WO2020059114A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2020059114A1
WO2020059114A1 PCT/JP2018/035048 JP2018035048W WO2020059114A1 WO 2020059114 A1 WO2020059114 A1 WO 2020059114A1 JP 2018035048 W JP2018035048 W JP 2018035048W WO 2020059114 A1 WO2020059114 A1 WO 2020059114A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scintillator
charged particle
particle beam
incident
Prior art date
Application number
PCT/JP2018/035048
Other languages
English (en)
French (fr)
Inventor
好文 關口
今村 伸
俊介 水谷
シャヘドゥル ホック
宇輝 池田
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US17/269,424 priority Critical patent/US11515120B2/en
Priority to PCT/JP2018/035048 priority patent/WO2020059114A1/ja
Priority to CZ20227A priority patent/CZ309373B6/cs
Priority to JP2020547574A priority patent/JP6984035B2/ja
Priority to DE112018007843.4T priority patent/DE112018007843B4/de
Priority to CZ202187A priority patent/CZ309147B6/cs
Publication of WO2020059114A1 publication Critical patent/WO2020059114A1/ja
Priority to IL281169A priority patent/IL281169A/en
Priority to JP2021189875A priority patent/JP7140902B2/ja
Priority to US17/962,915 priority patent/US11694873B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/507Detectors secondary-emission detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2443Scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • H01J2237/24465Sectored detectors, e.g. quadrants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/281Bottom of trenches or holes

Definitions

  • the present invention relates to a charged particle beam device, and more particularly to a charged particle beam device provided with a light guide for guiding light to a light receiving element with high efficiency.
  • a charged particle beam device that detects charged particles obtained by irradiating a sample with a charged particle beam such as an electron beam is provided with a detector for detecting the charged particles.
  • a detector is a charge detection element such as a scintillator that captures and converts second charged particles generated by irradiating a sample with a charged particle beam, and a light receiving element that converts light emitted by the charge detection element into an electric signal.
  • a charged particle beam irradiated on a sample is an electron beam, and is referred to as a primary electron beam in this specification.
  • the second charged particles generated by the irradiation of the primary electron beam are electrons, and are referred to as signal electrons in this specification.
  • signal electrons When the sample is irradiated with the primary electron beam, signal electrons having various energies are emitted in various directions due to the interaction between the electron and the sample. Generally, signal electrons are roughly classified according to their energies. Signal electrons emitted with an energy of 50 eV or less are called secondary electrons, and signal electrons emitted with an energy larger than that and close to the energy of the primary electron beam are called reflected electrons. Is done.
  • Non-Patent Document 1 discloses that secondary electrons are sensitive to the surface shape and potential potential of a sample, and are effective in measuring dimensions of a surface structure such as a pattern width of a semiconductor device structure.
  • secondary electrons cannot escape from the holes / grooves due to absorption into the side walls of the 3D structure such as holes / grooves, and cannot be detected and measured.
  • the reflected electrons include information on the composition and the three-dimensional shape of the sample, and can obtain information such as the 3D structure and the difference in composition between the surface and the bottom. Disclosed is that it can escape from the groove through the side wall and detect and measure signals from the bottom of the hole / groove structure.
  • signal electrons are emitted in various directions with various energies
  • various detectors are required according to the energy of the signal electrons and the like.
  • Patent Document 2 describes an annular detector
  • Patent Document 3 describes a detector having a light guide having a bent portion.
  • the conventional light guide is not considered in this respect, there is no shape for collecting light from the large-area light-emitting surface to the small-area light-receiving surface. Therefore, light incident on the light guide from the large-area light-emitting surface leaks from the light guide before reaching the small-area light-receiving surface without propagating toward the small-area light-receiving surface. (The ratio of light reaching the device) is low.
  • the present invention provides a charged particle beam device using a light guide that can improve light use efficiency.
  • the charged particle beam device is configured such that charged particles emitted from a sample by irradiation of a charged particle beam emitted from a charged particle source, and charged particles emitted from the sample are transferred to another member.
  • a charged particle beam device including a detector that detects at least one of charged particles generated by the collision, wherein the detector has a scintillator that emits light when the charged particles are incident, and converts the light into an electric signal.
  • the light guide is disposed to face a light emitting surface of the scintillator, and receives light emitted by the scintillator.
  • An incident surface that faces the light receiving element and emits light, and an exit surface that faces the incident surface and emits light incident from the incident surface.
  • a reflecting surface that is arranged to be inclined with respect to the incident surface so as to reflect in the direction of the surface, the output surface is smaller than the incident surface, and between the incident surface and the output surface, And a slope facing the reflection surface and inclined with respect to the incident surface.
  • the charged particle beam device is generated by the charged particles emitted from the sample by the irradiation of the charged particle beam emitted from the charged particle source and the charged particles emitted from the sample colliding with other members.
  • a charged particle beam device including a detector that detects at least one of the charged particles to be emitted, wherein the detector has a scintillator that emits light when the charged particles are incident, and a light receiving element that converts light into an electric signal.
  • a light guide that guides light generated by the scintillator to the light receiving element, and the light guide is disposed to face a light emitting surface of the scintillator, and an incident surface on which light emitted by the scintillator is incident.
  • An emission surface that is arranged to face the light receiving element and emits light; and a light that faces the incident surface and reflects light incident from the incident surface in the direction of the emission surface.
  • a reflecting surface that is arranged to be inclined with respect to the incident surface, the outgoing surface is smaller than the incident surface, and the reflecting surface is composed of a plurality of surfaces, and the light emitting surface of the scintillator is It is characterized by covering at least a part.
  • the charged particle beam device is characterized in that charged particles emitted from a sample by irradiation of a charged particle beam emitted from a charged particle source, and charged particles generated by charged particles emitted from the sample colliding with other members.
  • a charged particle beam device including a detector that detects at least one of the particles, wherein the detector is a scintillator that emits light when the charged particles are incident, a light receiving element that converts light into an electric signal, A light guide for guiding light generated by a scintillator to the light receiving element, wherein the light guide is arranged to face a light emitting surface of the scintillator, and an incident surface on which light emitted by the scintillator is incident; An emission surface, which is disposed to face the element and emits light, and which faces the incident surface, and reflects light incident from the incident surface in the direction of the emission surface.
  • a reflecting surface disposed at an angle to the incident surface; and an upper surface disposed between the reflecting surface and the emitting surface and having a different inclination angle from the reflecting surface.
  • the charged particle beam device is generated by the charged particles emitted from the sample by the irradiation of the charged particle beam emitted from the charged particle source and the charged particles emitted from the sample colliding with other members.
  • a charged particle beam device including a detector that detects at least one of the charged particles to be emitted, wherein the detector has a scintillator that emits light when the charged particles are incident, and a light receiving element that converts light into an electric signal.
  • a light guide that guides light generated by the scintillator to the light receiving element, and the light guide is disposed to face a light emitting surface of the scintillator, and an incident surface on which light emitted by the scintillator is incident.
  • An emission surface that is arranged to face the light receiving element and emits light; and a light that faces the incident surface and reflects light incident from the incident surface in the direction of the emission surface.
  • a reflecting surface that is arranged obliquely with respect to the incident surface, the exit surface is smaller than the incident surface, and the light guide has a cross-sectional area when cut parallel to the exit surface. It is characterized in that it becomes smaller as it approaches the emission surface.
  • FIG. 1 is a schematic configuration diagram of a scanning electron microscope according to a first embodiment of the present invention. It is a perspective view of the detector shown in FIG.
  • FIG. 2 is a top view of the detector illustrated in FIG. 1 as viewed from above.
  • FIG. 2 is a bottom view of the detector illustrated in FIG. 1 as viewed from below.
  • FIG. 3 is a cross-sectional view taken along line A-A ′ in the upper diagram of FIG. 2.
  • FIG. 8 is a sectional view taken along line B-B ′ of FIG. 7.
  • FIG. 3 is a perspective view of a detector using a light guide in which a reflection surface is formed of one plane.
  • FIG. 10 is a top view of the detector shown in FIG. 9 as viewed from above and a bottom view as viewed from below.
  • FIG. 10 is a cross-sectional view of the detector shown in FIG. 9 along the x-axis. It is a figure showing a calculation result of angle ⁇ c1 dependence of the light use efficiency ratio.
  • FIG. 8 is another sectional view taken along line B-B ′ of FIG. 7. It is the perspective view and front view which looked at the light guide from the upper side. It is the perspective view and side view which looked at the ride guide shown in FIG. 14 from the lower side. It is the perspective view and front view which looked at the light guide from the upper side when angle (theta) c2 between the entrance surface 11a and the reflective surface was 90 degrees.
  • FIG. 20 is a perspective view and a side view of the light guide shown in FIG. 19 as viewed from below.
  • FIG. 9 is a side view of the light guide when the angle ⁇ d is changed.
  • FIG. 9 is a diagram illustrating a calculation result of an angle difference ( ⁇ d ⁇ c1) dependence of a light use efficiency ratio. It is a side view of a light guide.
  • FIG. 9 is a schematic configuration diagram of a detector according to a second embodiment according to another embodiment of the present invention.
  • FIG. 13 is an enlarged view of a scintillator and a light guide that constitute a detector according to a third embodiment of the present invention.
  • a charged particle beam apparatus including a detector using a scintillator as a charge detection element and a light guide between a scintillator and a light receiving element will be described with reference to the drawings and the like.
  • an electron microscope particularly a scanning electron microscope
  • a charged particle beam device includes a scanning ion microscope using an ion beam.
  • the present invention is also applicable to a semiconductor pattern measurement device using a scanning electron microscope, an inspection device, an observation device, and the like.
  • a scintillator refers to an element that emits light by entering charged particles.
  • the scintillator in the present specification is not limited to those shown in the embodiments described below, and can have various shapes and structures.
  • FIG. 1 is a schematic configuration diagram of a scanning electron microscope of Example 1 according to an example of the present invention.
  • a scanning electron microscope which is an embodiment of a charged particle beam apparatus, has an electron source 2 as a charged particle source disposed inside an electron microscope column 1 in a vacuum environment.
  • the primary electron beam (charged particle beam) emitted from the source 2 flies along the primary electron beam optical axis 3.
  • the primary electron beam is converged on the sample 8 by the objective lens constituted by the coil 5, the outer magnetic path 6, and the inner magnetic path 7 which is arranged obliquely with respect to the optical axis 3 of the primary electron beam.
  • a negative voltage is applied to the sample 8, and the primary electron beam collides with the sample 8 with energy smaller than the energy generated by the electron source 2.
  • the signal electrons 9 generated from the sample 8 by the irradiation of the primary electron beam fly in the electron microscope column 1 according to the respective emission energies and emission angles.
  • a scintillator 10 as a charge detection element is disposed inside any of the members constituting the objective lens (in this embodiment, inside the outer magnetic path 6), and when the signal electrons 9 collide with the scintillator 10, the scintillator 10 The light is emitted, and the light is guided to the light receiving element 12 by the light guide 11.
  • the scintillator 10 is arranged above the inner magnetic path 7 and below the deflector 4.
  • the scintillator 10 may be any substance that emits light when charged particles (signal electrons 9) are incident.
  • a single crystal such as YAP (YAlO 4 : Ce) or YAG (Y 3 Al 5 O 12 : Ce) may be used.
  • a scintillator using a powder such as silicate / cerium (Y 2 SiO 5 : Ce) or a semiconductor (GaN, Si, SiC) may be used.
  • the semiconductor scintillator there is a GaN-based multilayer thin film structure such as a scintillator having a light emitting portion of a quantum well structure in which InGaN and GaN are stacked.
  • the present invention is not limited to the type of scintillator.
  • the light receiving element 12 includes, for example, a photomultiplier tube (PMT: Photomultiplier Tube), a photodiode, a Si-PM (Silicon Photomultiplier), and the like.
  • PMT Photomultiplier Tube
  • Si-PM Si-PM
  • the light is guided inside the light guide 11 and reaches the light receiving element 12.
  • the light is converted into an electric signal by the light receiving element 12, and is transmitted by an output cable 13 to a signal processing circuit 14 arranged outside the electron microscope column 1.
  • the electric signal is amplified into an electric signal having a large amplitude by an amplifier circuit 14a provided on the signal processing circuit 14, and processed as a contrast of an image by an arithmetic circuit 14b according to the magnitude and frequency of the electric signal per unit time. Is displayed as a pixel having a predetermined gradation value.
  • the detection of the signal electrons 9 is performed while the primary electron beam is scanned on the sample 8 by the deflector 4, and an enlarged two-dimensional image of the sample surface is displayed on the monitor 15.
  • the second charged particles are used as the signal electrons 9, and the signal electrons 9 emitted from the sample 8 reach the scintillator 10 without colliding with other members.
  • the signal electrons 9 may reach the scintillator 10 by colliding with other members or plate members (not shown).
  • the charged particles after colliding with another member or plate material may be referred to as third charged particles.
  • particles discharged from the sample 8 and incident on the scintillator 10 are referred to as second charged particles. It will be referred to as charged particles, and in this embodiment, will be referred to as signal electrons 9.
  • a system including the scintillator 10, the light guide 11, and the light receiving element 12 is referred to as a detector 16.
  • the scintillator 10 of the present embodiment is located inside one of the members constituting the objective lens (in the present embodiment, inside the outer magnetic path 6), and is arranged below the deflector 4, and includes That is, it is arranged at a position where signal electrons 9 emitted from the sample 8 with energy close to the energy of the primary electron beam can be detected with high efficiency.
  • the backscattered electrons contain information on the composition and three-dimensional shape of the sample, and provide information such as the 3D structure and the difference in composition between the surface and the bottom. To detect and measure signals from the bottom of the hole / groove structure. However, since the number of generated electrons is generally smaller than that of secondary electrons, it is necessary to detect as many reflected electrons as possible.
  • the electron emission angle is defined as 90 degrees with respect to the sample surface along the primary electron beam optical axis 3. According to the emission angle of the backscattered electrons, near 90 degrees is defined as high-angle backscattered electrons, near 45 degrees is defined as middle-angle backscattered electrons, and near 0 degrees is defined as low-angle backscattered electrons.
  • the position of the scintillator 10 is a position at which reflected electrons of a middle angle or less flying at an angle inclined from the primary electron beam optical axis 3 can be detected with high efficiency.
  • FIG. 2 is a perspective view of the detector 16, and the upper part of FIG. 2 is a view in which the light guide 11 is transparent like the actual light guide so that the scintillator 10 below the light guide can be seen.
  • the lower diagram of FIG. 2 is an external perspective view of the detector 16.
  • an orthogonal coordinate system including x, y, and z is defined in FIG.
  • the scintillators 10 (10a to 10d) and the light receiving elements 12 (12a to 12d) are arranged in four directions of ⁇ x direction and ⁇ y direction.
  • the number of sets is not limited to four, but may be one, two, eight, or sixteen, and is not limited to the number of sets. In general, the larger the number of sets, the larger the total area of the scintillator 10 and the number of light receiving elements 12, so that it is easier to detect many signal electrons 9.
  • the light guide 11 of the present embodiment is configured so that most of light emitted from a certain scintillator reaches a light receiving element corresponding to the scintillator. For example, the light emitted from the scintillator 10a reaches the light receiving element 12a.
  • a light guide 11 for transmitting the light emitted by the scintillator 10a to the light receiving element 12a exists between the pair of scintillators 10a and the light receiving element 12a.
  • FIG. 2 shows three more similar combinations, including a scintillator 10b and a light receiving element 12b, a scintillator 10c and a light receiving element 12c, and a scintillator 10d and a light receiving element 12d.
  • the shape of the light guide 11 corresponding to the scintillator 10a and the light receiving element 12a may be separated as one detector, in the present embodiment, the light guide 11 has the same shape in four directions, and each of the four shapes has Light is individually propagated from the scintillator 10 to the corresponding light receiving element 12.
  • Each light guide shape is connected by a connection portion 11t.
  • the thickness of the connecting portion 11t is a member having a thickness of 1 mm or more in order to improve the structural strength.
  • FIG 3, 4, and 5 respectively show a top view of the same detector 16 viewed from above (z direction side), a bottom view viewed from below ( ⁇ z direction side), and a side view (y direction side).
  • a side view is shown, and in each of the figures, the upper figure is a figure in the case where the light guide 11 is made transparent like the actual light guide, and the lower figure is an external view.
  • FIG. 6 is a cross-sectional view taken along line A-A ′ in the upper diagram of FIG.
  • the light guide surface facing the light emitting surface 10em constituting the scintillator 10 is an incident surface 11a, and light emitted from the scintillator 10 mainly enters the light guide 11 from the incident surface 11a.
  • the incident surface 11a is arranged so as to cover at least a part of the scintillator 10. From the viewpoint of light use efficiency, it is desirable that the incident surface 11a covers the entire surface of the scintillator 10.
  • the emission surface 11b is a surface facing the light receiving element 12, and emits light.
  • the exit surface 11b is smaller than the entrance surface 11a. That is, the area of the exit surface 11b is smaller than the area of the incident surface 11a.
  • the light guide 11 has a reflecting surface 11c1 that is opposed to the incident surface 11a and is inclined at an angle ⁇ c1.
  • the angle ⁇ c1 may be referred to as a reflection surface angle ⁇ c1.
  • the reflecting surface 11c1 is inclined so as to reflect light incident from the incident surface 11a toward the emitting surface 11b.
  • Light emitted from the light emitting surface 10em of the scintillator 10 enters the light guide 11 from the incident surface 11a and is reflected by the reflecting surface 11c1.
  • the reflecting surface 11c1 covers a large part of the light emitting surface 10em of the scintillator 10 in order to reflect much light toward the light emitting surface 11b of the light guide.
  • the light use efficiency (the amount of light reaching the light receiving element 12 / the amount of light emitted from the scintillator 10) is improved by having the reflection surface 11c1.
  • the reflection surface is composed of a plurality of surfaces. Specifically, the entire scintillator 10 is covered with three reflecting surfaces (11c1 to 11c3), and light emitted from the scintillator 10 is reflected toward the emitting surface 11b by these reflecting surfaces (11c1 to 11c3). The light is effectively used.
  • the reflecting surface (11c1-11c3) composed of a plurality of surfaces, the light use efficiency can be further improved.
  • the reflecting surface 11c1 reflects light propagating from a portion near the light receiving element 12 in the incident surface 11a, so that the most reflected light among the three reflecting surfaces (11c1 to 11c3) is transmitted to the light receiving element 12. It is an important reflective surface to reach. Therefore, it is most important to optimize the angle ⁇ c1 of the reflection surface 11c1 so that the light use efficiency is maximized.
  • FIG. 7 is an external perspective view of the detector.
  • FIG. 8 is a cross-sectional view taken along line BB ′ of FIG. Optimization, a constant thickness t c of the light guide, the light use efficiency when gradually decreasing the angle ⁇ c1 from 45 degrees was optimized by calculating by ray tracing simulation.
  • the material of the light guide 11 was PMMA resin, and the reflection surface 11c1, the side surface 11e1, and the side surface 11e2 were aluminum surfaces on which aluminum was deposited.
  • the metal provided as a reflective material to the reflective surface 11c1, side surface 11e1, and side surface 11e2 is not limited to aluminum, but may be silver or the like.
  • the method of applying a reflective material such as aluminum to the surface is not limited to vapor deposition, and a film-like reflective material may be attached, and the method is not particularly limited.
  • the light guide is configured using the reflecting surface composed of a plurality of surfaces, but the reflecting surface may be composed of one surface.
  • FIG. 9 shows a detector using a light guide in which the reflection surface is constituted by one plane.
  • the upper diagram of FIG. 9 is a diagram in which the light guide 11 is transparent like the actual light guide so that the scintillator 10 below the light guide can be seen.
  • the lower view of FIG. 9 is an external perspective view of the detector 16.
  • an orthogonal coordinate system composed of x, y, and z having the origin at the center of the detector 16 is defined in FIG.
  • Light receiving elements 12 (12a to 12d) are arranged in the x and y axis directions.
  • FIG. 10 is a top view of the detector 16 as viewed from above (z direction side), and the lower diagram of FIG. 10 is a bottom view of the detector 16 as viewed from below ( ⁇ z direction side).
  • FIG. 11 is a cross-sectional view of the detector 16 shown in FIG. 9 along the x-axis.
  • the reflection surface 11c1 is a single plane. Even in this case, effects other than the effect of forming the reflecting surface in the shape of a polygon or a curved surface can be obtained as in the present embodiment.
  • the upper surface 11f opposed to the incident surface 11a and substantially parallel to the incident surface 11a shown in FIG. 7 has little change in efficiency even as an aluminum surface
  • the upper surface 11f is not an aluminum surface but a surface of PMMA resin.
  • Even when the upper surface 11f is an aluminum surface light is reflected toward the incident surface 11a because it is parallel to the incident surface 11a. For this reason, even if the upper surface 11f is made of an aluminum surface, the light use efficiency is not greatly improved.
  • the reflecting surface 11c1 partially covers the scintillator 10. Percentage covering, because the outer shape of the scintillator 10 is covered with a and the depth direction are all reflective surfaces 11c1 rectangular entrance surface and a plane parallel (or scintillator light emitting surface of the scintillator and the length L sc reflecting surface 11c1 It is expressed as d c / L sc using the projection length d c to 10 em).
  • the middle part of FIG. 8 is a sectional view when the angle ⁇ c1 is 25 degrees, in which the reflecting surface 11c1 completely covers the scintillator 10. 8 is a cross-sectional view when the angle ⁇ c1 is 18 degrees, and shows a case where the reflection surface 11c1 reaches the emission surface 11b.
  • FIG. 12 shows the result of calculating the angle ⁇ c1 dependency of the light use efficiency ratio.
  • the horizontal axis is the angle ⁇ c1
  • the vertical axis is the light use efficiency ratio standardized by the light use efficiency when the angle ⁇ c1 is 45 degrees. From this result, it is understood that the light use efficiency is improved as the angle ⁇ c1 is reduced.
  • the reason will be described with reference to the upper diagram of FIG. 13 and the lower diagram of FIG. As shown in the upper diagram of FIG. 13, when an upper surface 11f substantially parallel to the incident surface 11a is present, the light Ray 72 incident on the upper surface 11f is transmitted and emitted out of the light guide 11, and does not reach the light receiving element 12a. It becomes loss light.
  • the reflecting surface 11c1 so as to cover the scintillator 10a and reflect the light toward the emitting surface 11b at the reflecting surface. Further, light propagating in an oblique direction like the ray Ray75 in the lower diagram of FIG. 13 escapes from the upper surface 11f not facing the scintillator 10a, so that the reflection surface 11c1 reaches the emission surface 11b, and the incident surface 11a It is desirable that all surfaces on the opposite side are inclined reflection surfaces to reflect light toward the emission surface 11b.
  • the upper surface 11f is a PMMA resin surface, even if the upper surface 11f is an aluminum surface, the upper surface 11f is parallel to the incident surface 11a, so that most of the incident light is not reflected toward the emission surface 11b and becomes stray light, resulting in loss. It becomes light. Therefore, even when the upper surface 11f is an aluminum surface, the light use efficiency is improved by reducing the reflection surface angle ⁇ c1.
  • the configuration shown in FIGS. 7 and 8 is an optical system in which light emitted from the large-area light-emitting surface 10em reaches the small-area light-receiving surface of the light-receiving element 12 using the light guide 11.
  • optimization of the most important reflection surface 11c1 that reflects light propagating from a portion near the light receiving element 12 among the incident surfaces 11a has been described.
  • the reflecting surface 11c1 covers the scintillator 10, and has an effect of improving the light use efficiency by being inclined with respect to the incident surface 11a so as to reflect the light incident from the incident surface 11a in the direction of the emitting surface 11b. Play.
  • the reflecting surface 11c1 produces an effect by covering at least a part of the scintillator 10, as shown in the upper diagram of FIG. Further, as shown in the middle part of FIG. 8, in a cross section (for example, BB 'cross section) including the scintillator 10, the light guide 11, and the light receiving element 12, when the reflecting surface 11c1 covers the whole of the scintillator 10, further. It works. Further, as shown in the lower diagram of FIG.
  • the light use efficiency is maximized by the reflection surface 11c1 reaching the emission surface 11b.
  • the connecting portion between the emission surface 11b and the reflecting surface 11c1 is made to have an acute angle as shown in the lower diagram of FIG. 8, the connecting portion is broken or chipped.
  • a small upper surface 11f is provided between the emission surface 11b and the reflection surface 11c1 as shown in the lower drawing of FIG. 2, the lower drawing of FIG. 3, and FIG. Therefore, actually, the structure in which the small upper surface 11f is provided is a structure that maximizes the light use efficiency.
  • c is said that longer construction than the length d u of the upper surface 11f, light utilization efficiency is improved by this arrangement. Since the length d u of the upper surface 11f is the length needed to suppress chipping crack about 3mm from 0.5 mm, configured for the length d u of the upper surface 11f to 3mm or less realistic Can be said to be the configuration that maximizes the light use efficiency.
  • the present embodiment has a plane parallel to the upper surface 11f on the incident surface 11a, as inclined surfaces, the length d u of the upper surface 11f incident surface 11a to the parallel faces (or light emitting surface 10em the scintillator)
  • the projected length of the upper surface 11f may be about 0.5 mm to 3 mm.
  • the lower surface 11g is a surface arranged to prevent the reflection surface 11c1 and the incident surface 11a from being directly connected to form an acute angle portion.
  • the lower surface 11g is a surface connected to the end of the reflection surface 11c1 on the opposite side to the emission surface 11b, and arranged at a different angle from the reflection surface 11c1 (an angle parallel to the incidence surface 11a in FIG. 6).
  • the lower surface 11g and the upper surface 11f are planes parallel to the incident surface 11a, but are not limited thereto and may be, for example, curved surfaces.
  • the reflection surface 11c1 is a surface that reflects light propagating from a portion of the incident surface 11a close to the light receiving element 12 toward the emission surface 11b.
  • the reflecting surfaces 11c2 and 11c3 are surfaces for reflecting the light emitted at the end of the scintillator 10 toward the emitting surface 11b. Therefore, the inclination of the reflection surfaces 11c2 and 11c3 is different from that of the reflection surface 11c1.
  • the reflection surface 11c2 and the reflection surface 11c3 corresponding to the scintillator 10a and the light receiving element 12a will be described as an example.
  • the reflecting surface 11c2 and the reflecting surface 11c3 are inclined so that light emitted from the end of the scintillator 10a is reflected toward the light receiving element 12a.
  • Light rays Ray21 and Ray22 in the upper diagram of FIG. 2 are examples of light rays that are emitted from the ends of the scintillator 10a and reflected by the reflection surfaces 11c2 and 11c3 toward the light receiving element 12a.
  • the normal direction of the reflecting surface 11c2 and the reflecting surface 11c3 corresponding to the scintillator 10a and the light receiving element 12a will be described.
  • the light ray Ray21 and the light ray Ray22 are reflected such that the propagation direction changes in the + y and -y directions, respectively.
  • a normal of the reflecting surface is a half vector of the unit vectors u and v. Since (u + v) /
  • the normal of the reflecting surface 11c1 has a component in the y direction of zero, whereas the normal of the reflecting surface 11c2 and the reflecting surface 11c3 has a component in the y direction.
  • the normal line of the reflection surface 11c2 and the reflection surface 11c3 is perpendicular to the emission surface 11b and the incidence surface 11a, and goes to a plane including the center of the emission surface 11b (xz plane in the upper diagram of FIG. 2).
  • FIG. 7 shows four sets of the scintillator 10, the light receiving element 12, and the light guide 11 for propagating light between them. In this study, the light use efficiency was calculated for one of them.
  • FIGS. 14 to 17 show calculation models in which the scintillator 10a, the light receiving element 12a, and the corresponding light guide 11 are cut out from the four sets shown in FIG. This model has a shape that maximizes the light use efficiency with respect to the angle ⁇ c1, and has a shape in which the reflection surface 11c1 reaches the emission surface 11b.
  • the upper diagram of FIG. 14 is a perspective view as viewed from above, and the lower diagram of FIG. 14 is a front view as viewed from the front (x direction).
  • 15 is a perspective view as viewed from below, and the lower diagram in FIG. 15 is a side view as viewed from the side (the y direction side).
  • the structure of the reflecting surface 11c2 and the reflecting surface 11c3 the effect on the efficiency was examined by changing the structure while changing the angle ⁇ c2 between the incident surface 11a and the reflecting surface when viewed from the front.
  • the angle ⁇ c2 is 90 degrees, only the reflecting surface 11a is the reflecting surface 11c1, as shown in the upper and lower views of FIG.
  • the light use efficiency was calculated by reducing the angle ⁇ c2 until the reflection surface 11c2 and the reflection surface 11c3 reached the emission surface 11b, as shown in the perspective view and the front view shown in the upper and lower views of FIG. 14 to 17, the light guide 11 is made of PMMA resin, and the reflection surface 11c1 to the reflection surface 11c3, the side surface 11e1, and the side surface 11e2 are aluminum surfaces on which aluminum is deposited.
  • FIG. 18 shows the result of calculating the light use efficiency.
  • the horizontal axis is the angle ⁇ c2
  • the vertical axis is the light use efficiency ratio normalized by the light use efficiency when the angle ⁇ c2 is 90 degrees. From this result, it is understood that the smaller the angle, the higher the efficiency. That is, when the reflection surfaces 11c2 and 11c3 reach the emission surface 11b (in the case of the shape shown in FIG. 17), the light use efficiency is maximized. Also, it can be seen that the light use efficiency sharply improves when the angle is 40 degrees or less. Therefore, the light use efficiency is improved by forming the reflecting surface of the light guide 11 not by one reflecting surface but by a plurality of reflecting surfaces having different inclination directions according to the position of the scintillator 10. This has the effect.
  • the normal of the reflecting surface that reflects the light emitted at the end of the scintillator 10a to the light receiving element 12a is perpendicular to the emission surface 11b and the incidence surface 11a and directed to a plane including the center of the emission surface 11b. It has a line component.
  • the angle ⁇ c2 between the incident surface 11a and the reflecting surface when the reflecting surfaces 11c2 and 11c3 are viewed from the front is reduced, the effect of increasing the light use efficiency is exhibited. This has the effect of increasing efficiency.
  • the angle ⁇ c2 is reduced until the reflection surface 11c2 and the reflection surface 11c3 reach the emission surface 11b, the effect is obtained that the efficiency becomes maximum.
  • connection portion becomes an acute angle and cracks or chips occur, so that as shown in FIGS.
  • the connection portion becomes an acute angle and cracks or chips occur, so that as shown in FIGS.
  • the light emitting surface 11b and the light incident surface 11a of the light guide 11 correspond to the nearest combination as described in the above section or one set of the scintillator 10 and the light receiving element 12.
  • the lower slope 11d shown in FIGS. 4 to 6 is a surface that reflects again light mainly reflected by the reflection surfaces 11c1 to 11c3, and is disposed between the entrance surface 11a and the emission surface 11b so as to face the reflection surface 11c1.
  • FIG. 6 shows an example in which the light rays Ray2 and Ray3 are reflected by the lower slope 11d and reach the light receiving element 12. Each light beam reaches the light receiving element 12 while repeating reflection between the reflection surface 11c1 and the lower slope 11d so that the light propagates through a normal light guide plate (a flat plate of PMMA). The reason that such a light beam propagation path is generated is that the light guide of FIG.
  • the reflection surface 11c1 reaches the emission surface 11b approximately, so that by setting the lower slope 11d to an appropriate inclination angle, the light guide in the upper and lower directions is pseudo. This is because a rectangular parallelepiped light guide plate composed of two planes can be simulated, and light can reach the light receiving element 12 while repeating reflection.
  • a general light guide plate is a rectangular parallelepiped, and light incident from one side surface is guided toward the opposite side surface while repeating total reflection on the upper surface and the lower surface, and is emitted from the side surface opposite to the incident surface.
  • the reflecting surface 11c1 being an aluminum surface
  • the lower inclined surface 11d is made of an aluminum surface, it is possible to reduce the amount of light that is transmitted through the surface and cannot be totally reflected, thereby reducing light loss and improving the light use efficiency. According to calculations, in the light guide 11 having the structure shown in FIG.
  • the lower slope 11d is made of an aluminum surface
  • the light use efficiency is improved by 5 to 10% as compared with the resin surface. Therefore, there is an effect that the light use efficiency is improved by making the lower slope 11d an aluminum surface.
  • the lower slope 11d is an aluminum surface.
  • FIGS. 19 to 23 show calculation models obtained by cutting out the scintillator 10a, the light receiving element 12a, and their corresponding light guides from the four sets shown in the upper diagram of FIG.
  • This model is a shape in which the light use efficiency is maximized with respect to the angles ⁇ c1 and ⁇ c2 while suppressing the shape of the light guide from becoming sharp and breaking or chipping, and the reflection surface 11c1, the reflection surface 11c2, and the The surface 11c3 has a shape reaching the upper surface 11f.
  • the material of the light guide 11 was PMMA resin, the three reflecting surfaces (11c1 to 11c3), the side surfaces 11e1 and the side surfaces 11e2 were aluminum surfaces on which aluminum was deposited, and the upper surface 11f was also an aluminum surface. That is, the surfaces other than the entrance surface 11a and the exit surface 11b were aluminum surfaces. Since the upper surface 11f is located at a position connected to the output surface 11b and not at a position facing the incident surface 11a, light incident on the upper surface 11f is incident at an oblique angle with respect to the upper surface 11f. Light propagates toward the emission surface 11b. Therefore, an aluminum surface is used so that light incident on the upper surface 11f at an angle smaller than the total reflection angle can also be reflected.
  • FIGS. 19 and 20 show the light guide 11 having the same shape.
  • the upper diagram in FIG. 19 is a perspective view as viewed from above, and the lower diagram in FIG. 19 is a front view as viewed from the front (x direction).
  • 20 is a perspective view as viewed from below, and the lower diagram in FIG. 20 is a side view as viewed from the side (the y direction side).
  • the light use efficiency was calculated by changing the angle ⁇ d shown in the lower diagram of FIG. 21 is a side view of the light guide 11 when the angle ⁇ d is close to the angle ⁇ c1 of the reflection surface 11c1.
  • the lower diagram of FIG. 21 is a side view of the light guide 11 when the angle ⁇ d is increased in the present study. Since the position of the exit surface 11b is fixed, the incident surface 11a increases as the angle ⁇ d increases.
  • FIG. 22 shows the result of the study.
  • the horizontal axis is the relative angle of the angle ⁇ d to the angle ⁇ c1. That is, the angle difference ( ⁇ d ⁇ c1) is shown.
  • the vertical axis indicates the light use efficiency ratio normalized by the light use efficiency when the angle difference ( ⁇ d ⁇ c1) is 38 degrees.
  • the angle difference ( ⁇ d ⁇ c1) is zero, the reflecting surface 11c1 and the lower inclined surface 11d are parallel.
  • the angle difference ( ⁇ d ⁇ c1) is positive, it means that the angle ⁇ d is larger than the angle ⁇ c1, and the lower slope 11d has a larger inclination than the reflection surface 11c1.
  • the efficiency peaks when the angle difference ( ⁇ d ⁇ c1) is between about 2 degrees and 8 degrees.
  • the angle difference ( ⁇ d ⁇ c1) becomes about 20 degrees or more, light rays that reach the light receiving element 12 while repeating reflection between the reflecting surface 11c1 and the lower inclined surface 11d, such as the light rays Ray2 and Ray3 shown in FIG. Since there is almost no light, the light use efficiency ratio is approximately 1. It is considered that as the reflection surface 11c1 and the lower inclined surface 11d approach each other in parallel, the number of light rays that reach the light receiving element 12 by repeating reflection increases, thereby improving the light use efficiency ratio. In FIG. 22, however, the angle difference ( ⁇ d ⁇ c1) is reduced. The efficiency ratio drops below 2 degrees.
  • the scintillator 10 emits light from all surfaces on which a metal such as aluminum is not deposited. Therefore, light is emitted not only from the light emitting surface 10em facing the incident surface 11a, but also from the side surface 10ems of the scintillator 10.
  • the ratio between the light emission amount Ip of the light emitting surface 10em and the light emission amount Is of the side surface 10ems changes according to the area ratio of the light emitting surface 10em to the side surface 10ems.
  • the light guide 11 of the present invention is configured to collect the light emitted from the enlarged surface of the scintillator 10 on the emission surface 11b in order to capture the signal electrons 9. Therefore, in the scintillator 10, light is emitted in parallel with the light emitting surface having the largest area or the surface capturing the flying signal electrons 9 among the surfaces of the scintillator 10 facing any surface of the light guide 11.
  • the surface that emits light will be referred to as the light emitting surface.
  • the light emitting surface 10em is defined as a surface facing the light guide 11 and having the largest area.
  • the scintillator 10a shown in FIG. 2 is a single rectangular scintillator, but may be divided into a plurality of scintillators in the xy plane.
  • the area of a plane parallel to the xy plane (incident plane 11a) of each scintillator is larger than the area of other planes.
  • the area of the side surface may become larger than the area of the surface parallel to the xy plane.
  • the surface that emits light may be referred to as a light emitting surface.
  • the shape of the scintillator 10 is a rectangular parallelepiped. However, the shape is not limited to this, and various shapes such as a cube and a column can be considered, and the present invention is not limited to the shape of the scintillator.
  • the present invention is configured such that it has an incident surface 11a on which the light emitted by the scintillator 10 is incident, and guides the light incident therefrom to the exit surface 11b by a reflection surface (11c1-11c3) or the like. Therefore, regardless of the shape of the light emitting surface 10em with respect to the incident surface 11a, the light guide 11 has an effect of condensing light entering from the incident surface 11a to the emission surface 11b.
  • a reflection surface 11c1-11c3
  • the light ray example Ray92 shown in FIG. 23 is a light ray that is emitted from the side surface 10ems, enters the light guide 11 from the incident surface 11a, is reflected by the reflection surface 11c1, and reaches the emission surface 11b.
  • the lower slope 11d has been described above.
  • the configuration shown in FIGS. 19 to 21 is an optical system that causes light emitted from the large-area light-emitting surface 10em and light emitted from the side surface 10ems to reach the small-area light-receiving surface of the light-receiving element 12 using the light guide 11. .
  • the optimization of the lower slope 11d in this optical system has been described.
  • the angle difference between the reflection surface 11c1 and the lower slope 11d is set to about 20 degrees or less, there is an effect that the light use efficiency is improved. Based on this point, in the present specification, the case where the angle difference between the reflection surface 11c1 and the lower slope 11d is 20 degrees or less will be referred to as the reflection surface 11c1 and the lower slope 11d being substantially parallel.
  • the lower slope 11d is preferably substantially parallel to at least a part of the reflection surface 11c1.
  • the reflecting surface is composed of a plurality of surfaces, it is preferable that the reflecting surface is substantially parallel to one of the plurality of surfaces.
  • the angle difference between the reflection surface 11c1 and the lower slope 11d is between 2 degrees and 8 degrees, the light use efficiency is maximized. Therefore, it is more preferable that the angle difference between the reflecting surface 11c1 and the lower slope 11d is not less than 2 degrees and not more than 8 degrees.
  • the angle ⁇ d of the lower inclined surface 11d with respect to the incident surface is larger than the angle ⁇ c1 of the reflective surface 11c1 with respect to the incident surface 11a.
  • the surface of the light guide 11 is made of aluminum and is used as a reflection surface (aluminum surface).
  • the reflection material is not limited to aluminum.
  • the reflecting surface is preferably a surface having a reflecting material made of metal.
  • the reflective material for example, silver and a multilayer reflective film can be used in addition to aluminum.
  • the method of attaching the reflective material to the light guide 11 is not limited to vapor deposition, and there are various methods such as sticking, and the present invention is not limited to these methods.
  • the configuration of the optical system shown in this embodiment that is, a large-area light-emitting surface, a light-receiving surface that is not parallel to the light-emitting surface and is not opposed to the light-emitting surface (the angle between the light-emitting surface and the light-receiving surface is about 90 degrees in this embodiment).
  • the angle between the light-emitting surface and the light-receiving surface is about 90 degrees in this embodiment.
  • a reflective material such as aluminum
  • the light use efficiency is most improved when the light guides are provided on the three reflecting surfaces (11c1 to 11c3), and the light use efficiency is secondarily improved when the reflectors are provided on the side surfaces 11e1 and 11e2. . Further, when a reflecting material is provided on the lower slope 11d, the light use efficiency is improved by 5 to 10%. In the case of the light guide of the present embodiment, there is an effect that the light utilization factor is improved by appropriately attaching the reflecting material to the surface.
  • the scintillator 10 of the present embodiment shown in FIG. 6 has a metal reflection surface on a surface 10bs (a surface opposite to the light emitting surface 10em of the scintillator 10) opposite to the surface facing the incident surface 11a of the light guide 11. attached.
  • the surface 10bs is a surface on which aluminum is deposited.
  • the light ray Ray3 is emitted from the scintillator 10, is reflected on the surface 10bs, and reaches the light receiving element 12.
  • there is a light path that reaches the light receiving element 12 through the reflection on the surface 10bs there is an effect that the light use efficiency is improved by attaching the reflecting material to the surface 10bs.
  • the reflecting material (11c1-11c3), the side surface 11e1 and the side surface 11e2, the lower inclined surface 11d, and the surface 10bs of the scintillator are provided with the reflecting material, and the light emitted from the scintillator 10 is applied to the light receiving element 12.
  • the transmitting portion is covered with a reflective material. No reflecting material is attached to the incident surface 11a, but aluminum as a reflecting material is attached to a surface 10bs parallel to the incident surface 11a, and light leaking outside except for a surface connected to the emitting surface 11b and the connecting portion 11t is prevented.
  • the light guide 11 has a surface that reflects light again. This produces an effect that the light use efficiency is improved.
  • This scanning electron microscope is one example of the configuration, and any other configuration is applicable as long as the electron microscope includes the scintillator 10, the light guide 11, and the light receiving element 12.
  • a plurality of detectors may be provided.
  • a detector for detecting backscattered electrons and a detector for detecting secondary electrons may be separately provided, or a plurality of detectors may be provided for discriminating and detecting an azimuth angle or an elevation angle.
  • the shape of the reflecting surface is a combination of flat surfaces, but the shape of the reflecting surface is not limited to this, and various shapes are possible.
  • the figure in which the reflection surface shape is a plane in FIG. 24 is the light guide shown in the upper diagram of FIG.
  • the shape of the reflecting surface is a curved surface, it is difficult to strictly define the reflecting surface 11c1 to the reflecting surface 11c3, but it can be roughly defined as shown in a perspective view in FIG. 24 from the direction in which the surface normal is oriented.
  • the curved surface can be said to be a shape in which a plurality of reflecting surfaces having different inclination directions are continuously connected.
  • the reflecting surface, whether flat or curved, is a reflecting surface inclined with respect to the incident surface.
  • the feature of an optical system that allows light emitted from the large-area light-emitting surface 10em to reach the small-area light-receiving surface of the light-receiving element 12 using the light guide 11 is that the light is parallel to the emission surface 11b. This means that the cross-sectional area when the guide is cut becomes smaller as approaching the emission surface.
  • FIG. 24 is a cross-sectional view of the light guide cut at a position of 0.5, 1.0, and 2.0 mm from the emission surface. The cross section is a hatched portion, and it can be seen that the cross sectional area decreases as approaching the emission surface 11b.
  • the light guide 11 can make the light emitted from the large-area light-emitting surface 10em efficiently reach the small-area light-receiving surface of the light-receiving element 12.
  • FIG. 25 is a schematic configuration diagram of a detector according to Embodiment 2 according to another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that a signal processing circuit 14 that processes electric signals output from the four light receiving elements 12 of the detection system 16 for each light receiving element at high speed is provided.
  • Other configurations are the same as those of the above-described first embodiment, and the same reference numerals are given to the same components as those of the first embodiment, and the description that overlaps with the first embodiment will be omitted below.
  • the light receiving element 12 (12a to 12d) and the amplifier circuit 14a are individually connected by the output cable 13, and the amplitude of the electric signal is amplified individually.
  • the arithmetic circuits 14b are parallelized and a signal is processed for each light receiving element 12 to increase the speed.
  • the amplifier circuits 14a individually, it becomes possible to adjust the amplification factor for each circuit and appropriately amplify the electric signal. Therefore, by separately providing the amplifying circuit 14a and the arithmetic circuit 14b in correspondence with the light receiving elements 12, it is possible to obtain an effect of appropriately amplifying the electric signal individually and processing the electric signal at high speed.
  • the present invention is not limited to this configuration, and includes a switch (selector) for selecting a signal from the light receiving elements (12a to 12d), one or two amplifying circuits 14a, and an arithmetic circuit 14b.
  • a configuration for processing may be adopted.
  • the minimum function required of the signal processing circuit 14 of the present embodiment is to individually process electric signals from the light receiving elements 12 (12a to 12d).
  • the scintillator 10 (10a to 10d) and the light receiving element 12 (12a to 12d) are arranged in four directions. In this configuration, by processing the electric signals obtained by the light receiving elements 12 individually, it is possible to discriminate the electric signals in four directions.
  • the light guide 11 needs to make the light emitted from a certain scintillator reach the light receiving element corresponding to the scintillator.
  • the light guide 11 is configured to propagate most of the light emitted from the scintillator to the corresponding light receiving element.
  • the light emitted from the scintillators 10a, 10b, 10c, and 10d is an optical system that propagates to the light receiving elements 12a, 12b, 12c, and 12d, respectively.
  • the reflection surface 11c2 and the reflection surface 11c3 play an important role in suppressing the phenomenon (light crosstalk) in which the light emitted from the scintillator reaches the light receiving element that does not correspond.
  • light traveling from the scintillator 10a to the light receiving element 12b or 12d is mainly reflected by the reflection surfaces 11c2 and 11c3 and does not reach the light receiving element 12b or 12d.
  • 3D measurement such as estimation of the height of a cylinder can be performed by individually processing the electric signals obtained by the light receiving elements 12. Therefore, it has one or a plurality of scintillators and a plurality of light receiving elements, and has a light guide for transmitting most of the light emitted by the scintillator to light receiving elements corresponding to directions such as up, down, left, and right on the sample. There is an effect that 3D measurement is enabled by individually processing the electric signals.
  • the number of sets of the scintillator and the light receiving element is not limited to four, but may be two, three, eight, or sixteen.
  • an optimum number of pairs may be selected from the relationship among the yield of the total number of signal electrons, optical crosstalk, and the number of signal electrons per pair.
  • FIG. 26 is an enlarged view of a scintillator and a light guide constituting a detector according to a third embodiment according to another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the scintillator 10 and the light guide 11 are joined by a refractive index matching member 17.
  • Other configurations are the same as those of the above-described first embodiment, and the same reference numerals are given to the same components as those of the first embodiment, and the description that overlaps with the first embodiment will be omitted below.
  • the upper diagram shows an enlarged view of the scintillator and the light guide of the first embodiment
  • the lower diagram shows an enlarged view of the scintillator and the light guide of the present embodiment.
  • the ray Ray 111 is an example of a ray incident on the light guide 11, and is a ray emitted inside the scintillator 10, emitted from the scintillator light emitting surface 10em, and incident on the light guide 11 via air.
  • Signal electrons 9 are incident on the scintillator 10 and light emission occurs inside the scintillator.
  • Some of the light emitted inside cannot be emitted from the scintillator 10 and is lost inside the scintillator. A major factor in this loss is total reflection occurring at the interface between the scintillator 10 and air.
  • the scintillator light emitting surface 10em generally has a refractive index of 1. Often greater than 5. When the refractive index is 1.5, the total reflection angle on the scintillator surface is about 40 degrees. Therefore, the rate of total internal reflection of the light emitted inside is about 75% or more of the light incident on the surface. If there is a scattering structure inside the scintillator, the light totally reflected may change its propagation angle and re-enter the surface and exit from the scintillator 10.
  • ray Ray 112 absorbed in the scintillator. Since metal such as aluminum is provided as a reflective material on the surface 10bs of the scintillator, light energy is absorbed each time the light is reflected. The light ray 112 emits light inside the scintillator, is totally reflected on the light emitting surface 10em, and is reflected while absorbing energy on the surface 10bs. The ray Ray 112 is an example of light that has been lost due to the repetition of this process and the energy of the light has become substantially zero.
  • the proportion of the light emitted from the scintillator 10 out of the light emitted inside the scintillator is considered to be less than about 60%, and according to the simulation, it is about 5-30% depending on the structure. is there.
  • the total reflection angle is determined by the difference between the refractive index of the material of the scintillator light emitting surface 10em and the refractive index of air. Therefore, as shown in the lower diagram of FIG. 26, in the configuration of the detector according to the present embodiment, a refractive index matching member 17 having a higher refractive index than air is disposed between the scintillator light emitting surface 10em and the incident surface 11a of the light guide 11. ing.
  • the refractive index matching member 17 according to the present embodiment is an adhesive layer of an acrylic resin that bonds the scintillator light emitting surface 10em and the incident surface 11a.
  • the scintillator light-emitting surface 10em and the incident surface 11a are adhered with an acrylic resin adhesive to prevent air from entering between the scintillator light-emitting surface 10em and the incident surface 11a.
  • the refractive index matching member 17 is not limited to an acrylic resin, but may be a transparent member such as an epoxy resin. Further, an elastic body such as rubber may be sandwiched between the scintillator 10 and the light guide 11, or the scintillator 10 may be attached to the light guide 11 with a double-sided tape.
  • the refractive index matching member 17 having a refractive index equal to or higher than the refractive index of the light guide 11 light is easily incident on the refractive index matching member 17 from the scintillator light emitting surface 10em. Since light is easily incident on the light guide 11 from the alignment member 17, there is an effect that light use efficiency is improved.
  • “approximately equal to the refractive index of the light guide 11” means that the refractive index of the light guide 11 is approximately ⁇ 0.2. Specifically, when the light guide is made of PMMA having a refractive index of 1.51, it is about 1.31 to 1.71.
  • the light use efficiency is improved by arranging the refractive index matching member 17 such as resin so that an air layer between the scintillator light emitting surface 10em and the incident surface 11a is eliminated. This has the effect.
  • the refractive index matching member 17 may transmit the light emitted from the scintillator 10.
  • the refractive index matching member 17 is sufficiently thin because light is transmitted. The important thing for the refractive index matching member 17 is that light is transmitted.
  • the refractive index of the refractive index matching member 17 is between the refractive index of the scintillator light emitting surface 10em and the refractive index of the light guide 11
  • the refractive index of the light emitting surface 10em of the scintillator 10 and the refractive index of the refractive index matching member 17 are set.
  • the sum of the difference and the refractive index difference between the refractive index matching member 17 and the light guide 11 is minimized (the refractive index difference between the scintillator light emitting surface 10em and the light guide 11), and the Fresnel reflection generated depending on the refractive index difference is minimized. Therefore, there is an effect that the light use efficiency is improved.
  • the material of the scintillator light emitting surface 10em is a sapphire substrate, so that the refractive index at a wavelength of 400 nm is about 1.78.
  • PMMA is about 1.51. Therefore, it is desirable that the refractive index of the refractive index matching member 17 be between the two refractive indices.
  • an acrylic or epoxy resin adhesive having a refractive index of about 1.6 is used as the refractive index matching member 17. good.
  • the effect of the refractive index matching member 17 was confirmed by simulation.
  • the scintillator 10 was a GaN-based multilayer thin film structure, and the light use efficiency was calculated with and without the refractive index matching member 17. As a result, the light use efficiency in the case where the refractive index matching member 17 is provided is 1.8 times that in the case where the refractive index matching member 17 is not provided.
  • the three reflecting surfaces (11c1 to 11c3) have an aluminum surface structure, and the cross-sectional area when the light guide 11 is cut in parallel to the emission surface 11b has an emission surface.
  • the light emitted from the scintillator 10 becomes smaller as it approaches the light guide 11, the light is condensed on the light receiving element 12 by reflection, and is lost in the scintillator 10.
  • the light utilization efficiency is improved.
  • the refractive index of the refractive index matching member 17 may be equal to or higher than the refractive index of the light guide, and the refractive index between the refractive index of the scintillator light emitting surface 10em and the refractive index of the light guide 11 may be used. The rate is even better.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • SYMBOLS 1 Electron microscope column, 2 ... Electron source, 3 ... Primary electron beam optical axis, 4 ... Deflector, 5 ... Coil, 6 ... Outer magnetic path, 7 ... Inner magnetic path, 8 ... Sample, 9 ... Signal electron, Reference Signs List 10 scintillator, 11 light guide, 12 light receiving element, 13 output cable, 14 signal processing circuit, 14a amplifier circuit, 14b arithmetic circuit, 15 monitor, 16 detector, 17 refractive index matching member

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

光利用効率を向上し得るライトガイドを用いた荷電粒子線装置を提供する。荷電粒子線装置は、荷電電粒子が入射すると光を発光するシンチレータ10と、受光素子12と、シンチレータ10より発生した光を受光素子12に導くライトガイド11を有する検出器16を備える。ライトガイド11は、シンチレータ10の発光面に対向して配置されシンチレータ10で発光した光を入射する入射面11a、受光素子12に対向して配置され光を出射する出射面11b、及び、入射面11aに対向し且つ入射面11aから入射した光を出射面11bの方向へ反射するように入射面11aに対して傾斜して配置された反射面11c1と、を備え、出射面11bは入射面11aよりも小さく、入射面11aと出射面11bの間に、反射面11c1と対向し且つ入射面11aに対して傾斜して配置された斜面11dを備える。

Description

荷電粒子線装置
 本発明は、荷電粒子線装置に係り、特に、光を高効率に受光素子に導くライトガイドを備えた荷電粒子線装置に関する。
 試料に電子ビーム等の荷電粒子線を照射することによって得られる荷電粒子を検出する荷電粒子線装置には、荷電粒子を検出するための検出器が備えられている。例えば検出器は、試料に荷電粒子線を照射することによって発生する第2の荷電粒子を捉えて光に変換するシンチレータなどの荷電検出素子、荷電検出素子で発光した光を電気信号に変換する受光素子、荷電検出素子の発光光を受光素子まで伝搬させるライトガイドを備える。受光素子から出力された電気信号は、画像信号や波形信号となる。
 近年、検出対象に応じてさまざまな検出器が提案されている。例えば、半導体デバイスの評価・計測装置として用いられている走査電子顕微鏡の場合、メモリなど半導体デバイスの構造は3D化が進んでいることから、歩留まり向上のため半導体基板上の穴や溝形状の底部寸法を高精度に計測したいというニーズがある。
 走査電子顕微鏡を用いた計測において、試料に照射する荷電粒子線は電子線であり、本明細書では1次電子線と称する。1次電子線の照射によって発生する第2の荷電粒子は電子であり、本明細書では信号電子と称することにする。1次電子線を試料に照射すると、電子と試料の相互作用によって様々なエネルギーをもった信号電子が様々な方向に出射する。 
 一般に、信号電子はそのエネルギーによって大別され、50eV以下のエネルギーで出射する信号電子は2次電子、それよりも大きく、1次電子線のエネルギーに近いエネルギーで出射する信号電子は反射電子と称される。例えば、非特許文献1には、2次電子は試料の表面形状や電位ポテンシャルに敏感であり、半導体デバイス構造のパターン幅などの表面構造の寸法計測に有効であることが開示されている。しかし、2次電子は、穴・溝などの3D構造に対しては側壁に吸収されるなどして穴・溝から脱出できず、検出および計測ができない。
 一方、特許文献1には、反射電子は試料の組成や立体形状の情報を含んでおり、3D構造や、表面と底部の組成の違いなどの情報が得られると共に、高いエネルギーを有するため、穴・溝から側壁を貫通して脱出でき、穴・溝構造の底部からの信号検出および計測が可能であることが開示されている。 
 上述したように信号電子は様々なエネルギーを持って様々な方向に出射するため、信号電子のエネルギー等に応じて様々な検出器が求められる。 
 例えば、特許文献2には環状検出器が記載されており、特許文献3には屈曲部を備えたライトガイドを有する検出器が記載されている。
特開2015-106530号公報 US7,928,383号公報 特開2017-183126号公報
L.Reimer,Scanning ElectronMicroscopy (1998、Springer)
 検出器により信号電子を高効率に検出するためには、できるだけ多くの第2の荷電粒子を荷電検出素子で受けて、さらに荷電検出素子で発光した光を効率よく受光素子に伝達させる必要がある。前者に対しては、荷電検出素子の面積を増大することでより多くの第2の荷電粒子を受けられるようになる。後者に対しては、ライトガイド光学系の光利用効率を向上することで改善できる。荷電検出素子の面積を増大させると、荷電検出素子の発光面積も増える。一方で、受光素子の面積は、検出器を配置する空間の制限や大きな面積で且つ用途に適合した受光素子が実用化されていないことなどにより、小さな受光面積の受光素子を使わざるをえないことがある。そのような場合、荷電検出素子の大きな発光面から出射した光を受光素子の小さな受光面で受光する必要がある。
 従来のライトガイドはこの点に関して考慮されていないため、大面積発光面から小面積受光面に光を集める形状が備わってなかった。このことから大面積発光面からライトガイドに入射した光が、小面積受光面に向かって伝搬せず到達する前にライトガイドから漏れ、光利用効率(荷電検出素子から出射した光に対して受光素子に到達した光の割合)が低いという課題がある。
 そこで、本発明は、光利用効率を向上し得るライトガイドを用いた荷電粒子線装置を提供する。
 上記課題を解決するため、本発明に係る荷電粒子線装置は、荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、前記ライトガイドは、前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、前記受光素子に対向して配置され、光を出射する出射面と、前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、前記出射面は前記入射面よりも小さく、前記入射面と前記出射面の間に、前記反射面と対向し、かつ前記入射面に対して傾斜して配置された斜面と、を備えることを特徴とする。
 また、本発明に係る荷電粒子線装置は、荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、前記ライトガイドは、前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、前記受光素子に対向して配置され、光を出射する出射面と、前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、前記出射面は前記入射面よりも小さく、前記反射面は、複数の面から構成され、前記シンチレータの発光面の少なくとも一部を覆っていることを特徴とする。
 本発明に係る荷電粒子線装置は、荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、前記ライトガイドは、前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、前記受光素子に対向して配置され、光を出射する出射面と、前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、前記反射面と前記出射面の間に配置され、前記反射面とは異なる傾斜角度の上面と、を備え、前記出射面は前記入射面よりも小さく、前記シンチレータ、前記ライトガイド及び前記受光素子を含むある断面において、前記入射面と平行な面への前記反射面の射影長さは、前記平行な面への前記上面の射影長さよりも長いことを特徴とする。
 また、本発明に係る荷電粒子線装置は、荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、前記ライトガイドは、前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、前記受光素子に対向して配置され、光を出射する出射面と、前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、前記出射面は前記入射面よりも小さく、前記ライトガイドは、前記出射面に平行に切断したときの断面積が出射面に近づくにつれて小さくなることを特徴とする。
 本発明によれば、光利用効率を向上し得るライトガイドを用いた荷電粒子線装置を提供ことが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1の走査型電子顕微鏡の概略構図である。 図1に示す検出器の斜視図である。 図1に示す検出器を上方から見た上面図である。 図1に示す検出器を下方から見た下面図である。 図1に示す検出器の側面図である。 図2の上図のA-A’線の断面図である。 検出器の外観斜視図である。 図7のB-B’線の断面図である。 反射面が一つの平面から構成されているライトガイドを用いた検出器の斜視図である。 図9に示す検出器を上方から見た上面図及び下方から見た下面図である。 図9に示す検出器のx軸に沿った断面図である。 光利用効率比の角度θc1依存性の計算結果を示す図である。 図7のB-B’線の他の断面図である。 ライトガイドを上側から見た斜視図及び正面図である。 図14に示すライドガイドを下側から見た斜視図及び側面図である。 入射面11aと反射面間の角度θc2が90度のときのライトガイドを上側から見た斜視図及び正面図である。 反射面11c2と反射面11c3が出射面11bに至るまで角度θc2を小さくしたときのライトガイドを上側から見た斜視図及び正面図である。 光利用効率比の角度θc2依存性の計算結果を示す図である。 ライトガイドを上側から見た斜視図及び正面図である。 図19に示すライトガイドを下側から見た斜視図及び側面図である。 角度θdを変化させたときのライトガイドの側面図である。 光利用効率比の、角度差(θd-θc1)依存性の計算結果を示す図である。 ライトガイドの側面図である。 ライトガイドの反射面の変形例を示す図である。 本発明の他の実施例に係る実施例2の検出器の概略構成図である。 本発明の他の実施例に係る実施例3の検出器を構成するシンチレータとライトガイドの拡大図である。
 以下、図面等を用いて、シンチレータを荷電検出素子とする検出器を備え、シンチレータと受光素子間にライトガイドを備えた荷電粒子線装置について説明する。以下では、電子顕微鏡、特に走査電子顕微鏡を荷電粒子線装置の一例として説明するが、これに限られるものではない。例えば、荷電粒子線装置として、イオンビームを用いた走査イオン顕微鏡なども含まれる。また、走査型電子顕微鏡を用いた半導体パターンの計測装置、検査装置、観察装置等にも適用可能であることは言うまでもない。 
 本明細書においてシンチレータとは、荷電粒子を入射して発光する素子を指すものとする。本明細書におけるシンチレータは、以下に説明する実施例に示されたものに限定されず、様々な形状や構造をとることができる。
 図1は、本発明の一実施例に係る実施例1の走査型電子顕微鏡の概略構図である。図1に示すように、荷電粒子線装置の一態様である走査型電子顕微鏡は、真空環境である電子顕微鏡鏡筒1の内部に、荷電粒子源としての電子源2が配置されており、電子源2から放出された1次電子線(荷電粒子線)は、1次電子線光軸3に沿って飛行する。コイル5と外側磁路6、1次電子線光軸3に対して傾斜して配置された内側磁路7によって構成された対物レンズにより1次電子線は試料8上に収束される。試料8には負電圧が印加されており、1次電子線は電子源2で発生したときのエネルギーよりも小さいエネルギーで試料8に衝突する。1次電子線の照射により試料8から発生した信号電子9はそれぞれの出射エネルギー、出射角度に応じて電子顕微鏡鏡筒1内を飛行する。
 対物レンズを構成する何れかの部材の内側(本実施例では、外側磁路6の内側)に荷電検出素子としてのシンチレータ10が配置されており、シンチレータ10に信号電子9が衝突するとシンチレータ10は発光し、その光はライトガイド11により受光素子12へ導光される。なお、シンチレータ10は内側磁路7の上側であり、かつ偏向器4の下側に配置されている。
 シンチレータ10は荷電粒子(信号電子9)の入射により発光する物質であれば良く、例えばYAP(YAlO:Ce)やYAG(YAl12:Ce)などの単結晶でも良く、イットリウム・シリケート・セリウム(YSiO:Ce)などの粉体、半導体(GaN、Si、SiC)などを用いたシンチレータでも良い。半導体シンチレータの例としては、InGaNとGaNを積層した量子井戸構造を発光部とするシンチレータなどGaN系の多層薄膜構造体がある。但し、本発明はシンチレータの種類に限定されるものではない。
 ライトガイド11の材質としては、ポリメタクリル酸メチル樹脂(PMMA樹脂)、シクロオレフィンポリマー(COP)樹脂や、シリカ、石英などを用いれば良い。但し、本発明は材質に限定されるものではない。 
 受光素子12は、例えば光電子増倍管(PMT:Photomultiplier Tube)、フォトダイオード、Si-PM(Silicon Photomultiplier)などで構成される。但し、本発明は受光素子の種類に限定されない。
 光はライトガイド11内を導光して受光素子12に到達する。光は受光素子12で電気信号に変換され、出力ケーブル13で電子顕微鏡鏡筒1の外側に配置された信号処理回路14に伝送される。電気信号は信号処理回路14上にある増幅回路14aによって振幅の大きい電気信号に増幅され、演算回路14bによって単位時間当たりの電気信号の大きさや頻度に応じて像のコントラストとして処理され、モニタ15上に所定の階調値を有する画素として表示される。 
 信号電子9の検出を、1次電子線を偏向器4によって試料8上を走査しながら行い、モニタ15上に試料表面の拡大2次元画像を表示する。
 本実施例では第2の荷電粒子を信号電子9とし、試料8から出射した信号電子9が他の部材に衝突することなくシンチレータ10に到達している場合を示している。しかし、信号電子9は、図示しない他の部材や板材などに衝突してシンチレータ10に到達することもある。他の部材や板材に衝突した後の荷電粒子を第3の荷電粒子と称することもあるが、説明を簡略化するため、試料8から放出され、シンチレータ10に入射するまでの粒子を第2の荷電粒子と称することとし、本実施例では信号電子9と称することにする。
 また本実施例では、シンチレータ10、ライトガイド11、受光素子12からなる系を検出器16と称することとする。本実施例のシンチレータ10は、対物レンズを構成する何れかの部材の内側(本実施例では、外側磁路6の内側)にあり、さらに偏向器4の下に配置されており、反射電子、すなわち、1次電子線のエネルギーに近いエネルギーで試料8から出射する信号電子9を高効率に検出できる位置に配置されている。
 反射電子は、試料の組成や立体形状の情報を含んでおり、3D構造や、表面と底部の組成の違いなどの情報が得られるとともに、高いエネルギーを有するため、穴・溝から側壁を貫通して脱出でき、穴・溝構造の底部からの信号検出および計測が可能となる。しかし、一般に反射電子は二次電子よりも発生電子数が少ないため、できるだけ多くの反射電子を検出することが求められる。 
 ここで電子の出射角度を、試料表面に対し一次電子線光軸3に沿った方向を90度と定義する。反射電子の出射角度に応じて90度付近を高角反射電子、45度付近を中角反射電子、0度付近を低角反射電子とする。
 反射電子の中でも中角反射電子は高角、低角と比較して多く放出される。このシンチレータ10の位置は、図1に示すように1次電子線光軸3から傾いた角度で飛行する中角以下の反射電子を高効率に検出することが可能な位置である。
 検出器16に関して図2から図6を用いて説明する。図2は検出器16の斜視図であり、図2の上図は実際のライトガイド同様にライトガイド11を透明とし、ライトガイドの下にあるシンチレータ10が見えるように描いた図である。図2の下図は、検出器16の外観斜視図である。便宜上、図2においてx、y、zからなる直交座標系を定義した。
 本実施例の検出器16は、±x方向と±y方向の4方向にシンチレータ10(10a~10d)と受光素子12(12a~12d)が配置されている。この組数は4個に限定されるものではなく、1個、2個、8個または16個でも良く、組数に限定されるものではない。一般に組数が多い方が、シンチレータ10の総面積が大きくなり受光素子12の数も増えるため多くの信号電子9を検出し易い。
 隣接するシンチレータ10の間にライトガイド11を電子顕微鏡に固定するための穴11sがある。この位置はシンチレータ10の発光光が当たる確率が少なく、この位置に構造部材を配置することで構造部材が光利用効率に及ぼす影響を低減することが可能となる。
 また、本実施例のライトガイド11は、以下に詳述するが、あるシンチレータから出射した光の多くを、そのシンチレータに対応する受光素子に到達させる構成となっている。例えば、シンチレータ10aの発光光は受光素子12aに到達する構成である。1組のシンチレータ10aと受光素子12aとの間には、シンチレータ10aで発光した光を受光素子12aに伝搬させるライトガイド11が存在する。図2には、同様の組み合わせが更に3組あり、シンチレータ10bと受光素子12bの組、シンチレータ10cと受光素子12cの組、及び、シンチレータ10dと受光素子12dの組がある。
 シンチレータ10aと受光素子12aと対応するライトガイド11形状を1個の検出器として分離させても良いが、本実施例では、ライトガイド11が4方向で同じ形をして、それぞれ4つの形状が個別にシンチレータ10から対応する受光素子12に光を伝搬させている。それぞれのライトガイド形状は接続部11tで接続されている。なお接続部11tの厚さは、構造強度を向上させるために1mm以上の厚さの部材となっている。
 図3、図4、図5は、それぞれ同じ検出器16を上方(z方向側)から見た上面図、下(-z方向側)から見た下面図、横(y方向側)から見た側面図を示し、何れの図においても上図は、実際のライトガイド同様にライトガイド11を透明とした場合の図であり、下図は外観図である。
 図6は、図2の上図のA-A’線の断面図である。図6に示すように、シンチレータ10を構成する発光面10emに対向するライトガイドの面が入射面11aであり、シンチレータ10から出射した光は主に入射面11aからライトガイド11に入射する。入射面11aは、少なくともシンチレータ10の一部を覆うように配置されている。なお、光利用効率の観点から、入射面11aはシンチレータ10の全面を覆っていることが望ましい。出射面11bは受光素子12に対向した面であり、光を出射する。出射面11bは入射面11aよりも小さい。すなわち、出射面11bの面積は入射面11aの面積よりも小さい。
 ライトガイド11には、入射面11aに対向して角度θc1で傾斜した反射面11c1が存在する。以下、角度θc1を反射面角度θc1と称する場合もある。反射面11c1は、入射面11aから入射した光を出射面11bの方向へ反射するように傾斜している。シンチレータ10の発光面10emから出射した光は、入射面11aからライトガイド11に入射して反射面11c1で反射する。ライトガイドの出射面11bに向けて多くの光を反射するために、反射面11c1はシンチレータ10の発光面10emの多くの部分を覆っている。反射面11c1を有することで光利用効率(受光素子12に到達する光量/シンチレータ10の発光光量)が向上する。
 図2の上図および図3の上図に示すように、反射面は複数の面から構成されている。具体的には、シンチレータ10は3枚の反射面(11c1-11c3)により全体が覆われており、シンチレータ10から出射した光はこれら反射面(11c1-11c3)により出射面11bに向けて反射され、光が有効に活用される。複数の面で構成される反射面(11c1-11c3)を用いることにより、光利用効率をさらに向上することができる。
 反射面11c1は、入射面11aの中でも受光素子12に近い部位から伝播してくる光を反射するため、3枚の反射面(11c1-11c3)の中で最も多くの反射光が受光素子12に到達する重要な反射面である。このため、光利用効率が最大となるように反射面11c1の角度θc1を最適化することが最も重要である。
 図7から図13を用いて、角度θc1の最適化に関して説明する。問題を単純にするため、反射面11c1のみを有する構造で検討した。図7が検出器の外観斜視図である。図8は図7のB-B’線の断面図である。最適化は、ライトガイドの厚さtを一定として、角度θc1を45度から徐々に小さくしたときの光利用効率を光線追跡シミュレーションで計算することにより最適化した。
 図7に関する検討において、ライトガイド11の材質はPMMA樹脂とし、反射面11c1と側面11e1および側面11e2はアルミを蒸着したアルミ面とした。なお、これら反射面11c1および側面11e1並びに側面11e2に反射材として付与する金属はアルミに限定されず、銀などでも良い。また、アルミなど反射材を表面に付与する方法は、蒸着に限らずフィルム状の反射材を張り付けても良く、当該方法は特に限定されるものではない。
 なお、本実施例では、複数の面から構成される反射面を用いてライトガイドを構成しているが、反射面は一つの面から構成されていても良い。図9に反射面が一つの平面から構成されているライトガイドを用いた検出器を示す。図9の上図は、実際のライトガイド同様にライトガイド11を透明とし、ライトガイドの下にあるシンチレータ10が見えるように描いた図である。図9の下図は、検出器16の外観斜視図である。便宜上、図において検出器16の中心を原点とするx,y,zからなる直交座標系を定義した。xおよびy軸方向に受光素子12(12a~12d)が配置されている。図10の上図は検出器16を上方(z方向側)から見た上面図であり、図10の下図は検出器16を下方(-z方向側)から見た下面図である。図11は、図9に示す検出器16のx軸に沿った断面図である。図9の下図及び図10の上図に示すように、反射面11c1は一つの平面である。この場合でも反射面を多面形状若しくは曲面形状にした効果以外の効果は本実施例同様に得られる。
 図7に示す入射面11aに対向し且つ入射面11aに略平行な上面11fはアルミ面としても効率に変化が少ないことを事前に確認したため、上面11fはアルミ面とはせずPMMA樹脂の面とした。上面11fをアルミ面としても入射面11aに平行であるため光は入射面11aに向かって反射する。このため上面11fをアルミ面としても光利用効率は大きくは向上しない。
 図8の上段に示す図は角度θc1が42度のときの断面図であり、この断面において反射面11c1はシンチレータ10を部分的に覆っている。覆っている割合は、シンチレータ10の外形が長方形であり奥行き方向が全て反射面11c1に覆われているため、シンチレータの長さLscと反射面11c1の入射面と平行な面(またはシンチレータ発光面10em)への射影長さdを用いてd/Lscで表される。角度θc1を小さくすると、d/Lscは1に近づき、この断面において反射面11c1がシンチレータ10を完全に覆うとd/Lscは1になる。さらに角度θc1を小さくするとd/Lscは1を超える。なお、本明細書では、図8の上段に示すように、反射面11cが下斜面11dを覆っていなくても、反射面11cと下斜面11dが略平行である場合、反射面と下斜面は対向しているものとする。 
 図8の中段に示す図は角度θc1が25度のときの断面図であり、この断面において反射面11c1がシンチレータ10を完全に覆っている場合である。図8の下段に示す図は角度θc1が18度のときの断面図であり、反射面11c1が出射面11bに至る場合を示している。
 図12に光利用効率比の角度θc1依存性を計算した結果を示す。横軸は角度θc1で、縦軸は角度θc1が45度のときの光利用効率で規格化した光利用効率比である。この結果から、角度θc1を小さくするほど光利用効率が向上することが分かる。この理由について図13の上図および図13の下図を用いて説明する。図13の上図に示すように、入射面11aに略平行な上面11fが存在すると、上面11fに入射した光Ray72は透過してライトガイド11の外に出射し、受光素子12aには届かない損失光となる。このためシンチレータ10aを覆うように反射面11c1を配置して反射面で出射面11bに向けて光を反射することが重要である。さらに、図13の下図の光線Ray75のように斜め方向に伝播する光は、シンチレータ10aに対向していない上面11fから外に抜けるため、反射面11c1が出射面11bまで至るようにし、入射面11aと反対側の面は全て傾いた反射面として光を出射面11bに向けて反射することが望ましい。傾斜した反射面とすることで、光線Ray71、光線Ray73および光線Ray74のように反射面11c1により出射面11bへと反射して、光利用効率が向上するという効果を奏する。
なお、上面11fをPMMA樹脂面としたが、上面11fをアルミ面としても上面11fは入射面11aに平行であるため入射した光の多くは出射面11bに向けて反射されず迷光となって損失光となる。このため上面11fをアルミ面としても、反射面角度θc1を小さくした方が光利用効率は向上する。
 以上、反射面角度θc1の最適化に関して説明した。図7および図8に示す構成は、大面積発光面10emから出射した光を、ライトガイド11を用いて、受光素子12の小面積受光面に到達させる光学系である。この光学系において、入射面11aの中でも受光素子12に近い部位から伝播してくる光を反射する最も重要な反射面11c1の最適化を説明した。
 反射面11c1は、シンチレータ10を覆い、入射面11aから入射した光を出射面11bの方向へ反射するように入射面11aに対して傾斜した面とすることで光利用効率が向上するという効果を奏する。反射面11c1は、図8の上段の図に示すように、少なくともシンチレータ10の一部を覆うことにより効果を奏する。 
 さらに、図8の中段の図に示すように、シンチレータ10、ライトガイド11と受光素子12を含むある断面(例えばB-B’断面)において、反射面11c1がシンチレータ10の全部を覆うと更なる効果を奏する。 
 さらに、図8の下段の図に示すように、シンチレータ10、ライトガイド11と受光素子12を含むある断面において、反射面11c1が出射面11bまで至ることで、光利用効率が最大となる。但し、現実のライトガイドでは、図8の下段の図に示すように出射面11bと反射面11c1の接続部を鋭角にすると、その接続部が割れたり欠けたりする。このことを避けるため、図2の下図、図3の下図、図6に示すように出射面11bと反射面11c1の間に小さな上面11fを設ける。したがって、現実的には小さな上面11fを設ける構造が光利用効率を最大とする構造となる。
 図6の構造に関し換言すれば、シンチレータ10、ライトガイド11と受光素子12を含むある断面において、入射面11a(またはシンチレータの発光面10em)と平行な面への反射面11c1の射影長さdは、上面11fの長さdよりも長い構成と言え、本構成により光利用効率が向上する。上面11fの長さdとしては0.5mmから3mm程度が割れ欠けを抑制するために必要となる長さであることから、上面11fの長さdを3mm以下にする構成が現実的には光利用効率が最大となる構成と言える。なお、本実施例では、上面11fを入射面11aに平行な面としたが、傾いた面として、上面11fの長さdを入射面11a(またはシンチレータの発光面10em)と平行な面への上面11fの射影長さとして、その射影長さを0.5mmから3mm程度としても良い。
 なお、ライトガイド11の割れや欠けを抑制する他の構造は、図2の下図、図3の下図および図6に示される下面11gである。この下面11gも上面11fと同様に、反射面11c1と入射面11aが直接接続して鋭角な部位ができるのを抑制するために配置した面である。下面11gは、出射面11bとは反対側にある反射面11c1の端部と接続し、反射面11c1とは異なる角度(図6では入射面11aと平行な角度)で配置された面である。本実施例では、下面11gおよび上面11fは、入射面11aと平行な平面としたが、これに限定されず例えば曲面でもよい。
 次に反射面11c2と反射面11c3について説明する。反射面11c1は、入射面11aの受光素子12に近い部位から伝播してくる光を出射面11bに向けて反射する面である。それに対して、反射面11c2と反射面11c3はシンチレータ10の端で発光した光を出射面11bに向けて反射するための面である。そのため、反射面11c2と反射面11c3の傾きが反射面11c1とは異なる。 
 図2の上図においてシンチレータ10aと受光素子12aに対応する反射面11c2と反射面11c3を例に説明する。反射面11c2と反射面11c3は、シンチレータ10aの端部から出射した光を受光素子12aに向けて反射するように傾斜している。図2の上図の光線Ray21および光線Ray22は、シンチレータ10aの端部から出射した光が反射面11c2と反射面11c3で受光素子12aに向けて反射された光線の例である。
 シンチレータ10aと受光素子12aに対応する反射面11c2と反射面11c3の法線方向について説明する。±y方向のシンチレータ端部で発光した光を受光素子12aに向けて反射するには、光の伝播方向をy方向にも変化するように反射する必要がある。光線Ray21および光線Ray22は、それぞれ+yおよび-y方向に伝播方向が変化するように反射されている。
 光が反射する位置から光が入射した位置に向かう単位ベクトルをuとし、反射する位置から出射する位置に向かう単位ベクトルをvとした場合、反射面の法線は単位ベクトルuとvのハーフベクトル(u+v)/|u+v|となることから、y方向に光を反射するためには法線もy方向の成分が必要となる。すなわち、単位ベクトルvがy成分を有するため法線もy方向の成分を有する。反射面11c1の法線はy方向の成分がゼロであるが、反射面11c2と反射面11c3の法線はy方向の成分を有する。換言すれば、反射面11c2と反射面11c3の法線は、出射面11bと入射面11aに垂直で、且つ出射面11bの中心を含む平面(図2の上図ではx-z面)に向かう方向の法線成分を有するということである。
 図14乃至図17を用いて、反射面11c2と反射面11c3の構造と光利用効率の関係を説明する。図7では、4組のシンチレータ10と受光素子12およびそれらの間で光を伝播させるライトガイド11を示している、本検討ではそれらのうちの一組に対して光利用効率を計算した。図7に示される4組からシンチレータ10aと受光素子12aおよびそれらに対応するライトガイド11を切り出した計算モデルを図14乃至図17に示す。本モデルは角度θc1に関して光利用効率が最大となる形状であり、反射面11c1が出射面11bまで至る形状である。
 図14及び図15は同じ形状のライトガイド11であり、図14の上図は上側から見た斜視図であり、図14の下図は正面(x方向)から見た正面図である。また、図15の上図は下側から見た斜視図であり、図15の下図は横(y方向側)から見た側面図を示している。反射面11c2と反射面11c3の構造は、正面から見たときの入射面11aと反射面間の角度θc2を変えながら構造を変化させて効率への影響を検討した。角度θc2が90度のときは、図16の上図及び下図に示す斜視図と正面図のように、反射面11aは反射面11c1のみとなる。光利用効率の計算は、図17の上図および下図に示す斜視図と正面図のように、反射面11c2と反射面11c3が出射面11bに至るまで角度θc2を小さくして計算した。 
 図14乃至図17に関する検討において、ライトガイド11の材質はPMMA樹脂とし、反射面11c1から反射面11c3と側面11e1および側面11e2はアルミを蒸着したアルミ面とした。
 光利用効率を計算した結果を図18に示す。横軸は角度θc2で、縦軸は角度θc2が90度のときの光利用効率で規格化した光利用効率比である。この結果から、角度を小さくするほど効率が向上することが分かる。すなわち、反射面11c2と反射面11c3が出射面11bに至るとき(図17に示す形状のとき)に光利用効率が最大となる。また、角度が40度以下で急峻に光利用効率が向上することが分かる。 
 したがって、ライトガイド11の反射面は、1枚の反射面で構成するのではなく、シンチレータ10の位置に応じて傾斜方向の異なる複数の反射面にて構成することにより、光利用効率が向上するという効果を奏する。
 このときシンチレータ10aの端部で発光した光を受光素子12aに反射する反射面の法線は、出射面11bと入射面11aに垂直で、且つ出射面11bの中心を含む平面に向かう方向の法線成分を有する。また、反射面11c2と反射面11c3を正面から見たときの入射面11aと反射面間の角度θc2は小さくした方が、光利用効率が大きくなるという効果を奏し、40度よりも小さくなると急峻に効率が大きくなるという効果を奏する。さらに、反射面11c2と反射面11c3が出射面11bに至るまで角度θc2を小さくしたときに効率は最大になるという効果を奏する。 
 但し、現実的には反射面11c2と反射面11c3が出射面11bに接続されるとその接続部が鋭角になり割れや欠けが生じることから、図2および図3に示すように反射面11c2および反射面11c3と出射面11bとの間に上面11fを設けることで割れや欠けを緩和する。したがって、現実的には反射面11c2と反射面11c3が上面11fまで至る構造が、反射面11c2と反射面11c3により効率が最大となる構造と言うことができる。
 なお、図2や図7のように複数のシンチレータ10と受光素子12の組み合わせがある場合、図14乃至図17の説明において述べた出射面11bと入射面11aの組み合わせは、図2や図7で述べたような最寄りの組み合わせか、若しくはシンチレータ10と受光素子12の一つの組に対応するライトガイド11の出射面11bと入射面11aを指す。
 次に、図4乃至図6に示される下斜面11dについて説明する。下斜面11dは、主に反射面11c1~反射面11c3で反射された光を再度反射する面であり、入射面11aと出射面11bの間に、反射面11c1と対向して配置される。図6において、光線Ray2および光線Ray3は下斜面11dで反射して受光素子12に到達した例である。何れの光線も、通常の導光板(PMMAの平板)を光が伝搬するように、反射面11c1と下斜面11dとの間で反射を繰り返しながら受光素子12に到達する。
このような光線伝搬経路が発生する理由は、図6のライトガイドは反射面11c1が出射面11bにおおよそ至る構成であるため、下斜面11dを適切な傾斜角度とすることにより擬似的に上下2枚の平面からなる直方体の導光板を模擬でき、光は反射を繰り返しながら受光素子12に到達できるためである。
 一般的な導光板は直方体であり、ある側面から入射した光は上面と下面で全反射を繰り返しながら対向する側面に向かって導光して、入射面に対向する側面から出射する。一方、本実施例では直方体の側面から光を入射するわけではないため、反射面11c1をアルミ面とすることで全反射せず抜けるはずの光も金属面により反射する。下斜面11dも同様であり、下斜面11dを樹脂面とするよりアルミ面とした方が全反射できずに面を透過して損失する光を減らせ光利用効率が向上する。計算によれば図6に示す構造のライトガイド11において、下斜面11dをアルミ面とした場合、樹脂面に比較して光利用効率は5~10%向上することが分かっている。したがって、下斜面11dをアルミ面とすることで光利用効率が向上するという効果を奏する。以下の本実施形態の検討では、下斜面11dをアルミ面とする。
 図6において角度θdを変えて効率を計算することにより、下斜面11dの形状を最適化した。最適化について図19乃至図23を用いて説明する。図2の上図には、4組のシンチレータ10と受光素子12およびそれらの間で光を伝播させるライトガイド11がし示されているが、本検討ではそれらのうちの一組に対して光利用効率を計算した。図2の上図に示す4組からシンチレータ10aと受光素子12aおよびそれら対応するライトガイドを切り出した計算モデルを図19乃至図23に示す。本モデルは、ライトガイドの形状が鋭角になって割れたり欠けたりすることを抑制しつつ、角度θc1および角度θc2に関して光利用効率が最大となる形状であり、反射面11c1、反射面11c2および反射面11c3が上面11fまで至る形状である。
 本検討において、ライトガイド11の材質はPMMA樹脂とし、3枚の反射面(11c1-11c3)と側面11e1および側面11e2はアルミを蒸着したアルミ面とし、上面11fもアルミ面とした。すなわち、入射面11aと出射面11b以外はアルミ面とした。上面11fは出射面11bに接続される位置にあり入射面11aに対向しない位置にあることから、上面11fに入射する光は上面11fに対して傾いた角度で入射するため、その光を反射できれば光は出射面11bに向かって伝搬する。このため、上面11fに全反射角度より小さな角度で入射する光も反射できるようにアルミ面とした。
 図19及び図20は同じ形状のライトガイド11であり、図19の上図は上側から見た斜視図であり、図19の下図は正面(x方向)から見た正面図である。また、図20の上図は下側から見た斜視図であり、図20の下図は横(y方向側)から見た側面図を示している。図20の下図に示される角度θdを変えて光利用効率を計算した。図21の上図は、角度θdが反射面11c1の角度θc1に近いときのライトガイド11の側面図である。図21の下図は、本検討において角度θdを大きくしたときのライトガイド11の側面図である。出射面11bの位置を固定しているので、角度θdを大きくすると入射面11aが大きくなる。
 検討した結果を図22に示す。横軸は、角度θc1に対する角度θdの相対的な角度である。すなわち、角度差(θd-θc1)を示している。縦軸は、角度差(θd-θc1)が38度のときの光利用効率で規格化した光利用効率比を示す。角度差(θd-θc1)がゼロのとき、反射面11c1と下斜面11dは平行となる。角度差(θd-θc1)が正の場合、角度θc1より角度θdが大きく、下斜面11dが反射面11c1よりも傾斜が大きいということである。 
 角度差(θd-θc1)が約2度から8度の間で効率はピークとなる。角度差(θd-θc1)が約20度以上となると、図6に示す光線Ray2および光線Ray3のような反射面11c1と下斜面11dとの間で反射を繰り返しながら受光素子12に到達する光線がほとんどなくなるため、光利用効率比はおおよそ1になる。反射面11c1と下斜面11dが平行に近づくほど反射を繰り返して受光素子12に到達する光線の数が増えるため光利用効率比は向上すると考えられるが、図22では角度差(θd-θc1)が2度以下で効率比が低下している。
 図23を用いて、その理由を説明する。先にも述べたが、反射面11c1と下斜面11dが平行に近づくほど反射を繰り返して受光素子12に到達する光線(図23では光線Ray91)が増える。一方で、シンチレータ10の種類によるが、一般にシンチレータ10は、アルミなどの金属が蒸着してない全ての面から光が出射する。そのため入射面11aに対向している発光面10emのみならず、シンチレータ10の側面10emsからも光は出射する。発光面10emの面積と側面10emsの面積比に応じて発光面10emの発光量Ipと側面10emsの発光量Isの比が変わる。
 ここで、シンチレータ10は発光面10emのみならず側面10emsからも出射するため、本発明における発光面10emの定義を説明する。本発明のライトガイド11は、信号電子9を捉えるため、シンチレータ10の大面積化した面で発光した光を出射面11bに集める構成としている。そのため、シンチレータ10において、ライトガイド11の何れかの面と対向しているシンチレータ10の面の中で、面積が最も大きい発光する面、または飛行してきた信号電子9を捉える面に平行で光を発光する面を発光面と称することにする。これら発光面の特徴は図2から図22に示した発光面10emの特徴である。
 なお、シンチレータ10において発光面10emは、ライトガイド11に対向して面積が最も大きな面と定義したが、これは1個のシンチレータ10の場合だけではない。例えば、図2に示すシンチレータ10aは1個の直方体のシンチレータとなっているが、これをx-y面内で分割して複数のシンチレータで構成しても良い。その場合も、各シンチレータのx-y面(入射面11a)に平行な面の面積は、他の面の面積よりも大きくなる。但し、分割数がある程度以上に大きくなると、側面の面積がx-y面に平行な面の面積よりも大きくなることもあるが、その場合は飛行してきた信号電子9を捉える面に平行で光を発光する面を発光面と称すれば良い。 
 また、本実施例ではシンチレータ10の形状を直方体としたが、これに限らず立方体、円柱など様々な形状が考えられ、本発明はシンチレータの形状に限定されるものではないない。
 本発明は、シンチレータ10で発光した光を入射する入射面11aを有し、そこから入射した光を反射面(11c1-11c3)などにより出射面11bに導く構成である。そのため、入射面11aに対する発光面10emの形状には関係なく、ライトガイド11は入射面11aから入った光を出射面11bに集光するという効果を奏する。 
 例えばGaN系の多層薄膜構造を有するシンチレータ10で、外形が円柱で高さが0.5mm、円の直径が9mmでの場合、シミュレーションによれば、Ip:Is=1:1程度である。また、シンチレータ内部にピラミッドや円錐などのパターン構造を形成して、回折もしくは散乱により発光面10emからの発光量Ipを向上させる技術を導入しても、Ip:Is=7:3程度である。 
 したがって、側面10emsからの光を活用することも重要である。図23に示す光線例Ray92は、側面10emsから光が出射し入射面11aからライトガイド11に入射して反射面11c1で反射して出射面11bに到達する光線である。
 本検討においては、出射面11bとシンチレータ10の位置は固定しているため、角度θdを小さくすると入射面11aの下斜面11dとの接続する端部がシンチレータの側面10emsに近づく。入射面11aの端部が側面10emsに近づくと側面10emsから出射した光がライトガイド11に入射する面積が小さくなるため、側面10emsから出射した光を活用できず光利用効率が低下する。このため、角度θdを小さくすると反射を繰り返す光線(Ray91)が増えるが、一方で側面10emsから出射してライトガイド11に入射する光が減少するというトレードオフが存在する。図23に示される結果において角度差2度以下で急峻に光利用効率が低下しているのは、側面10emsから出射してライトガイド11に入射する光が著しく低下し始めるためと考えられる。
 以上、下斜面11dに関して説明した。図19乃至図21に示す構成は、大面積発光面10emから出射した光と側面10emsから出射した光を、ライトガイド11を用いて、受光素子12の小面積受光面に到達させる光学系である。この光学系において下斜面11dの最適化を説明した。
 反射面11c1と下斜面11dの角度差を約20度以下とすると、光利用効率が向上するという効果を奏する。この点を踏まえ本明細書では、反射面11c1と下斜面11dの角度差が20度以下の場合を、反射面11c1と下斜面11dが略平行と呼ぶことにする。下斜面11dは反射面11c1の少なくとも一部と略平行であることが好ましい。なお、反射面が複数の面で構成されている場合は、複数の面のうち一面と略平行であることが好ましい。 
 さらに、反射面11c1と下斜面11dの角度差を2度から8度の間とすると、光利用効率が最大となる。したがって、反射面11c1と下斜面11dの角度差は2度以上8度以下であることがさらに好ましい。
 また、シンチレータ10の側面10emsと入射面11aの端部に一定の距離を設ける構成、別の観点から言うと反射面11c1の入射面11aに対する角度θc1より下斜面11dの入射面に対する角度θdが大きい構成とすることにより、側面10emsから出射した光をライトガイド11に入射させることが可能となり、光利用効率が向上するという効果を奏する。
 本実施例では、ライトガイド11の表面にアルミを付けて反射面(アルミ面)としたが、反射材はアルミのみに限らない。反射面は金属からなる反射材を有する面であることが好ましい。反射材としては、例えば、アルミニウム以外に、銀および多層反射膜などを用いることができる。また、反射材をライトガイド11に付ける方法は、蒸着に限らず貼り付けなど様々な方法があり、これら方法に本発明は限定されない。
 本実施例で示した光学系の構成、すなわち、大面積発光面、その発光面と平行ではなく、且つ対向していない受光面(本実施例では発光面と受光面の角度は約90度)、発光面の大きさに比較して厚さが小さいライトガイドからなる光学系の場合、光はシンチレータからあらゆる方向に発光するため、ライトガイドの反射面で必ずしも全反射しないことから、ライトガイドの表面にはできるだけアルミなどの反射材を付けて出射面への反射光量を増やした方が良い。
 本実施例のライトガイドの場合、反射面(11c1‐11c3)の3面につけると最も光利用効率が向上し、側面11e1および側面11e2に反射材をつけると2番目に光利用効率が向上する。さらに下斜面11dに反射材を付けると光利用効率が5~10%向上する。本実施例のライトガイドの場合、反射材を適宜表面に付けることで光利用率を向上するという効果を奏する。
 さらに、図6に示す本実施例のシンチレータ10は、ライトガイド11の入射面11aと対向する面とは反対側の面10bs(シンチレータ10の発光面10emと反対側の面)に金属反射面が付いている。具体的には面10bsはアルミを蒸着させた面である。光線Ray3はシンチレータ10から出射後に、面10bsにて反射して受光素子12に到達している。このように、面10bsでの反射を経て受光素子12に到達する光線経路が存在することから、面10bsに反射材を付けることにより光利用効率が向上するという効果を奏する。
 本実施例では、反射面(11c1‐11c3)の3面、側面11e1および側面11e2、下斜面11dおよびシンチレータの面10bsに反射材を付ける構成であり、シンチレータ10から出射した光が受光素子12に伝搬する部分を反射材で覆う構成となっている。入射面11aには反射材を付けていないが、入射面11aと平行な面10bsに反射材としてのアルミが付いており、出射面11bと接続部11tに繋がる面以外には外に漏れる光を再度ライトガイド11に反射する面が存在する構成となっている。これにより光利用効率が向上するという効果を奏する。
 この走査型電子顕微鏡は構成の一つの例であり、シンチレータ10、ライトガイド11、受光素子12を備えた電子顕微鏡であれば、他の構成でも適用が可能である。また、簡単のため、検出器は1つのみ示しているが、複数の検出器を設けても良い。反射電子検出用検出器と二次電子検出用検出器を別々に設けてもよいし、方位角または仰角を弁別して検出するために複数の検出器を備えていてもよい。これらの検出器の使い分けにより、信号電子9をエネルギーや角度で弁別して検出することで試料8の表面形状や組成、3D構造などに関する情報を画像から取得できる。エネルギー弁別の方法として、反射電子のエネルギーに応じて、シンチレータ10の発光量や発光波長を変化させ、それを検出する方法がある。その手法において、高い光利用効率を持つライトガイド11として本発明を適用することにより、エネルギー分解能の高分解能化が可能となる。
<変形例> 
 変形例について図24を用いて説明する。上述した実施例では反射面の形状は平面の組み合わせであったが、反射面の形状はこれに限らず、さまざまな形状が可能である。図24の反射面形状が平面の図は、図19の上図に示すライトガイドである。反射面形状が曲面の場合、反射面11c1から反射面11c3を厳密に定義することは難しいが、面の法線が向いている方向から大まかには、図24における斜視図のように定義できる。また、曲面は傾斜方向の異なる複数の反射面が連続的に繋がった形状とも言える。平面でも曲面でも反射面は、入射面に対して傾斜した反射面である。
 反射面が曲面でも平面でも、大面積発光面10emから出射した光を、ライトガイド11を用いて、受光素子12の小面積受光面に到達させる光学系の特徴は、出射面11bに平行にライトガイドを切断したときの断面積が出射面に近づくにつれて小さくなることである。図24に出射面から0.5、1.0、2.0mmの位置でライトガイドを切断した断面図を示している。断面は斜線が付された箇所であり、出射面11bに近づくにつれて断面積が小さくなっていることが分かる。このような形状を有することにより、ライトガイド11は、大面積発光面10emから出射した光を受光素子12の小面積受光面に効率よく到達させることが可能となる。
 以上の通り本実施例によれば、光利用効率を向上し得るライトガイドを用いた荷電粒子線装置を提供することが可能となる。
 図25は、本発明の他の実施例に係る実施例2の検出器の概略構成図である。本実施例では、検出系16の4つの受光素子12から出力される電気信号を、受光素子毎に高速に処理する信号処理回路14を備える点が実施例1と異なる。その他の構成は上述の実施例1と同様であり、実施例1と同様の構成要素に同一符号を付し、以下では実施例1と重複する説明を省略する。
 図25に示すように、受光素子12(12a~12d)と増幅回路14a(14a-1~14a-4)は、個別に出力ケーブル13で接続されており、電気信号の振幅は個別に増幅され、各演算回路14b(14b-1~14b-4)で処理されてモニタ15上に所定の階調値を有する画素として表示される。本構成は、演算回路14bを並列化して、受光素子12毎に信号を処理することで高速化を図った例である。また、増幅回路14aを個別に持つことで、それぞれ回路ごとに増幅率を調整して電気信号を適切に増幅することが可能となる。したがって、受光素子12に対応して個別に増幅回路14aと演算回路14bを備えることにより、個別に電気信号を適切に増幅し、高速に処理するという効果を奏する。
 但し、この構成に限らず、受光素子(12a~12d)からの信号を選択するスイッチ(セレクタ)と1個または2個の増幅回路14aと演算回路14bを有することで、時分割で電気信号を処理する構成としても良い。本実施例の信号処理回路14に求められる最低限の機能は、受光素子12(12a~12d)からの電気信号を個別に処理することである。 
 上述の実施例1に係る検出器16は、4方向にシンチレータ10(10a~10d)と受光素子12(12a~12d)が配置されていた。この構成において受光素子12で得られる電気信号を個別に処理することで、4方向で電気信号を弁別することが可能となる。すなわち、試料8から出射した信号電子9がz軸に沿って飛行して、どの方向にあるシンチレータ10に到達したかが明らかになる。例えば円柱を観察する場合、4方向のシンチレータ10(10a~10d)それぞれで取得した電気信号に基づいて画像を作成すると、それぞれの方向から観察した円柱画像が得られ、方向に応じた円柱の影が画像に現れる。その影の長さから円柱の高さを推定することが可能となる。このとき、シンチレータ10と受光素子12の組を複数有するのみならず、ライトガイド11は、あるシンチレータから出射した光を、そのシンチレータに対応する受光素子に到達させる必要がある。
 ライトガイド11は、シンチレータから出射した光の大部分を対応する受光素子に伝搬させる構成である。それぞれシンチレータ10a、10b、10c、10dで発光した光は、それぞれ受光素子12a、12b、12c、12dに伝搬される光学系となっている。
シンチレータの発光光が対応しない受光素子に到達する現象(光のクロストーク)の抑制には、とりわけ反射面11c2および反射面11c3が重要な役割を果たす。例えばシンチレータ10aから受光素子12bまたは受光素子12dに向かう光は、主に反射面11c2および11c3で反射されて受光素子12bまたは受光素子12dには届かない。換言すれば、出射面11bに平行にライトガイドを切断したときの断面積が出射面に近づくにつれて小さくなる構成であれば光のクロストークが抑制される。そのため、シンチレータ10を分割せず、円環などの形状のシンチレータ1個で検出器を構成しても、ライトガイドの形状によりクロストークを低減することができる。
 上述の実施例1で説明した検出器16の構成であれば、受光素子12で得られた電気信号を個別に処理することで、円柱の高さ推定など3D計測が可能となる。したがって、1個あるいは複数のシンチレータと複数の受光素子を有し、シンチレータで発光した光の多くを試料上の上下左右などの方向に対応する受光素子に伝搬させるライトガイドを備え、各受光素子の電気信号を個別に処理することで3D計測を可能にするという効果を奏する。
なお、シンチレータと受光素子の組数は4個に限定されず2個でも3個でも8個でも良いし、16個でも良い。但し、組数を大きくすると取得できる総信号電子数は多くなるが、1組当たりの信号電子数は減少し、さらに隣接する受光素子が近付くことから光のクロストークが起きやすくなる。1組毎に画像を作成する場合、1組当たりの信号電子数が減ると画像のノイズが大きくなる。そのため総信号電子数の収量、光のクロストークおよび1組当たりの信号電子数の関係から最適な組数を選択すれば良い。
 以上の通り本実施例によれば、実施例1の効果に加え、個別に電気信号を適切に増幅し高速に処理することが可能となる。
 図26は、本発明の他の実施例に係る実施例3の検出器を構成するシンチレータとライトガイドの拡大図である。本実施例では、シンチレータ10とライトガイド11とを屈折率整合部材17にて接合する構成としている点が実施例1と異なる。その他の構成は上述の実施例1と同様であり、実施例1と同様の構成要素に同一符号を付し、以下では実施例1と重複する説明を省略する。
 説明を分かり易くするため、図26では、上図に上述の実施例1のシンチレータとライトガイドの拡大図を示し、下図に本実施例のシンチレータとライトガイドの拡大図を示している。まず、図26の上図に示すように、上述の実施例1に係る検出器の構成では、シンチレータ10とライトガイド入射面11aは近接して配置されているものの、接着(接合)はされていない。そのためシンチレータ10を出射した光は、空気を介してライトガイドの入射面11aに到達する。光線Ray111はライトガイド11に入射する光線例であり、シンチレータ10の内部で発光し、シンチレータ発光面10emから出射して空気を介してライトガイド11に入射する光線である。シンチレータ10に信号電子9が入射してシンチレータ内部で発光が起こる。内部で発光した光の一部は、シンチレータ10から出射できずにシンチレータ内部で損失する。この損失の大きな要因は、シンチレータ10と空気の界面で起こる全反射である。半導体、セラミック蛍光体材料のシンチレータを用いる場合や、粉体蛍光体を成膜した基板をシンチレータ10として用い、基板からの光も取り出して活用する場合、一般にシンチレータ発光面10emの屈折率は1.5よりも大きいことが多い。屈折率1.5のときのシンチレータ表面における全反射角度は40度程度である。それゆえ内部で発光した光が表面で全反射する割合は、表面へ入射した光の約75%以上である。全反射した光は、シンチレータ内部に散乱構造があれば伝搬角度が変わって表面に再入射してシンチレータ10から出射することもあるが、一部は再度全反射してシンチレータ内部に光が戻り吸収される。光線Ray112がシンチレータ内で吸収される光線例である。シンチレータの面10bsにはアルミなどの金属が反射材として付いているため、反射する度に光のエネルギーが吸収される。光線Ray112はシンチレータ内部で発光して発光面10emで全反射して面10bsでエネルギーを吸収されながら反射する。光線Ray112はこのプロセス繰り返し、光のエネルギーが概ねゼロとなり損失した光の例である。
 この全反射による損失メカニズムのため、シンチレータ内部で発光した光のうちシンチレータ10から出射する光の割合は、おおよそ60%未満と考えられ、シミュレーションによれば構造に依存して5-30%程度である。
 全反射角度は、シンチレータ発光面10emの材料の屈折率と空気の屈折率との差により決まる。そこで図26の下図に示すように、本実施例に係る検出器の構成では、シンチレータ発光面10emとライトガイド11の入射面11aの間に空気より屈折率の高い屈折率整合部材17を配置している。本実施例に係る屈折率整合部材17は、シンチレータ発光面10emと入射面11aを接着するアクリル系樹脂の接着層である。アクリル系樹脂の接着剤でシンチレータ発光面10emと入射面11aを接着し、シンチレータ発光面10emと入射面11a間への空気の侵入を防止している。屈折率整合部材17は、アクリル系樹脂に限らず、エポキシ系樹脂など透明な部材であれば良い。また、ゴムなどの弾性体をシンチレータ10とライトガイド11で挟んでも良いし、両面テープでシンチレータ10をライトガイド11に貼り付けても良い。
 空気より屈折率が高いとシンチレータ発光面10emと屈折率整合部材17の間で全反射が起き難くなるため、シンチレータ内部で発光した光は発光面10emから屈折率整合部材17に入射し易くなる。屈折率整合部材17の屈折率がライトガイド11の屈折率以上の場合は、全反射は起きず、また、ライトガイド11の屈折率と同程度である場合も全反射はほとんど起きない。そのため、ライトガイド11の屈折率と同程度若しくはそれ以上の屈折率の屈折率整合部材17を配置することにより、シンチレータ発光面10emから屈折率整合部材17に光が入射し易くなり、さらに屈折率整合部材17からライトガイド11にも光が入射し易くなるため、光利用効率が向上するという効果を奏する。なお、ライトガイド11の屈折率と同程度とは、ライトガイド11の屈折率±0.2程度を指す。具体的には、ライトガイドを屈折率1.51のPMMAとした場合、1.31から1.71程度である。
 但し、如何なる材料も屈折率は空気よりは大きいため、シンチレータ発光面10emと入射面11aの間の空気層がなくなるように樹脂などの屈折率整合部材17を配置することで光利用効率が向上するという効果を奏する。このとき屈折率整合部材17はシンチレータ10の発光光を透過すれば良い。このとき例えば材料の吸収係数[m-1]が高いとしても、屈折率整合部材17が十分に薄ければ光は透過するので問題ない。屈折率整合部材17として重要なのは光が透過するということであり、屈折率整合部材17として透過率は高ければ高いほど良いが光を通せば良く、アクリル系樹脂やエポキシ系樹脂などの樹脂であれば問題なく光を透過する。例えば、金属の厚い板材のように光を完全に通さない部材は屈折率整合部材17としては採用できない。
 なお、屈折率整合部材17の屈折率が、シンチレータ発光面10emの屈折率とライトガイド11の屈折率の間の屈折率であると、シンチレータ10の発光面10emと屈折率整合部材17の屈折率差と屈折率整合部材17とライトガイド11の屈折率差との和が最小(シンチレータ発光面10emとライトガイド11の屈折率差)となり、屈折率差に依存して生じるフレネル反射が最小となるため光利用効率が向上するという効果を奏する。
 そのような例は、シンチレータをGaN系の多層薄膜構造体とした場合、シンチレータ発光面10emの材質はサファイア基板であるため、波長400nmにおいて屈折率は1.78程度である。一方で、PMMAは1.51程度である。したがって、屈折率整合部材17の屈折率はこの2つの屈折率の間にあることが望ましく、例えば、屈折率が1.6程度のアクリルまたはエポキシ系樹脂の接着剤などが屈折率整合部材17として良い。
 シミュレーションにより屈折率整合部材17の効果を確認した。シンチレータ10はGaN系の多層薄膜構造体とし、屈折率整合部材17が有る場合と無い場合で光利用効率を計算した。その結果、屈折率整合部材17がある場合の光利用効率は、屈折率整合部材17がない場合の効率に比較して1.8倍となった。
 一般的な直方体のライトガイドの場合、光がライトガイドに入射すると屈折してライトガイド内における光の広がりがおおよそ40度未満になる。このことにより、ライトガイド内を伝搬する光は、入射面に直交する面で全反射を繰り返すため光が導光する。しかし、光源とライトガイドを屈折率整合部材で接続すると、光源から出た光がほとんど屈折せずにライトガイドに入射するため、光はライトガイド内を伝搬せず、入射面付近でライトガイドから漏れてしまう。すなわち、一般的な直方体のライトガイドの場合、屈折率整合部材17を導入すると光利用効率が低下する。
 上述の実施例1で説明したライトガイドのように、反射面(11c1―11c3)の3面がアルミ面の構造で、出射面11bに平行にライトガイド11を切断したときの断面積が出射面11bに近づくにつれて小さくなる構成の場合、シンチレータ10で発光した光の広がりのままでライトガイド11に入射しても、反射により受光素子12に光を集光することから、シンチレータ10内で損失する光を、屈折率整合部材17を導入することで損失させずに取り出すことにより光利用効率を向上するという効果を奏する。
 すなわち、上述の実施例1第で説明した特徴を持つライトガイド11とシンチレータ10とに間に屈折率整合部材17を配置することで光利用効率を向上するという効果を奏する。
 そのとき、屈折率整合部材17の屈折率は、ライトガイドの屈折率と同程度若しくはそれ以上の屈折率とすれば良く、シンチレータ発光面10emの屈折率とライトガイド11の屈折率の間の屈折率であるとさらに良い。
 以上の通り本実施例によれば、実施例1の効果に加え、更に光利用効率の向上を図ることが可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1…電子顕微鏡鏡筒、2…電子源、3…一次電子線光軸、4…偏向器、5…コイル、6…外側磁路、7…内側磁路、8…試料、9…信号電子、10…シンチレータ、11…ライトガイド、12…受光素子、13…出力ケーブル、14…信号処理回路、14a…増幅回路、14b…演算回路、15…モニタ、16…検出器、17…屈折率整合部材

Claims (15)

  1.  荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、
     前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、
     前記ライトガイドは、
     前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、
     前記受光素子に対向して配置され、光を出射する出射面と、
     前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、
     前記出射面は前記入射面よりも小さく、
     前記入射面と前記出射面の間に、前記反射面と対向し、かつ前記入射面に対して傾斜して配置された斜面と、を備えることを特徴とする荷電粒子線装置。
  2.  請求項1に記載の荷電粒子線装置において、
     前記斜面は、前記反射面の少なくとも一部と略平行であることを特徴とする荷電粒子線装置。
  3.  請求項1に記載の荷電粒子線装置において、
     前記反射面は、複数の面から構成され、前記シンチレータの発光面の少なくとも一部を覆っていることを特徴とする荷電粒子線装置。
  4.  請求項1に記載の荷電粒子線装置において、
     前記反射面は、複数の面から構成され、前記シンチレータの発光面の少なくとも一部を覆い、
     前記斜面は、前記反射面の複数の面のうち一面と略平行であることを特徴とする荷電粒子線装置。
  5.  請求項1乃至請求項4のうち、いずれか一項に記載の荷電粒子線装置において、
     前記反射面は、前記入射面から前記出射面に至ることを特徴とする荷電粒子線装置。
  6.  請求項1乃至請求項4のうち、いずれか一項に記載の荷電粒子線装置において、
     前記反射面と前記出射面の間に、前記反射面とは異なる傾斜角度の上面を備え、
     前記シンチレータ、前記ライトガイド及び前記受光素子を含むある断面において、前記入射面と平行な面への前記反射面の射影長さは、前記平行な面への前記上面の射影長さよりも長いことを特徴とする荷電粒子線装置。
  7.  請求項1乃至請求項6のうち、いずれか一項に記載の荷電粒子線装置において、
     前記ライトガイドは、前記出射面に平行に切断したときの断面積が出射面に近づくにつれて小さくなることを特徴とする荷電粒子線装置。
  8.  請求項1乃至請求項7のうち、いずれか一項に記載の荷電粒子線装置において、
     前記シンチレータと前記ライトガイドは、前記シンチレータの発光光を透過する屈折率整合部材により接合されていることを特徴とする荷電粒子線装置。
  9.  請求項1乃至請求項8のうち、いずれか一項に記載の荷電粒子線装置において、
     前記反射面は、金属からなる反射材を有する面であることを特徴とする荷電粒子線装置。
  10.  請求項1乃至請求項9のうち、いずれか一項に記載の荷電粒子線装置において、
     前記ライトガイドは、電子光学系の対物レンズを構成している部材いずれかの内側に配置していることを特徴とする荷電粒子線装置。
  11.  請求項1乃至請求項10のうち、いずれか一項に記載の荷電粒子線装置において、
     前記ライトガイドは、前記シンチレータの発光面全体を覆うことを特徴とする荷電粒子線装置。
  12.  請求項1乃至請求項10のうち、いずれか一項に記載の荷電粒子線装置において、
     前記入射面は、前記シンチレータの発光面全面を覆うことを特徴とする荷電粒子線装置。
  13.  荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、
     前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、
     前記ライトガイドは、
     前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、
     前記受光素子に対向して配置され、光を出射する出射面と、
     前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、
     前記出射面は前記入射面よりも小さく、
     前記反射面は、複数の面から構成され、前記シンチレータの発光面の少なくとも一部を覆っていることを特徴とする荷電粒子線装置。
  14.  荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、
     前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、
     前記ライトガイドは、
     前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、
     前記受光素子に対向して配置され、光を出射する出射面と、
     前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、
     前記反射面と前記出射面の間に配置され、前記反射面とは異なる傾斜角度の上面と、を備え、
     前記出射面は前記入射面よりも小さく、
     前記シンチレータ、前記ライトガイド及び前記受光素子を含むある断面において、前記入射面と平行な面への前記反射面の射影長さは、前記平行な面への前記上面の射影長さよりも長いことを特徴とする荷電粒子線装置。
  15.  荷電粒子源から放出される荷電粒子線の照射により試料から放出される荷電粒子、及び試料から放出される荷電粒子が他部材に衝突することによって発生する荷電粒子の少なくとも一方を検出する検出器を備えた荷電粒子線装置であって、
     前記検出器は、前記荷電粒子が入射すると光を発光するシンチレータと、光を電気信号に変換する受光素子と、前記シンチレータより発生した光を前記受光素子に導くライトガイドと、を備え、
     前記ライトガイドは、
     前記シンチレータの発光面に対向して配置され、前記シンチレータで発光した光を入射する入射面と、
     前記受光素子に対向して配置され、光を出射する出射面と、
     前記入射面に対向し、かつ前記入射面から入射した光を前記出射面の方向へ反射するように前記入射面に対して傾斜して配置された反射面と、を備え、
     前記出射面は前記入射面よりも小さく、
     前記ライトガイドは、前記出射面に平行に切断したときの断面積が出射面に近づくにつれて小さくなることを特徴とする荷電粒子線装置。
PCT/JP2018/035048 2018-09-21 2018-09-21 荷電粒子線装置 WO2020059114A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US17/269,424 US11515120B2 (en) 2018-09-21 2018-09-21 Charged particle beam apparatus
PCT/JP2018/035048 WO2020059114A1 (ja) 2018-09-21 2018-09-21 荷電粒子線装置
CZ20227A CZ309373B6 (cs) 2018-09-21 2018-09-21 Zařízení využívající svazky nabitých částic
JP2020547574A JP6984035B2 (ja) 2018-09-21 2018-09-21 荷電粒子線装置
DE112018007843.4T DE112018007843B4 (de) 2018-09-21 2018-09-21 Mit einem strahl geladener teilchen arbeitende vorrichtung
CZ202187A CZ309147B6 (cs) 2018-09-21 2018-09-21 Zařízení využívající svazky nabitých částic
IL281169A IL281169A (en) 2018-09-21 2021-03-01 Charged particle beam device
JP2021189875A JP7140902B2 (ja) 2018-09-21 2021-11-24 荷電粒子線装置
US17/962,915 US11694873B2 (en) 2018-09-21 2022-10-10 Charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035048 WO2020059114A1 (ja) 2018-09-21 2018-09-21 荷電粒子線装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/269,424 A-371-Of-International US11515120B2 (en) 2018-09-21 2018-09-21 Charged particle beam apparatus
US17/962,915 Continuation US11694873B2 (en) 2018-09-21 2022-10-10 Charged particle beam apparatus

Publications (1)

Publication Number Publication Date
WO2020059114A1 true WO2020059114A1 (ja) 2020-03-26

Family

ID=69886770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035048 WO2020059114A1 (ja) 2018-09-21 2018-09-21 荷電粒子線装置

Country Status (6)

Country Link
US (2) US11515120B2 (ja)
JP (1) JP6984035B2 (ja)
CZ (2) CZ309373B6 (ja)
DE (1) DE112018007843B4 (ja)
IL (1) IL281169A (ja)
WO (1) WO2020059114A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309373B6 (cs) * 2018-09-21 2022-10-12 Hitachi High-Tech Corporation Zařízení využívající svazky nabitých částic

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419658U (ja) * 1977-07-11 1979-02-08
JPS58174855U (ja) * 1982-05-17 1983-11-22 株式会社日立製作所 2次電子検出装置
US20080315094A1 (en) * 2007-01-30 2008-12-25 Joe Wang Charged particle detection devices
JP2012500447A (ja) * 2008-08-20 2012-01-05 株式会社アドバンテスト 電子検出装置及び走査型電子顕微鏡
JP2015153710A (ja) * 2014-02-19 2015-08-24 株式会社日立ハイテクノロジーズ 試料ホルダ、観察システム、および画像生成方法
JP2017183126A (ja) * 2016-03-31 2017-10-05 株式会社日立ハイテクノロジーズ ライトガイド、ライトガイドを備えた検出器、及び荷電粒子線装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419658A (en) 1977-07-14 1979-02-14 Mitsubishi Electric Corp Semiconductor device
JPS5419858A (en) 1977-07-15 1979-02-14 Kenji Nakamura Toilet coating utensil of foundation and like
JPS58174855A (ja) 1982-04-07 1983-10-13 Nippon Tsushin Gijutsu Kk 角加速度検出器
DE3500903A1 (de) 1985-01-12 1986-07-17 Fa. Carl Zeiss, 7920 Heidenheim Detektor fuer rueckstreuelektronen
DE3925949A1 (de) 1989-08-05 1991-02-07 Herbert Dr Specht Elektronenrastermikroskop mit nachruestmodul
GB2314926B (en) * 1996-07-01 1999-08-25 K E Developments Ltd Detector devices
EP1063677B1 (en) * 1999-06-23 2005-03-16 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device
US7373197B2 (en) * 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
JP5143990B2 (ja) * 2000-07-07 2013-02-13 カール・ツァイス・エヌティーエス・ゲーエムベーハー 変化する圧力領域のための検出器、およびこのような検出器を備える電子顕微鏡
US6803583B2 (en) * 2001-03-21 2004-10-12 M.E. Taylor Engineering Inc. Scintillator for electron microscope and method of making
US6775452B2 (en) * 2001-05-18 2004-08-10 Applied Materials, Inc. Phosphor coated waveguide for efficient collection of electron-generated photons
US6768836B2 (en) * 2001-11-02 2004-07-27 Applied Materials, Inc. Phosphor coated waveguide for the efficient collection of electron-generated photons
WO2007113898A1 (ja) * 2006-04-04 2007-10-11 Shimadzu Corporation 放射線検出器
DE102010026169B4 (de) 2010-07-06 2014-09-04 Carl Zeiss Microscopy Gmbh Partikelstrahlsystem
WO2015002281A1 (ja) * 2013-07-04 2015-01-08 コニカミノルタ株式会社 シンチレータパネル及びその製造方法
CN105308712A (zh) * 2013-07-31 2016-02-03 株式会社日立高新技术 带电粒子束装置
JP6316578B2 (ja) 2013-12-02 2018-04-25 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡
US10910193B2 (en) * 2015-09-03 2021-02-02 El-Mul Technologies Ltd. Particle detection assembly, system and method
US10302774B2 (en) * 2016-04-25 2019-05-28 Morpho Detection, Llc Detector assembly for use in CT imaging systems
US10365383B2 (en) * 2016-09-09 2019-07-30 Minnesota Imaging And Engineering Llc Structured detectors and detector systems for radiation imaging
US10509135B2 (en) * 2016-09-09 2019-12-17 Minnesota Imaging And Engineering Llc Structured detectors and detector systems for radiation imaging
JP6857511B2 (ja) * 2017-02-23 2021-04-14 日本電子株式会社 走査電子顕微鏡
US10525285B1 (en) * 2018-08-06 2020-01-07 Integrated Sensors, Llc Ionizing-radiation beam monitoring system
CZ309373B6 (cs) * 2018-09-21 2022-10-12 Hitachi High-Tech Corporation Zařízení využívající svazky nabitých částic
US11031210B2 (en) * 2019-03-06 2021-06-08 El-Mul Technologies Ltd. Charged particle detection system
US11239048B2 (en) * 2020-03-09 2022-02-01 Kla Corporation Arrayed column detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419658U (ja) * 1977-07-11 1979-02-08
JPS58174855U (ja) * 1982-05-17 1983-11-22 株式会社日立製作所 2次電子検出装置
US20080315094A1 (en) * 2007-01-30 2008-12-25 Joe Wang Charged particle detection devices
JP2012500447A (ja) * 2008-08-20 2012-01-05 株式会社アドバンテスト 電子検出装置及び走査型電子顕微鏡
JP2015153710A (ja) * 2014-02-19 2015-08-24 株式会社日立ハイテクノロジーズ 試料ホルダ、観察システム、および画像生成方法
JP2017183126A (ja) * 2016-03-31 2017-10-05 株式会社日立ハイテクノロジーズ ライトガイド、ライトガイドを備えた検出器、及び荷電粒子線装置

Also Published As

Publication number Publication date
DE112018007843T5 (de) 2021-04-01
CZ309147B6 (cs) 2022-03-09
CZ20227A3 (ja) 2021-05-05
DE112018007843B4 (de) 2024-05-29
US20230030651A1 (en) 2023-02-02
IL281169A (en) 2021-04-29
JPWO2020059114A1 (ja) 2021-08-30
JP6984035B2 (ja) 2021-12-17
CZ202187A3 (cs) 2021-05-05
CZ309373B6 (cs) 2022-10-12
US11694873B2 (en) 2023-07-04
US11515120B2 (en) 2022-11-29
US20210183614A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
TWI455169B (zh) 帶電粒子偵測裝置
CN101023342B (zh) 用于检查试样表面的方法、装置以及荧光物质的应用
TWI729279B (zh) 帶電粒子線裝置
US8829451B2 (en) High efficiency scintillator detector for charged particle detection
US10679821B1 (en) Light guide, detector having light guide, and charged particle beam device
US10236155B2 (en) Detection assembly, system and method
US11694873B2 (en) Charged particle beam apparatus
WO2015185995A1 (ja) 荷電粒子線装置
TW201011803A (en) Charged particles detection devices
JP7140902B2 (ja) 荷電粒子線装置
US20190259571A1 (en) Particle detection assembly, system and method
CZ307557B6 (cs) Scintilační detekční jednotka pro detekci zpětně odražených elektronů pro elektronové nebo iontové mikroskopy
JP7242915B2 (ja) 荷電粒子ビーム装置
JP7004776B2 (ja) 荷電粒子ビーム装置
TWI809358B (zh) 帶電粒子檢測器,帶電粒子線裝置,放射線檢測器及放射線檢測裝置
JP7076021B1 (ja) ライトガイド、電子線検出器、及び荷電粒子装置
Iijima Recent topics of particle identification and photodetection
CN117007565A (zh) 一种深亚波长立体表征光子器件光学辐射信号的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547574

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2021-87

Country of ref document: CZ

122 Ep: pct application non-entry in european phase

Ref document number: 18933788

Country of ref document: EP

Kind code of ref document: A1