WO2020057324A1 - 测量微循环阻力指数的系统以及冠脉分析系统 - Google Patents

测量微循环阻力指数的系统以及冠脉分析系统 Download PDF

Info

Publication number
WO2020057324A1
WO2020057324A1 PCT/CN2019/102259 CN2019102259W WO2020057324A1 WO 2020057324 A1 WO2020057324 A1 WO 2020057324A1 CN 2019102259 W CN2019102259 W CN 2019102259W WO 2020057324 A1 WO2020057324 A1 WO 2020057324A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
image
coronary
coronary artery
measuring
Prior art date
Application number
PCT/CN2019/102259
Other languages
English (en)
French (fr)
Inventor
刘广志
王之元
戴威
曹文斌
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811093192.XA external-priority patent/CN109363651A/zh
Priority claimed from CN201910206541.2A external-priority patent/CN109770888A/zh
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2020057324A1 publication Critical patent/WO2020057324A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30021Catheter; Guide wire
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the invention relates to the technical field of coronary artery medicine, in particular to a system for measuring a microcirculation resistance index and a coronary artery analysis system.
  • the impact of coronary microcirculatory dysfunction on myocardial ischemia has gradually attracted attention.
  • the coronary system is composed of epicardial coronary and microcirculation.
  • the degree of epicardial coronary stenosis greater than or equal to 50% can lead to insufficient blood supply to the myocardium, and the clinical diagnosis is coronary heart disease.
  • clinical studies have shown that abnormal coronary microcirculation may also lead to insufficient myocardial blood supply.
  • Coronary microcirculation refers to the blood circulation between the arterioles and venules, and is the place where blood exchanges with tissue cells. Studies have shown that although coronary blood flow reaches TIMI grade 3 after successful percutaneous coronary intervention, almost 30% of patients have abnormal microvascular function, leading to poor prognosis. Therefore, with the continuous research, people have gradually realized that coronary microvascular dysfunction is an important mechanism of the pathophysiology of many heart diseases. It is necessary to accurately evaluate the functional status of coronary microcirculation.
  • Coronary microcirculation resistance index (index of microcirculatory resistance IMR) is an index to evaluate the status of coronary microcirculation function.
  • the existing IMR measurement device records the coronary pressure and temperature synchronously through a soft pressure guide wire.
  • the two temperature sensors on the guide wire rod can detect the time difference between temperature changes to know that the saline has run from the guide catheter to the temperature sensor on the tip of the guide wire.
  • the average conduction time (Tmn) according to the definition of the product of the pressure Pd and Tmn at the distal coronary artery, can obtain the IMR value.
  • the invention provides a system for measuring a microcirculation resistance index and a coronary artery analysis system, so as to solve the problem that the pressure guide wire needs to be passed through the distal end of a coronary artery stenosis for IMR measurement in the prior art, which has the problems of difficulty and high risk of surgery. .
  • the present application provides a system for measuring a microcirculation resistance index, including: a three-dimensional modeling device, an invasive blood pressure sensor, and an IMR measurement device, the IMR measurement device and the three-dimensional modeling Device, invasive blood pressure sensor connection;
  • the three-dimensional modeling device is used to read a coronary angiography image, select a heartbeat cycle region of the coronary angiography image, measure the length L of the blood vessel in the heartbeat cycle region, and perform three-dimensional modeling to obtain a three-dimensional coronary artery. structure;
  • the invasive blood pressure sensor is used to measure the coronary portal pressure Pa;
  • the IMR measuring device is used to measure the pressure drop ⁇ P i and the blood flow velocity V h from the coronary artery entrance to the distal end of the coronary stenosis under the condition of maximum congestion of the blood vessel, read the length L and the coronary artery entrance pressure Pa, and calculate the micro
  • the cyclic resistance coefficient IMR is calculated as follows:
  • IMR (Pa- ⁇ P i ) ⁇ L / V h .
  • the three-dimensional modeling device includes an image reading module and a segmentation module, a blood vessel length measurement module, and a three-dimensional modeling module, and the segmentation module and the image reading module
  • the blood vessel length measurement module is connected to the three-dimensional modeling module, and the blood vessel length measurement module is connected to the IMR measurement device;
  • the image reading module is used for reading a contrast image
  • the segmentation module is used to select a heartbeat cycle region of the coronary angiography image
  • the blood vessel length measuring module is configured to measure a length L of a blood vessel in the heartbeat cycle region, and transmit the length L of the blood vessel to the IMR measuring device;
  • the three-dimensional modeling module is configured to perform three-dimensional modeling according to the coronary angiography image selected by the segmentation module to obtain a three-dimensional structure of a coronary artery.
  • the IMR measurement device includes a pressure drop measurement module, a blood flow velocity measurement module, and an IMR calculation module, the pressure drop measurement module, the blood flow velocity measurement module, The invasive blood pressure sensor and the blood vessel length measurement module are both connected to the IMR calculation module;
  • the pressure drop measurement module is configured to measure a pressure drop ⁇ P i from the entrance of the coronary artery to the distal end of the coronary stenosis in a state of maximum congestion of the blood vessel;
  • the blood flow velocity measurement module is used to measure the blood flow velocity V h under the condition of maximum congestion of blood vessels;
  • the IMR calculation module is used to calculate the microcirculation resistance coefficient IMR, and the calculation formula is as follows:
  • IMR (Pa- ⁇ P i ) ⁇ L / V h .
  • the pressure drop measurement module includes: a grid division module and a pressure drop ⁇ P i calculation module, the pressure drop ⁇ P i calculation module and the grid division module, The IMR calculation module is connected;
  • the grid division module is used to grid the three-dimensional structure of the coronary arteries, and the coronary center line is used as the vertical axis.
  • the grid is divided into m points along the coronary center line.
  • the cross section corresponding to the point is divided into n nodes, and ⁇ P i represents the average value of the pressure of all nodes in the cross section of the i-th point on the center line of the coronary artery, that is, the pressure from the entrance of the coronary artery to the distal end of the coronary stenosis. Pressure drop;
  • the pressure drop ⁇ P i calculation module is configured to calculate by using the following formula:
  • P 1 represents the pressure value of the first node on the cross section of the i-th point in the three-dimensional structure grid
  • P 2 represents the pressure value of the second node on the cross section of the i-th point in the three-dimensional structure grid
  • P n represents the pressure value of the n-th node on the cross-section of the i-th point
  • m and n are positive integers
  • the pressure value of each said node is calculated using the Navier-Stokes equation.
  • the blood flow velocity measurement module includes an average blood flow velocity Measurement module and blood flow velocity V h calculation module, the average blood flow velocity
  • the measurement module and the IMR calculation module are both connected to the blood flow velocity V h calculation module;
  • Said mean blood flow velocity A measurement module for measuring using a contrast agent traversal distance algorithm, Stewart-Hamilton algorithm, First-pass distribution analysis method, optical flow method, or fluid continuity method; or dividing the heartbeat period region into N partial region images;
  • Means measuring the average blood flow velocity in the heartbeat cycle area L represents the length of the blood vessel, N represents the number of frames of the local area image into which the heartbeat cycle area is divided, and fps represents the interval between switching between adjacent two frames of images;
  • the blood flow velocity V h calculation module is configured to According to the formula calculation, a and b both represent constants, a represents a constant ranging from 1 to 3, and b represents a constant ranging from 50 to 300.
  • the three-dimensional modeling device further includes: an image processing module, a coronary centerline extraction module, and a blood vessel diameter measurement module, the image processing module and the coronary center The line extraction module is connected, and the three-dimensional modeling module is connected to the coronary centerline extraction module and the blood vessel diameter measurement module;
  • the image processing module is configured to receive at least two positions of coronary angiography images transmitted by the segmentation module, and remove interference blood vessels of the coronary angiography image to obtain a result image;
  • the coronary centerline extraction module is configured to extract a coronary centerline of each of the resulting images along the extending direction of the coronary artery;
  • a blood vessel diameter measurement module for extracting the blood vessel diameter
  • the three-dimensional modeling module is configured to project each centerline and diameter of the coronary artery on a three-dimensional space for three-dimensional modeling to obtain a three-dimensional structure of a coronary artery.
  • an image denoising module is provided inside the image processing module to denoise the coronary angiography image, including: static noise and dynamic noise.
  • the image processing module is provided with a catheter feature point extraction module and a coronary artery extraction module both connected to the coronary centerline extraction module, and the coronary artery extraction module Connected with the catheter feature point extraction module;
  • the catheter feature point extraction module is used to define the first frame segmented image with the appearance of the catheter as a reference image, and the k-th frame segmented with the complete coronary artery to appear as the target image, where k is a positive integer greater than 1. ; Subtract the target image from the reference image, and extract a feature point O of the catheter;
  • the coronary artery extraction module is configured to subtract the reference image from the target image to extract an area image where the coronary artery is located; the area image uses the characteristic points of the catheter as seed points for dynamic growth, The resulting image is obtained.
  • the catheter feature point extraction module is provided with a first denoising module, a first image enhancement module, and a first binarization processing module, which are sequentially connected, and the first A binarization processing module is connected with the coronary artery extraction module;
  • the first denoising module is configured to subtract the target image from the reference image and denoise, including: static noise and dynamic noise;
  • the first image enhancement module is configured to perform image enhancement on the denoised image
  • the first binarization processing module is configured to perform binarization processing on the enhanced catheter image to obtain a binarized image having a set of catheter characteristic points O.
  • the coronary artery extraction module includes a second denoising module, a second image enhancement module, and a region image extraction module, which are sequentially connected, and the region image extraction module and the The first binary processing module is connected;
  • the second denoising module is configured to subtract the reference image from the target image and denoise, including: static noise and dynamic noise;
  • the second image enhancement module is configured to perform image enhancement on the image after denoising
  • the area image extraction module is configured to determine and extract a region of a coronary artery according to a positional relationship between each region in the target image and the feature point of the catheter after enhancement, that is, an area image where the coronary artery is located.
  • the region extraction module includes a second binarization processing module and a dynamic region growth module connected in sequence, the dynamic region growth module and the first binary value.
  • the second binarization processing module is configured to perform binarization processing on an area image at a position where the coronary artery is located to obtain a binarized coronary artery image;
  • the dynamic region growing module is configured to perform a morphological operation on the binarized coronary artery image, and use the characteristic points of the catheter as seed points, and the binarized coronary artery image is performed according to a position of the seed point.
  • the dynamic region grows to obtain the resulting image.
  • the system for measuring the microcirculation resistance index further includes: a coronary diastolic blood flow velocity V f measurement module and an instantaneous non-waveform microcirculation resistance index iFMR measurement device, and the instantaneous non-waveform microcirculation resistance index iFMR
  • the measurement device is connected to the three-dimensional modeling device, the invasive blood pressure sensor, and the coronary diastolic blood flow velocity V f measurement module;
  • the instantaneous waveform-free microcirculation resistance index iFMR measuring device is used to measure the three-dimensional coronary structure during the waveform-free period, and respectively measure the pressure drop ⁇ P i 'and Measure the diastolic blood flow velocity V f , read the length L of the blood vessel and the coronary artery inlet pressure Pa ′ during the diastolic period without waveform, and calculate the instantaneous non-waveform microcirculation resistance index iFMR.
  • the calculation formula is as follows:
  • iFMR (Pa'- ⁇ P i ') ⁇ L / V f ;
  • L represents the length of the blood vessel
  • N represents the number of frames of the local area image into which the coronary angiography image is divided
  • fps' represents the interval time between switching between two adjacent images during the diastolic period without waveform.
  • the present application provides a coronary artery analysis system, including the system for measuring a microcirculation resistance index according to any one of the above.
  • the present application provides a system for measuring a microcirculation resistance index, including a three-dimensional modeling device, an invasive blood pressure sensor, and an IMR measurement device.
  • the IMR measurement device is connected to the three-dimensional modeling device and the invasive blood pressure sensor.
  • This application does not require dilation drugs or pressure guide wire measurement time, only needs to measure the pressure at the entrance of the coronary artery, does not need to pass through the distal end of the coronary artery stenosis, which reduces the difficulty and risk of the operation; The blank in the industry, the operation is simpler.
  • FIG. 1 is a structural block diagram of an embodiment of a system for measuring a microcirculation resistance index of the present application
  • FIG. 2 is a structural block diagram of a three-dimensional modeling device of the present application
  • FIG. 3 is a structural block diagram of an IMR measurement device of the present application.
  • FIG. 4 is a structural block diagram of a blood flow velocity measurement module of the present application.
  • FIG. 5 is a structural block diagram of a three-dimensional modeling device of the present application.
  • FIG. 6 is a structural block diagram of an image processing module of the present application.
  • FIG. 7 is a structural block diagram of a catheter feature point extraction module of the present application.
  • FIG. 8 is a structural block diagram of an area image extraction module of the present application.
  • FIG. 9 is a schematic structural diagram of an invasive blood pressure sensor of the present application.
  • FIG. 10 is a reference image
  • 11 is a target image to be segmented
  • FIG. 12 is another target image to be segmented
  • Figure 13 is an enhanced catheter image
  • FIG. 15 is an enhanced target image
  • 16 is an image of a region where a coronary artery is located
  • Figure 17 is the resulting image
  • Figure 18 is a screenshot of a cross-section
  • Figure 19 is a screenshot of the longitudinal section
  • Figure 20 shows two body radiography images
  • the left diagram of FIG. 21 is a graph of blood vessel length and blood vessel diameter
  • FIG. 22 is a three-dimensional structural diagram of a coronary artery generated by combining the posture angle and the center line of the coronary artery of FIG. 21;
  • FIG. 23 is a diagram of the number of frames of a cut image
  • FIG. 24 is a test chart of coronary artery inlet pressure
  • Figure 25 is an IMR test chart
  • Figure 26 is an iFMR test chart
  • FIG. 27 is a structural block diagram of another embodiment of a system for measuring a microcirculation resistance index of the present application.
  • 3D modeling device 100 image reading module 110, segmentation module 120, blood vessel length measurement module 130, 3D modeling module 140, image processing module 150, image denoising module 151, catheter feature point extraction module 152, first denoising Module 1521, first image enhancement module 1522, first binarization processing module 1523, coronary artery extraction module 153, second denoising module 1531, second image enhancement module 1532, area image extraction module 1533, second binarization Processing module 15331, dynamic area growth module 15332, coronary centerline extraction module 160, blood vessel diameter measurement module 170, invasive blood pressure sensor 200, pressure sensor chip 1, peristaltic pump head 2, hose 3, Luer connector 4, laser Transmitter 5, display 6, check valve 7; IMR measurement device 300, pressure drop measurement module 310, grid division module 311, pressure drop ⁇ P i calculation module 312, blood flow velocity measurement module 320, average blood flow velocity The measurement module 321, the blood flow velocity V h calculation module 322, the IMR calculation module 330, the coronary diastolic blood flow velocity V f measurement
  • the present application provides a system for measuring a microcirculation resistance index, including: a three-dimensional modeling device 100, an invasive blood pressure sensor 200, and an IMR measurement device 300; the IMR measurement device 300 and the three-dimensional modeling device 100, The invasive blood pressure sensor 200 is connected; the three-dimensional modeling device 100 is used to read the coronary angiography image, select a heartbeat cycle area of the coronary angiography image, measure the length L of the blood vessel in the heartbeat cycle area, and perform three-dimensional modeling to obtain the coronary shape.
  • IMR measuring device 300 is used to measure the pressure drop ⁇ P i from the coronary artery entrance to the distal end of coronary stenosis under the condition of maximum congestion and measure blood flow
  • the speed V h , the length L and the coronary inlet pressure Pa are read, and the microcirculation resistance coefficient IMR is calculated.
  • the application provides a system for measuring a microcirculation resistance index, including a three-dimensional modeling device 100, an invasive blood pressure sensor 200, and an IMR measurement device 300.
  • the IMR measurement device 300 is connected to the three-dimensional modeling device 100 and the invasive blood pressure sensor 200.
  • This application does not require dilation drugs or pressure guide wire measurement time, only needs to measure the pressure at the entrance of the coronary artery, does not need to pass through the distal end of the coronary artery stenosis, which reduces the difficulty and risk of the operation; The blank in the industry, the operation is simpler.
  • the three-dimensional modeling device 100 includes an image reading module 110, a segmentation module 120, a blood vessel length measurement module 130, and a three-dimensional modeling module 140.
  • the segmentation module 120 and the image reading module 110 are connected.
  • the blood vessel length measurement module 130 is connected to the IMR measurement device 300.
  • the image reading module 110 is used to read the contrast image.
  • the segmentation module 120 is used to select the coronary angiography image.
  • a heartbeat cycle area the blood vessel length measurement module 130 is used to measure the length L of the blood vessels in the heartbeat cycle area and transfer the length L of the blood vessels to the IMR measurement device 300; the three-dimensional modeling module 140 is used to calculate the crown selected by the segmentation module 120 The angiographic images were three-dimensionally modeled to obtain the three-dimensional structure of the coronary arteries.
  • the IMR measurement device 300 includes a pressure drop measurement module 310, a blood flow velocity measurement module 320, and an IMR calculation module 330.
  • the measurement module 130 is connected to the IMR calculation module 330.
  • the pressure drop measurement module 310 is used to measure the pressure drop ⁇ P i between the coronary artery entrance and the distal end of the coronary stenosis under the condition of maximum congestion.
  • the blood flow velocity measurement module 320 is used for the blood vessel.
  • the pressure drop measurement module 310 includes: a grid division module 311 and a pressure drop ⁇ P i calculation module 312, a pressure drop ⁇ P i calculation module 312 and a grid division module 311 and IMR
  • the calculation module 330 is connected; as shown in FIG. 18 and FIG. 19, the mesh division module 311 is used to mesh the three-dimensional structure of the coronary artery, and use the center line of the coronary artery as the vertical axis, and the mesh is divided along the center line of the coronary artery.
  • the pressure drop ⁇ P i calculation module is configured to calculate by using the following formula:
  • P 1 represents the pressure value of the first node on the cross section of the i-th point in the three-dimensional structure grid
  • P 2 represents the pressure value of the second node on the cross section of the i-th point in the three-dimensional structure grid
  • P n represents the pressure value of the n-th node on the cross-section of the i-th point
  • m and n are positive integers
  • the pressure value of each said node is calculated using the Navier-Stokes equation.
  • the blood flow velocity measurement module 320 includes an average blood flow velocity.
  • the measurement module 321 and the IMR calculation module 330 are both connected to the blood flow velocity V h calculation module 322; the average blood flow velocity
  • the measurement module 321 divides the heartbeat period region into N partial region images; among them, Indicates the average blood flow velocity in the measurement heartbeat cycle area, L indicates the length of the blood vessel, N indicates the number of frames of the local area image into which the heartbeat cycle area is divided, and fps indicates the interval between switching between two adjacent frames;
  • the average blood flow velocity The measurement module 321 is configured to measure using a contrast agent traversal distance algorithm, a Stewart-Hamilton algorithm, a First-pass distribution analysis method, an optical flow method, or a fluid continuous method.
  • the three-dimensional modeling device 100 further includes: an image processing module 150, a coronary centerline extraction module 160, and a blood vessel diameter measurement module 170.
  • the image processing module 150 and the coronary centerline The extraction module 160 is connected, and the three-dimensional modeling module 140 is connected to the coronary centerline extraction module 160 and the blood vessel diameter measurement module 170.
  • the image processing module 150 is configured to receive at least two positions of the coronary angiography image transmitted by the segmentation module 120, and remove the interference vessels of the coronary angiography image to obtain the resulting image shown in FIG.
  • the coronary centerline extraction module 160 is used In the direction along which the coronary artery extends, the coronary centerline of each of the resulting images shown in FIG. 17 is extracted;
  • the blood vessel diameter measurement module 170 is used to measure the blood vessel diameter;
  • the three-dimensional modeling module 140 is used to center each coronary artery Lines and diameters are projected on a three-dimensional space for three-dimensional modeling to obtain the three-dimensional structure of the coronary arteries.
  • an image denoising module 151 is provided inside the image processing module 150 to denoise coronary angiographic images, including: static noise and dynamic noise.
  • the denoising module 151 removes interference factors in the coronary angiography image and improves the quality of image processing.
  • the image processing module 150 internally includes a catheter feature point extraction module 152 and a coronary artery extraction module 153 connected to the coronary centerline extraction module 160, and a catheter feature point extraction module 152.
  • the catheter feature point extraction module 152 is used to define the first frame segmented image with a catheter as a reference image as shown in FIG.
  • the k-th divided image is defined as the target image shown in FIG. 11 and FIG. 12, and k is a positive integer greater than 1.
  • the reference image shown in FIG. 10 is subtracted from the target shown in FIG. 11 and FIG. 12.
  • the coronary artery extraction module 153 is configured to subtract the reference image shown in FIG. 10 and the target image shown in FIG. 11 and FIG. 12 to extract an image of the area where the coronary artery is located;
  • the area image is dynamically grown using the characteristic points of the catheter as seed points, and the resulting image shown in FIG. 17 is obtained.
  • a first feature of the catheter feature point extraction module 152 is a first denoising module 1521, a first image enhancement module 1522, and a first binarization processing module 1523.
  • the binarization processing module 1523 is connected to the coronary artery extraction module 153; the first denoising module 1521 is used to subtract the reference image shown in FIG. 10 and the target image shown in FIG. 11 and denoise, including: : Static noise and dynamic noise; the first image enhancement module 1522 is used for image enhancement of the denoised image; preferably, the application uses a multi-scale Hessian matrix to enhance the image; the first binarization processing module 1523 is used A binarization process is performed on the enhanced catheter image shown in FIG. 13 to obtain a binarized image having a set of catheter characteristic points O.
  • the coronary artery extraction module 153 includes a second denoising module 1531, a second image enhancement module 1532, and a region image extraction module 1533, which are sequentially connected.
  • the region image extraction module 1533 and the first A binarization processing module 1523 is connected;
  • a second denoising module 1531 is used to subtract a reference image from the target image and denoise, including: static noise and dynamic noise;
  • a second image enhancement module 1532 is used to denoise the image Perform image enhancement; preferably, the present application uses a multi-scale Hessian matrix to enhance the image;
  • an area image extraction module 1533 is configured to according to the positional relationship between each region in the enhanced target image and the feature points of the catheter, as shown in FIG. 15, The area of the coronary arteries is determined and extracted, that is, the area image where the coronary arteries are located as shown in FIG. 16.
  • the region image extraction module 1533 includes: a second binarization processing module 15331 and a dynamic region growth module 15332 connected in order, the dynamic region growth module 15332 and the first binarization.
  • the processing module 1523 is connected; the second binarization processing module 15331 is used to perform binarization processing on the area image of the coronary artery as shown in FIG. 16 to obtain a binarized coronary artery image; the dynamic area growth module 15332 is used for The morphological operation is performed on the binary coronary image, and the characteristic points of the catheter shown in FIG. 14 are used as seed points.
  • the binary binary coronary image is dynamically grown according to the position of the seed point, as shown in FIG. 17.
  • the resulting image is shown.
  • the present application realizes the synthesis of a three-dimensional structure of a coronary artery based on a coronary angiography image, which fills a gap in the industry and has a positive effect on the field of medical technology.
  • the invasive blood pressure sensor 200 includes a pressure sensing chip 1 and also includes a peristaltic pump head 2.
  • the peristaltic pump head 2 includes a rotating wheel, and the rotating wheel is provided with a rotating motor.
  • the peristaltic pump head 2 has a built-in hose 3, one end of the hose 3 is connected to the pressure sensing chip 1, and the other end is connected to the saline bag through an infusion tube.
  • One end of the invasive blood pressure sensor is connected to the saline bag, and the other end is connected to the patient's aorta through an external device.
  • the purpose of the invasive blood pressure sensor is to connect the patient's aorta, and the middle is filled with physiological saline so that it can form a pathway with the aorta.
  • the analog signal collected by the internal circuit of the invasive blood pressure sensor is converted into a digital model to obtain the coronary inlet pressure Pa of the aortic pressure.
  • the coronary portal pressure Pa is the average of the sum of the systolic and diastolic blood pressure; the systolic, diastolic, and coronary portal pressure Pa are displayed on the display screen 6.
  • connection end of the hose 3 and the infusion tube is provided with a Luer joint 4 and is connected to the infusion tube; a check valve 7 and a check valve 7 are connected between the hose 3 and the pressure sensing chip 1.
  • the allowed flow direction is from saline bag to pressure sensor chip 1;
  • the invasive blood pressure sensor also includes a laser transmitter 5, which is located at the same level as the pressure sensor chip 1.
  • the laser transmitter 5 can emit a horizontal beam to illuminate the heart part of the patient's body, ensuring that the height of the laser transmitter 5 is at the same level as the heart.
  • the beam plays an auxiliary alignment function, and the alignment is simpler.
  • the pressure sensor chip 1 is designed to be at the same level as the laser transmitter 5, so as to ensure that the pressure sensor chip 1 is at the same level with the heart, and can accurately measure the aortic pressure.
  • an embodiment of the present application further includes a coronary diastolic blood flow velocity V f measurement module 400 and an instantaneous non-waveform microcirculation resistance index iFMR measurement device 500, and an instantaneous non-waveform microcirculation resistance index iFMR
  • the measurement device 500 is connected to the three-dimensional modeling device 100, the invasive blood pressure sensor 200, and the diastolic blood flow velocity Vf measurement module 400.
  • the instantaneous non-waveform microcirculation resistance index iFMR measurement device 500 is used for three-dimensional The coronary structure was measured, and the pressure drop ⁇ P i ′ from the coronary artery entrance to the distal end of the coronary stenosis during the coronary diastole without waveform was measured, respectively, and the blood flow velocity V f was measured during the coronary diastole. During the period of no waveform of coronary artery pressure Pa ', the instantaneous waveform-free microcirculation resistance index iFMR is calculated. The calculation formula is as follows:
  • iFMR (Pa'- ⁇ P i ') ⁇ L / V f ;
  • L represents the length of the blood vessel
  • N represents the number of frames of the local area image into which the coronary angiography image is divided
  • fps' represents the interval time between switching between adjacent two frames during the diastolic period without a waveform.
  • the instantaneous non-waveform microcirculation resistance index iFMR measurement device can be connected to the IMR measurement device and used to read the three-dimensional coronary structure's blood vessel length L and image segmentation frame N measured by the IMR measurement device for direct calculation of iFMR;
  • the same or similar pressure drop measurement module, mesh division module, pressure drop ⁇ P i calculation module, and IMR calculation module as the IMR device can be set inside the iFMR device for self-measurement or calculation to obtain the coronary artery entrance during the diastolic period without waveform
  • the pressure drop ⁇ P i ′ to the distal end of the coronary stenosis and the coronary artery inlet pressure Pa ′ during the diastole without waveform; the devices capable of achieving the above functions are all within the protection scope of the present application.
  • FIG. 20 coronary angiography images of two positions taken for one patient; the posture angle on the left is the right anterior oblique RAO: 25 ° and the head position CRA: 23 °; the posture on the right is the right anterior oblique RAO : 3 ° and head position CRA: 30 °;
  • the three-dimensional structure of the coronary artery has a vascular length L value of 120 mm; the generated three-dimensional structure of the coronary artery is shown in FIG. 22;
  • the existing technology cannot measure iFMR.
  • Example 1 By comparing Example 1 and Comparative Example 1, it can be seen that the IMR measurement results are basically the same, so the measurement results of Example 1 are accurate, and the system used in Example 1 of the present application does not need to expand the drug and does not require a pressure guide wire, only measurement The coronary inlet pressure does not need to pass through the distal end of the coronary artery stenosis, which reduces the difficulty and risk of surgery. Moreover, the IMR measurement is realized through the angiographic image, which makes up for the blank in the industry and the operation is simpler.
  • iFMR is a newly proposed index for judging myocardial ischemia. Based on the diastolic flow velocity measured by conventional angiographic flow velocity, the application does not need to calculate iFMR by simulating dilated flow velocity.
  • the iFMR is used to reflect the transient Waveform microcirculation resistance index; combining iFMR and IMR to judge coronary artery stenosis, which improves the accuracy of judgment.
  • the present application provides a coronary artery analysis system, including the system for measuring a microcirculation resistance index according to any one of the above.
  • aspects of the present invention can be implemented as a system, method or computer program product. Therefore, various aspects of the present invention can be embodied in the following forms: a complete hardware implementation, a complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software aspects, They can be collectively referred to as "circuits," “modules,” or “systems.”
  • aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, which contains computer-readable program code. Implementation of the method and / or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or a combination thereof.
  • the hardware for performing selected tasks according to embodiments of the present invention may be implemented as a chip or a circuit.
  • selected tasks according to embodiments of the present invention may be implemented as multiple software instructions executed by a computer using any suitable operating system.
  • one or more tasks such as a computing platform for executing a plurality of instructions, according to exemplary embodiments of methods and / or systems, as described herein, are performed by a data processor.
  • the data processor includes a volatile memory for storing instructions and / or data and / or a non-volatile memory for storing instructions and / or data, such as a magnetic hard disk and / or Move the media.
  • a network connection is also provided.
  • a display and / or user input device, such as a keyboard or mouse, is optionally also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
  • a more specific example (non-exhaustive list) of computer-readable storage media would include the following:
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal in baseband or propagated as part of a carrier wave, which carries a computer-readable program code. Such a propagated data signal may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, and the computer-readable medium may send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • any combination of one or more programming languages can be used to write computer program code for performing operations for aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C ++, and conventional procedural programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer, partly on a remote computer, or entirely on a remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider) Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider Internet service provider
  • each block of the flowcharts and / or block diagrams, and combinations of blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions can be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing device, thereby producing a machine such that these computer program instructions, when executed by a processor of a computer or other programmable data processing device, are executed , Means for implementing the functions / actions specified in one or more blocks in the flowcharts and / or block diagrams.
  • These computer program instructions may also be stored in a computer-readable medium, and these instructions cause a computer, other programmable data processing device, or other device to work in a specific manner, so that the instructions stored in the computer-readable medium produce Articles of instruction that implement the functions / actions specified in one or more of the blocks in the flowcharts and / or block diagrams.
  • Computer program instructions may also be loaded onto a computer (e.g., a coronary artery analysis system) or other programmable data processing device to cause a series of operational steps to be performed on the computer, other programmable data processing device, or other device to produce a computer-implemented process So that instructions executed on a computer, other programmable device, or other device provide a process for implementing a function / action specified in a flowchart and / or one or more block diagrams or blocks.
  • a computer e.g., a coronary artery analysis system
  • other programmable data processing device to produce a computer-implemented process So that instructions executed on a computer, other programmable device, or other device provide a process for implementing a function / action specified in a flowchart and / or one or more block diagrams or blocks.

Abstract

一种测量微循环阻力指数的系统以及包括该系统的冠状动脉分析系统。该测量微循环阻力指数的系统包括:三维建模装置(100)、有创血压传感器(200)和IMR测量装置(300),IMR测量装置(300)与三维建模装置(100)、有创血压传感器(200)连接;三维建模装置(100)用于读取冠状动脉造影图像,测量心跳周期区域内的血管的长度L,三维建模获得冠状动脉三维结构;有创血压传感器(200)用于测量冠脉入口压力Pa;IMR测量装置(300)用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP和血流速度Vh,计算微循环阻力系数IMR,IMR=(Pa‑ΔPi)×L/Vh。该系统无需穿过冠状动脉血管狭窄远端,降低了手术难度和风险;且通过造影图像实现了IMR的测量,操作简单。

Description

测量微循环阻力指数的系统以及冠脉分析系统 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种测量微循环阻力指数的系统以及冠脉分析系统。
背景技术
冠状动脉微循环功能异常对于心肌缺血的影响逐渐得到关注,冠脉系统由心外膜冠脉以及微循环组成。
一般来说,心外膜冠脉狭窄程度大于等于50%可导致心肌供血不足,临床诊断为冠心病。但是,临床研究显示,冠脉微循环异常也有可能导致心肌供血不足。
冠脉微循环是指微动脉和微静脉之间的血液循环,是血液与组织细胞进行物质交换的场所。研究表明尽管患者经皮冠状动脉介入治疗术成功后冠脉血流达TIMI3级,但仍有近30%的病人出现微血管功能异常,导致预后不佳。因此,随着研究的不断深入,人们逐渐认识到冠脉微血管功能异常是许多心脏疾病病理生理的一个重要机制,有必要准确评估冠脉微循环的功能状态。
冠脉微循环阻力指数(index of microcirculatory resistance IMR)是评估冠脉微循环功能状况的指标。
现有的IMR测量装置是通过软压力导丝同步记录冠脉压力和温度,导丝杆上的两个温度感受器探测到温度变化的时间差就可知道盐水从指引导管到达导丝头端温度感受器运行的平均传导时间(transit mean time,Tmn),根据定义冠脉远端的压力Pd与Tmn的乘积就可得出IMR值。
但上述压力导丝测量IMR需要将压力导丝穿过冠状动脉血管狭窄远端,增加手术难度和风险,同时压力导丝昂贵的价格也限制其大规模应用。
发明内容
本发明提供了一种测量微循环阻力指数的系统以及冠脉分析系统,以解决现有技术中需要将压力导丝穿过冠状动脉血管狭窄远端进行IMR测量,存在手术难度和风险高的问题。
为实现上述目的,第一方面,本申请提供了一种测量微循环阻力指数的系统,包括:三维建模装置、有创血压传感器和IMR测量装置,所述IMR测量装置与所述三维建模装置、有创血压传感器连接;
所述三维建模装置用于读取冠状动脉造影图像,选取所述冠状动脉造影图像的一个心跳周期区域,测量所述心跳周期区域内的血管的长度L,进行三维建模,获得冠状动脉三维结构;
所述有创血压传感器用于测量冠脉入口压力Pa;
所述IMR测量装置用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i和测量血流速度V h,读取长度L和冠脉入口压力Pa,计算微循环阻力系数IMR,计算公式如下:
IMR=(Pa-ΔP i)×L/V h
可选地,上述的测量微循环阻力指数的系统,所述三维建模装置包括图像读取模块和分割模块、血管长度测量模块和三维建模模块,所述分割模块与所述图像读取模块、所述血管长度测量模块、所述三维建模模块连接,所述血管长度测量模块与所述IMR测量装置连接;
所述图像读取模块用于读取造影图像;
所述分割模块,用于选取所述冠状动脉造影图像的一个心跳周期区域;
所述血管长度测量模块用于测量所述心跳周期区域内的血管的长度L,并将所述血管的长度L传递给所述IMR测量装置;
所述三维建模模块,用于根据所述分割模块选取的冠脉造影图像进行三维建模,获得冠状动脉三维结构。
可选地,上述的测量微循环阻力指数的系统,所述IMR测量装置包括压力降测量模块、血流速度测 量模块和IMR计算模块,所述压力降测量模块、所述血流速度测量模块、所述有创血压传感器、所述血管长度测量模块均与所述IMR计算模块连接;
所述压力降测量模块,用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i
所述血流速度测量模块,用于血管在最大充血状态下,测量血流速度V h
所述IMR计算模块用于计算微循环阻力系数IMR,计算公式如下:
IMR=(Pa-ΔP i)×L/V h
可选地,上述的测量微循环阻力指数的系统,所述压力降测量模块包括:网格划分模块和压力降ΔP i计算模块,所述压力降ΔP i计算模块与所述网格划分模块、所述IMR计算模块连接;
所述网格划分模块用于对冠状动脉三维结构进行网格划分,以冠脉中心线作为纵轴,网格沿所述冠脉中心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值,即为冠脉入口到冠脉狭窄远端的压力降;
所述压力降ΔP i计算模块用于采用如下公式计算:
Figure PCTCN2019102259-appb-000001
P 1表示三维结构网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维结构网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
每个所述节点的压力值采用纳维-斯托克斯方程计算得出。
可选地,上述的测量微循环阻力指数的系统,所述血流速度测量模块包括平均血流速度
Figure PCTCN2019102259-appb-000002
测量模块和血流速度V h计算模块,所述平均血流速度
Figure PCTCN2019102259-appb-000003
测量模块、所述IMR计算模块所述均与所述血流速度V h计算模块连接;
所述平均血流速度
Figure PCTCN2019102259-appb-000004
测量模块,用于采用造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法测量;或者将所述心跳周期区域分成N个局部区域图像;
Figure PCTCN2019102259-appb-000005
其中,
Figure PCTCN2019102259-appb-000006
表示测量所述心跳周期区域内的平均血流速度,L表示血管的长度,N表示心跳周期区域被分成的局部区域图像的帧数,fps表示相邻两帧图像之间切换的间隔时间;
所述血流速度V h计算模块,用于根据
Figure PCTCN2019102259-appb-000007
公式计算,a、b均表示常数,a表示取值范围为1~3的常数,b表示取值范围为50~300的常数。
可选地,上述的测量微循环阻力指数的系统,L的取值范围为50~150mm;或L=100mm。
可选地,上述的测量微循环阻力指数的系统,所述三维建模装置还包括:图像处理模块、冠脉中心线提取模块和血管直径测量模块,所述图像处理模块与所述冠脉中心线提取模块连接,所述三维建模模块与所述冠脉中心线提取模块、所述血管直径测量模块连接;
所述图像处理模块用于接收所述分割模块传递的至少两个体位的冠脉造影图像,并去除所述冠脉造影图像的干扰血管,得到结果图像;
所述冠脉中心线提取模块用于沿着所述冠状动脉的延伸方向,提取每幅所述结果图像的冠脉中心线;
血管直径测量模块用于提取所述血管直径;
所述三维建模模块用于将每根所述冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状 动脉三维结构。
可选地,上述的测量微循环阻力指数的系统,所述图像处理模块内部设置图像去噪模块,用于对所述冠脉造影图像去噪,包括:静态噪声和动态噪声。
可选地,上述的测量微循环阻力指数的系统,所述图像处理模块内部设置均与所述冠脉中心线提取模块连接的导管特征点提取模块和冠状动脉提取模块,所述冠状动脉提取模块与所述导管特征点提取模块连接;
所述导管特征点提取模块用于将有导管出现的第一帧分割图像定义为参考图像,将有完整冠状动脉出现的第k帧所述分割图像定义为目标图像,k为大于1的正整数;将所述参考图像减去所述目标图像,提取所述导管的特征点O;
所述冠状动脉提取模块用于将所述目标图像减去所述参考图像,提取所述冠状动脉所处位置的区域图像;所述区域图像以所述导管的特征点作为种子点进行动态生长,获得所述结果图像。
可选地,上述的测量微循环阻力指数的系统,所述导管特征点提取模块内部设置依次连接的第一去噪模块、第一图像增强模块和第一二值化处理模块,所述第一二值化处理模块与所述冠状动脉提取模块连接;
所述第一去噪模块用于将所述参考图像减去所述目标图像且去噪,包括:静态噪声和动态噪声;
所述第一图像增强模块用于对所述去噪后的图像进行图像增强;
所述第一二值化处理模块用于对增强后的导管图像进行二值化处理,得到具有一组导管特征点O的二值化图像。
可选地,上述的测量微循环阻力指数的系统,所述冠状动脉提取模块包括依次连接的第二去噪模块、第二图像增强模块和区域图像提取模块,所述区域图像提取模块与所述第一二值化处理模块连接;
所述第二去噪模块用于将所述目标图像减去所述参考图像且去噪,包括:静态噪声和动态噪声;
所述第二图像增强模块用于对去噪后的所述图像进行图像增强;
所述区域图像提取模块用于根据增强后的所述目标图像中各区域与所述导管特征点的位置关系,确定并提取冠状动脉的区域,即为所述冠状动脉所处位置的区域图像。
可选地,上述的测量微循环阻力指数的系统,所述区域提取模块包括:依次连接的第二二值化处理模块和动态区域生长模块,所述动态区域生长模块与所述第一二值化处理模块连接;
所述第二二值化处理模块用于对所述冠状动脉所处位置的区域图像进行二值化处理,获得二值化冠状动脉图像;
所述动态区域生长模块用于对所述二值化冠状动脉图像进行形态学运算,以所述导管的特征点作为种子点,所述二值化冠状动脉图像依据所述种子点所处位置进行动态区域生长,获得所述结果图像。
可选地,上述的测量微循环阻力指数的系统,还包括:冠脉舒张期血流速度V f测量模块和瞬时无波形微循环阻力指数iFMR测量装置,所述瞬时无波形微循环阻力指数iFMR测量装置与所述三维建模装置、所述有创血压传感器、所述冠脉舒张期血流速度V f测量模块连接;
所述瞬时无波形微循环阻力指数iFMR测量装置用于对处于无波形期的三维冠脉结构进行测量,分别测量舒张期无波形期间冠脉入口到冠脉狭窄远端的压力降ΔP i’和测量冠脉舒张期血流速度V f,读取血管的长度L和舒张期无波形期间冠脉入口压力Pa’,计算瞬时无波形微循环阻力指数iFMR,计算公式如下:
iFMR=(Pa’-ΔP i’)×L/V f
Figure PCTCN2019102259-appb-000008
其中,L表示血管的长度,N表示冠脉造影图像被分成的局部区域图像的帧数,fps’表示舒张期无波 形期间相邻两帧图像之间切换的间隔时间。
第二方面,本申请提供了一种冠状动脉分析系统,包括上述任一项所述的测量微循环阻力指数的系统。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了测量微循环阻力指数的系统,包括三维建模装置、有创血压传感器和IMR测量装置,所述IMR测量装置与所述三维建模装置、有创血压传感器连接。通过读取冠状动脉造影图像,进行三维建模,获得冠状动脉三维结构;根据测量血管的长度L、冠脉入口压力Pa,以及在最大充血状态下测量冠脉入口到冠脉狭窄远端的压力降ΔP i和血流速度V h,再根据公式IMR=(Pa-ΔP i)×L/V h计算得到IMR值。本申请无需扩张药物,也无需压力导丝测量时间,只需测量冠脉入口压力,无需穿过冠状动脉血管狭窄远端,降低了手术难度和风险;且通过造影图像实现了IMR的测量,弥补了行业内的空白,操作更加简单。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的一种测量微循环阻力指数的系统的一个实施例的结构框图;
图2为本申请的三维建模装置的结构框图;
图3为本申请的IMR测量装置的结构框图;
图4为本申请的血流速度测量模块的结构框图;
图5为本申请的三维建模装置的结构框图;
图6为本申请的图像处理模块的结构框图;
图7为本申请的导管特征点提取模块的结构框图;
图8为本申请的区域图像提取模块的结构框图;
图9为本申请的有创血压传感器的结构示意图;
图10为参考图像;
图11为待分割的一目标图像;
图12为待分割的另一目标图像;
图13为增强后的导管图像;
图14为导管特征点的二值化图像;
图15为增强后的目标图像;
图16为冠状动脉所处位置的区域图像;
图17为结果图像;
图18为横切面截图;
图19为纵切面截图;
图20为两个体位造影图像;
图21的左图为血管长度与血管直径的曲线图;
图22为由图21结合体位角度以及冠脉中心线生成的冠状动脉三维结构图;
图23为切割图像的帧数个数图;
图24为冠脉入口压力测试图;
图25为IMR测试图;
图26为iFMR测试图;
图27为本申请的一种测量微循环阻力指数的系统的另一实施例的结构框图;
下面对附图标记进行说明:
三维建模装置100,图像读取模块110,分割模块120,血管长度测量模块130,三维建模模块140,图像处理模块150,图像去噪模块151,导管特征点提取模块152,第一去噪模块1521,第一图像增强模块1522,第一二值化处理模块1523,冠状动脉提取模块153,第二去噪模块1531,第二图像增强模块1532,区域图像提取模块1533,第二二值化处理模块15331,动态区域生长模块15332,冠脉中心线提取模块160,血管直径测量模块170,有创血压传感器200,压力感受芯片1,蠕动泵头2,软管3,鲁尔接头4,激光发射器5,显示屏6,单向阀7;IMR测量装置300,压力降测量模块310,网格划分模块311,压力降ΔP i计算模块312,血流速度测量模块320,平均血流速度
Figure PCTCN2019102259-appb-000009
测量模块321,血流速度V h计算模块322,IMR计算模块330,冠脉舒张期血流速度V f测量模块400,瞬时无波形微循环阻力指数iFMR测量装置500。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
如图1所示,本申请提供了一种测量微循环阻力指数的系统,包括:三维建模装置100、有创血压传感器200和IMR测量装置300,IMR测量装置300与三维建模装置100、有创血压传感器200连接;三维建模装置100用于读取冠状动脉造影图像,选取冠状动脉造影图像的一个心跳周期区域,测量心跳周期区域内的血管的长度L,进行三维建模,获得冠状动脉三维结构;有创血压传感器200用于测量冠脉入口压力Pa;IMR测量装置300用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i和测量血流速度V h,读取长度L和冠脉入口压力Pa,计算微循环阻力系数IMR,计算公式如下:IMR=(Pa-ΔP i)×L/V h
本申请一个实施例中,为了简便IMR的算法以及精准度,L=50~150mm;本申请的另一个实施例中L=80~120mm;进一步地,L=100mm。
本申请提供了测量微循环阻力指数的系统,包括三维建模装置100、有创血压传感器200和IMR测量装置300,IMR测量装置300与三维建模装置100、有创血压传感器200连接。通过读取冠状动脉造影图像,进行三维建模,获得冠状动脉三维结构;根据测量血管的长度L、冠脉入口压力Pa,以及在最大充血状态下测量冠脉入口到冠脉狭窄远端的压力降ΔP i和血流速度V h,再根据公式IMR=(Pa-ΔP i)×L/V h计算得到IMR值。本申请无需扩张药物,也无需压力导丝测量时间,只需测量冠脉入口压力,无需穿过冠状动脉血管狭窄远端,降低了手术难度和风险;且通过造影图像实现了IMR的测量,弥补了行业内的空白,操作更加简单。
如图2所示,本申请的一个实施例中,三维建模装置100包括图像读取模块110、分割模块120、血管长度测量模块130和三维建模模块140,分割模块120与图像读取模块110、血管长度测量模块130、三维建模模块140连接,血管长度测量模块130与IMR测量装置300连接;图像读取模块110用于读取造影图像;分割模块120用于选取冠状动脉造影图像的一个心跳周期区域;血管长度测量模块130用于测量心跳周期区域内的血管的长度L,并将血管的长度L传递给IMR测量装置300;三维建模模块140用于根据分割模块120选取的冠脉造影图像进行三维建模,获得冠状动脉三维结构。
如图3所示,IMR测量装置300包括压力降测量模块310、血流速度测量模块320和IMR计算模块330,压力降测量模块310、血流速度测量模块320、有创血压传感器200、血管长度测量模块130均与IMR计算模块330连接;压力降测量模块310用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i;血流速度测量模块320用于血管在最大充血状态下,测量血流速度V h;IMR计算模块330用于计算微循环阻力系数IMR,计算公式如下:IMR=(Pa-ΔP i)×L/V h
如图3所示,本申请的一个实施例中,压力降测量模块310包括:网格划分模块311和压力降ΔP i计算模块312,压力降ΔP i计算模块312与网格划分模块311、IMR计算模块330连接;如图18和图19所示,网格划分模块311用于对冠状动脉三维结构进行网格划分,以冠脉中心线作为纵轴,网格沿所述冠脉中心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值,即为冠脉入口到冠脉狭窄远端的压力降;
所述压力降ΔP i计算模块用于采用如下公式计算:
Figure PCTCN2019102259-appb-000010
P 1表示三维结构网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维结构网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
每个所述节点的压力值采用纳维-斯托克斯方程计算得出。
如图4所示,本申请的一个实施例中,血流速度测量模块320包括平均血流速度
Figure PCTCN2019102259-appb-000011
测量模块321和血流速度V h计算模块322,平均血流速度
Figure PCTCN2019102259-appb-000012
测量模块321、IMR计算模块330均与血流速度V h计算模块322连接;平均血流速度
Figure PCTCN2019102259-appb-000013
测量模块321将心跳周期区域分成N个局部区域图像;
Figure PCTCN2019102259-appb-000014
其中,
Figure PCTCN2019102259-appb-000015
表示测量心跳周期区域内的平均血流速度,L表示血管的长度,N表示心跳周期区域被分成的局部区域图像的帧数,fps表示相邻两帧图像之间切换的间隔时间;血流速度V h计算模块322用于根据
Figure PCTCN2019102259-appb-000016
公式计算,a、b均表示常数,a=1~3,b=50~300。
本申请的一个实施例中,平均血流速度
Figure PCTCN2019102259-appb-000017
测量模块321用于采用造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法测量。
如图5所示,本申请的一个实施例中,三维建模装置100还包括:图像处理模块150、冠脉中心线提取模块160和血管直径测量模块170,图像处理模块150与冠脉中心线提取模块160连接,三维建模模块140与冠脉中心线提取模块160、血管直径测量模块170连接。图像处理模块150用于接收分割模块120传递的至少两个体位的冠脉造影图像,并去除冠脉造影图像的干扰血管,得到如图17所示的结果图像;冠脉中心线提取模块160用于沿着冠状动脉的延伸方向,提取每幅如图17所示的结果图像的冠脉中心线;血管直径测量模块170用于测量血管直径;三维建模模块140用于将每根冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维结构。
如图6所示,本申请的一个实施例中,图像处理模块150内部设置图像去噪模块151,用于对冠脉造影图像去噪,包括:静态噪声和动态噪声。通过去噪模块151去除冠脉造影图像中的干扰因素,提高图像处理的质量。
如图6所示,本申请的一个实施例中,图像处理模块150内部设置均与冠脉中心线提取模块160连接的导管特征点提取模块152和冠状动脉提取模块153,导管特征点提取模块152与冠状动脉提取模块153、图像去噪模块151连接;导管特征点提取模块152用于将有导管出现的第一帧分割图像定义为如 图10所示的参考图像,将有完整冠状动脉出现的第k帧分割图像定义为如图11和如图12所示的目标图像,k为大于1的正整数;将如图10所示的参考图像减去如图11和如图12所示的目标图像,提取导管的特征点O;冠状动脉提取模块153用于将如图11和如图12所示的目标图像减去如图10所示的参考图像,提取冠状动脉所处位置的区域图像;区域图像以导管的特征点作为种子点进行动态生长,获得如图17所示的结果图像。
如图7所示,本申请的一个实施例中,导管特征点提取模块152内部设置依次连接的第一去噪模块1521、第一图像增强模块1522和第一二值化处理模块1523,第一二值化处理模块1523与冠状动脉提取模块153连接;第一去噪模块1521用于将如图10所示的参考图像减去如图11和如图12所示的目标图像且去噪,包括:静态噪声和动态噪声;第一图像增强模块1522用于对去噪后的图像进行图像增强;优选地,本申请采用多尺度海森矩阵对图像进行增强;第一二值化处理模块1523用于对增强后的如图13所示的导管图像进行二值化处理,得到具有一组导管特征点O的二值化图像。
如图8所示,本申请的一个实施例中,冠状动脉提取模块153包括依次连接的第二去噪模块1531、第二图像增强模块1532和区域图像提取模块1533,区域图像提取模块1533与第一二值化处理模块1523连接;第二去噪模块1531用于将目标图像减去参考图像且去噪,包括:静态噪声和动态噪声;第二图像增强模块1532用于对去噪后的图像进行图像增强;优选地,本申请采用多尺度海森矩阵对图像进行增强;区域图像提取模块1533用于根据如图15所示的增强后的目标图像中各区域与导管特征点的位置关系,确定并提取冠状动脉的区域,即为如图16所示的冠状动脉所处位置的区域图像。
如图8所示,本申请的一个实施例中,区域图像提取模块1533包括:依次连接的第二二值化处理模块15331和动态区域生长模块15332,动态区域生长模块15332与第一二值化处理模块1523连接;第二二值化处理模块15331用于对冠状动脉所处位置的如图16所示的区域图像进行二值化处理,获得二值化冠状动脉图像;动态区域生长模块15332用于对二值化冠状动脉图像进行形态学运算,以如图14所示的导管的特征点作为种子点,二值化冠状动脉图像依据种子点所处位置进行动态区域生长,获得如图17所示的结果图像。本申请实现了根据冠脉造影图像合成冠状动脉三维结构,弥补了行业内的空白,对于医学技术领域具有积极的作用。
如图9所示,本申请的一个实施例例中,有创血压传感器200包括压力感受芯片1,还包括蠕动泵头2,蠕动泵头2包括旋转轮,旋转轮上设有与外部电机旋转轴连接的连接结构,蠕动泵头2内置有软管3,软管3一端与压力感受芯片1连接,另一端通过输液管与盐水袋连接。有创血压传感器一端与盐水袋连接,另一端通过外部装置连接至患者主动脉,有创血压传感器的用途就是连接患者主动脉,中间充满生理盐水使其能够与主动脉形成通路,有创血压传感器内部有压力感受芯片1,可以将主动脉的动态压力转换成模拟信号,通过有创血压传感器内部的电路将采集到的模拟信号转换成数字型号,得到主动脉压的冠脉入口压力Pa,本冠脉入口压力Pa采用收缩压与舒张压之和的平均值;收缩压、舒张压和冠脉入口压力Pa显示于显示屏6上。
本申请的一个实施例中,软管3与输液管连接端设有鲁尔接头4并以之与输液管连接;软管3与压力感受芯片1之间接有单向阀7,单向阀7的允许流向为盐水袋至压力感受芯片1;有创血压传感器还包括激光发射器5,激光发射器5与压力感受芯片1位于同一水平高度。激光发射器5可发射一条水平的光束照射到患者身体心脏部位,保证激光发射器5高度与心脏在同一水平,光束起到辅助对准作用,对准更加简单。压力感受芯片1设计为与激光发射器5同一水平高度,这样就保证压力感受芯片1与心脏在同一水平高度,可精确测量主动脉压力。
如图27所示,本申请的一个实施例中,还包括:冠脉舒张期血流速度V f测量模块400和瞬时无波形微循环阻力指数iFMR测量装置500,瞬时无波形微循环阻力指数iFMR测量装置500与三维建模装置100、有创血压传感器200、冠脉舒张期血流速度V f测量模块400连接;瞬时无波形微循环阻力指数 iFMR测量装置500用于对处于无波形期的三维冠脉结构进行测量,分别测量冠脉舒张期无波形期间冠脉入口到冠脉狭窄远端的压力降ΔP i’和测量冠脉舒张期血流速度V f,读取血管的长度L和舒张期无波形期间冠脉入口压力Pa’,计算瞬时无波形微循环阻力指数iFMR,计算公式如下:
iFMR=(Pa’-ΔP i’)×L/V f
Figure PCTCN2019102259-appb-000018
其中,L表示血管的长度,N表示冠脉造影图像被分成的局部区域图像的帧数,fps’表示舒张期无波形期间相邻两帧图像之间切换的间隔时间。
瞬时无波形微循环阻力指数iFMR测量装置可以与IMR测量装置连接,用于读取IMR测量装置测得的三维冠脉结构的血管长度L和图像分割帧数N,以用于iFMR直接计算;也可以在iFMR装置内部设置与IMR装置相同或者相似的压力降测量模块,网格划分模块,压力降ΔP i计算模块,IMR计算模块等,用于自己测量或者计算得到舒张期无波形期间冠脉入口到冠脉狭窄远端的压力降ΔP i’和舒张期无波形期间冠脉入口压力Pa’;能够实现上述功能的装置均在本申请的保护范围内。
下面结合具体实施例对本发明进行具体阐述:
实施例1:
如图20所示,为一位患者拍摄的两个体位的冠脉造影图像;左图的体位角度为右前斜RAO:25°和头位CRA:23°;右图的体位角度为右前斜RAO:3°和头位CRA:30°;
如图21所示,冠状动脉三维结构的血管长度L值=120mm;生成的冠状动脉三维结构如图22所示;
血管直径D值=2~4mm;
如图23所示,
Figure PCTCN2019102259-appb-000019
Figure PCTCN2019102259-appb-000020
如图24所示,Pa=100mmHg;
如图25所示,ΔP i=7;因此IMR=(100-7)×120/590=18.9;
Figure PCTCN2019102259-appb-000021
如图26所示,iFMR=(Pa’-ΔP i’)×L/V f=(93-7)×120/300=34.4。
对比例1:
与实施例1的患者相同,对比例1和实施例1均为同一位患者拍摄的同一张冠脉造影图像;
把压力导丝传感器放到患者的冠脉远端(离导引导管开口>5cm);向血管通入扩张药物,使血管达到并保持最大充血状态(保证通入扩张药物前后的压力导丝传感器处于相同位置),通过导管向血管中注入3ml生理盐水,如果检测到血液温度回复到正常值,则再次通过导管向血管中注入3ml生理盐水,重复上述过程3次,然后记录Tmn,时间为0.2min,测得冠脉远端的压力Pd=92.8mmHg;
IMR=Pd×Tmn=92.8×0.20=18.56;
现有技术无法测量iFMR。
通过实施例1和对比例1的比较,可知IMR测量结果基本相同,因此实施例1的测量结果准确,且本申请的实施例1采用的系统无需扩张药物,也无需压力导丝,只需测量冠脉入口压力,无需穿过冠状动脉血管狭窄远端,降低了手术难度和风险;且通过造影图像实现了IMR的测量,弥补了行业内的空白,操作更加简单。
iFMR是本申请新提出的用于判断心肌是否缺血的指标,基于常规造影流速测量的舒张期流速,本 申请无需通过模拟扩张态流速进行计算iFMR,通过iFMR反应心肌在无波形期间的瞬时无波形微循环阻力指数;将iFMR与IMR结合判断冠状动脉狭窄情况,提高了判断的精准性。
本申请提供了一种冠状动脉分析系统,包括上述任一项所述的测量微循环阻力指数的系统。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文所述的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上所述的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种测量微循环阻力指数的系统,其特征在于,包括:三维建模装置、有创血压传感器和IMR测量装置,所述IMR测量装置与所述三维建模装置、有创血压传感器连接;
    所述三维建模装置用于读取冠状动脉造影图像,选取所述冠状动脉造影图像的一个心跳周期区域,测量所述心跳周期区域内的血管的长度L,进行三维建模,获得冠状动脉三维结构;
    所述有创血压传感器用于测量冠脉入口压力Pa;
    所述IMR测量装置用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i和测量血流速度V h,读取长度L和冠脉入口压力Pa,计算微循环阻力系数IMR,计算公式如下:
    IMR=(Pa-ΔP i)×L/V h
  2. 根据权利要求1所述的测量微循环阻力指数的系统,其特征在于,所述三维建模装置包括图像读取模块和分割模块、血管长度测量模块和三维建模模块,所述分割模块与所述图像读取模块、所述血管长度测量模块、所述三维建模模块连接,所述血管长度测量模块与所述IMR测量装置连接;
    所述图像读取模块用于读取造影图像;
    所述分割模块,用于选取所述冠状动脉造影图像的一个心跳周期区域;
    所述血管长度测量模块用于测量所述心跳周期区域内的血管的长度L,并将所述血管的长度L传递给所述IMR测量装置;
    所述三维建模模块,用于根据所述分割模块选取的冠脉造影图像进行三维建模,获得冠状动脉三维结构。
  3. 根据权利要求2所述的测量微循环阻力指数的系统,其特征在于,所述IMR测量装置包括压力降测量模块、血流速度测量模块和IMR计算模块,所述压力降测量模块、所述血流速度测量模块、所述有创血压传感器、所述血管长度测量模块均与所述IMR计算模块连接;
    所述压力降测量模块,用于血管在最大充血状态下,测量冠脉入口到冠脉狭窄远端的压力降ΔP i
    所述血流速度测量模块,用于血管在最大充血状态下,测量血流速度V h
    所述IMR计算模块用于计算微循环阻力系数IMR,计算公式如下:
    IMR=(Pa-ΔP i)×L/V h
  4. 根据权利要求3所述的测量微循环阻力指数的系统,其特征在于,所述压力降测量模块包括:网格划分模块和压力降ΔP i计算模块,所述压力降ΔP i计算模块与所述网格划分模块、所述IMR计算模块连接;
    所述网格划分模块用于对冠状动脉三维结构进行网格划分,以冠脉中心线作为纵轴,网格沿所述冠脉中心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值;
    所述压力降ΔP i计算模块用于采用如下公式计算:
    Figure PCTCN2019102259-appb-100001
    P 1表示三维结构网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维结构网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
    每个所述节点的压力值采用纳维-斯托克斯方程计算得出。
  5. 根据权利要求3所述的测量微循环阻力指数的系统,其特征在于,所述血流速度测量模块包括平均血流速度
    Figure PCTCN2019102259-appb-100002
    测量模块和血流速度V h计算模块,所述平均血流速度
    Figure PCTCN2019102259-appb-100003
    测量模块、所述IMR计算模块所 述均与所述血流速度V h计算模块连接;
    所述平均血流速度
    Figure PCTCN2019102259-appb-100004
    测量模块,用于采用造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法测量;或者将所述心跳周期区域分成N个局部区域图像;
    Figure PCTCN2019102259-appb-100005
    其中,
    Figure PCTCN2019102259-appb-100006
    表示测量所述心跳周期区域内的平均血流速度,L表示血管的长度,N表示心跳周期区域被分成的局部区域图像的帧数,fps表示相邻两帧图像之间切换的间隔时间;
    所述血流速度V h计算模块,用于根据
    Figure PCTCN2019102259-appb-100007
    公式计算,a表示取值范围为1~3的常数,b表示取值范围为50~300的常数。
  6. 根据权利要求1至5任一项所述的测量微循环阻力指数的系统,其特征在于,L的取值范围为50~150mm;或L=100mm。
  7. 根据权利要求2至5任一项所述的测量微循环阻力指数的系统,其特征在于,所述三维建模装置还包括:图像处理模块、冠脉中心线提取模块和血管直径测量模块,所述图像处理模块与所述冠脉中心线提取模块连接,所述三维建模模块与所述冠脉中心线提取模块、所述血管直径测量模块连接;
    所述图像处理模块用于接收所述分割模块传递的至少两个体位的冠脉造影图像,并去除所述冠脉造影图像的干扰血管,得到结果图像;
    所述冠脉中心线提取模块用于沿着所述冠状动脉的延伸方向,提取每幅所述结果图像的冠脉中心线;
    血管直径测量模块用于提取所述血管直径;
    所述三维建模模块用于将每根所述冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维结构。
  8. 根据权利要求7所述的测量微循环阻力指数的系统,其特征在于,所述图像处理模块内部设置图像去噪模块,用于对所述冠脉造影图像去噪,包括:静态噪声和动态噪声。
  9. 根据权利要求7所述的测量微循环阻力指数的系统,其特征在于,所述图像处理模块内部设置均与所述冠脉中心线提取模块连接的导管特征点提取模块和冠状动脉提取模块,所述冠状动脉提取模块与所述导管特征点提取模块连接;
    所述导管特征点提取模块用于将有导管出现的第一帧分割图像定义为参考图像,将有完整冠状动脉出现的第k帧所述分割图像定义为目标图像,k为大于1的正整数;将所述参考图像减去所述目标图像,提取所述导管的特征点O;
    所述冠状动脉提取模块用于将所述目标图像减去所述参考图像,提取所述冠状动脉所处位置的区域图像;所述区域图像以所述导管的特征点作为种子点进行动态生长,获得所述结果图像。
  10. 根据权利要求9所述的测量微循环阻力指数的系统,其特征在于,所述导管特征点提取模块内部设置依次连接的第一去噪模块、第一图像增强模块和第一二值化处理模块,所述第一二值化处理模块与所述冠状动脉提取模块连接;
    所述第一去噪模块用于将所述参考图像减去所述目标图像且去噪,包括:静态噪声和动态噪声;
    所述第一图像增强模块用于对所述去噪后的图像进行图像增强;
    所述第一二值化处理模块用于对增强后的导管图像进行二值化处理,得到具有一组导管特征点O的二值化图像。
  11. 根据权利要求10所述的测量微循环阻力指数的系统,其特征在于,所述冠状动脉提取模块包括依次连接的第二去噪模块、第二图像增强模块和区域图像提取模块,所述区域图像提取模块与所述第一二值化处理模块连接;
    所述第二去噪模块用于将所述目标图像减去所述参考图像且去噪,包括:静态噪声和动态噪声;
    所述第二图像增强模块用于对去噪后的所述图像进行图像增强;
    所述区域图像提取模块用于根据增强后的所述目标图像中各区域与所述导管特征点的位置关系,确定并提取冠状动脉的区域,即为所述冠状动脉所处位置的区域图像。
  12. 根据权利要求10所述的测量微循环阻力指数的系统,其特征在于,所述区域提取模块包括:依次连接的第二二值化处理模块和动态区域生长模块,所述动态区域生长模块与所述第一二值化处理模块连接;
    所述第二二值化处理模块用于对所述冠状动脉所处位置的区域图像进行二值化处理,获得二值化冠状动脉图像;
    所述动态区域生长模块用于对所述二值化冠状动脉图像进行形态学运算,以所述导管的特征点作为种子点,所述二值化冠状动脉图像依据所述种子点所处位置进行动态区域生长,获得所述结果图像。
  13. 根据权利要求1至4任一项所述的测量微循环阻力指数的系统,其特征在于,还包括:冠脉舒张期血流速度V f测量模块和瞬时无波形微循环阻力指数iFMR测量装置,所述瞬时无波形微循环阻力指数iFMR测量装置与所述三维建模装置、所述有创血压传感器、所述冠脉舒张期血流速度V f测量模块连接;
    所述瞬时无波形微循环阻力指数iFMR测量装置用于对处于无波形期的三维冠脉结构进行测量,分别测量舒张期无波形期间冠脉入口到冠脉狭窄远端的压力降ΔP i’和测量冠脉舒张期血流速度V f,读取血管的长度L和舒张期无波形期间冠脉入口压力Pa’,计算瞬时无波形微循环阻力指数iFMR,计算公式如下:
    iFMR=(Pa’-ΔP i’)×L/V f
    Figure PCTCN2019102259-appb-100008
    其中,L表示血管的长度,N表示冠脉造影图像被分成的局部区域图像的帧数,fps’表示舒张期无波形期间相邻两帧图像之间切换的间隔时间。
  14. 一种冠状动脉分析系统,其特征在于,包括权利要求1~13任一项所述的测量微循环阻力指数的系统。
PCT/CN2019/102259 2018-09-19 2019-08-23 测量微循环阻力指数的系统以及冠脉分析系统 WO2020057324A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811093192.X 2018-09-19
CN201811093192.XA CN109363651A (zh) 2018-09-19 2018-09-19 一种用于测量血流储备分数时获取主动脉压的装置
CN201910206541.2A CN109770888A (zh) 2019-03-19 2019-03-19 基于压力传感器和造影图像计算瞬时无波形比率的方法
CN201910206541.2 2019-03-19
CN201910704327.X 2019-07-31
CN201910704327.XA CN110384493A (zh) 2018-09-19 2019-07-31 测量微循环阻力指数的系统以及冠脉分析系统

Publications (1)

Publication Number Publication Date
WO2020057324A1 true WO2020057324A1 (zh) 2020-03-26

Family

ID=68261494

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2019/102251 WO2020057323A2 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的方法
PCT/CN2019/102259 WO2020057324A1 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的系统以及冠脉分析系统
PCT/CN2019/115072 WO2021046990A1 (zh) 2018-09-19 2019-11-01 基于影像和压力传感器计算微循环指标的方法装置及系统
PCT/CN2019/115027 WO2021042477A1 (zh) 2018-09-19 2019-11-01 测量冠状动脉血管评定参数的简化方法、装置及系统
PCT/CN2019/115043 WO2021042479A1 (zh) 2018-09-19 2019-11-01 便捷测量冠状动脉血管评定参数的方法、装置及系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102251 WO2020057323A2 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/115072 WO2021046990A1 (zh) 2018-09-19 2019-11-01 基于影像和压力传感器计算微循环指标的方法装置及系统
PCT/CN2019/115027 WO2021042477A1 (zh) 2018-09-19 2019-11-01 测量冠状动脉血管评定参数的简化方法、装置及系统
PCT/CN2019/115043 WO2021042479A1 (zh) 2018-09-19 2019-11-01 便捷测量冠状动脉血管评定参数的方法、装置及系统

Country Status (5)

Country Link
US (3) US11779294B2 (zh)
EP (3) EP4026491A4 (zh)
JP (2) JP7457105B2 (zh)
CN (5) CN110384494A (zh)
WO (5) WO2020057323A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022554298A (ja) * 2019-11-04 2022-12-28 ▲蘇▼州▲潤▼▲邁▼▲徳▼医▲療▼科技有限公司 微小血管抵抗指数に基づき最大充血状態流速を調節する方法及び装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384494A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的方法
CN112155580B (zh) * 2019-11-20 2021-07-13 苏州润迈德医疗科技有限公司 基于造影图像修正血流速度和微循环参数的方法及装置
CN110786840B (zh) * 2019-11-04 2021-06-08 苏州润迈德医疗科技有限公司 基于生理参数获取血管评定参数的方法、装置及存储介质
CN110786842B (zh) * 2019-11-04 2022-10-04 苏州润迈德医疗科技有限公司 测量舒张期血流速度的方法、装置、系统及存储介质
CN110889896B (zh) * 2019-11-11 2024-03-22 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和系统
CN110929604B (zh) * 2019-11-11 2023-08-18 苏州润迈德医疗科技有限公司 基于造影图像的流速的筛选方法、装置、系统和存储介质
CN112132882A (zh) * 2019-11-19 2020-12-25 苏州润迈德医疗科技有限公司 从冠状动脉二维造影图像中提取血管中心线的方法和装置
CN112151180B (zh) * 2019-12-05 2024-03-08 苏州润迈德医疗科技有限公司 具有狭窄病变的血管数学模型的合成方法和装置
CN112116711B (zh) * 2019-12-05 2024-01-23 苏州润迈德医疗科技有限公司 用于流体力学分析的圆台血管数学模型的合成方法和装置
CN111067495A (zh) * 2019-12-27 2020-04-28 西北工业大学 基于血流储备分数和造影图像的微循环阻力计算方法
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
EP4082428A4 (en) * 2019-12-31 2024-03-20 Insight Lifetech Co Ltd INTRAVASCULAR PRESSURE MEASUREMENT SYSTEM
US11950893B2 (en) * 2020-01-17 2024-04-09 The Research Foundation For The State University Of New York Apparatus and method of determining dynamic vascular parameters of blood flow
CN111312374B (zh) * 2020-01-21 2024-03-22 上海联影智能医疗科技有限公司 医学图像处理方法、装置、存储介质及计算机设备
CN111340794B (zh) * 2020-03-09 2023-07-04 中山大学 冠状动脉狭窄的量化方法及装置
CN111449750A (zh) * 2020-04-02 2020-07-28 刘强 一种心内科防止大量出血的介入控制系统及控制方法
CN112089433B (zh) * 2020-09-24 2022-04-08 杭州阿特瑞科技有限公司 一种基于cta和dsa的冠状动脉血流储备分数测量方法
CN112690814B (zh) * 2020-11-06 2022-10-14 杭州阿特瑞科技有限公司 一种低误差的冠状动脉血流储备分数测量方法
CN112419484B (zh) * 2020-11-25 2024-03-22 苏州润迈德医疗科技有限公司 三维血管合成方法、系统及冠状动脉分析系统和存储介质
CN112419280A (zh) * 2020-11-25 2021-02-26 苏州润迈德医疗科技有限公司 精确获取狭窄病变区间的方法及存储介质
CN112686991B (zh) * 2021-01-08 2022-04-05 上海博动医疗科技股份有限公司 一种采用混合方式重建血管正常管腔形态的方法及系统
CN112971818B (zh) * 2021-01-28 2022-10-04 杭州脉流科技有限公司 微循环阻力指数的获取方法、装置、计算机设备和存储介质
CN113180614B (zh) * 2021-06-02 2023-08-04 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN112890843A (zh) * 2021-03-24 2021-06-04 苏州润迈德医疗科技有限公司 一种冠状动脉分析系统及操作方法
CN113706559A (zh) * 2021-09-13 2021-11-26 复旦大学附属中山医院 基于医学图像的血管分段提取方法和装置
CN115690309B (zh) * 2022-09-29 2023-07-18 中国人民解放军总医院第一医学中心 一种冠脉cta自动三维后处理方法和装置
CN116035549A (zh) * 2022-11-23 2023-05-02 杭州脉流科技有限公司 获得冠脉血流储备分数的方法和计算机设备
CN115869003A (zh) * 2022-12-30 2023-03-31 杭州脉流科技有限公司 基于ct图像的冠状动脉微循环阻力指数计算方法和装置
CN116664564B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978371A (zh) * 2017-11-30 2018-05-01 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
US20190046761A1 (en) * 2017-08-09 2019-02-14 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
CN109770930A (zh) * 2019-01-29 2019-05-21 浙江大学 一种冠状动脉微循环阻力的确定方法和装置
CN109770888A (zh) * 2019-03-19 2019-05-21 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算瞬时无波形比率的方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672172B2 (en) * 2000-01-31 2004-01-06 Radi Medical Systems Ab Triggered flow measurement
US8315812B2 (en) * 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US9119540B2 (en) 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
JP5309109B2 (ja) * 2010-10-18 2013-10-09 富士フイルム株式会社 医用画像処理装置および方法、並びにプログラム
CN103300820A (zh) * 2012-03-13 2013-09-18 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和系统
US10373700B2 (en) * 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
BR112014022734B1 (pt) * 2012-03-15 2022-05-10 Siemens Aktiengesellschaft Método para determinação de forma não invasiva de parâmetros de circulação coronariana, sistema de controle e meio não transitório legível por computador
CA2875346A1 (en) * 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
US9247918B2 (en) 2012-07-09 2016-02-02 Siemens Aktiengesellschaft Computation of hemodynamic quantities from angiographic data
EP3184048B1 (en) * 2012-08-03 2021-06-16 Philips Image Guided Therapy Corporation Systems for assessing a vessel
WO2014027692A1 (ja) * 2012-08-16 2014-02-20 株式会社東芝 画像処理装置、医用画像診断装置及び血圧モニタ
US9814433B2 (en) * 2012-10-24 2017-11-14 Cathworks Ltd. Creating a vascular tree model
CA2896064A1 (en) * 2012-12-21 2014-06-26 Volcano Corporation Functional gain measurement technique and representation
US10799209B2 (en) * 2012-12-26 2020-10-13 Philips Image Guided Therapy Corporation Measurement navigation in a multi-modality medical imaging system
EP2956050A4 (en) * 2013-02-18 2016-10-26 Univ Ramot FROM INTRAVASCULAR PRESSURE LOSS DERIVED ARTERY STIFFNESS AND REDUCTION OF LIGHT PRESSURE IMPACT
US9700219B2 (en) * 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
JP6262027B2 (ja) * 2014-03-10 2018-01-17 東芝メディカルシステムズ株式会社 医用画像処理装置
US9087147B1 (en) 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
AU2015242353B2 (en) * 2014-04-04 2020-01-23 St. Jude Medical Systems Ab Intravascular pressure and flow data diagnostic systems, devices, and methods
CN106659399B (zh) * 2014-05-05 2020-06-16 西门子保健有限责任公司 使用患病和假想正常解剖学模型中的流计算的冠状动脉狭窄的非侵入功能评价的方法和系统
US9595089B2 (en) * 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
US9754082B2 (en) * 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
US10258303B2 (en) * 2014-06-30 2019-04-16 Koninklijke Philips N.V. Apparatus for determining a fractional flow reserve value
EP3166480A4 (en) * 2014-07-08 2018-02-14 Scinovia, Corp. Fluid flow rate determinations using velocity vector maps
US9349178B1 (en) * 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
EP3087921A1 (en) * 2015-04-27 2016-11-02 Coronary Technologies SARL Computer-implemented method for identifying zones of stasis and stenosis in blood vessels
US10872698B2 (en) * 2015-07-27 2020-12-22 Siemens Healthcare Gmbh Method and system for enhancing medical image-based blood flow computations using physiological measurements
CN105326486B (zh) * 2015-12-08 2017-08-25 博动医学影像科技(上海)有限公司 血管压力差与血流储备分数的计算方法及系统
CN105559810B (zh) * 2015-12-10 2017-08-08 博动医学影像科技(上海)有限公司 血管单位时间血流量与血流速度的计算方法
US10758125B2 (en) * 2016-04-29 2020-09-01 Siemens Healthcare Gmbh Enhanced personalized evaluation of coronary artery disease using an integration of multiple medical imaging techniques
US10674986B2 (en) * 2016-05-13 2020-06-09 General Electric Company Methods for personalizing blood flow models
CN106023202B (zh) * 2016-05-20 2017-06-09 苏州润心医疗科技有限公司 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN106073894B (zh) * 2016-05-31 2017-08-08 博动医学影像科技(上海)有限公司 基于植入虚拟支架的血管压力降数值及血流储备分数的评估方法和系统
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106264514B (zh) * 2016-09-27 2023-05-05 上海爱声生物医疗科技有限公司 一种无线血流储备分数测量系统
CN106214140A (zh) * 2016-10-17 2016-12-14 苏州亘科医疗科技有限公司 血管内血压测量导丝
CN106419890B (zh) * 2016-11-14 2024-04-30 佛山科学技术学院 一种基于时空调制的血流速度测量装置及方法
CN106650267B (zh) * 2016-12-28 2020-03-17 北京昆仑医云科技有限公司 计算血流储备分数的系统和设置边界条件的方法
US20180192916A1 (en) * 2017-01-10 2018-07-12 General Electric Company Imaging system for diagnosing patient condition
WO2018133118A1 (zh) * 2017-01-23 2018-07-26 上海联影医疗科技有限公司 血流状态分析系统及方法
CN107730540B (zh) * 2017-10-09 2020-11-17 全景恒升(北京)科学技术有限公司 基于高精度匹配模型的冠脉参数的计算方法
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法
US10580526B2 (en) * 2018-01-12 2020-03-03 Shenzhen Keya Medical Technology Corporation System and method for calculating vessel flow parameters based on angiography
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN108992057B (zh) * 2018-06-05 2021-08-10 杭州晟视科技有限公司 一种确定冠状动脉血流储备分数ffr的方法和装置
CN108742587B (zh) * 2018-06-20 2021-04-27 博动医学影像科技(上海)有限公司 基于病史信息获取血流特征值的方法及装置
CN110384494A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的方法
CN109523515A (zh) * 2018-10-18 2019-03-26 深圳市孙逸仙心血管医院(深圳市心血管病研究所) 血流储备分数的计算方法
CN109805949B (zh) * 2019-03-19 2020-05-22 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
CN110120031B (zh) * 2019-04-02 2022-05-31 四川锦江电子科技有限公司 一种得到血管血流储备分数的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190046761A1 (en) * 2017-08-09 2019-02-14 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
CN107978371A (zh) * 2017-11-30 2018-05-01 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN109770930A (zh) * 2019-01-29 2019-05-21 浙江大学 一种冠状动脉微循环阻力的确定方法和装置
CN109770888A (zh) * 2019-03-19 2019-05-21 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算瞬时无波形比率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OU, LANGHUI ET AL.: "Research Advance of Invasive Detection of Coronary Microcirculation", MEDICAL RECAPITULATE, vol. 24, no. 21, 30 November 2018 (2018-11-30), pages 4312 - 4315 *
WU, CAIFENG ET AL.: "Clinical Application and Progress of Microcirculation Resistance Index in Patients with STEMI", ADVANCES IN CARDIOVASCULAR DISEASES, vol. 39, no. 6, 30 November 2018 (2018-11-30), pages 944 - 946 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022554298A (ja) * 2019-11-04 2022-12-28 ▲蘇▼州▲潤▼▲邁▼▲徳▼医▲療▼科技有限公司 微小血管抵抗指数に基づき最大充血状態流速を調節する方法及び装置
JP7385318B2 (ja) 2019-11-04 2023-11-22 ▲蘇▼州▲潤▼▲邁▼▲徳▼医▲療▼科技有限公司 微小血管抵抗指数に基づき最大充血状態流速を調節する方法及び装置

Also Published As

Publication number Publication date
EP4026492A1 (en) 2022-07-13
CN110367965A (zh) 2019-10-25
WO2021046990A1 (zh) 2021-03-18
CN110384494A (zh) 2019-10-29
US11779294B2 (en) 2023-10-10
JP7093584B2 (ja) 2022-06-30
JP2022542189A (ja) 2022-09-29
WO2021042477A1 (zh) 2021-03-11
WO2021042479A1 (zh) 2021-03-11
WO2020057323A2 (zh) 2020-03-26
EP4026491A1 (en) 2022-07-13
EP4026491A4 (en) 2023-09-06
CN110393516A (zh) 2019-11-01
JP7457105B2 (ja) 2024-03-27
EP4026492A4 (en) 2023-10-11
US20220183643A1 (en) 2022-06-16
CN110384493A (zh) 2019-10-29
US20210145390A1 (en) 2021-05-20
CN110522439A (zh) 2019-12-03
US20220183644A1 (en) 2022-06-16
JP2022511211A (ja) 2022-01-31
EP4029438A4 (en) 2023-10-04
EP4029438A1 (en) 2022-07-20
CN110367965B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020057324A1 (zh) 测量微循环阻力指数的系统以及冠脉分析系统
JP7308238B2 (ja) X線画像特徴検出および位置合わせのシステムおよび方法
CN108186038B (zh) 基于动脉造影影像计算冠脉血流储备分数的系统
US11357573B2 (en) Optimum treatment planning during coronary intervention by simultaneous simulation of a continuum of outcomes
CN111134651B (zh) 基于腔内影像计算血流储备分数的方法、装置、系统以及计算机存储介质
JP6388632B2 (ja) プロセッサ装置の作動方法
WO2016001017A1 (en) Apparatus for determining a fractional flow reserve value
US20210236000A1 (en) Method, device and system for acquiring blood vessel evaluation parameters based on angiographic image
CN108742587B (zh) 基于病史信息获取血流特征值的方法及装置
JP7436548B2 (ja) プロセッサ装置の作動方法
US20220151579A1 (en) Method and apparatus for correcting blood flow velocity on the basis of interval time between angiogram images
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
US20220261997A1 (en) Method and apparatus for acquiring blood vessel evaluation parameter based on physiological parameter, and storage medium
WO2020083390A1 (zh) 获取心表大动脉的血流量的方法、装置、系统及存储介质
JP6726714B2 (ja) 血管内プローブマーカを検出するためのシステムの作動方法、及び血管造影データと、血管に関して取得された血管内データとを重ね合わせ登録するためのシステムの作動方法
WO2021092889A1 (zh) 基于造影图像的流速的筛选方法、装置、系统和存储介质
Liu et al. Vessel Diameter: A Key Factor Influencing Fractional Flow Reserve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862933

Country of ref document: EP

Kind code of ref document: A1