WO2021092889A1 - 基于造影图像的流速的筛选方法、装置、系统和存储介质 - Google Patents

基于造影图像的流速的筛选方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2021092889A1
WO2021092889A1 PCT/CN2019/118749 CN2019118749W WO2021092889A1 WO 2021092889 A1 WO2021092889 A1 WO 2021092889A1 CN 2019118749 W CN2019118749 W CN 2019118749W WO 2021092889 A1 WO2021092889 A1 WO 2021092889A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
flow velocity
blood flow
contrast
body position
Prior art date
Application number
PCT/CN2019/118749
Other languages
English (en)
French (fr)
Inventor
徐磊
王之元
冯亮
李泽华
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2021092889A1 publication Critical patent/WO2021092889A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to the technical field of coronary artery medicine, in particular to a screening method, device, system and computer storage medium based on the flow rate of an angiographic image.
  • cardiovascular disease has become the "number one killer" of human health.
  • hemodynamics to analyze the physiology and pathological behavior of cardiovascular diseases has also become a very important means for the diagnosis of cardiovascular diseases.
  • the coronary artery analysis system needs to synthesize a blood vessel model through three-dimensional modeling, the three-dimensional blood vessel model can clearly show the stenosis position of the vascular disease, which has a more intuitive effect.
  • 3D blood vessel model synthesis it is necessary to take contrast images from at least two positions, and then synthesize blood vessels from the contrast images of the two positions through three-dimensional modeling. Since the contrast images of each body position will produce a blood flow velocity, In the determination of coronary artery vascular evaluation parameters, it is not known which blood flow velocity to use for calculation. If one is randomly selected, it will cause the problem of inaccurate measurement of coronary artery vascular evaluation parameters.
  • the present invention provides a screening method, device, system and storage medium based on the flow velocity of an angiographic image to solve the problem of multiple blood flow velocities in a three-dimensional blood vessel model, and it is not known which blood flow velocity to select to calculate coronary artery vascular evaluation parameters .
  • the present application provides a method for screening blood flow velocity based on contrast images, including:
  • the blood flow velocity corresponding to the contrast image of the body position is selected.
  • the above-mentioned screening method based on the blood flow velocity of the contrast image further includes:
  • the contrast images of all body positions are non-expanded contrast images, or the two-dimensional contrast images of at least two body positions belong to the expanded contrast images, the number of frames per second and the number of transmission frames per second of each group of the two-dimensional contrast images are obtained respectively.
  • the threshold of the number of radiographic frames in a heartbeat cycle is obtained
  • the blood flow velocity of the body position is filtered
  • the blood flow velocity corresponding to the two-dimensional contrast image of the body position is selected.
  • the frame number threshold is adjusted, and the blood flow velocity corresponding to the two-dimensional contrast image of the body position with the smallest difference is selected;
  • the blood flow velocity corresponding to the two-dimensional angiographic image of a certain body position is artificially determined and selected.
  • the screening method based on the blood flow velocity of the angiographic image, if the total number of image frames in two or more body positions is greater than or equal to the frame number threshold, then all are selected, and all selected The blood flow velocity corresponding to the two-dimensional contrast image of the body position is averaged, and the average value is used as the blood flow velocity obtained by screening.
  • the frame number threshold is Among them, N y represents the frame number threshold, R represents the heart rate, and fps represents the number of frames transmitted per second.
  • the fps 1/30-1/15.
  • the method for acquiring blood flow velocity includes:
  • the blood flow velocity is obtained according to the length of the center line, the total number of image frames, and the number of frames transmitted per second.
  • the blood flow velocity is calculated by the following formula:
  • N represents the total number of frames of the image
  • v represents the blood flow velocity
  • the present application provides a screening device based on the blood flow velocity of the contrast image, which is used in the above-mentioned screening method based on the blood flow velocity of the contrast image, and includes: an image reading unit connected in sequence, a first body position Image screening unit and blood flow velocity acquisition unit;
  • the image reading unit is used to obtain two-dimensional contrast image groups of at least two body positions;
  • the first body position image screening unit is used for judging whether to select the contrast image of a certain body position according to whether the contrast image of a certain body position belongs to the expanded state contrast image;
  • the blood flow velocity acquisition unit is used to calculate the corresponding blood flow velocity according to the contrast image of the selected body position.
  • the above-mentioned screening device based on the blood flow velocity of the contrast image further includes: a second body image screening unit connected to the first body image screening unit and the image reading unit, and the second body image screening unit connected to the first body image screening unit and the image reading unit.
  • Heart rate acquisition unit and setting unit connected to the two-posture image screening unit;
  • the heart rate acquisition unit is used to acquire the heart rate of the patient
  • the setting unit is used to set the number of frames transmitted per second of the picture
  • the second body position image screening unit is internally provided with a comparison module, a filtering module and a saving module, and the filtering module and the saving module are all connected to the comparison module;
  • the comparison module is used to determine whether to start the comparison according to the screening result of the first body position image screening unit. If the first body position image screening unit determines that all the contrast images of the body positions belong to the non-expanded contrast images, or there are at least two If the two-dimensional angiographic image of the individual position belongs to the angiographic image in the expanded state, the comparison module is started, and the comparison module separately obtains the number of transmitted frames per second and the total number of image frames of each group of the two-dimensional angiographic image, and obtains according to the heart rate
  • the heart rate of the patient sent by the unit and the number of frames transmitted per second of the picture sent by the setting unit acquires the threshold of the number of radiographic frames in a heartbeat cycle; the total number of images contained in each group of two-dimensional radiographic images is acquired by the image reading unit
  • the number of frames if the total number of image frames of a two-dimensional contrast image group of a certain body position is less than the frame number threshold, the contrast image group of the body position is
  • the second body position image filtering unit further includes: a frame number difference module connected to the filtering module and the saving module ;
  • the frame number difference module is used to determine whether to start according to the image storage conditions inside the filtering module and the storage module, if the total number of frames of images with two or more body positions appearing in the storage module is greater than Or equal to the frame number threshold, the total number of frames of the image and the frame number threshold are made difference, and the blood flow velocity corresponding to the two-dimensional contrast image of the body position with the smallest difference is selected; and/or if the filtering module
  • the two-dimensional coronary angiography images of all positions are stored, that is, the total number of image frames of all the positions is less than the frame number threshold, and the blood flow velocity corresponding to which group of two-dimensional coronary angiography images is selected is artificially determined.
  • the present application provides a coronary artery analysis system, including: the above-mentioned device for the average blood flow at the coronary artery exit in the cardiac cycle.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for screening blood flow velocity based on contrast images is implemented.
  • This application provides a screening method based on the blood flow velocity of an angiographic image, by obtaining a two-dimensional angiographic image group of at least two positions; if the angiographic image of a certain position belongs to the expanded angiographic image, the angiographic image of the position is selected Corresponding blood flow velocity.
  • This is because in the prior art, when measuring coronary artery vascular assessment parameters, for example, FFR, the pressure at the distal end of the stenosis is measured through the guide wire in the expanded state. Therefore, this application selects the corresponding angiographic image in the expanded state
  • the blood flow speed, the obtained blood vessel evaluation parameters are more accurate and scientific.
  • FIG. 1 is a flowchart of an embodiment of a method for screening blood flow velocity based on contrast images of the present application
  • FIG. 2 is a flowchart of another embodiment of a method for screening blood flow velocity based on contrast images of the present application
  • FIG. 3 is a flowchart of S500 of the application.
  • FIG. 4 is a structural block diagram of an embodiment of the screening device based on the blood flow velocity of the contrast image of the present application
  • FIG. 5 is a structural block diagram of another embodiment of the screening device based on the blood flow velocity of the contrast image of the present application
  • Image reading unit 100 First body position image filtering unit 200, blood flow velocity acquisition unit 300, second body position image filtering unit 400, comparison module 410, filtering module 420, saving module 430, frame number difference module 440, heart rate
  • the acquiring unit 500 the setting unit 600.
  • the coronary artery analysis system needs to synthesize a blood vessel model through three-dimensional modeling, the three-dimensional blood vessel model can clearly show the stenosis position of the vascular disease, which has a more intuitive effect.
  • 3D blood vessel model synthesis it is necessary to take contrast images from at least two positions, and then synthesize blood vessels from the contrast images of the two positions through three-dimensional modeling. Since the contrast images of each body position will produce a blood flow velocity, In the determination of coronary artery vascular evaluation parameters, it is not known which blood flow velocity to use for calculation. If one is randomly selected, it will cause the problem of inaccurate measurement of coronary vascular evaluation parameters.
  • this application provides a method for screening blood flow velocity based on contrast images, which includes:
  • This application provides a screening method based on the blood flow velocity of the angiographic image, by acquiring at least two two-dimensional angiographic image groups; if the angiographic image of a certain position belongs to the expanded angiographic image, select the one corresponding to the angiographic image of the body position
  • the blood flow velocity is because in the prior art, when measuring coronary vascular evaluation parameters, such as FFR, the pressure at the distal end of the stenosis is measured by the guide wire in the expanded state. Therefore, this application selects the blood corresponding to the angiographic image in the expanded state.
  • the flow rate and the obtained blood vessel evaluation parameters are more accurate and scientific.
  • N y represents the frame number threshold
  • R represents the heart rate
  • This application compares the total number of image frames N with the frame number threshold N y , filters out images with N ⁇ N y that is half a heartbeat cycle, and saves images with N ⁇ N y that is a full heartbeat cycle, and the acquired blood flow velocity more precise.
  • S500 further includes:
  • the image group with the smallest difference is further selected, which reduces the calculation time and improves the calculation efficiency.
  • Methods of obtaining blood flow velocity include:
  • the blood flow velocity is obtained.
  • the blood flow velocity adopts the contrast medium transport time algorithm, which is calculated by the following formula:
  • N represents the total number of frames of the image
  • v represents the blood flow velocity
  • the method for measuring v further includes: a contrast agent traversal distance algorithm, a Stewart-Hamilton algorithm, a first-pass distribution analysis method, an optical flow method, or a fluid continuity method.
  • the present application provides a blood flow velocity screening device based on contrast images, including: an image reading unit 100, a first body position image screening unit 200, and a blood flow velocity acquisition unit 300 connected in sequence;
  • the image reading unit 100 is used to obtain two-dimensional contrast image groups of at least two body positions;
  • the first body position image screening unit 200 is used to determine whether to select a certain body position according to whether the contrast image of a certain body position is an expanded one
  • the blood flow velocity acquisition unit 300 is used to calculate the corresponding blood flow velocity v according to the contrast image of the selected body position; preferably, the blood flow velocity v adopts the contrast agent transport time algorithm, which is calculated by the following formula: Among them, N represents the total number of frames of the image, and v represents the blood flow velocity.
  • an embodiment of the present application further includes: a second body image screening unit 400 connected to the first body image screening unit 200 and the image reading unit 100, and the second body image screening unit 400 Connected to the heart rate acquisition unit 500 and the setting unit 600; the heart rate acquisition unit 500 is used to acquire the heart rate of the patient, which can be measured by a non-invasive blood pressure meter, etc.; the setting unit 600 is used to set the number of frames transmitted per second; the second body position image filtering unit A comparison module 410, a filtering module 420, and a saving module 430 are provided inside the 400.
  • the filtering module 420 and the saving module 430 are all connected to the comparison module 410; the comparison module 410 is used to determine whether to start the comparison according to the screening result of the first body image screening unit 200 If the first body position image screening unit 200 determines that all the contrast images of the body positions belong to the non-expanded contrast images, or the two-dimensional contrast images of at least two body positions belong to the expanded contrast images, the comparison module 410 is activated.
  • the 410 Obtain the number of frames per second transmitted in each group of two-dimensional radiography images and the total number of frames per second N, according to the heart rate of the patient sent by the heart rate acquisition unit 500 and the number of frames per second sent by the setting unit 600 to obtain a heartbeat Threshold of the number of imaging frames in the cycle; the total number of image frames N contained in each group of two-dimensional imaging images is obtained by the image reading unit 100, if the total number of image frames N of the two-dimensional imaging group of a certain body position is less than the frame number threshold N y , the contrast image group of the body position is filtered and then enters the filtering module 420; if the total number of image frames N of the two-dimensional contrast image group of a certain body position is greater than or equal to the frame number threshold N y , the contrast image group of the body position is selected Enter the saving module 430.
  • the second body position image filtering unit 400 further includes: a frame number difference module 440 connected to the filtering module 420 and the saving module 430; the frame number difference module 440 is used to The image saving status inside the filtering module 420 and the saving module 430 determines whether to start.
  • the total image frame Make the difference between the number N and the frame number threshold N y , select the blood flow velocity v corresponding to the two-dimensional angiographic image of the position with the smallest difference, and perform the filtering and saving operations on the saving module 430 and the filtering module 420 again; and/or if filtering
  • the module 420 stores the coronary two-dimensional angiography images of all positions, that is, the total number of image frames N of all the positions is less than the frame number threshold N y , then the blood flow velocity v corresponding to which group of two-dimensional coronary angiography images is selected is artificially determined .
  • the present application provides a coronary artery analysis system, including: the above-mentioned device for the average blood flow at the coronary artery exit in the cardiac cycle.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for screening the blood flow rate based on the contrast image is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or in a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or a Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block of the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, thereby producing a machine that makes these computer program instructions when executed by the processors of the computer or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams is produced.
  • These computer program instructions can also be stored in a computer-readable medium. These instructions make computers, other programmable data processing devices, or other devices work in a specific manner, so that the instructions stored in the computer-readable medium generate An article of manufacture that implements instructions for the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be executed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Abstract

一种基于造影图像的流速的筛选方法、装置、系统和计算机存储介质。基于造影图像的血流速度的筛选方法包括:获取至少两个体位的二维造影图像组(100);如果某个体位的造影图像属于扩张态的造影图像,则选择所述体位的造影图像对应的血流速度(200)。该方法通过获取至少两个体位的二维造影图像组;如果某个体位的造影图像属于扩张态的造影图像,则选择所述体位的造影图像对应的血流速度,这是因为现有技术中测量冠状动脉血管评定参数,例如FFR时,是通过导丝在扩张态下测量狭窄远端压力的,因此该方法选择扩张态下的造影图像对应的血流速度,获取的血管评定参数更加准确,更加科学。

Description

基于造影图像的流速的筛选方法、装置、系统和存储介质 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种基于造影图像的流速的筛选方法、装置、系统和计算机存储介质。
背景技术
世界卫生组织统计,心血管疾病已经成为人类健康的“头号杀手”。近些年,使用血流动力学分析心血管疾病的生理和病理行为也已经成为心血管疾病诊断的一个非常重要的手段。
由于冠状动脉分析系统需要通过三维建模合成血管模型,三维血管模型能够将血管病变的狭窄位置明确的显示出来,具有更加直观的作用。在三维血管模型合成的过程中需要从至少两个体位拍摄造影图像,然后将两个体位的造影图像通过三维建模合成血管,由于每个体位的造影图像均会产生一个血流速度,因此在冠状动脉血管评定参数的测定中不知道采取哪个血流速度进行计算,如果随便选择一个会造成冠状动脉血管评定参数测量不准确的问题。
发明内容
本发明提供了一种基于造影图像的流速的筛选方法、装置、系统和存储介质,以解决三维血管模型中存在多个血流速度,不知道选取哪个血流速度计算冠状动脉血管评定参数的问题。
为实现上述目的,第一方面,本申请提供了一种基于造影图像的血流速度的筛选方法,包括:
获取至少两个体位的冠状动脉二维造影图像组;
如果某个体位的造影图像属于扩张态的造影图像,则选择所述体位的造影图像对应的血流速度。
可选地,上述的基于造影图像的血流速度的筛选方法,还包括:
如果全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则分别获取每组所述二维造影图像的每秒传输帧数和图像总帧数;
根据患者的心率、画面每秒传输帧数获取一个心跳周期内造影的帧数阈值;
如果某个体位的二维造影图像组的图像总帧数小于帧数阈值,则过滤所述体位的血流速度;
如果某个体位的二维造影图像组的图像总帧数大于或等于帧数阈值,则选择所述体位的二维造影图像对应的血流速度。
可选地,上述的基于造影图像的血流速度的筛选方法,如果出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则对所述图像总帧数和所述帧数阈值做差,选择差值最小的体位的二维造影图像对应的血流速度;和/或
如果全部体位的图像总帧数均小于所述帧数阈值,则人为判断、选取某个体位的二维造影图像对应的血流速度。
可选地,上述的基于造影图像的血流速度的筛选方法,如果出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则全部选择,并对选择的所述体位的二维造影图像对应的血流速度取平均值,所述平均值作为筛选得到的血流速度。
可选地,上述的基于造影图像的血流速度的筛选方法,所述帧数阈值
Figure PCTCN2019118749-appb-000001
其中,N y表示帧数阈值,R表示心率,fps表示画面每秒传输帧数。
可选地,上述的基于造影图像的血流速度的筛选方法,所述fps=1/30~1/15。
可选地,上述的基于造影图像的血流速度的筛选方法,所述血流速度的获取方法包括:
从选取的每组冠状动脉二维造影图像中,提取感兴趣的血管段;
拉直所述血管段;
提取所述血管段的中心线;
获取所述中心线的长度;
根据所述中心线的长度、图像总帧数和画面每秒传输帧数获取血流速度。
可选地,上述的基于造影图像的血流速度的筛选方法,所述血流速度通过如下公式计算:
Figure PCTCN2019118749-appb-000002
其中,N表示图像总帧数,v表示血流速度。
第二方面,本申请提供了一种基于造影图像的血流速度的筛选装置,用于上述的基于造影图像的血流速度的筛选方法,包括:依次连接的图像读取单元、第一体位图像筛选单元和血流速度获取单元;
所述图像读取单元,用于获取至少两个体位的二维造影图像组;
所述第一体位图像筛选单元,用于根据某个体位的造影图像是否属于扩张态的造影图像,判断是否选择某个体位的造影图像;
所述血流速度获取单元,用于根据所选体位的造影图像计算相对应的血流速度。
可选地,上述的基于造影图像的血流速度的筛选装置,还包括:与所述第一体位图像筛选单元、所述图像读取单元连接的第二体位图像筛选单元,与所述第二体位图像筛选单元连接的心率获取单元和设置单元;
所述心率获取单元用于获取患者的心率;
所述设置单元,用于设置画面每秒传输帧数;
所述第二体位图像筛选单元,内部设置比较模块、过滤模块和保存模块,所述过滤模块、所述保存模块均与所述比较模块连接;
所述比较模块用于根据第一体位图像筛选单元的筛选结果确定是否开始比较,如果所述第一体位图像筛选单元判断全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则启动所述比较模块,所述比较模块分别获取每组所述二维造影图像的每秒传输帧数和图像总帧数,根据心率获取单元发送的患者的心率、以及所述设置单元发送的画面每秒传输帧数获取一个心跳周期内造影的帧数阈值;通过所述图像读取单元获取每组二维造影图像内含有的图像总帧数,如果某个体位的二维造影图像组的图像总帧数小于帧数阈值,则所述体位的造影图像组过滤后进入所述过滤模块;如果某个体位的二维造影图像组的图像总帧数大于或等于帧数阈值,则所述体位的造影图像组被选择后进入所述保存模块。
可选地,上述的获取一个心动周期内冠脉出口处的平均血流量的装置,所述第二体位图像筛选单元还包括:与所述过滤模块和所述保存模块连接的帧数差值模块;
所述帧数差值模块,用于根据所述过滤模块和所述保存模块内部的图像保存情况确定是否启动,如果所述保存模块内出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则对所述图像总帧数和所述帧数阈值做差,选择差值最小的体位的二维造影图像对应的血流速度;和/或如果所述过滤模块内存储了全部体位的冠状动脉二维造影图像,即全部体位的图像总帧数均小于所述帧数阈值,则人为判断选取哪组冠状动脉二维造影图像对应的血流速度。
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的心动周期内冠脉出口处的平均血流量的装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于造影图像的血流速度的筛选方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了基于造影图像的血流速度的筛选方法,通过获取至少两个体位的二维造影图像组;如果某个体位的造影图像属于扩张态的造影图像,则选择所述体位的造影图像对应的血流速度,这是因为现有技术中测量冠状动脉血管评定参数,例如FFR时,是通过导丝在扩张态下测量狭窄远端压力的,因此本申请选择扩张态下的造影图像对应的血流速度,获取的血管评定参数更加准确,更加科学。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的基于造影图像的血流速度的筛选方法的一个实施例的流程图;
图2为本申请的基于造影图像的血流速度的筛选方法的另一实施例的流程图;
图3为本申请的S500的流程图;
图4为本申请的基于造影图像的血流速度的筛选装置的一个实施例的结构框图;
图5为本申请的基于造影图像的血流速度的筛选装置的另一实施例的结构框图;
下面对附图标记进行说明:
图像读取单元100、第一体位图像筛选单元200,血流速度获取单元300,第二体位图像筛选单元400,比较模块410,过滤模块420,保存模块430,帧数差值模块440,心率获取单元500,设置单元600。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
由于冠状动脉分析系统需要通过三维建模合成血管模型,三维血管模型能够将血管病变的狭窄位置明确的显示出来,具有更加直观的作用。在三维血管模型合成的过程中需要从至少两个体位拍摄造影图 像,然后将两个体位的造影图像通过三维建模合成血管,由于每个体位的造影图像均会产生一个血流速度,因此在冠状动脉血管评定参数的测定中不知道采取哪个血流速度进行计算,如果随便选择一个会造成冠状动脉血管评定参数测量不准确的问题。
实施例1:
如图1所示,本申请为了解决上述问题,提供了本申请提供了一种基于造影图像的血流速度的筛选方法,包括:
S100,获取至少两个体位的冠状动脉二维造影图像组;
S200,如果某个体位的造影图像属于扩张态的造影图像,则选择体位的造影图像对应的血流速度。
本申请提供了基于造影图像的血流速度的筛选方法,通过获取至少两个体位的二维造影图像组;如果某个体位的造影图像属于扩张态的造影图像,则选择体位的造影图像对应的血流速度,这是因为现有技术中测量冠状动脉血管评定参数,例如FFR时,是通过导丝在扩张态下测量狭窄远端压力的,因此本申请选择扩张态下的造影图像对应的血流速度,获取的血管评定参数更加准确,更加科学。
如图2所示,本申请的一个实施例中,还包括:
S300,如果全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则分别获取每组二维造影图像的每秒传输帧数和图像总帧数N;根据患者的心率、画面每秒传输帧数获取一个心跳周期内造影的帧数阈值N y
帧数阈值
Figure PCTCN2019118749-appb-000003
其中,N y表示帧数阈值,R表示心率,fps表示画面每秒传输帧数;优选地,fps=1/30~1/15;
S400,如果某个体位的二维造影图像组的图像总帧数N小于帧数阈值N y,则过滤体位的血流速度;
S500,如果某个体位的二维造影图像组的图像总帧数N大于或等于帧数阈值N y,则选择体位的二维造影图像对应的血流速度v。
本申请通过将图像总帧数N与帧数阈值N y进行比较,将N<N y即半心跳周期的图像过滤掉,将N≥N y即全心跳周期的图像保存,获取的血流速度更加准确。
如图3所示,本申请的一个实施例中,S500还包括:
S510,如果出现两个或两个以上体位的图像总帧数N均大于或等于帧数阈值,则对图像总帧数N和帧数阈值N y做差,选择差值最小的体位的二维造影图像对应的血流速度;
S520,如果全部体位的图像总帧数N均小于帧数阈值N y,则人为判断、选取某个体位的二维造影图像对应的血流速度;
S530,如果出现两个或两个以上体位的图像总帧数N均大于或等于帧数阈值N y,则全部选择,并对选择的体位的二维造影图像对应的血流速度取平均值,平均值作为筛选得到的血流速度。
本申请在选取全心跳周期的图像后,进一步地选取差值最小的图像组,降低了运算时间,提高了运算效率。
实施例2:
血流速度的获取方法包括:
从选取的冠状动脉二维造影图像中,提取感兴趣的血管段;
拉直血管段;
提取血管段的中心线;
获取中心线的长度;
根据中心线的长度、图像总帧数和画面每秒传输帧数获取血流速度。
本申请的一个实施例中,血流速度采用造影剂运输时间算法,通过如下公式计算:
Figure PCTCN2019118749-appb-000004
其中,N表示图像总帧数,v表示血流速度。
本申请的一个实施例中,测量v的方法还包括:造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法。
实施例3:
如图4所示,本申请提供了一种基于造影图像的血流速度的筛选装置,包括:依次连接的图像读取单元100、第一体位图像筛选单元200和血流速度获取单元300;图像读取单元100用于获取至少两个体位的二维造影图像组;第一体位图像筛选单元200用于根据某个体位的造影图像是否属于扩张态的造影图像,判断是否选择某个体位的造影图像;血流速度获取单元300用于根据所选体位的造影图像计算相对应的血流速度v;优选地,血流速度v采用造影剂运输时间算法,通过如下公式计算:
Figure PCTCN2019118749-appb-000005
其中,N表示图像总帧数,v表示血流速度。
如图5所示,本申请的一个实施例中,还包括:与第一体位图像筛选单元200、图像读取单元100连接的第二体位图像筛选单元400,与第二体位图像筛选单元400连接的心率获取单元500和设置单元600;心率获取单元500用于获取患者的心率,可以通过无创血压仪等进行测量;设置单元600用于设置画面每秒传输帧数;第二体位图像筛选单元400内部设置比较模块410、过滤模块420和保存模块430,过滤模块420、保存模块430均与比较模块410连接;比较模块410用于根据第一体位图像筛选单元200的筛选结果确定是否开始比较,如果第一体位图像筛选单元200判断全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则启动比较模块410,比较模块410分别获取每组二维造影图像的画面每秒传输帧数fps和图像总帧数N,根据心率获取单元500发送的患者的心率、以及设置单元600发送的画面每秒传输帧数获取一个心跳周期内造影的帧数阈值;通过图像读取单元100获取每组二维造影图像内含有的图像总帧数N,如果某个体位的二维造影图像组的图像总帧数N小于帧数阈值N y,则体位的造影图像组过滤后进入过滤模块420;如果某个体位的二维造影图像组的图像总帧数N大于或等于帧数阈值N y,则体位的造影图像组被选择后进入保存模块430。
如图6所示,本申请的一个实施例中,第二体位图像筛选单元400还包括:与过滤模块420和保存模块430连接的帧数差值模块440;帧数差值模块440用于根据过滤模块420和保存模块430内部的图像保存情况确定是否启动,如果保存模块430内出现两个或两个以上体位的图像总帧数N均大于或等于帧数阈值N y,则对图像总帧数N和帧数阈值N y做差,选择差值最小的体位的二维造影图像对应的血流速度v,同时对保存模块430和过滤模块420进行再次过滤和保存操作;和/或如果过滤模块420内存储了全部体位的冠状动脉二维造影图像,即全部体位的图像总帧数N均小于帧数阈值N y,则人为判断选取哪组冠状动脉二维造影图像对应的血流速度v。
本申请提供了一种冠状动脉分析系统,包括:上述的心动周期内冠脉出口处的平均血流量的装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于造影图像的血流速 度的筛选方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处 理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种基于造影图像的血流速度的筛选方法,其特征在于,包括:
    获取至少两个体位的冠状动脉二维造影图像组;
    如果某个体位的造影图像属于扩张态的造影图像,则选择所述体位的造影图像对应的血流速度。
  2. 根据权利要求1所述的基于造影图像的血流速度的筛选方法,其特征在于,还包括:
    如果全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则分别获取每组所述二维造影图像的每秒传输帧数和图像总帧数;
    根据患者的心率、画面每秒传输帧数获取一个心跳周期内造影的帧数阈值;
    如果某个体位的二维造影图像组的图像总帧数小于帧数阈值,则过滤所述体位的血流速度;
    如果某个体位的二维造影图像组的图像总帧数大于或等于帧数阈值,则选择所述体位的二维造影图像对应的血流速度。
  3. 根据权利要求2所述的基于造影图像的血流速度的筛选方法,其特征在于,如果出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则对所述图像总帧数和所述帧数阈值做差,选择差值最小的体位的二维造影图像对应的血流速度;和/或
    如果全部体位的图像总帧数均小于所述帧数阈值,则人为判断、选取某个体位的二维造影图像对应的血流速度。
  4. 根据权利要求2所述的基于造影图像的血流速度的筛选方法,其特征在于,如果出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则全部选择,并对选择的所述体位的二维造影图像对应的血流速度取平均值,所述平均值作为筛选得到的血流速度。
  5. 根据权利要求2~4任一项所述的基于造影图像的血流速度的筛选方法,其特征在于,所述帧数阈值
    Figure PCTCN2019118749-appb-100001
    其中,N y表示帧数阈值,R表示心率,fps表示画面每秒传输帧数。
  6. 根据权利要求5所述的基于造影图像的血流速度的筛选方法,其特征在于,所述fps=1/30~1/15。
  7. 根据权利要求2所述的基于造影图像的血流速度的筛选方法,其特征在于,所述血流速度的获取方法包括:
    从选取的每组冠状动脉二维造影图像中,提取感兴趣的血管段;
    拉直所述血管段;
    提取所述血管段的中心线;
    获取所述中心线的长度;
    根据所述中心线的长度、图像总帧数和画面每秒传输帧数获取血流速度。
  8. 根据权利要求7所述的基于造影图像的血流速度的筛选方法,其特征在于,所述血流速度通过如下公式计算:
    Figure PCTCN2019118749-appb-100002
    其中,N表示图像总帧数,v表示血流速度。
  9. 一种基于造影图像的血流速度的筛选装置,用于权利要求1~8任一项所述的基于造影图像的血流速度的筛选方法,其特征在于,包括:依次连接的图像读取单元、第一体位图像筛选单元和血流速度获取单元;
    所述图像读取单元,用于获取至少两个体位的二维造影图像组;
    所述第一体位图像筛选单元,用于根据某个体位的造影图像是否属于扩张态的造影图像,判断是否选择某个体位的造影图像;
    所述血流速度获取单元,用于根据所选体位的造影图像计算相对应的血流速度。
  10. 根据权利要求9所述的基于造影图像的血流速度的筛选装置,其特征在于,还包括:与所述第一体位图像筛选单元、所述图像读取单元连接的第二体位图像筛选单元,与所述第二体位图像筛选单元连接的心率获取单元和设置单元;
    所述心率获取单元用于获取患者的心率;
    所述设置单元,用于设置画面每秒传输帧数;
    所述第二体位图像筛选单元,内部设置比较模块、过滤模块和保存模块,所述过滤模块、所述保存模块均与所述比较模块连接;
    所述比较模块用于根据第一体位图像筛选单元的筛选结果确定是否开始比较,如果所述第一体位图像筛选单元判断全部体位的造影图像均属于非扩张态造影图像,或者存在至少两个体位的二维造影图像属于扩张态的造影图像,则启动所述比较模块,所述比较模块分别获取每组所述二维造影图像的每秒传输帧数和图像总帧数,根据心率获取单元发送的患者的心率、以及所述设置单元发送的画面每秒传输帧数获取一个心跳周期内造影的帧数阈值;通过所述图像读取单元获取每组二维造影图像内含有的图像总帧数,如果某个体位的二维造影图像组的图像总帧数小于帧数阈值,则所述体位的造影图像组过滤后进入所述过滤模块;如果某个体位的二维造影图像组的图像总帧数大于或等于帧数阈值,则所述体位的造影图像组被选择后进入所述保存模块。
  11. 根据权利要求10所述的基于造影图像的血流速度的筛选装置,其特征在于,所述第二体位图像筛选单元还包括:与所述过滤模块和所述保存模块连接的帧数差值模块;
    所述帧数差值模块,用于根据所述过滤模块和所述保存模块内部的图像保存情况确定是否启动,如果所述保存模块内出现两个或两个以上体位的图像总帧数均大于或等于所述帧数阈值,则对所述图像总帧数和所述帧数阈值做差,选择差值最小的体位的二维造影图像对应的血流速度;和/或如果所述过滤模块内存储了全部体位的冠状动脉二维造影图像,即全部体位的图像总帧数均小于所述帧数阈值,则人为判断选取哪组冠状动脉二维造影图像对应的血流速度。
  12. 一种冠状动脉分析系统,其特征在于,包括:权利要求9~11任一项所述的基于造影图像的血流速度的筛选装置。
  13. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~8任一项所述的基于造影图像的血流速度的筛选方法。
PCT/CN2019/118749 2019-11-11 2019-11-15 基于造影图像的流速的筛选方法、装置、系统和存储介质 WO2021092889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911094881.7 2019-11-11
CN201911094881.7A CN110929604B (zh) 2019-11-11 2019-11-11 基于造影图像的流速的筛选方法、装置、系统和存储介质

Publications (1)

Publication Number Publication Date
WO2021092889A1 true WO2021092889A1 (zh) 2021-05-20

Family

ID=69853775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118749 WO2021092889A1 (zh) 2019-11-11 2019-11-15 基于造影图像的流速的筛选方法、装置、系统和存储介质

Country Status (2)

Country Link
CN (1) CN110929604B (zh)
WO (1) WO2021092889A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450329A (zh) * 2021-06-29 2021-09-28 广州医软智能科技有限公司 一种微循环图像血管分支红细胞流速计算方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690598A2 (en) * 2012-07-27 2014-01-29 Samsung Electronics Co., Ltd Method and apparatus for determining blood flow required, method and apparatus for producing blood flow image, and method and apparatus for processing myocardial perfusion image
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法
CN110367965A (zh) * 2018-09-19 2019-10-25 苏州润迈德医疗科技有限公司 便捷测量冠状动脉血管评定参数的方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709399B2 (en) * 2017-11-30 2020-07-14 Shenzhen Keya Medical Technology Corporation Methods and devices for performing three-dimensional blood vessel reconstruction using angiographic images
CN110226923B (zh) * 2018-03-05 2021-12-14 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690598A2 (en) * 2012-07-27 2014-01-29 Samsung Electronics Co., Ltd Method and apparatus for determining blood flow required, method and apparatus for producing blood flow image, and method and apparatus for processing myocardial perfusion image
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法
CN110367965A (zh) * 2018-09-19 2019-10-25 苏州润迈德医疗科技有限公司 便捷测量冠状动脉血管评定参数的方法、装置及系统
CN110393516A (zh) * 2018-09-19 2019-11-01 苏州润迈德医疗科技有限公司 基于影像和压力传感器计算微循环指标的方法装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450329A (zh) * 2021-06-29 2021-09-28 广州医软智能科技有限公司 一种微循环图像血管分支红细胞流速计算方法及系统

Also Published As

Publication number Publication date
CN110929604B (zh) 2023-08-18
CN110929604A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2021092997A1 (zh) 获取血管狭窄病变区间及三维合成方法、装置和系统
WO2020057324A1 (zh) 测量微循环阻力指数的系统以及冠脉分析系统
CN105380598B (zh) 用于针对动脉狭窄的自动治疗规划的方法和系统
JP2022169579A (ja) リアルタイムで診断上有用な結果
JP6661613B2 (ja) 心筋ブリッジ及び患者に及ぼす影響を自動的に判定するためのシステム及び方法
WO2020098704A1 (zh) 基于造影图像获取血管评定参数的方法、装置及系统
WO2021097817A1 (zh) 根据血管中心线获取血管轮廓线的方法和装置
WO2021087968A1 (zh) 基于微循环阻力指数调节最大充血状态流速的方法及装置
JP6873981B2 (ja) モバイルffrシミュレーション
WO2022109903A1 (zh) 三维血管合成方法、系统及冠状动脉分析系统和存储介质
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
WO2021097820A1 (zh) 具有狭窄病变区间的血管三维建模方法、装置和系统
US20220261997A1 (en) Method and apparatus for acquiring blood vessel evaluation parameter based on physiological parameter, and storage medium
CN112494020B (zh) 获取感兴趣的主动脉压力曲线的方法及存储介质
CN110432886A (zh) 获取冠脉出口处的平均血流量、流速的方法、装置和系统
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
WO2021017327A1 (zh) 基于造影图像间隔时间修正血流速度的方法及装置
WO2021031355A1 (zh) 测量无波形期压力、比率方法、装置、系统及存储介质
JP6685319B2 (ja) 定量的フロー分析のための方法および装置
WO2021092889A1 (zh) 基于造影图像的流速的筛选方法、装置、系统和存储介质
WO2020083390A1 (zh) 获取心表大动脉的血流量的方法、装置、系统及存储介质
WO2022161239A1 (zh) 获取流量损失模型、损失比、供血能力的方法和系统
WO2022000730A1 (zh) 基于ct序列图像获取心脏重心的方法和系统
WO2022110019A1 (zh) 主动脉压力波形图像的生成方法及存储介质
WO2022000731A1 (zh) 基于ct序列图像获取心脏重心和脊椎重心的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952392

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19952392

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19952392

Country of ref document: EP

Kind code of ref document: A1