WO2020059380A1 - 車両検査システム - Google Patents

車両検査システム Download PDF

Info

Publication number
WO2020059380A1
WO2020059380A1 PCT/JP2019/032340 JP2019032340W WO2020059380A1 WO 2020059380 A1 WO2020059380 A1 WO 2020059380A1 JP 2019032340 W JP2019032340 W JP 2019032340W WO 2020059380 A1 WO2020059380 A1 WO 2020059380A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
simulator
information
virtual
inspection system
Prior art date
Application number
PCT/JP2019/032340
Other languages
English (en)
French (fr)
Inventor
青野健人
倉井賢一郎
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020548147A priority Critical patent/JP7011082B2/ja
Priority to CN201980061986.4A priority patent/CN112740009A/zh
Priority to CA3113396A priority patent/CA3113396A1/en
Priority to US17/277,320 priority patent/US20220034754A1/en
Publication of WO2020059380A1 publication Critical patent/WO2020059380A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/0072Wheeled or endless-tracked vehicles the wheels of the vehicle co-operating with rotatable rolls

Definitions

  • the present invention relates to a vehicle inspection system that inspects the operation of a vehicle that performs traveling control based on external environment information detected by a plurality of external sensors.
  • Japanese Patent No. 5868550 discloses a method for performing an operation test (hereinafter, also referred to as an inspection) of a vehicle including a plurality of traveling environment sensors (hereinafter, also referred to as an external sensor) such as radar, LiDAR, and sonar. You.
  • a vehicle equipped with a test control unit is actually driven on a test course.
  • the test control unit changes the measurement value detected by the external sensor in accordance with the vehicle environment in a virtual world, and outputs the measured value to a vehicle control unit (hereinafter, also referred to as a vehicle control device).
  • a vehicle control unit hereinafter, also referred to as a vehicle control device.
  • the vehicle control device performs the traveling control based on the changed measurement value. In this way, an operation test of a vehicle in a virtual world can be performed regardless of an actual test course.
  • a vehicle controller and various actuators (actuators for driving, braking, and steering) controlled by the vehicle controller are inspected, but a plurality of external sensors are not inspected.
  • the method disclosed in Japanese Patent No. 5868550 cannot perform a consistent inspection of a plurality of external sensors, a vehicle control device, and various actuators.
  • the present invention has been made in consideration of such problems, and has as its object to provide a vehicle inspection system capable of performing an integrated inspection of an external sensor, a vehicle control device, and various actuators.
  • aspects of the invention include: A vehicle inspection system that inspects the operation of a vehicle that performs travel control based on external environment information detected by a plurality of external sensors, A simulator for reproducing virtual information imitating the external environment information, A plurality of information output devices provided for each of the plurality of external sensors, and causing the corresponding external sensors to detect the virtual information reproduced by the simulator, A bench tester that detects an operation of the vehicle that performs travel control based on the virtual information, The simulator outputs the virtual information corresponding to the same virtual external environment to the plurality of information output devices, and synchronizes the virtual information output to the plurality of information output devices.
  • FIG. 1 is a device configuration diagram of a vehicle to be inspected in the first embodiment.
  • FIG. 2 is a system configuration diagram of the vehicle inspection system according to the first embodiment.
  • FIG. 3 is a functional block diagram of the simulator.
  • FIG. 4 is a schematic diagram of the monitor support mechanism. 5A to 5C are explanatory diagrams of the operation of the monitor support mechanism.
  • FIG. 6A is an explanatory diagram of a virtual external environment reproduced by a simulator
  • FIG. 6B is an explanatory diagram of ideal time-vehicle speed at the time of inspection.
  • FIG. 7 is a schematic diagram of a simulator unit according to the second embodiment. 8A and 8B are explanatory diagrams of the operation of the simulator unit.
  • the vehicle 200 is an automatic driving vehicle (including a fully automatic driving vehicle) capable of automatically controlling acceleration, deceleration, braking, and steering. At least one control of acceleration, deceleration, braking, and steering is assumed.
  • the driving support vehicle which can be performed automatically may be used.
  • the vehicle 200 includes a plurality of external sensors 202, a vehicle control device 216 that performs travel control based on external environment information detected by the external sensor 202, and an operation output by the vehicle control device 216.
  • the vehicle includes a drive device 218, a steering device 220, a braking device 222, and wheels 224 that operate according to instructions.
  • the external sensor 202 includes one or more cameras 204, one or more radars 206, one or more LiDARs 208, a GNSS 210, and a gyroscope 212.
  • vehicle 200 includes one of the above-described external sensors 202.
  • the camera 204, the radar 206, and the LiDAR 208 detect outside world information ahead of the vehicle 200.
  • the vehicle control device 216 is configured by a vehicle control ECU.
  • the vehicle control ECU calculates optimal acceleration / deceleration, braking amount, and steering angle in the scene based on the external environment information detected by the external sensor 202, and outputs operation instructions to various control target devices.
  • Drive device 218 includes a drive ECU and a drive source such as an engine or a drive motor.
  • the drive device 218 generates a driving force for the wheels 224 according to an operation of an accelerator pedal performed by an occupant or an operation instruction output from the vehicle control device 216.
  • the steering device 220 includes an electric power steering system (EPS) ECU and an EPS actuator.
  • EPS electric power steering system
  • the steering device 220 changes the steering angle of the wheels 224 (front wheels 224f) in accordance with the steering wheel operation performed by the occupant or the operation instruction output from the vehicle control device 216.
  • the braking device 222 includes a brake ECU and a brake actuator. The braking device 222 generates a braking force for the wheels 224 according to an operation of a brake pedal performed by an occupant or an operation instruction output from the vehicle control device 216.
  • Vehicle inspection system 10 A vehicle inspection system 10 for inspecting the operation of the vehicle 200 shown in FIG. 1 will be described. As shown in FIG. 2, the vehicle inspection system 10 includes a simulator 20, a plurality of information output devices 50, a bench tester 70, and an analysis device 90.
  • the simulator 20 is configured by a computer, and includes a simulator operation device 22, a simulator storage device 24, and an input / output device 26, as shown in FIG.
  • the simulator operation device 22 is constituted by a processor such as a CPU.
  • the simulator operation device 22 realizes various functions by executing a program stored in the simulator storage device 24.
  • the simulator operation device 22 functions as a management unit 32, a camera simulator 34, a radar simulator 36, a LiDAR simulator 38, a GNSS simulator 40, a gyro simulator 42, and a monitor position control unit 44.
  • the management unit 32 has a function of managing the inspection process of the vehicle 200.
  • the management unit 32 causes the camera simulator 34, the radar simulator 36, the LiDAR simulator 38, the GNSS simulator 40, and the gyro simulator 42 to reproduce the virtual external environment based on the virtual external environment information 46 stored in the simulator storage device 24. . That is, the management unit 32 manages the simulators 34, 36, 38, 40, and 42 such that the simulators 34, 36, 38, 40, and 42 synchronously reproduce virtual information corresponding to the same virtual external environment. It has the function of cooperative control.
  • the management unit 32 calculates the virtual traveling position of the vehicle 200 in the virtual external environment based on the operation information (vehicle speed V and steering angle ⁇ s) of the vehicle 200 output from the bench tester 70 when reproducing the virtual external environment. I do.
  • the camera simulator 34 has a function of reproducing video information detected by the camera 204 at the virtual traveling position of the vehicle 200.
  • the camera simulator 34 outputs video information as virtual information to a monitor (display device) 52.
  • the radar simulator 36 has a function of reproducing target position information detected by the radar 206 at the virtual traveling position of the vehicle 200.
  • the radar simulator 36 irradiates the radar 206 with the radio wave corresponding to the reflected wave, assuming that the radio wave emitted from the radar 206 is reflected by the target based on the position information of the target in the virtual external environment. Calculate the timing. After the radio wave is detected by the radar transceiver 54, delay processing for the irradiation timing is performed, and an instruction to radiate radio wave as virtual information is output to the radar transceiver 54.
  • the LiDAR simulator 38 has a function of reproducing position information of a target detected by the LiDAR 208 at the virtual traveling position of the vehicle 200.
  • the LiDAR simulator 38 assumes that the laser light emitted from the LiDAR 208 is reflected by the target based on the position information of the target in the virtual external environment, and irradiates the LiDAR 208 with light corresponding to scattered light. Is calculated. Then, after the laser light is detected by the LiDAR transceiver 56, a delay process for the irradiation timing is performed, and a light irradiation instruction as virtual information is output to the LiDAR transceiver 56.
  • the GNSS simulator 40 has a function of reproducing position information (longitude and latitude information) of the vehicle 200 detected by the GNSS 210 at the virtual traveling position of the vehicle 200.
  • the GNSS simulator 40 outputs position information as virtual information to the GNSS transmission antenna 58.
  • the gyro simulator 42 has a function of reproducing operation information (angular velocity, angular acceleration, and the like) of the turning direction generated in the vehicle 200 based on the operation information of the vehicle 200 (vehicle speed V and steering angle ⁇ s).
  • the gyro simulator 42 outputs operation information to the vehicle control device 216 as virtual information.
  • the gyro simulator 42 does not output operation information to the gyroscope 212. That is, the inspection of the gyroscope 212 is not performed. This is because the gyroscope 212 of the vehicle 200 detects an operation in the turning direction that actually occurs in the vehicle 200, and cannot perform the inspection on the inspection table 72.
  • the simulator storage device 24 includes a hard disk, a ROM, a RAM, and the like.
  • the simulator storage device 24 stores a program executed by the simulator operation device 22 and virtual external environment information 46 imitating external environment information.
  • the virtual external environment information 46 is information for reproducing a series of virtual external environments, and includes information such as the initial position of the vehicle 200 in the virtual external environment, the position of each target in the virtual external environment, and the behavior of a moving target. Is set in advance.
  • the virtual external environment information 46 will be described in [1.4.1] below.
  • the input / output device 26 includes an A / D conversion circuit, a communication interface, a driver, and the like.
  • the information output device 50 causes the external sensor 202 to detect virtual information corresponding to the virtual external environment reproduced by the simulator 20.
  • the information output device 50 includes a monitor 52, a radar transceiver 54, a LiDAR transceiver 56, and a GNSS transmission antenna 58.
  • the monitor 52 is arranged to face the lens of the camera 204.
  • the monitor 52 displays an image of the virtual external environment based on the image information output from the camera simulator 34.
  • the monitor 52 is supported by a monitor support mechanism 60.
  • the monitor support mechanism 60 has a monitor motor 64 that moves the monitor 52 in the vehicle width direction along a stay 62 extending in the vehicle width direction.
  • the monitor motor 64 is driven by electric power supplied from the input / output device 26 (driver) of the simulator 20.
  • the radar transceiver 54 has a transmission / reception circuit and a directional antenna, and is arranged to face the transmission / reception antenna of the radar 206.
  • the radar transceiver 54 detects a radio wave emitted from the transmission / reception antenna of the radar 206 and outputs a detection signal to the radar simulator 36. Then, in accordance with the irradiation instruction output from the radar simulator 36, a radio wave is emitted toward the transmission / reception antenna of the radar 206.
  • a radio wave absorber is disposed in the radio wave irradiation range of the radar 206. .
  • the LiDAR transceiver 56 has a transmitting unit (oscillation circuit) and a light receiving unit (light receiving circuit), and is arranged to face the transmitting / receiving unit of the LiDAR 208.
  • the LiDAR transceiver 56 detects the laser light emitted from the transmitting / receiving unit of the LiDAR 208 and outputs a detection signal to the LiDAR simulator 38. Then, in response to the irradiation instruction output from the LiDAR simulator 38, light is irradiated to the transmitting / receiving unit of the LiDAR 208.
  • a light absorbing material is provided in the laser light irradiation range of the LiDAR 208. Be placed.
  • the GNSS transmission antenna 58 includes the GNSS transmission antenna 58 and a shield member that covers the GNSS transmission antenna 58, and is disposed so as to cover the GNSS reception antenna 214 of the vehicle 200 with the shield member.
  • the GNSS transmission antenna 58 outputs a pseudo signal indicating the position of the vehicle 200 based on the position information output from the GNSS simulator 40.
  • the bench tester 70 includes an inspection table 72, a receiving device 74, various sensors (vehicle speed sensor 82, wheel position sensor 84, vehicle position sensor 86), a motor control device 88, Having.
  • the inspection table 72 is installed on a work floor.
  • the receiving device 74 is provided at the position of the wheels 224 (the front wheels 224 f and the rear wheels 224 r) of the vehicle 200 mounted on the inspection table 72, and is a mechanism that receives the operation of the wheels 224 by mounting the wheels 224.
  • the receiving device 74f provided on the front wheel 224f side to be a steered wheel has two rollers 76, a support base 78, and a support base motor 80.
  • the two rollers 76 support the front wheel 224f from below, and are rotatable about an axis parallel to the vehicle width direction as the front wheel 224f rotates.
  • the support base 78 supports the rollers 76 and is rotatable about an axis parallel to the vertical direction of the vehicle 200.
  • the support base motor 80 rotates the support base 78 in the forward or reverse direction.
  • the receiving device 74r provided on the rear wheel 224r side has two rollers 76 and a support base 78.
  • the two rollers 76 support the rear wheel 224r from below, and are rotatable about an axis parallel to the vehicle width direction as the rear wheel 224r rotates.
  • At least one of the receiving device 74f and the receiving device 74r is movable in the front-rear direction in accordance with the wheelbase of the vehicle 200.
  • the vehicle speed sensor 82 is provided in each of the receiving device 74f and the receiving device 74r so as to be compatible with any of the front-wheel drive and rear-wheel drive vehicles 200, and is composed of, for example, a rotary encoder or a resolver.
  • the vehicle speed sensor 82 detects the rotation speed r of the roller 76.
  • the rotation speed r corresponds to the vehicle speed V.
  • the wheel position sensor 84 is provided on the side of the front wheel 224f serving as a steering wheel, and is configured by a laser distance measuring device or the like.
  • the wheel position sensor 84 detects a displacement d1 of the front wheel 224f from the initial position due to steering.
  • the displacement d1 corresponds to the steering angle ⁇ s of the vehicle 200.
  • the vehicle position sensor 86 is provided at a position where a predetermined portion (such as the rear wheel 224r) can be detected, and includes a laser distance measuring device or the like.
  • the vehicle position sensor 86 detects a positional shift amount d2 of a predetermined portion (such as the rear wheel 224r) due to a positional shift in the vehicle width direction.
  • the motor control device 88 is configured by a computer, and includes an arithmetic device, a storage device, and an input / output device.
  • the arithmetic device controls the support base motor 80 provided in the receiving device 74f by executing a program stored in the storage device. Specifically, the rotation angle ⁇ m of the receiving device 74f according to the displacement d1 (the steering angle ⁇ s) is calculated.
  • the displacement d1 is affected by the displacement of the vehicle 200. Therefore, the motor control device 88 corrects the displacement d1 in accordance with the displacement d2 of the vehicle 200.
  • the input / output device supplies power to the support base motor 80 in order to rotate the receiving device 74f by the rotation angle ⁇ m.
  • the bench tester 70 provides the simulator 20 with operation information of the vehicle 200, that is, the rotational speed r (vehicle speed V) detected by the vehicle speed sensor 82 and the displacement d1 (steering) detected by the wheel position sensor 84.
  • the angle ⁇ s) and the displacement d2 detected by the vehicle position sensor 86 are output.
  • the analysis device 90 is configured by a computer, and includes an analysis operation device 92, an analysis storage device 94, and an analysis input / output device 96.
  • the analysis operation device 92 realizes various functions by executing a program stored in the analysis storage device 94. For example, the analysis operation device 92 acquires log data of the vehicle speed V and the steering angle ⁇ s detected by the bench tester 70 via the simulator 20 and compares the log data with the model data stored in the analysis storage device 94. Thereby, abnormality diagnosis of the vehicle 200 is performed.
  • the vehicle inspection system 10 operates as follows.
  • the vehicle 200 is placed on the inspection table 72.
  • the individual wheels 224 are placed on the individual receiving devices 74.
  • Each information output device 50 is arranged to face each external sensor 202 of the vehicle 200.
  • the radar transceiver 54 is arranged within a range of a first predetermined distance or more and a second predetermined distance or less with respect to the transmission / reception antenna of the radar 206.
  • the LiDAR transceiver 56 is arranged within a range of a third predetermined distance or more and a fourth predetermined distance or less with respect to the transmission / reception unit of the LiDAR 208.
  • the operator operates the simulator 20 with an operation device (not shown) to start reproducing the virtual external environment.
  • the simulator operation device 22 reproduces the virtual external environment based on the virtual external environment information 46 stored in the simulator storage device 24.
  • the vehicle control device 216 of the vehicle 200 detects the virtual information output from the information output device 50, and controls the driving, braking, steering, and the like of the vehicle 200.
  • the rotation speed (vehicle speed V) of the wheels 224 changes with driving or braking of the vehicle 200
  • the rotation speed r of the roller 76 of the receiving device 74 changes.
  • the rotation speed r (vehicle speed V) of the roller 76 is detected by a vehicle speed sensor 82 and output to a motor control device 88.
  • the displacement d1 (steering angle ⁇ s) is detected by the wheel position sensor 84 and output to the motor control device 88.
  • the motor control device 88 calculates the rotation angle ⁇ m of the receiving device 74 according to the displacement d1 (the steering angle ⁇ s), and controls the rotating operation of the receiving device 74.
  • the motor control device 88 outputs the vehicle speed V and the steering angle ⁇ s to the simulator 20.
  • the management unit 32 of the simulator 20 outputs log data (vehicle speed V and steering angle ⁇ s) of the vehicle 200 to the analysis device 90 after a series of inspections.
  • the vehicle 200 may be displaced in the vehicle width direction on the receiving device 74 during the inspection.
  • the relative positions of the respective external sensors 202 with respect to the respective information output devices 50 are also shifted.
  • the displacement between the radar 206, the LiDAR 208, and the GNSS 210 does not affect the detection information.
  • the displacement of the camera 204 greatly affects the detection information (video information).
  • the camera 204 captures an image of the screen range 100C at the center of the monitor 52 in a state where the vehicle 200 does not have a displacement.
  • the camera 204 captures an image of a screen range 100L located on the left side of the screen range 100C.
  • the vehicle control device 216 erroneously recognizes that the vehicle 200 is displaced to the left in the virtual external environment even though the vehicle 200 is only displaced on the receiving device 74, and Erroneous control to return the position of 200 to the right direction is performed.
  • the simulator 20 performs control to shift the position of the monitor 52 in the vehicle width direction.
  • the positional displacement amount d2 is detected by the vehicle position sensor 86 and output to the simulator 20.
  • the simulator 20 calculates the amount of rotation of the monitor motor 64 and the required power in the management unit 32 in order to move the monitor 52 in the direction opposite to the direction of displacement of the vehicle 200 by the distance d2. Power is supplied to the monitor motor 64.
  • the monitor 52 moves by the distance d2 in the direction opposite to the direction of the displacement of the vehicle 200.
  • the position state of the monitor 52 and the camera 204 returns to the initial state (the state shown in FIG. 5A).
  • the virtual external environment information 46 stored in the simulator storage device 24 is configured so that predetermined items can be inspected.
  • the virtual external environment information 46 relates to four items of lane change (scene S1), lane maintenance (scene S2), traffic congestion (scene S3), and collision avoidance (scene S4).
  • the operation of the vehicle 200 is configured to be inspected.
  • the head scene (scene S0) is set in the virtual external environment information 46.
  • a situation where the vehicle 200 starts running for example, a situation where the vehicle 200 is at the entrance of the highway 110 is set.
  • a situation in which the vehicle 200 changes lanes for example, a situation in which the vehicle 200 travels in the route changeable section 120 and a preceding vehicle 118 traveling below the target speed Vt exists in front of the traveling lane 112. Is set.
  • a situation in which the vehicle 200 performs lane maintenance for example, a situation in which the preceding vehicle 118 does not exist in front of the traveling lane 112 is set.
  • a situation in which the vehicle 200 follows the traffic jam for example, a situation in which the vehicle 200 travels in the route change prohibition section 122 and a preceding vehicle 118 traveling below the target speed Vt exists in front of the traveling lane 112.
  • a situation in which the vehicle 200 performs collision avoidance for example, a situation in which the vehicle 200 travels in the route change prohibition section 122 and there is a preceding vehicle 118 that stops before the traveling lane 112.
  • the camera simulator 34, the radar simulator 36, the LiDAR simulator 38, and the GNSS simulator 40 reproduce the virtual external environments of the scenes S0 to S4 continuously and in synchronization based on the virtual external environment information 46.
  • the trajectory of the vehicle 200 is calculated based on the operation information of the vehicle 200, and the virtual external environment at the position after the movement is reproduced.
  • the camera simulator 34 sequentially generates video information around the vehicle 200 and outputs it to the monitor 52.
  • the monitor 52 displays an image according to the image information.
  • the GNSS simulator 40 sequentially generates longitude and latitude information of the position of the vehicle 200 and outputs the information to the GNSS transmission antenna 58.
  • the GNSS transmission antenna 58 outputs a signal corresponding to the latitude and longitude information. Since the preceding vehicle 118 and the obstacle are not set in the scenes S0 and S2, the radar simulator 36 and the LiDAR simulator 38 do not output an irradiation instruction to the radar transceiver 54 and the LiDAR transceiver 56.
  • the camera simulator 34 sequentially generates video information around the vehicle 200 (including the preceding vehicle 118) and outputs it to the monitor 52.
  • the monitor 52 displays an image according to the image information.
  • the radar simulator 36 controls the radar transceiver 54 so that the radar transceiver 54 emits a radio wave after a radar reflection time corresponding to the distance between the vehicle 200 and the preceding vehicle 118 elapses after the radar transceiver 54 detects the radio wave of the radar 206. , And outputs an irradiation instruction to the radar transceiver 54.
  • the LiDAR transceiver 38 detects the LiDAR transceiver 56 after the scattered light reflection time corresponding to the distance between the vehicle 200 and the preceding vehicle 118 has elapsed since the LiDAR transceiver 56 detected the laser light of the LiDAR 208.
  • An irradiation instruction is output to the LiDAR transceiver 56 so that the light is irradiated from the.
  • the GNSS simulator 40 sequentially generates longitude and latitude information of the position of the vehicle 200 and outputs the information to the GNSS transmission antenna 58.
  • the GNSS transmission antenna 58 outputs a signal corresponding to the latitude and longitude information.
  • the vehicle control device 216 causes the vehicle 200 to execute the lane change.
  • the steering angle ⁇ s of the vehicle 200 is changed.
  • the gyro simulator 42 calculates, based on the vehicle speed V and the steering angle ⁇ s, an angular velocity or angular acceleration in a turning direction that is expected to be generated in the vehicle 200 that actually travels, and outputs the calculated angular velocity or angular acceleration to the gyroscope 212.
  • the camera 204, the radar 206, and the LiDAR 208 have different distances at which the target to be detected, here, the preceding vehicle 118, can be detected.
  • the detectable distance is the longest for the radar 206 and the shortest for the LiDAR 208. Therefore, the radar simulator 36 outputs an irradiation instruction to the radar transceiver 54 when the inter-vehicle distance L between the vehicle 200 and the preceding vehicle 118 becomes equal to or less than the distance L1 that can be detected by the radar 206.
  • the camera simulator 34 transmits video information of the preceding vehicle 118 to the monitor 52. Output.
  • the LiDAR simulator 38 outputs an irradiation instruction to the LiDAR transceiver 56 when the inter-vehicle distance L between the vehicle 200 and the preceding vehicle 118 becomes equal to or less than the distance L3 ( ⁇ L2) detectable by the LiDAR 208.
  • the vehicle control device 216 recognizes the preceding vehicle 118 traveling at the target speed Vt or less and recognizes that the traveling position of the vehicle 200 is the route changeable section 120. At this time, the vehicle control device 216 changes to the overtaking lane 114 in order to overtake the preceding vehicle 118. The vehicle control device 216 determines that the route is changeable section 120 based on the lane mark 116 captured by the camera 204. The vehicle control device 216 accelerates the vehicle 200 before passing, causes the vehicle 200 to travel at a constant speed when passing, and decelerates the vehicle 200 after passing.
  • vehicle control device 216 recognizes that there is no preceding vehicle 118 ahead. At this time, vehicle control device 216 causes vehicle 200 to run at target speed Vt.
  • the vehicle control device 216 recognizes the preceding vehicle 118 traveling at the target speed Vt or less and also recognizes that the traveling position of the vehicle 200 is in the course change prohibition section 122. At this time, the vehicle control device 216 follows the traffic jam. The vehicle control device 216 determines that the route change prohibition section 122 is based on the lane mark 116 captured by the camera 204. The vehicle control device 216 drives the vehicle 200 at the same vehicle speed V as the preceding vehicle 118, and maintains the inter-vehicle distance L between the vehicle 200 and the preceding vehicle 118.
  • the vehicle control device 216 recognizes the preceding vehicle 118 that stops. At this time, the vehicle control device 216 decelerates the vehicle 200 and stops the vehicle 200 behind the preceding vehicle 118.
  • the simulator 20 reproduces the virtual external environment of the scenes S0 to S4, inputs operation information (vehicle speed V, steering angle ⁇ s) of the vehicle 200 output from the bench tester 70, and stores log data in the simulator storage device 24. To record. After the inspection is completed, the simulator 20 outputs log data to the analysis device 90.
  • the analysis device 90 stores ideal model data as shown in FIG. 6B in advance, and compares the log data with the model data. The analysis device 90 determines that the external sensor 202, the vehicle control device 216, the driving device 218, the braking device 222, and the steering device 220 of the vehicle 200 are normal when the degree of coincidence is equal to or more than a predetermined value. If the degree of coincidence between the two is less than the predetermined value, the analysis device 90 determines that one of the devices has an abnormality.
  • the vehicle 200 has one radar 206 and one LiDAR 208. However, in practice, vehicle 200 has multiple radars 206 and LiDARs 208.
  • the inspection efficiency is improved by allowing the radar transceiver 54 and the LiDAR transceiver 56 to move freely.
  • the second embodiment relates to a simulator unit 300 in which some of the information output devices 50 and some of the functions of the simulator 20 are integrated and movable.
  • the simulator unit 300 shown in FIG. 7 enables the radar simulator 36 and the radar transceiver 54 in the first embodiment to be integrated and movable, and also enables the LiDAR simulator 38 and the LiDAR transceiver 56 to be integrated and movable. It was done. Note that the simulator operation device 22 has functions as they are except for the radar simulator 36 and the LiDAR simulator 38.
  • the simulator unit 300 includes a mobile robot 302, a height adjustment robot 304, a radar transceiver 54, a LiDAR transceiver 56, and a mobile simulator 306.
  • the mobile robot 302 includes a moving mechanism, a controller, a storage device, and a communication device, and has a function of moving on a work floor.
  • the mobile robot 302 stores a travel course set on the work floor in advance, and moves along the travel course according to a travel instruction transmitted from an external instruction device 310.
  • the starting point and the end point of the moving course are a standby position (FIG. 8A) away from the inspection table 72 and an inspection position (FIG. 8B) around the inspection table 72.
  • the inspection positions differ depending on the size and shape of the vehicles 200. For this reason, the mobile robot 302 stores a plurality of traveling courses and selects a traveling course according to the course information specified by the pointing device 310.
  • the height adjustment robot 304 has a height adjustment mechanism, a controller, a storage device, and a communication device, supports the radar transceiver 54 and the LiDAR transceiver 56, and also controls the height of the radar transceiver 54 and the LiDAR transceiver 56. It has the function of adjusting the position.
  • the radar transceiver 54 and the LiDAR transceiver 56 are vertically separated by a partition plate 308, respectively.
  • the partition plate 308 arranged in the vertical direction of the radar transceiver 54 is covered with a radio wave absorbing material
  • the partition plate 308 arranged in the vertical direction of the LiDAR transceiver 56 is covered with a light absorbing material.
  • the surroundings of the radar transceiver 54 and the LiDAR transceiver 56 are also covered with the absorbing material.
  • the height adjustment robot 304 stores the heights of the radar 206 and the LiDAR 208 for each vehicle type, and adjusts the heights of the radar transceiver 54, the LiDAR transceiver 56, and the partition plate 308 according to the vehicle type information instructed by the instruction device 310. I do.
  • the mobile simulator 306 has the same functions as the radar simulator 36 and the LiDAR simulator 38 of the simulator 20 shown in FIG.
  • the mobile simulator 306 has a short-range communication device, and can perform data communication with the simulator 20.
  • the mobile simulator 306 receives the virtual external environment information 46 stored in the simulator storage device 24 and is totally controlled by the management unit 32 on the simulator 20 side.
  • the arrangement of the simulator unit 300 will be described with reference to FIGS. 8A and 8B.
  • the vehicle 200 has the radar 206 and the LiDAR 208 at the four corners, and the radar 206 at the front center and the rear center.
  • each of the simulator units 300f1, 300f2, 300f3, 300r1, 300r2, 300r3 waits at the standby position.
  • the standby position is set with an approach path of the vehicle 200 so that the vehicle 200 can enter the inspection table 72.
  • the instruction device 310 transmits course information according to the vehicle type to each of the simulator units 300f1, 300f2, 300f3, 300r1, 300r2, and 300r3.
  • Each of the simulator units 300f1, 300f2, 300f3, 300r1, 300r2, and 300r3 moves along a moving course according to the course information, and reaches respective inspection positions.
  • a projector and a screen may be used.
  • the present invention A vehicle inspection system 10 that inspects an operation of a vehicle 200 that performs traveling control based on external environment information detected by a plurality of external sensors 202, A simulator 20 for reproducing virtual information imitating external environment information, A plurality of information output devices 50 that are provided for each of the plurality of external sensors 202 and cause the corresponding external sensors 202 to detect virtual information reproduced by the simulator 20; A bench tester 70 that detects an operation of the vehicle 200 that performs travel control based on virtual information, The simulator 20 outputs virtual information corresponding to the same virtual external environment to the plurality of information output devices 50, and synchronizes the virtual information output to the plurality of information output devices 50.
  • the external information sensor 202, the vehicle control device 216, and the drive are used to detect the operation (vehicle speed V, steering angle ⁇ s) of the vehicle 200 by actually detecting the virtual information by the external sensor 202 of the vehicle 200.
  • a consistent inspection of the various actuators provided on the device 218, the braking device 222, and the steering device 220 can be performed.
  • the plurality of external sensors 202 detect virtual information corresponding to the same virtual external environment, it is easy to find asynchronous operations of the plurality of external sensors 202, and it is easy to find erroneous assembly of the external sensors 202.
  • the plurality of external sensors 202 include a camera 204
  • the plurality of information output devices 50 include a monitor (display device) 52
  • the monitor 52 causes the camera 204 to shoot an image of the virtual external environment
  • the information output device 50 other than the monitor 52 may cause the external sensor 202 other than the camera 204 to detect virtual information synchronized with the video.
  • the virtual external environment is displayed on the monitor 52, so that the operator can grasp the inspection contents.
  • the bench tester 70 may include a receiving device 74 that mounts the wheel 224 of the vehicle 200 and receives the operation of the wheel 224.
  • the vehicle 200 can be inspected on the inspection table 72, and a test course for actually running the vehicle 200 is unnecessary, so that a large space is not required.
  • the vehicle 200 can be inspected indoors. Since the indoor inspection is not affected by the weather, the accuracy of the inspection is improved. Further, the inspection under the same conditions can be reproduced.
  • the information output device 50 and the simulator 20 that outputs virtual information to the information output device 50 are movable units (simulator units 300).
  • the unit (simulator unit 300) may be arranged at a position facing each external sensor 202 at the time of vehicle inspection.
  • the unit since the unit (simulator unit 300) is movable, it can flexibly cope with various vehicles and various equipment specifications.
  • vehicle inspection system is not limited to the above-described embodiment, but may adopt various configurations without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

外界センサ、車両制御装置、各種アクチュエータの一貫した検査を行うことができる車両検査システムを提供する。車両検査システム(10)は、外部環境情報を模した仮想情報を再現するシミュレータ(20)と、複数の外界センサ(202)毎に設けられ、シミュレータ(20)で再現される仮想情報を対応する外界センサ(202)に検出させる複数の情報出力装置(50)と、仮想情報に基づいて走行制御を行う車両(200)の動作を検出する台上試験機(70)と、を備え、シミュレータ(20)は、複数の情報出力装置(50)に対して同一の仮想外部環境に対応する仮想情報を出力すると共に、複数の情報出力装置(50)に対して出力する仮想情報を同期させる。

Description

車両検査システム
 本発明は、複数の外界センサで検出される外部環境情報に基づいて走行制御を行う車両の動作を検査する車両検査システムに関する。
 特許第5868550号公報には、レーダ、LiDAR、ソナー等、の複数の走行環境センサ(以下、外界センサともいう。)を備える車両の動作試験(以下、検査ともいう。)を行う方法が開示される。この方法では、試験制御ユニットを搭載した車両を試験コースで実際に走行させる。試験制御ユニットは、外界センサが検出する測定値を仮想的な世界の車両環境に合わせて変更して車両の制御ユニット(以下、車両制御装置ともいう)に出力するようにしている。その結果、車両制御装置は、変更後の測定値に基づいて走行制御を行う。こうすることで、実際の試験コースに関係なく、仮想的な世界における車両の動作試験を行うことができる。
 特許第5868550号公報の方法では、車両制御装置と、車両制御装置により制御される各種アクチュエータ(駆動、制動、操舵用のアクチュエータ)の検査を行う反面、複数の外界センサの検査を行っていない。つまり、特許第5868550号公報の方法では、複数の外界センサ、車両制御装置、各種アクチュエータの一貫した検査を行うことができない。
 本発明はこのような課題を考慮してなされたものであり、外界センサ、車両制御装置、各種アクチュエータの一貫した検査を行うことができる車両検査システムを提供することを目的とする。
 本発明の態様は、
 複数の外界センサで検出される外部環境情報に基づいて走行制御を行う車両の動作を検査する車両検査システムであって、
 前記外部環境情報を模した仮想情報を再現するシミュレータと、
 複数の前記外界センサ毎に設けられ、前記シミュレータで再現される前記仮想情報を対応する前記外界センサに検出させる複数の情報出力装置と、
 前記仮想情報に基づいて走行制御を行う前記車両の動作を検出する台上試験機と、を備え、
 前記シミュレータは、複数の前記情報出力装置に対して同一の仮想外部環境に対応する前記仮想情報を出力すると共に、複数の前記情報出力装置に対して出力する前記仮想情報を同期させる。
 本発明によれば、外界センサと車両制御装置、および、駆動装置と制動装置と操舵装置に設けられる各種アクチュエータの一貫した検査を行うことができる。
図1は第1実施形態で検査対象とする車両の装置構成図である。 図2は第1実施形態に係る車両検査システムのシステム構成図である。 図3はシミュレータの機能ブロック図である。 図4はモニタ支持機構の模式図である。 図5A~図5Cはモニタ支持機構の動作説明図である。 図6Aはシミュレータにより再現される仮想外部環境の説明図であり、図6Bは検査時の理想的な時間-車速の説明図である。 図7は第2実施形態に係るシミュレータユニットの模式図である。 図8A、図8Bはシミュレータユニットの動作説明図である。
 以下、本発明に係る車両検査システムについて、好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
[1.第1実施形態]
[1.1.車両200]
 車両検査システム10で検査対象とする車両200について説明する。ここでは、車両200として、加減速、制動、操舵の制御を自動で行うことができる自動運転車両(完全自動運転車両を含む)を想定するが、加減速、制動、操舵の少なくとも1つの制御を自動で行うことができる運転支援車両であってもよい。図1に示されるように、車両200は、複数の外界センサ202と、外界センサ202で検出される外部環境情報に基づいて走行制御を行う車両制御装置216と、車両制御装置216が出力する動作指示に応じて動作する駆動装置218、操舵装置220と、制動装置222、各車輪224と、を備える。
 外界センサ202には、1以上のカメラ204と、1以上のレーダ206と、1以上のLiDAR208と、GNSS210と、ジャイロスコープ212と、が含まれる。ここでは説明の便宜のために、車両200が上述した各外界センサ202を1つずつ備えるものとする。カメラ204とレーダ206とLiDAR208は、車両200の前方の外界情報を検出する。
 車両制御装置216は、車両制御ECUにより構成される。車両制御ECUは、外界センサ202により検出される外部環境情報に基づいて、その場面で最適な加減速度、制動量、操舵角を演算し、各種制御対象装置に動作指示を出力する。駆動装置218は、駆動ECUと、エンジンや駆動モータ等の駆動源と、を含む。駆動装置218は、乗員が行うアクセルペダルの操作または車両制御装置216から出力される動作指示に応じて車輪224の駆動力を発生させる。操舵装置220は、電動パワーステアリングシステム(EPS)ECUと、EPSアクチュエータと、を含む。操舵装置220は、乗員が行うステアリングホイールの操作または車両制御装置216から出力される動作指示に応じて車輪224(前輪224f)の操舵角を変える。制動装置222は、ブレーキECUと、ブレーキアクチュエータと、を含む。制動装置222は、乗員が行うブレーキペダルの操作または車両制御装置216から出力される動作指示に応じて車輪224の制動力を発生させる。
[1.2.車両検査システム10]
 図1に示す車両200の動作を検査する車両検査システム10について説明する。図2に示されるように、車両検査システム10は、シミュレータ20と、複数の情報出力装置50と、台上試験機70と、解析装置90と、を備える。
[1.2.1.シミュレータ20]
 シミュレータ20は、コンピュータによって構成されており、図3に示されるように、シミュレータ演算装置22と、シミュレータ記憶装置24と、入出力装置26と、を有する。
 シミュレータ演算装置22は、CPU等のプロセッサで構成される。シミュレータ演算装置22は、シミュレータ記憶装置24に記憶されるプログラムを実行することにより各種機能を実現する。ここでは、シミュレータ演算装置22は、管理部32と、カメラシミュレータ34と、レーダシミュレータ36と、LiDARシミュレータ38と、GNSSシミュレータ40と、ジャイロシミュレータ42と、モニタ位置制御部44として機能する。
 管理部32は、車両200の検査処理を管理する機能を有する。例えば、管理部32は、シミュレータ記憶装置24に記憶される仮想外部環境情報46に基づいて仮想外部環境を、カメラシミュレータ34とレーダシミュレータ36とLiDARシミュレータ38とGNSSシミュレータ40とジャイロシミュレータ42で再現させる。つまり、管理部32は、各シミュレータ34、36、38、40、42が同一の仮想外部環境に対応する仮想情報を同期して再現するように、各シミュレータ34、36、38、40、42を協調制御する機能を有する。管理部32は、仮想外部環境の再現時に、台上試験機70から出力される車両200の動作情報(車速Vおよび操舵角θs)に基づいて、仮想外部環境における車両200の仮想走行位置を演算する。
 カメラシミュレータ34は、車両200の仮想走行位置でカメラ204が検出する映像情報を再現する機能を有する。カメラシミュレータ34は、モニタ(表示装置)52に仮想情報としての映像情報を出力する。
 レーダシミュレータ36は、車両200の仮想走行位置でレーダ206が検出する物標の位置情報を再現する機能を有する。レーダシミュレータ36は、仮想外部環境における物標の位置情報に基づいて、レーダ206から照射される電波が物標で反射されることを想定し、レーダ206に対して反射波に相当する電波の照射タイミングを演算する。そして、レーダ送受信機54で電波が検出されてから照射タイミング分の遅延処理を行い、レーダ送受信機54に対して仮想情報としての電波の照射指示を出力する。
 LiDARシミュレータ38は、車両200の仮想走行位置でLiDAR208が検出する物標の位置情報を再現する機能を有する。LiDARシミュレータ38は、仮想外部環境における物標の位置情報に基づいて、LiDAR208から照射されるレーザ光が物標で反射されることを想定し、LiDAR208に対して散乱光に相当する光の照射タイミングを演算する。そして、LiDAR送受信機56でレーザ光が検出されてから照射タイミング分の遅延処理を行い、LiDAR送受信機56に対して仮想情報としての光の照射指示を出力する。
 GNSSシミュレータ40は、車両200の仮想走行位置でGNSS210が検出する車両200の位置情報(経緯度情報)を再現する機能を有する。GNSSシミュレータ40は、GNSS送信アンテナ58に仮想情報としての位置情報を出力する。
 ジャイロシミュレータ42は、車両200の動作情報(車速Vおよび操舵角θs)に基づいて、車両200に発生する旋回方向の動作情報(角速度、角加速度等)を再現する機能を有する。ジャイロシミュレータ42は、車両制御装置216に仮想情報としての動作情報を出力する。このように、本実施形態では、ジャイロシミュレータ42はジャイロスコープ212に動作情報を出力しない。つまり、ジャイロスコープ212の検査を行わない。車両200のジャイロスコープ212は、実際に車両200に発生する旋回方向の動作を検出するものであり、検査台72上ではその検査を行うことができないためである。
 シミュレータ記憶装置24は、ハードディスク、ROM、RAM等で構成される。シミュレータ記憶装置24は、シミュレータ演算装置22が実行するプログラムおよび外部環境情報を模した仮想外部環境情報46を記憶する。仮想外部環境情報46は、一連の仮想外部環境を再現するための情報であり、仮想外部環境における車両200の初期位置、仮想外部環境における各物標の位置、移動する物標の挙動等の情報が予め設定される。仮想外部環境情報46については、下記[1.4.1]で説明する。
 入出力装置26は、A/D変換回路、通信インターフェース、ドライバ等を含む。
[1.2.2.情報出力装置50]
 図2に戻り、情報出力装置50について説明する。情報出力装置50は、外界センサ202に対して、シミュレータ20で再現される仮想外部環境に対応する仮想情報を検出させる。情報出力装置50には、モニタ52と、レーダ送受信機54と、LiDAR送受信機56と、GNSS送信アンテナ58と、が含まれる。
 モニタ52は、カメラ204のレンズと対向して配置される。モニタ52は、カメラシミュレータ34から出力される映像情報に基づいて、仮想外部環境の映像を表示する。図4に示されるように、モニタ52は、モニタ支持機構60により支持される。モニタ支持機構60は、車幅方向に延びるステー62に沿ってモニタ52を車幅方向に移動させるモニタモータ64を有する。モニタモータ64は、シミュレータ20の入出力装置26(ドライバ)から供給される電力により駆動する。
 レーダ送受信機54は、送受信回路と指向性アンテナを有し、レーダ206の送受信アンテナと対向して配置される。レーダ送受信機54は、レーダ206の送受信アンテナから照射される電波を検出し、検出信号をレーダシミュレータ36に出力する。そして、レーダシミュレータ36から出力される照射指示に応じてレーダ206の送受信アンテナに向けて電波を照射する。なお、レーダ206の送受信アンテナから照射される電波がレーダ送受信機54またはその周辺の物体により反射されることを防止するために、レーダ206の電波照射範囲には、電波の吸収材が配置される。
 LiDAR送受信機56は、送信部(発振回路)と受光部(受光回路)を有し、LiDAR208の送受信部と対向して配置される。LiDAR送受信機56は、LiDAR208の送受信部から照射されるレーザ光を検出し、検出信号をLiDARシミュレータ38に出力する。そして、LiDARシミュレータ38から出力される照射指示に応じてLiDAR208の送受信部に向けて光を照射する。なお、LiDAR208の送受信部から照射されるレーザ光の散乱光がLiDAR送受信機56またはその周辺の物体により反射されることを防止するために、LiDAR208のレーザ光照射範囲には、光の吸収材が配置される。
 GNSS送信アンテナ58は、GNSS送信アンテナ58とこれを覆うシールド材とを有し、車両200のGNSS受信アンテナ214をシールド材で覆うようにして配置される。GNSS送信アンテナ58は、GNSSシミュレータ40から出力される位置情報に基づいて、車両200の位置を示す疑似信号を出力する。
[1.2.3.台上試験機70]
 図2に示されるように、台上試験機70は、検査台72と、受容装置74と、各種センサ(車速センサ82、車輪位置センサ84、車両位置センサ86)と、モータ制御装置88と、を有する。検査台72は、作業フロアに設置される。
 受容装置74は、検査台72上に載せられる車両200の車輪224(前輪224f、後輪224r)位置に設けられ、車輪224を載せて車輪224の動作を受容する機構である。操舵輪となる前輪224f側に設けられる受容装置74fは、2つのローラ76と、支持台78と、支持台モータ80と、を有する。2つのローラ76は、前輪224fを下方から支持すると共に、前輪224fの回転に伴い車幅方向と平行する軸線を中心として回転自在である。支持台78は、ローラ76を支持すると共に、車両200の上下方向と平行する軸線を中心として回転自在である。支持台モータ80は、支持台78を正方向または逆方向に回転させる。一方、後輪224r側に設けられる受容装置74rは、2つのローラ76と、支持台78と、を有する。2つのローラ76は、後輪224rを下方から支持すると共に、後輪224rの回転に伴い車幅方向と平行する軸線を中心として回転自在である。受容装置74fと受容装置74rの少なくとも一方は、車両200のホイールベースに合わせて前後方向に移動可能である。
 車速センサ82は、前輪駆動と後輪駆動のいずれの車両200にも対応できるように、受容装置74fと受容装置74rにそれぞれ設けられ、例えばロータリエンコーダまたはレゾルバ等で構成される。車速センサ82は、ローラ76の回転速度rを検出する。回転速度rは車速Vに相当する。車輪位置センサ84は、操舵輪となる前輪224f側に設けられ、レーザ測距装置等で構成される。車輪位置センサ84は、操舵に伴う前輪224fの初期位置からの変位量d1を検出する。変位量d1は車両200の操舵角θsに相当する。車両位置センサ86は、所定部位(後輪224r等)を検出できる位置に設けられ、レーザ測距装置等で構成される。車両位置センサ86は、車幅方向の位置ずれに伴う所定部位(後輪224r等)の位置ずれ量d2を検出する。
 モータ制御装置88は、コンピュータによって構成されており、演算装置と、記憶装置と、入出力装置と、を有する。演算装置は、記憶装置に記憶されるプログラムを実行することにより受容装置74fに設けられる支持台モータ80を制御する。具体的には、変位量d1(操舵角θs)に応じた受容装置74fの回転角度θmを演算する。なお、変位量d1は車両200の位置ずれの影響を受ける。このため、モータ制御装置88は、車両200の位置ずれ量d2に応じて変位量d1を補正する。入出力装置は、受容装置74fを回転角度θmだけ回転させるために、支持台モータ80に対して電力を供給する。
 台上試験機70は、シミュレータ20に対して、車両200の動作情報、すなわち、車速センサ82で検出される回転速度r(車速V)と、車輪位置センサ84で検出される変位量d1(操舵角θs)と、車両位置センサ86で検出される位置ずれ量d2を出力する。
[1.2.4.解析装置90]
 解析装置90は、コンピュータによって構成されており、解析演算装置92と、解析記憶装置94と、解析入出力装置96と、を有する。解析演算装置92は、解析記憶装置94に記憶されるプログラムを実行することにより各種機能を実現する。例えば、解析演算装置92は、台上試験機70で検出される車速Vおよび操舵角θsのログデータを、シミュレータ20を介して取得し、解析記憶装置94に記憶されるモデルデータと比較することにより、車両200の異常診断を行う。
[1.3.車両検査システム10の動作]
 一連の検査に伴い車両検査システム10は次のように動作する。車両200は検査台72に載せられる。このとき、個々の車輪224は個々の受容装置74に載せられる。各情報出力装置50は車両200の各外界センサ202と対向して配置される。レーダ送受信機54は、レーダ206の送受信アンテナに対して第1所定距離以上、第2所定距離以内の範囲に配置される。LiDAR送受信機56は、LiDAR208の送受信部に対して第3所定距離以上、第4所定距離以内の範囲に配置される。オペレータは、操作装置(不図示)でシミュレータ20を操作して仮想外部環境の再現を開始する。シミュレータ演算装置22は、シミュレータ記憶装置24に記憶される仮想外部環境情報46に基づいて、仮想外部環境を再現する。
 車両200の車両制御装置216は、情報出力装置50から出力される仮想情報を検出し、車両200の駆動、制動、操舵等の制御を行う。車両200の駆動または制動に伴い車輪224の回転速度(車速V)が変化すると、受容装置74のローラ76の回転速度rが変化する。ローラ76の回転速度r(車速V)は車速センサ82で検出され、モータ制御装置88に出力される。また、操舵に伴い前輪224fが変位すると、その変位量d1(操舵角θs)は車輪位置センサ84で検出され、モータ制御装置88に出力される。このとき、モータ制御装置88は、変位量d1(操舵角θs)に応じた受容装置74の回転角度θmを演算し、受容装置74の回転動作を制御する。その結果、受容装置74は、前輪224fの操舵に追従して回転するため、前輪224fの回転軸とローラ76の回転軸とを常に平行にすることができる。従って、車速Vが正確に検出される。モータ制御装置88は、車速Vおよび操舵角θsをシミュレータ20に出力する。シミュレータ20の管理部32は、一連の検査終了後に車両200のログデータ(車速Vと操舵角θs)を解析装置90に出力する。
 ところで、検査中に車両200が受容装置74の上で車幅方向に位置ずれすることがある。車両200に位置ずれが発生すると、それぞれの情報出力装置50に対するそれぞれの外界センサ202の相対位置もずれる。レーダ206とLiDAR208とGNSS210の位置ずれは、検出情報に影響が及ばない。対して、カメラ204の位置ずれは、検出情報(映像情報)に大きく影響する。
 例えば、図5Aに示されるように、車両200に位置ずれがない状態で、カメラ204は、モニタ52の中心にある画面範囲100Cを撮影する。図5Bに示されるように、車両200が左方向に位置ずれした状態で、カメラ204は、画面範囲100Cよりも左側に位置する画面範囲100Lを撮影する。すると、車両制御装置216は、車両200が受容装置74上で位置ずれしているだけであるにも関わらず、仮想外部環境内で車両200が左方向に位置ずれしていると誤認し、車両200の位置を右方向に戻そうとする誤制御を行う。
 このような誤制御を防止するために、シミュレータ20は、モニタ52の位置を車幅方向にずらす制御を行う。車両200が受容装置74上で車幅方向に変位すると、その位置ずれ量d2が車両位置センサ86で検出され、シミュレータ20に出力される。シミュレータ20は、モニタ52を車両200の位置ずれ方向と逆方向に距離d2だけ移動させるために、管理部32でモニタモータ64の回転量および必要な電力を演算し、入出力装置26を介してモニタモータ64に電力を供給する。すると、モニタ52は車両200の位置ずれ方向と逆方向に距離d2だけ移動する。その結果、図5Cに示されるように、モニタ52とカメラ204の位置状態は、初期状態(図5Aに示される状態)に戻る。
[1.4.検査例]
[1.4.1.仮想外部環境とシミュレータ20の動作]
 シミュレータ記憶装置24に記憶される仮想外部環境情報46は、所定の項目を検査できるように構成される。例えば、仮想外部環境情報46は、図6Aに示されるように、レーン変更(シーンS1)、レーン維持(シーンS2)、渋滞追従(シーンS3)、衝突回避(シーンS4)の4つの項目に関わる車両200の動作を検査するように構成される。また、仮想外部環境情報46には冒頭シーン(シーンS0)が設定される。
 シーンS0では、車両200が走行を始める状況、例えば、車両200が高速道路110の入口にいる状況が設定される。シーンS1では、車両200がレーン変更を行う状況、例えば、車両200が進路変更可能区間120を走行し、かつ、走行レーン112の前方に目標速度Vt以下で走行する先行車両118が存在する状況が設定される。シーンS2では、車両200がレーン維持を行う状況、例えば、走行レーン112の前方に先行車両118が存在しない状況が設定される。シーンS3では、車両200が渋滞追従を行う状況、例えば、車両200が進路変更禁止区間122を走行し、かつ、走行レーン112の前方に目標速度Vt以下で走行する先行車両118が存在する状況が設定される。シーンS4では、車両200が衝突回避を行う状況、例えば、車両200が進路変更禁止区間122を走行し、かつ、走行レーン112の前方に停止する先行車両118が存在する状況が設定される。
 カメラシミュレータ34とレーダシミュレータ36とLiDARシミュレータ38とGNSSシミュレータ40は、仮想外部環境情報46に基づいて、シーンS0~S4の仮想外部環境を連続的にかつ同期するようにして再現する。この際、車両200の動作情報に基づいて、車両200の移動軌跡を演算し、移動後の位置における仮想外部環境を再現する。
 シーンS0、S2で、カメラシミュレータ34は、車両200の周辺の映像情報を逐次生成し、モニタ52に出力する。モニタ52は、映像情報に応じた映像を表示する。GNSSシミュレータ40は、車両200の位置の経緯度情報を逐次生成し、GNSS送信アンテナ58に出力する。GNSS送信アンテナ58は、経緯度情報に応じた信号を出力する。シーンS0、S2では先行車両118や障害物が設定されないため、レーダシミュレータ36とLiDARシミュレータ38は、レーダ送受信機54およびLiDAR送受信機56に照射指示を出力しない。
 シーンS1、S3、S4で、カメラシミュレータ34は、車両200の周辺(先行車両118を含む)の映像情報を逐次生成し、モニタ52に出力する。モニタ52は、映像情報に応じた映像を表示する。レーダシミュレータ36は、レーダ送受信機54がレーダ206の電波を検出してから、車両200と先行車両118との距離に相当するレーダ反射時間経過後に、レーダ送受信機54から電波が照射されるように、レーダ送受信機54に対して照射指示を出力する。レーダシミュレータ36と同様に、LiDARシミュレータ38は、LiDAR送受信機56がLiDAR208のレーザ光を検出してから、車両200と先行車両118との距離に相当する散乱光反射時間経過後に、LiDAR送受信機56から光が照射されるように、LiDAR送受信機56に対して照射指示を出力する。GNSSシミュレータ40は、車両200の位置の経緯度情報を逐次生成し、GNSS送信アンテナ58に出力する。GNSS送信アンテナ58は、経緯度情報に応じた信号を出力する。
 シーンS1で、車両200の外界センサ202、車両制御装置216、操舵装置220が正しく動作していれば、車両制御装置216は、車両200にレーン変更を実行させる。レーン変更の際に車両200の操舵角θsは変更される。ジャイロシミュレータ42は、車速Vと操舵角θsに基づいて、実際に走行する車両200に発生することが予想される旋回方向の角速度または角加速度を演算し、ジャイロスコープ212に出力する。
 ところで、カメラ204とレーダ206とLiDAR208は検出対象の物標、ここでは先行車両118を検出できる距離が異なる。一般に、検出可能距離は、レーダ206が最も長く、LiDAR208が最も短い。このため、レーダシミュレータ36は、車両200と先行車両118との車間距離Lが、レーダ206で検出できる距離L1以下になった時点で、レーダ送受信機54に対して照射指示を出力する。また、カメラシミュレータ34は、車両200と先行車両118との車間距離Lが、カメラ204で検出できる距離L2(<L1)以下になった時点で、モニタ52に対して先行車両118の映像情報を出力する。また、LiDARシミュレータ38は、車両200と先行車両118との車間距離Lが、LiDAR208で検出できる距離L3(<L2)以下になった時点で、LiDAR送受信機56に対して照射指示を出力する。
[1.4.2.車両200の走行動作]
 図6Aに示される仮想外部環境が再現された場合、車両200の車速Vは理想的には図6Bに示されるように推移する。
 シーンS0で、車両制御装置216は、車両200が再現される高速道路110で走行することを認識する。このとき、車両制御装置216は、車両200を車速V=0から高速道路110の目標速度Vtに向けて加速させる。
 シーンS1で、車両制御装置216は、目標速度Vt以下で走行する先行車両118を認識すると共に、車両200の走行位置が進路変更可能区間120であることを認識する。このとき、車両制御装置216は、先行車両118の追い越しを行うために追い越しレーン114への変更を行う。車両制御装置216は、進路変更可能区間120であることを、カメラ204で撮影したレーンマーク116により判定する。車両制御装置216は、追い越し前に車両200を加速させ、追い越し時に車両200を定速走行させ、追い越し後に車両200を減速させる。
 シーンS2で、車両制御装置216は、前方に先行車両118がいないことを認識する。このとき、車両制御装置216は、車両200を目標速度Vtで走行させる。
 シーンS3で、車両制御装置216は、目標速度Vt以下で走行する先行車両118を認識すると共に、車両200の走行位置が進路変更禁止区間122であることを認識する。このとき、車両制御装置216は、渋滞追従を行う。車両制御装置216は、進路変更禁止区間122であることを、カメラ204で撮影したレーンマーク116により判定する。車両制御装置216は、車両200を先行車両118と同じ車速Vで走行させ、車両200と先行車両118との車間距離Lを維持する。
 シーンS4で、車両制御装置216は、停車する先行車両118を認識する。このとき、車両制御装置216は、車両200を減速させて先行車両118の後方で停車させる。
[1.4.3.解析装置90による解析]
 シミュレータ20は、シーンS0~S4の仮想外部環境を再現すると共に、台上試験機70から出力される車両200の動作情報(車速V、操舵角θs)を入力し、ログデータをシミュレータ記憶装置24に記録する。検査終了後に、シミュレータ20は、解析装置90にログデータを出力する。解析装置90は、予め図6Bに示されるような理想的なモデルデータを記憶しており、ログデータとモデルデータとを比較する。解析装置90は、両者の一致度が所定値以上である場合、車両200の外界センサ202と車両制御装置216と駆動装置218と制動装置222と操舵装置220は正常であると判定する。解析装置90は、両者の一致度が所定値未満である場合、いずれかの装置に異常があると判定する。
[2.第2実施形態]
 第1実施形態では説明の便宜のために、車両200がレーダ206およびLiDAR208を1つずつ有することとした。しかし、実際は、車両200は複数のレーダ206およびLiDAR208を有する。複数のレーダ206およびLiDAR208に対して、レーダ送受信機54およびLiDAR送受信機56を配置する場合、レーダ送受信機54およびLiDAR送受信機56を自由に移動できるようにすることで、検査効率が向上する。第2実施形態は、一部の情報出力装置50とシミュレータ20の一部機能とを一体化して移動可能とするシミュレータユニット300に関する。
 図7を用いてシミュレータユニット300の具体例を説明する。図7に示されるシミュレータユニット300は、第1実施形態におけるレーダシミュレータ36とレーダ送受信機54とを一体化して移動可能とし、また、LiDARシミュレータ38とLiDAR送受信機56とを一体化して移動可能としたものである。なお、シミュレータ演算装置22は、レーダシミュレータ36とLiDARシミュレータ38を除く機能をそのまま有する。シミュレータユニット300は、移動ロボット302と、高さ調整ロボット304と、レーダ送受信機54と、LiDAR送受信機56と、モバイルシミュレータ306と、を有する。
 移動ロボット302は、移動機構とコントローラと記憶装置と通信装置とを有し、作業フロア上を移動する機能を有する。移動ロボット302は、作業フロアに設定される移動コースを予め記憶しており、外部の指示装置310から送信される移動指示に応じて、移動コースに沿って移動する。移動コースは、検査台72から離れた待機位置(図8A)と検査台72の周辺の検査位置(図8B)とを起点および終点とする。複数種類の車両200の検査を行う場合、検査位置は車両200の大きさおよび形状によって異なる。このため、移動ロボット302は、複数の移動コースを記憶し、指示装置310から指示されるコース情報に応じて移動コースを選択する。
 高さ調整ロボット304は、高さ調整機構とコントローラと記憶装置と通信装置とを有し、レーダ送受信機54とLiDAR送受信機56とを支持すると共に、レーダ送受信機54とLiDAR送受信機56の高さ位置を調整する機能を有する。レーダ送受信機54とLiDAR送受信機56はそれぞれ上下方向を仕切板308で区切られる。レーダ送受信機54の上下方向に配置される仕切板308は電波の吸収材で覆われ、LiDAR送受信機56の上下方向に配置される仕切板308は光の吸収材で覆われる。また、レーダ送受信機54とLiDAR送受信機56の周辺もそれぞれ吸収材で覆われる。高さ調整ロボット304は、レーダ206およびLiDAR208の高さを車種別に記憶し、指示装置310から指示される車種情報に応じてレーダ送受信機54とLiDAR送受信機56と仕切板308の高さを調整する。
 モバイルシミュレータ306は、図3に示されるシミュレータ20のレーダシミュレータ36およびLiDARシミュレータ38と同じ機能を有する。モバイルシミュレータ306は、近距離通信装置を有しており、シミュレータ20とデータ通信が可能である。モバイルシミュレータ306は、シミュレータ記憶装置24に記憶される仮想外部環境情報46を受信すると共に、シミュレータ20側の管理部32により統括制御される。
 図8A、図8Bを用いてシミュレータユニット300の配置について説明する。以下の説明では、車両200が、4隅にレーダ206とLiDAR208を有し、前部中央と後部中央にレーダ206を有する形態を想定する。
 図8Aに示されるように、車両200の検査前に、各シミュレータユニット300f1、300f2、300f3、300r1、300r2、300r3は待機位置で待機する。待機位置は、車両200が検査台72に進入できるように、車両200の進入路を空けて設定される。
 図8Bに示されるように、車両200の検査時に、指示装置310は各シミュレータユニット300f1、300f2、300f3、300r1、300r2、300r3に車種に応じたコース情報を送信する。各シミュレータユニット300f1、300f2、300f3、300r1、300r2、300r3はコース情報に応じた移動コースに沿って移動し、それぞれの検査位置に到達する。
 表示装置としてモニタ52を使用する代わりに、プロジェクタとスクリーンを使用してもよい。
[3.実施形態から得られる技術的思想]
 上記実施形態および変形例から把握しうる技術的思想について、以下に記載する。
 本発明は、
 複数の外界センサ202で検出される外部環境情報に基づいて走行制御を行う車両200の動作を検査する車両検査システム10であって、
 外部環境情報を模した仮想情報を再現するシミュレータ20と、
 複数の外界センサ202毎に設けられ、シミュレータ20で再現される仮想情報を対応する外界センサ202に検出させる複数の情報出力装置50と、
 仮想情報に基づいて走行制御を行う車両200の動作を検出する台上試験機70と、を備え、
 シミュレータ20は、複数の情報出力装置50に対して同一の仮想外部環境に対応する仮想情報を出力すると共に、複数の情報出力装置50に対して出力する仮想情報を同期させる。
 上記構成によれば、仮想情報を実際に車両200の外界センサ202に検出させて車両200の動作(車速V、操舵角θs)を検出するため、外界センサ202と車両制御装置216、および、駆動装置218と制動装置222と操舵装置220に設けられる各種アクチュエータの一貫した検査を行うことができる。また、複数の外界センサ202に同一の仮想外部環境に対応する仮想情報を検出させるため、複数の外界センサ202の非同期動作を発見しやすくなり、外界センサ202の誤組付けを発見しやすくなる。
 本発明において、
 複数の外界センサ202はカメラ204を含み、
 複数の情報出力装置50はモニタ(表示装置)52を含み、
 モニタ52は、仮想外部環境の映像をカメラ204に撮影させ、
 モニタ52以外の情報出力装置50は、映像と同期する仮想情報をカメラ204以外の外界センサ202に検出させるようにしてもよい。
 上記構成によれば、モニタ52に仮想外部環境が表示されるため、作業員が検査内容を把握することができる。
 本発明において、
 台上試験機70は、車両200の車輪224を載せて車輪224の動作を受容する受容装置74を有してもよい。
 上記構成によれば、検査台72上で車両200の検査を行うことができ、車両200を実際に走行させるテストコースが不要であるため、広いスペースを必要としない。その結果、室内で車両200の検査を行うことができる。室内の検査は天候の影響を受けないため、検査の精度が向上する。また、同じ条件の検査を再現することができる。
 本発明において、
 情報出力装置50と情報出力装置50に対して仮想情報を出力するシミュレータ20は移動自在なユニット(シミュレータユニット300)であり、
 ユニット(シミュレータユニット300)は、車両検査時に個々の外界センサ202と対向する位置に配置されてもよい。
 上記構成によれば、ユニット(シミュレータユニット300)が移動自在であるため、多様な車両や多様な装備の仕様に対して柔軟に対応可能である。
 なお、本発明に係る車両検査システムは、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (4)

  1.  複数の外界センサ(202)で検出される外部環境情報に基づいて走行制御を行う車両(200)の動作を検査する車両検査システム(10)であって、
     前記外部環境情報を模した仮想情報を再現するシミュレータ(20)と、
     複数の前記外界センサ毎に設けられ、前記シミュレータで再現される前記仮想情報を対応する前記外界センサに検出させる複数の情報出力装置(50)と、
     前記仮想情報に基づいて走行制御を行う前記車両の動作を検出する台上試験機(70)と、を備え、
     前記シミュレータは、複数の前記情報出力装置に対して同一の仮想外部環境に対応する前記仮想情報を出力すると共に、複数の前記情報出力装置に対して出力する前記仮想情報を同期させる、車両検査システム。
  2.  請求項1に記載の車両検査システムであって、
     複数の前記外界センサはカメラ(204)を含み、
     複数の前記情報出力装置は表示装置(52)を含み、
     前記表示装置は、前記仮想外部環境の映像を前記カメラに撮影させ、
     前記表示装置以外の前記情報出力装置は、前記映像と同期する前記仮想情報を前記カメラ以外の前記外界センサに検出させる、車両検査システム。
  3.  請求項1または2に記載の車両検査システムであって、
     前記台上試験機は、前記車両の車輪(224)を載せて前記車輪の動作を受容する受容装置(74)を有する、車両検査システム。
  4.  請求項1~3のいずれか1項に記載の車両検査システムであって、
     前記情報出力装置と前記情報出力装置に対して前記仮想情報を出力する前記シミュレータは移動自在なユニット(300)であり、
     前記ユニットは、車両検査時に個々の前記外界センサと対向する位置に配置される、車両検査システム。
PCT/JP2019/032340 2018-09-21 2019-08-20 車両検査システム WO2020059380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020548147A JP7011082B2 (ja) 2018-09-21 2019-08-20 車両検査システム
CN201980061986.4A CN112740009A (zh) 2018-09-21 2019-08-20 车辆检查系统
CA3113396A CA3113396A1 (en) 2018-09-21 2019-08-20 Vehicle inspection system
US17/277,320 US20220034754A1 (en) 2018-09-21 2019-08-20 Vehicle inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-177983 2018-09-21
JP2018177983 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059380A1 true WO2020059380A1 (ja) 2020-03-26

Family

ID=69887181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032340 WO2020059380A1 (ja) 2018-09-21 2019-08-20 車両検査システム

Country Status (5)

Country Link
US (1) US20220034754A1 (ja)
JP (1) JP7011082B2 (ja)
CN (1) CN112740009A (ja)
CA (1) CA3113396A1 (ja)
WO (1) WO2020059380A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022029655A (ja) * 2020-08-05 2022-02-18 東芝三菱電機産業システム株式会社 シャーシダイナモメータシステム
WO2022113452A1 (ja) * 2020-11-25 2022-06-02 三菱重工機械システム株式会社 車両性能評価システム、車両性能評価方法及び車両性能評価プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070865A1 (ja) * 2022-09-28 2024-04-04 株式会社堀場製作所 供試体試験システム、供試体試験方法及び供試体試験プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257688A (ja) * 2001-02-27 2002-09-11 Fuji Heavy Ind Ltd 車両検査方法及び車両検査装置
JP2015200586A (ja) * 2014-04-09 2015-11-12 パナソニックIpマネジメント株式会社 車両評価装置
WO2018046609A1 (de) * 2016-09-12 2018-03-15 Avl List Gmbh Modularer prüfstand für fahrbereite gesamtfahrzeuge
JP2018096958A (ja) * 2016-12-15 2018-06-21 キーコム株式会社 自動運転テストシステム

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455153A (en) * 1967-01-17 1969-07-15 Aaron M Levine Treadmill for testing automobiles
US3861204A (en) * 1970-09-23 1975-01-21 Northern Propane Gas Company Dynamometer testing rig
US5592247A (en) * 1994-05-04 1997-01-07 Trokel; Stephen L. Apparatus and method to measure visual function under simulated nighttime conditions
US20020004694A1 (en) 1997-12-05 2002-01-10 Cameron Mcleod Modular automotive diagnostic system
DE19846612A1 (de) * 1998-10-09 2000-04-20 Schenck Pegasus Gmbh Verfahren und Vorrichtung zur Massensimulation von Kraftfahrzeugen auf ortsfesten Prüfständen
JP2001092343A (ja) * 1999-09-27 2001-04-06 Toyota Motor Corp 車両運転シミュレータ装置
DE19962533B4 (de) * 1999-12-23 2004-07-22 Siemens Ag Einrichtung zur Prüfung der Funktionsweise einer Abstandsregeleinrichtung eines Kraftfahrzeuges
US20020018982A1 (en) * 2000-05-12 2002-02-14 Conroy Steven J. Dynamometer racing simulator
EP1495434B1 (en) * 2002-04-05 2018-02-28 Konstantin Sizov Portable in-the-vehicle road simulator
US6871409B2 (en) * 2002-12-18 2005-03-29 Snap-On Incorporated Gradient calculating camera board
JP2007519937A (ja) * 2004-02-03 2007-07-19 ドラッグ タグ ピーティーワイ リミテッド 自動車の操舵検出装置
US7328124B2 (en) * 2004-10-07 2008-02-05 Hunter Engineering Company Apparatus and method for measuring and compensating steering-angle sensitive alignment measurements
WO2008068832A1 (ja) * 2006-12-04 2008-06-12 Fujitsu Limited 運転模擬評価方法、運転模擬評価装置及びコンピュータプログラム
US8571757B2 (en) * 2007-05-30 2013-10-29 Mitsubishi Electric Corporation Steering apparatus for a vehicle
EP1998160A1 (en) * 2007-05-31 2008-12-03 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO System and method for testing a vehicle
GB0723039D0 (en) * 2007-11-23 2008-01-02 Itw Ltd System,controller and method for synchronized capture and synchronized playback of data
US20090140887A1 (en) * 2007-11-29 2009-06-04 Breed David S Mapping Techniques Using Probe Vehicles
US20100274441A1 (en) * 2007-11-30 2010-10-28 Volvo Lastvagnar Ab Method of identifying positions of wheel modules
US20100152951A1 (en) * 2008-12-15 2010-06-17 Gm Global Technology Operations, Inc. Adaptive vehicle control system with driving style recognition based on vehicle accelerating and decelerating
JP4728406B2 (ja) * 2009-01-07 2011-07-20 本田技研工業株式会社 電動パワーステアリング装置
JP5206823B2 (ja) * 2011-03-04 2013-06-12 株式会社明電舎 シャシーダイナモメータシステムの操作表示装置
DE102012019301A1 (de) 2012-09-29 2014-04-03 Daimler Ag Verfahren und Vorrichtung zur Fahrzeugdiagnose
US9719801B1 (en) * 2013-07-23 2017-08-01 Waymo Llc Methods and systems for calibrating sensors using road map data
JP6193075B2 (ja) * 2013-09-30 2017-09-06 株式会社小松製作所 運搬機械
KR101510336B1 (ko) 2013-11-14 2015-04-07 현대자동차 주식회사 차량용 운전자 지원 시스템의 검사 장치
JP6219230B2 (ja) * 2014-05-19 2017-10-25 株式会社堀場製作所 車両試験システム、試験条件データ生成装置及び試験条件データ生成プログラム
KR101601486B1 (ko) 2014-09-17 2016-03-08 현대자동차주식회사 차량용 부품 자동 검사 장치 및 방법
US9733342B1 (en) * 2015-01-29 2017-08-15 Waymo Llc Radar target simulation using a high speed tunable short
US20170109458A1 (en) * 2015-10-16 2017-04-20 Ford Global Technologies, Llc Testbed for lane boundary detection in virtual driving environment
CA3002628C (en) * 2015-10-22 2022-03-08 Nissan Motor Co., Ltd. Display control method and display control device
US9979061B1 (en) * 2015-10-27 2018-05-22 Waymo Llc Devices and methods for a dielectric rotary joint
US9740944B2 (en) * 2015-12-18 2017-08-22 Ford Global Technologies, Llc Virtual sensor data generation for wheel stop detection
KR102395276B1 (ko) 2016-09-13 2022-05-09 현대자동차주식회사 운전자 지원 시스템 검사 장치 및 그 제어 방법
US10788400B2 (en) 2016-10-11 2020-09-29 Hunter Engineering Company Method and apparatus for vehicle inspection and safety system calibration using projected images
GB2559758B (en) * 2017-02-16 2021-10-27 Jaguar Land Rover Ltd Apparatus and method for displaying information
US11074770B2 (en) * 2017-05-10 2021-07-27 Lightmetrics Technologies Pvt. Ltd. Vehicle monitoring system and method using a connected camera architecture
US20190080612A1 (en) * 2017-09-14 2019-03-14 Qualcomm Incorporated Navigation techniques for autonomous and semi-autonomous vehicles
US10635844B1 (en) * 2018-02-27 2020-04-28 The Mathworks, Inc. Methods and systems for simulating vision sensor detection at medium fidelity
US11099558B2 (en) * 2018-03-27 2021-08-24 Nvidia Corporation Remote operation of vehicles using immersive virtual reality environments
US10818102B1 (en) * 2018-07-02 2020-10-27 Smartdrive Systems, Inc. Systems and methods for generating and providing timely vehicle event information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257688A (ja) * 2001-02-27 2002-09-11 Fuji Heavy Ind Ltd 車両検査方法及び車両検査装置
JP2015200586A (ja) * 2014-04-09 2015-11-12 パナソニックIpマネジメント株式会社 車両評価装置
WO2018046609A1 (de) * 2016-09-12 2018-03-15 Avl List Gmbh Modularer prüfstand für fahrbereite gesamtfahrzeuge
JP2018096958A (ja) * 2016-12-15 2018-06-21 キーコム株式会社 自動運転テストシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022029655A (ja) * 2020-08-05 2022-02-18 東芝三菱電機産業システム株式会社 シャーシダイナモメータシステム
JP7337464B2 (ja) 2020-08-05 2023-09-04 東芝三菱電機産業システム株式会社 シャーシダイナモメータシステム
WO2022113452A1 (ja) * 2020-11-25 2022-06-02 三菱重工機械システム株式会社 車両性能評価システム、車両性能評価方法及び車両性能評価プログラム

Also Published As

Publication number Publication date
CA3113396A1 (en) 2020-03-26
JPWO2020059380A1 (ja) 2021-08-30
JP7011082B2 (ja) 2022-01-26
CN112740009A (zh) 2021-04-30
US20220034754A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP6269566B2 (ja) 誤認識判定装置
JP7011082B2 (ja) 車両検査システム
US10754347B2 (en) Vehicle control device
KR100904767B1 (ko) 차량의 충돌 예방 시스템 시험 평가 장치
CN106080601A (zh) 行驶控制装置
US11828870B2 (en) Vehicle inspection system
WO2021075089A1 (ja) 車両検査システムおよび位置合わせ方法
CN112740008A (zh) 车辆检查系统及车辆检查方法
US11967187B2 (en) Vehicle inspection system
CN113677584B (zh) 多传感器同步测量设备
JP7054739B2 (ja) 車両検査システム
CN115698637A (zh) 执行关于自动驾驶车辆的演进参考路径的轨迹间重新线性化的方法和系统
CN116660846A (zh) 一种汽车自动驾驶功能动态验证系统及方法
JP2021148752A (ja) 車両検査システム及び車両検査方法
JP2021139828A (ja) シミュレーションシステム及び光軸調整方法
US11940559B2 (en) Light detection and range (LIDAR) device with component stacking for coaxial readout without splitter mirror for autonomous driving vehicles
CN117665854A (zh) 一种激光雷达随动系统及其控制方法
JP2024060820A (ja) 車両制御装置、車両制御用コンピュータプログラム及び車両制御方法
JPH04313200A (ja) 自動車用走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3113396

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862927

Country of ref document: EP

Kind code of ref document: A1