预设的变化曲线时,即可判断为p型半导体材料3的最靠近势垒层31的第一周期层在外延方向上被刻蚀完毕,停止所述选择性刻蚀即可。例如,当该p型半导体材料3包括两个周期,以第一周期层31为GaN,第二周期层32为AlGaN为例,成分变化元素就为仅存在在第二周期层32中的Al。所形成的周期结构为沿外延方向依次叠加的L1层(5nm GaN)、L2层 (5nm AlGaN)、L3层(5nm GaN)以及L4层(5nm AlGaN)时,当要对该p型半导体材料3开始进行选择性刻蚀时,位于该p型半导体材料3表面的L4层中是包括Al元素的。随着刻蚀过程的进行,当监测发现Al元素消失时,说明已经刻蚀到了L3层。而当检测发现Al元素又出现时,则说明已经刻蚀到了L2层。而后,当Al元素再次消失时,就说明已经刻蚀到了L1层,此时就可开始减缓刻蚀速度,继续刻蚀5nm的厚度后停止刻蚀,即可保证p型半导体材料3在外延方向上需要被刻蚀的部分刚好刻蚀掉,又不会损伤下面的半导体结构。当p型半导体材料3采用周期结构时,停止选择性刻蚀后的半导体结构可如图4b所示。
在本发明另一实施例中,势垒层24的表面定义有栅极区域,为了能够更准确的将刻蚀过程控制在p型半导体材料3和势垒层24的分界面,可设置为以下二者只有其中一个包括成分变化元素:p型半导体材料3的最靠近势垒层的第一周期层31以及势垒层24。此时,当最靠近势垒层24的第一周期层31包括成分变化元素时,在对最靠近势垒层24的第一周期层31进行选择性刻蚀时,根据实时监测过程的结果发现成分变化元素消失时,停止选择性刻蚀即可。例如当最靠近势垒层24的第一周期层31的成分为AlGaN,而势垒层24的成分为GaN时,在对最靠近势垒层24的第一周期层31的刻蚀过程中,发现Al元素消失时停止刻蚀即可。或者,当势垒层24包括成分变化元素时,在对最靠近势垒层24的第一周期层31进行选择性刻蚀时,根据实时监测过程的结果发现成分变化元素出现时,停止选择性刻蚀即可。例如当最靠近势垒层24的第一周期层31的成分为AlN,而势垒层24的成分为AlGaN时,在对最靠近势垒层24的第一周期层31的刻蚀过程中,发现Ga元素出现时停止刻蚀即可。
步骤606:如图5a所示,在源极区域制备源电极6以形成与势垒层24的欧姆接触;以及,在漏极区域制备漏电极7以形成与势垒层24的欧姆接触。
P型半导体材料3可直接作为栅电极(如图5a所示),也可以在P型半导体材料3上面进一步制作电极材料5用作栅电极(如图5b所示)。应当理解,源电极6、漏电极7以及P型半导体材料3上面的电极材料5可采用例如镍合金的金属材料制成,也可采用金属氧化物或半导体材料制成,本发明对源电极6、漏电极7以及P型半导体材料3上面的电极材料5的具体制备材料不做限定。
由此可见,采用本发明实施例所提供的半导体结构制备方法,通过在p型半导体材料3中设置至少一种成分变化元素,可有助于降低对p型半导体材料3进行刻蚀时的工艺难度。具体而言,在对p型半导体材料3进行选择性刻 蚀时,可监测p型半导体材料3中成分变化元素的成分变化,以掌握对p型半导体材料3的刻蚀进度,从而控制在外延方向上选择性刻蚀的进程,既可避免p型半导体材料3在外延方向上需要被刻蚀的部分没有被完全刻蚀掉,又可避免过度刻蚀对下层半导体结构的损伤,减少了刻蚀中带来的缺陷,提高了器件的稳定性和可靠性,同时降低了工艺难度。
在本发明一实施例中,为了进一步提高该半导体结构的性能,进一步降低栅极区域下方沟道层23中的二维电子气密度,如图2b所示,还可在制备p型半导体材料3之前,在栅极区域形成向势垒层24延伸的凹槽4,凹槽刻蚀过程可例如采用氯基等离子刻蚀,由于氟基等离子刻蚀的选择性,刻蚀过程会在刻蚀至势垒层24时停止。在形成凹槽4后,如图3c所示,先在势垒层24上方形成覆盖凹槽4的p型半导体材料3;然后再对p型半导体材料3进行选择性刻蚀,保留凹槽4中的p型半导体材料3,以形成如图4c所示的半导体结构。
在本发明一实施例中,例如图4d所示,当势垒层24采用三明治结构时,凹槽4就可贯穿至该势垒层24的三明治结构的中间层242,此时该中间层242可在形成凹槽4的局部刻蚀工艺中起到停止层的作用,以保护位于沟道层23表面的该第一外夹层241不被该局部刻蚀工艺损坏。然而本发明对凹槽4的制备深度不做严格限定,只要凹槽4内部的p型半导体材料3能够夹断栅极下方n型导电层以实现半导体结构即可。
图4a所示为本发明一实施例所提供的半导体结构的结构示意图。如图4a所示,该半导体结构包括:依次制备的沟道层23以及势垒层24,势垒层24的上方定义有栅极区域;以及,形成于栅极区域的p型半导体材料3,p型半导体材料3包括至少一种成分变化元素,该成分变化元素的成分在外延方向上变化。
在本发明一实施例中,沟道层23以及势垒层24依次制备于衬底1上,衬底1可选自半导体材料、陶瓷材料或高分子材料等。例如,衬底1可优选自蓝宝石、碳化硅、硅、铌酸锂、绝缘衬底硅(SOI)、氮化镓或氮化铝。
沟道层23和势垒层24为可形成二维电子气的半导体材料即可。例如,以GaN基材料为例,沟道层23可采用GaN,势垒层24可采用AlGaN,沟道层23和势垒层24构成异质结构以形成二维电子气。当然,沟道层23和势垒层24也可为其他材料,例如为GaAs基材料,沟道层23为GaAs,势垒层24为AlGaAs。
在本发明一实施例中,为了提高器件性能,满足相关技术需求,可在制备 沟道层23之前,进一步依次制备位于沟道层23下方的成核层21、缓冲层22等外延层。以GaN基半导体结构为例,为降低位错密度和缺陷密度,防止回熔,提升晶体质量等技术需求,可进一步包括制备于衬底1上方的成核层21,该成核层21可为AlN、AlGaN中的一种或多种。此外,为了缓冲衬底上方外延结构中的应力,避免外延结构开裂,该GaN基半导体结构还可进一步包括制备于成核层21上方的缓冲层22,该缓冲层22可包括GaN、AlGaN、AlInGaN中的一种或多种。
在本发明一实施例中,p型半导体材料3可根据沟道层23和势垒层24的材料选择相应的半导体材料。以GaN基半导体结构为例,p型半导体材料3可选自以下几种中的一种或多种:p型GaN、p型AlGaN、和p型InGaN中的一种或多种。
通过在p型半导体材料3中设置至少一种成分变化元素,可有助于降低对p型半导体材料3进行刻蚀时的工艺难度。具体而言,在对p型半导体材料3进行选择性刻蚀时,可监测p型半导体材料3中成分变化元素的成分变化,以掌握对p型半导体材料3的刻蚀进度,从而控制在外延方向上选择性刻蚀的进程,既可避免p型半导体材料3在外延方向上需要被刻蚀的部分没有被完全刻蚀掉,又可避免过度刻蚀对下层半导体结构的损伤,减少了刻蚀中带来的缺陷,提高了器件的稳定性和可靠性,同时降低了工艺难度。
在本发明一实施例中,p型半导体材料3中的成分变化元素的成分在外延方向上的变化曲线包括以下变化阶段中的一种或多种组合:周期性变化、呈递增的变化、和呈递减的变化。例如,如图7所示,成分变化元素的变化曲线可由递增的变化阶段(在外延方向的0nm~10nm范围内)和递减的变化阶段(在外延方向的10nm~20nm范围内)构成。这样当要对该p型半导体材料3开始进行选择性刻蚀时,随着刻蚀过程的进行,当监测发现成分变化元素的成分达到图7所示的顶点时,意味着该p型半导体材料3已经有一半的厚度被刻蚀掉,此时再刻蚀10nm后即可停止刻蚀。
应当理解,p型半导体材料3中成分变化元素的成分变化方式可根据实际的应用场景而调整,只要通过对成分变化元素的成分监测过程能够掌握对p型半导体材料3的刻蚀进度,以当p型半导体材料3在外延方向上需要被刻蚀掉的部分被刻蚀完毕时可及时停止刻蚀,本发明对p型半导体材料3中成分变化元素的成分变化方式并不做严格限定。
在本发明一实施例中,如图4b所示,p型半导体材料3可采用周期结构,该周期结构包括沿外延方向依次叠加的至少一个周期,其中每个周期包括沿外延方向依次叠加的第一周期层31和第二周期层32,成分变化元素仅存在在第一周期层31中或第二周期层32中,这样可有效避免成分监测系统因为反应延迟而造成对下层半导体结构的过度刻蚀。以第一周期层31为GaN,第二周期层32为AlGaN为例,成分变化元素就为仅存在在第二周期层32中的Al。以每个周期层预设的制备厚度为5nm为例,这样所形成的p型半导体材料3的周期结构就为5nm GaN、5nm AlGaN、5nm GaN、5nm AlGaN...,由此成分变化元素的成分在外延方向上的变化曲线则呈“锯齿型”的周期性变化,如图8a所示。
在本发明另一实施例中,每个周期层预设的制备厚度也可并非保持不变,例如,p型半导体材料3的周期结构中的第一周期层31可为5nm GaN,第二周期层32为6nm AlGaN,这样成分变化元素的成分在外延方向上的变化曲线也呈“锯齿型”的周期性变化,但每个“锯齿”的宽度要相比没有“锯齿”的区域宽一些,如图8b所示。
由此可见,由于Al仅存在在第二周期层32中,因此在整个p型半导体材料中,Al的成分其实是沿外延方向呈周期性变化的。在对p型半导体材料3进行选择性刻蚀时,监测到最靠近势垒层24的第一周期层31被刻蚀完毕时,即可停止刻蚀。例如,当该p型半导体材料3包括两个周期时,所形成的周期结构就为沿外延方向依次叠加的L1层(5nm GaN)、L2层(5nm AlGaN)、L3层(5nm GaN)以及L4层(5nm AlGaN)。当要对该p型半导体材料3开始进行选择性刻蚀时,位于该p型半导体材料3表面的L4层中是包括Al元素的。随着刻蚀过程的进行,当监测发现Al元素消失时,说明已经刻蚀到了L3层。而当检测发现Al元素又出现时,则说明已经刻蚀到了L2层。而后,当Al元素再次消失时,就说明已经刻蚀到了L1层,此时就可开始减缓刻蚀速度,在继续刻蚀5nm的厚度后停止刻蚀,即可保证p型半导体材料3在外延方向上需要被刻蚀的部分刚好刻蚀掉,又不会损伤下面的半导体结构。
应当理解,虽然在上面的描述中,以第一周期层31为GaN,第二周期层32为AlGaN为例阐述了p型半导体材料的周期结构,但其实p型半导体材料3也可由其他III-V族化合物构成,或也可由其他材料制成。当p型半导体材料3为III-V族化合物时,第一周期层31包括至少一种III族元素和至少一种V族元素,第二周期层32包括至少一种III族元素和至少一种V族元素,成分变化元素为III族 元素或V族元素。在本发明一实施例中,III族元素可包括:Al、Ga和In;和/或,V族元素可包括:N。本发明对p型半导体材料中所包括的具体元素种类不做严格限定。
在本发明一实施例中,p型半导体材料3的周期结构中的第一周期层31可为5nm GaN,第二周期层32为5nm InGaN。这样当p型半导体材料3包括两个周期时,以每个周期层预设的制备厚度为5nm为例,所形成的周期结构就为沿外延方向依次叠加的5nm GaN、5nm InGaN、5nm GaN、5nm InGaN。在另一实施例中,每个周期层预设的制备厚度也可并非保持不变,例如,p型半导体材料3的周期结构中的第一周期层31可为5nm GaN,第二周期层32为6nm InGaN。
在本发明一实施例中,p型半导体材料3的p型掺杂的方式也是多变的,可只在第一周期层31中或第二周期层32中进行p型掺杂,也可第一周期层31和第二周期层32都进行p型掺杂。例如,当p型半导体材料3采用p型GaN/AlGaN时,p型GaN/AlGaN中的GaN进行了p型掺杂(例如掺杂了Mg元素),或p型GaN/AlGaN中的AlGaN进行了p型掺杂,或p型GaN/AlGaN中的GaN和AlGaN都进行了p型掺杂。
在本发明另一实施例中,如图4b所示,p型半导体材料3仍采用上述周期结构,该成分变化元素仍仅存在于第一周期层31中或第二周期层32中,同时成分变化元素的成分呈单调性变化,例如呈递增的变化或呈递减的变化。
例如,p型半导体材料3可包括两个周期:
第一个周期中的第一周期层31为5nmGaN,第二周期层32为5nm Al 0.6Ga 0.4N;
第二个周期中的第一周期层31为5nm GaN,第二周期层32为5nm Al 0.5Ga 0.5N。
此时在整个p型半导体材料3中Al的成分是沿外延方向递减的,此时Al即可作为成分变化元素,Al的成分在外延方向上的变化仍呈“锯齿型”的周期性变化曲线,但每个“锯齿”的高度是递减的,如图9a所示。通过监测成分变化元素Al的成分即可控制刻蚀过程,例如,当通过成分监测过程监测到已经刻蚀到最靠近势垒层24的第一周期层31在外延方向上被刻蚀完毕时,停止选择性刻蚀过程即可。
在本发明另一实施例中,p型半导体材料3中每个周期中的周期层预设的制备厚度也可并非保持不变,例如p型半导体材料3也可包括如下两个周期:
第一个周期中的第一周期层31为5nmGaN,第二周期层32为6nm Al 0.6Ga 0.4N;
第二个周期中的第一周期层31为5nm GaN,第二周期层32为6nm Al 0.5Ga 0.5N。
此时Al的成分在外延方向上的变化仍呈“锯齿型”的周期性变化曲线,且每个“锯齿”的高度是递减的,但每个“锯齿”的宽度要相比没有“锯齿”的区域宽一些,如图9b所示。
应当理解,虽然上面结合一些变化曲线的示意图给出了成分变化元素的成分变化曲线的一些例子,但成分变化元素的成分变化曲线其实可以是周期性变化阶段、呈递增的变化阶段、和呈递减的变化阶段的任意组合,本发明对成分变化元素的成分在外延方向上的变化曲线不做具体限定。
在本发明另一实施例中,势垒层24的表面定义有栅极区域,为了能够更准确的将刻蚀过程控制在p型半导体材料3和势垒层24的分界面,可设置为以下二者只有其中一个包括成分变化元素:p型半导体材料3的最靠近势垒层24的第一周期层31以及势垒层24。此时,当最靠近势垒层24的第一周期层31包括成分变化元素时,在对最靠近势垒层24的第一周期层31进行选择性刻蚀时,根据实时监测过程的结果发现成分变化元素消失时,停止选择性刻蚀即可。例如当最靠近势垒层24的第一周期层31的成分为AlGaN,而势垒层24的成分为GaN时,在对最靠近势垒层24的第一周期层31的刻蚀过程中,发现Al元素消失时停止刻蚀即可。或者,当势垒层24包括成分变化元素时,在对最靠近势垒层24的第一周期层31进行选择性刻蚀时,根据实时监测过程的结果发现成分变化元素出现时,停止选择性刻蚀即可。例如当最靠近势垒层24的第一周期层31的成分为AlN,而势垒层24的成分为AlGaN时,在对最靠近势垒层24的第一周期层31的刻蚀过程中,发现Ga元素出现时停止刻蚀即可。
在本发明一实施例中,为了进一步提高该半导体结构的性能,进一步降低栅极区域下方沟道层23中的二维电子气密度,如图4c所示,该半导体结构还可进一步包括形成于栅极区域并向势垒层24延伸的凹槽4,p型半导体材料3填充该凹槽4。
还应当理解,p型半导体材料3的具体形状可根据对应栅极区域的凹槽4的宽度而发生变化。虽然在图4c所示的结构中,p型半导体材料3中中部凹陷呈T型结构,但当凹槽4的宽度较窄(例如小于0.25um)时,p型半导体材料3的中部也可呈合拢状态,本发明对此不做限定。
在本发明一实施例中,如图4d所示,势垒层24还可采用三明治结构,该三明治结构包括制备于沟道层23表面的第一外夹层241、夹在该第一外夹层241和第二外夹层243之间的中间层242以及第二外夹层243。应当理解,该 第一外夹层241、中间层242以及第二外夹层243的材料可根据沟道层23的材料而调整。例如,以GaN基材料为例,当沟道层23采用GaN时,该第一外夹层241和第二外夹层243可采用AlGaN或AlInGaN制成,该中间层242可采用GaN制成,Al、In和Ga的含量可从0到1变化。然而,本发明对该第一外夹层241、中间层242以及第二外夹层243的材料不做具体限定。
当势垒层24采用三明治结构时,凹槽4可贯穿至该势垒层24的三明治结构的中间层242,此时该中间层242可在形成凹槽4的局部刻蚀工艺中起到停止层的作用,以保护位于沟道层23表面的该第一外夹层241不被该凹槽刻蚀工艺损坏。然而本发明对凹槽4的制备深度不做严格限定,只要凹槽4内部的p型半导体材料3能够夹断栅极下方n型导电层以实现半导体结构即可。
在本发明一实施例中,如图5a所示,势垒层24的表面上进一步定义有位于栅极区域两侧的源极区域和漏极区域,源电极6设置于源极区域并与势垒层24形成欧姆接触,漏电极7设置于漏极区域并与势垒层24形成欧姆接触。具体而言,基于如图4a所示的半导体结构,在制作源电极6和漏电极7之前,需要将源极区域上方和漏极区域上方的p型半导体材料3和p型半导体材料3刻蚀掉,以露出势垒层24表面的源极区域和漏极区域来制备源电极6和漏电极7,最终形成如图5a所示的半导体结构。
应当理解,P型半导体材料3可直接作为栅电极(如图5a所示),也可以在P型半导体材料3上面制作电极材料5用作栅电极(如图5b所示)。还应当理解,源电极6、漏电极7以及P型半导体材料3上面的电极材料5可采用例如镍合金的金属材料制成,也可采用金属氧化物或半导体材料制成,本发明对源电极6、漏电极7以及P型半导体材料3上面的电极材料5的具体制备材料不做限定。
在本发明一实施例中,如图5c所示,当要在P型半导体材料3上面制作电极材料5用作栅电极时,可先在暴露的势垒层24表面制备钝化层8。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种半导体结构,其特征在于,包括:
    依次叠加的沟道层以及势垒层,其中,所述势垒层的上方定义有栅极区域;以及
    形成于所述栅极区域的p型半导体材料,其中所述p型半导体材料包括至少一种成分变化元素,所述成分变化元素的成分在外延方向上变化。
  2. 根据权利要求1所述的半导体结构,其特征在于,所述成分变化元素的成分在外延方向上的变化曲线包括以下变化阶段中的一种或多种组合:周期性变化、呈递增的变化、和呈递减的变化。
  3. 根据权利要求2所述的半导体结构,其特征在于,所述p型半导体材料采用周期结构,所述周期结构包括沿外延方向依次叠加的至少一个周期,其中每个所述周期包括沿外延方向依次叠加的第一周期层和第二周期层,所述成分变化元素仅存在于所述第一周期层中或第二周期层中。
  4. 根据权利要求3所述的半导体结构,其特征在于,所述势垒层的表面定义有所述栅极区域,其中,以下二者只有其中一个包括所述成分变化元素:所述p型半导体材料的最靠近所述势垒层的所述第一周期层以及所述势垒层。
  5. 根据权利要求3所述的半导体结构,其特征在于,所述p型半导体材料为III-V族化合物,所述第一周期层包括至少一种III族元素和至少一种V族元素,所述第二周期层包括至少一种III族元素和至少一种V族元素;
    其中,所述成分变化元素为III族元素或V族元素。
  6. 根据权利要求5所述的半导体结构,其特征在于,所述III族元素包括:Al、Ga和In;和/或,
    所述V族元素包括:N。
  7. 根据权利要求1所述的半导体结构,其特征在于,所述p型半导体材料选自以下几种中的一种或多种:p型GaN、p型AlGaN、和p型InGaN;
    其中,所述p型GaN/AlGaN采用GaN和AlGaN构成的复合结构,所述p型GaN/AlGaN中的GaN进行了p型掺杂,或所述p型GaN/AlGaN中的AlGaN进行了p型掺杂,或所述p型GaN/AlGaN中的GaN和AlGaN都进行了p型掺杂。
  8. 根据权利要求1所述的半导体结构,其特征在于,进一步包括:
    形成于所述栅极区域并向所述势垒层延伸的凹槽,其中,所述p型半导体材 料填充所述凹槽。
  9. 根据权利要求1所述的半导体结构,其特征在于,所述势垒层的表面上定义有位于所述栅极区域两侧的源极区域和漏极区域;
    其中,所述半导体结构进一步包括:
    设置于所述源极区域并与所述势垒层形成欧姆接触的源电极;以及
    设置于所述漏极区域并与所述势垒层形成欧姆接触的漏电极。
  10. 根据权利要求1所述的半导体结构,其特征在于,进一步包括:依次制备于所述沟道层下方的成核层和缓冲层。
  11. 一种半导体结构的制造方法,其特征在于,包括以下步骤:
    依次制备沟道层以及势垒层;
    在所述势垒层上方形成p型半导体材料,其中,所述p型半导体材料包括至少一种成分变化元素,所述成分变化元素的成分在外延方向上变化;
    对所述p型半导体材料进行选择性刻蚀,保留所述势垒层上方的栅极区域的所述p型半导体材料,并在所述选择性刻蚀过程中实时监测所述成分变化元素的成分;以及
    当监测到预设的变化曲线时即停止所述选择性刻蚀。
  12. 根据权利要求11所述的方法,其特征在于,所述p型半导体材料采用周期结构,所述周期结构包括沿外延方向依次叠加的至少一个周期,其中每个所述周期包括沿外延方向依次叠加的第一周期层和第二周期层,所述成分变化元素仅存在于所述第一周期层中或第二周期层中;
    其中,所述当监测到预设的变化曲线时即停止所述选择性刻蚀包括:
    当根据所述实时监测过程的结果判断为所述p型半导体材料的最靠近所述势垒层的所述第一周期层在外延方向上被刻蚀完毕时,停止所述选择性刻蚀。
  13. 根据权利要求12所述的半导体结构,其特征在于,所述势垒层的表面定义有所述栅极区域,其中,以下二者只有其中一个包括所述成分变化元素:所述p型半导体材料的最靠近所述势垒层的所述第一周期层以及所述势垒层。
    其中,所述根据所述实时监测过程的结果,当所述p型半导体材料在外延方向上被刻蚀完毕时停止所述选择性刻蚀包括:
    当最靠近所述势垒层的所述第一周期层包括所述成分变化元素时,在对最靠近所述势垒层的所述第一周期层进行所述选择性刻蚀时,根据所述实时监测过程的结果发现所述成分变化元素消失时,停止所述选择性刻蚀;或,
    当所述势垒层包括所述成分变化元素时,在对最靠近所述势垒层的所述第一周期层进行所述选择性刻蚀时,根据所述实时监测过程的结果发现所述成分变化元素出现时,停止所述选择性刻蚀。
  14. 根据权利要求11所述的方法,其特征在于,在所述势垒层上方形成p型半导体材料之前,进一步包括:
    在所述栅极区域形成向所述势垒层延伸的凹槽;
    其中,在所述势垒层上方形成p型半导体材料包括:
    在所述势垒层上方形成覆盖所述凹槽的p型半导体材料;
    其中,对所述p型半导体材料进行选择性刻蚀,保留所述势垒层上方的栅极区域的所述p型半导体材料包括:
    对所述p型半导体材料进行选择性刻蚀,保留所述凹槽中的所述p型半导体材料。
  15. 根据权利要求11所述的半导体结构的制造方法,其特征在于,所述势垒层的表面上定义有位于所述栅极区域两侧的源极区域和漏极区域;
    其中所述方法进一步包括:
    在所述源极区域制备与所述势垒层形成欧姆接触的源电极;以及
    在所述漏极区域制备与所述势垒层形成欧姆接触的漏电极。
PCT/CN2018/109051 2018-09-30 2018-09-30 一种半导体结构及其制造方法 WO2020062221A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880096930.8A CN112740417B (zh) 2018-09-30 2018-09-30 一种半导体结构及其制造方法
PCT/CN2018/109051 WO2020062221A1 (zh) 2018-09-30 2018-09-30 一种半导体结构及其制造方法
US16/819,567 US11424353B2 (en) 2018-09-30 2020-03-16 Semiconductor structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109051 WO2020062221A1 (zh) 2018-09-30 2018-09-30 一种半导体结构及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/819,567 Continuation US11424353B2 (en) 2018-09-30 2020-03-16 Semiconductor structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020062221A1 true WO2020062221A1 (zh) 2020-04-02

Family

ID=69950194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109051 WO2020062221A1 (zh) 2018-09-30 2018-09-30 一种半导体结构及其制造方法

Country Status (3)

Country Link
US (1) US11424353B2 (zh)
CN (1) CN112740417B (zh)
WO (1) WO2020062221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122107A (zh) * 2021-10-28 2022-03-01 华南理工大学 一种周期栅结构的p-GaN常闭型功率器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200357905A1 (en) * 2019-05-08 2020-11-12 Cambridge Electronics Inc. Iii-nitride transistor device with a thin barrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459060A (zh) * 2007-12-12 2009-06-17 精工电子有限公司 半导体装置的制造方法
CN102683394A (zh) * 2012-04-17 2012-09-19 程凯 一种增强型器件及其制造方法
CN102709321A (zh) * 2012-04-20 2012-10-03 程凯 增强型开关器件及其制造方法
CN106463613A (zh) * 2014-05-09 2017-02-22 瓦里安半导体设备公司 用于动态控制离子束能量及角度的设备及方法
CN106549049A (zh) * 2015-09-17 2017-03-29 苏州能屋电子科技有限公司 一种电化学刻蚀p型氮化物实现增强型hemt的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512831B (zh) * 2007-06-01 2015-12-11 Univ California 氮化鎵p型/氮化鋁鎵/氮化鋁/氮化鎵增強型場效電晶體
JP5468768B2 (ja) * 2008-12-05 2014-04-09 パナソニック株式会社 電界効果トランジスタ及びその製造方法
US11043563B2 (en) * 2018-03-12 2021-06-22 Vanguard International Semiconductor Corporation Semiconductor devices and methods for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459060A (zh) * 2007-12-12 2009-06-17 精工电子有限公司 半导体装置的制造方法
CN102683394A (zh) * 2012-04-17 2012-09-19 程凯 一种增强型器件及其制造方法
CN102709321A (zh) * 2012-04-20 2012-10-03 程凯 增强型开关器件及其制造方法
CN106463613A (zh) * 2014-05-09 2017-02-22 瓦里安半导体设备公司 用于动态控制离子束能量及角度的设备及方法
CN106549049A (zh) * 2015-09-17 2017-03-29 苏州能屋电子科技有限公司 一种电化学刻蚀p型氮化物实现增强型hemt的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122107A (zh) * 2021-10-28 2022-03-01 华南理工大学 一种周期栅结构的p-GaN常闭型功率器件
WO2023071028A1 (zh) * 2021-10-28 2023-05-04 华南理工大学 一种周期栅结构的 p-GaN 常闭型功率器件

Also Published As

Publication number Publication date
US20200219999A1 (en) 2020-07-09
US11424353B2 (en) 2022-08-23
CN112740417A (zh) 2021-04-30
CN112740417B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
JP2013123047A (ja) エンハンスメントモードiii−窒化物デバイスおよびその製造方法
US10998435B2 (en) Enhancement-mode device and method for manufacturing the same
US12080786B2 (en) Semiconductor structure comprising p-type N-face GAN-based semiconductor layer and manufacturing method for the same
US11424353B2 (en) Semiconductor structure and method for manufacturing the same
TW201635522A (zh) 半導體單元
US11876129B2 (en) Semiconductor structure and manufacturing method for the semiconductor structure
JP2014110320A (ja) ヘテロ接合電界効果トランジスタ及びその製造方法
WO2022094966A1 (zh) 半导体结构及其制作方法
CN111755330A (zh) 一种半导体结构及其制造方法
JP2010165783A (ja) 電界効果型トランジスタおよびその製造方法
WO2020062222A1 (zh) 一种半导体结构及其制造方法
WO2021102681A1 (zh) 半导体结构及其制作方法
CN113826212B (zh) 一种半导体结构的制备方法
JP5285252B2 (ja) 窒化物半導体装置
WO2021102683A1 (zh) 半导体结构及其制作方法
WO2021184299A1 (zh) 半导体结构及其制作方法
WO2022052001A1 (zh) 增强型半导体结构及其制作方法
JP2014146726A (ja) ヘテロ接合電界効果型トランジスタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935813

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18935813

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935813

Country of ref document: EP

Kind code of ref document: A1