WO2021097820A1 - 具有狭窄病变区间的血管三维建模方法、装置和系统 - Google Patents

具有狭窄病变区间的血管三维建模方法、装置和系统 Download PDF

Info

Publication number
WO2021097820A1
WO2021097820A1 PCT/CN2019/120342 CN2019120342W WO2021097820A1 WO 2021097820 A1 WO2021097820 A1 WO 2021097820A1 CN 2019120342 W CN2019120342 W CN 2019120342W WO 2021097820 A1 WO2021097820 A1 WO 2021097820A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
point
dimensional
line
dimensional modeling
Prior art date
Application number
PCT/CN2019/120342
Other languages
English (en)
French (fr)
Inventor
王之元
刘广志
曹文斌
吴心娱
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2021097820A1 publication Critical patent/WO2021097820A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the present invention relates to the technical field of coronary artery medicine, and in particular to a three-dimensional modeling method, device, coronary artery analysis system and computer storage medium of a blood vessel with stenosis lesion interval.
  • lipids and carbohydrates in human blood on the vascular wall will form plaques on the vascular wall, which will then cause vascular stenosis; especially the vascular stenosis that occurs near the coronary artery of the heart will cause insufficient blood supply to the myocardium and induce coronary heart disease Diseases such as angina and angina pectoris pose a serious threat to human health.
  • coronary heart disease Diseases such as angina and angina pectoris pose a serious threat to human health.
  • there are currently about 11 million patients with coronary heart disease in my country and the number of patients undergoing cardiovascular interventional surgery is increasing by more than 10% every year.
  • Fractional flow reserve usually refers to the myocardial blood flow reserve, which is defined as the ratio of the maximum blood flow that the diseased coronary artery can provide to the myocardium to the maximum blood flow when the coronary artery is completely normal.
  • the ratio of blood flow can be replaced by pressure. That is, the measurement of FFR value can be calculated by measuring the pressure at the distal end of coronary artery stenosis and the pressure at the proximal end of coronary artery stenosis through the pressure sensor under the state of maximum coronary congestion.
  • the two-dimensional coronary angiography image is affected by the shooting angle, the stenosis lesion area of the angiography is blocked due to the overlap and entanglement of the blood vessels. Therefore, it is difficult to determine the vascular stenosis lesion area through the two-dimensional coronary angiography image, and it is impossible to image Show patients and doctors vividly the narrowed blood vessels with lesions; the error of coronary artery stenosis judged by two-dimensional angiography images is large.
  • the present invention provides a three-dimensional modeling method, device and system for a blood vessel with a narrow lesion area, so as to solve the problem that the narrow lesion area cannot be accurately judged through a two-dimensional coronary angiography image in the prior art.
  • the present application provides a three-dimensional modeling method for blood vessels with stenotic lesions, including:
  • the above-mentioned three-dimensional modeling method for blood vessels with stenosis lesions is a method of extracting a blood vessel centerline from two-dimensional coronary arterial angiography images of at least two positions along the direction from the entrance of the coronary artery to the end of the coronary artery It also included:
  • the partial blood vessel area map corresponding to the start point and the end point is segmented from the two-dimensional coronary angiography image.
  • the method of segmenting the local blood vessel area map corresponding to the starting point and the ending point from the two-dimensional coronary angiography image further includes:
  • the centerline of a blood vessel is extracted from the two-dimensional coronary artery angiography images in at least two positions along the direction from the entrance of the coronary artery to the end of the coronary artery.
  • Methods include:
  • One of the blood vessel path lines is selected as the blood vessel center line.
  • the method of extracting at least one blood vessel path line from the local blood vessel area map of each body position respectively includes:
  • the rough blood vessel map is meshed, and at least one blood vessel path line is extracted along the direction from the start point to the end point.
  • the method of performing image enhancement processing on the local blood vessel area map to obtain a rough blood vessel map with strong contrast includes:
  • the blood vessel segment of interest is used as the foreground and other regions are used as the background to strengthen the foreground and weaken the background to obtain the rough blood vessel map with strong contrast.
  • the rough blood vessel map is meshed, and at least one blood vessel path line is extracted along the direction from the start point to the end point.
  • Methods include:
  • n is a positive integer greater than or equal to 1;
  • a line connecting the blood vessel extending direction from the starting point to the ending point is used to obtain at least one blood vessel path line.
  • the method of selecting one of the blood vessel path lines as the blood vessel centerline includes:
  • the blood vessel path line with the least amount of time is taken as the blood vessel center line.
  • the centerline of a blood vessel is extracted from the two-dimensional coronary artery angiography images in at least two positions along the direction from the entrance of the coronary artery to the end of the coronary artery.
  • Methods include:
  • the blood vessel centerline is extracted from the blood vessel skeleton.
  • the method for extracting the centerline of the blood vessel from the blood vessel skeleton includes:
  • the blood vessel skeleton is searched according to the RGB values, and the minimum value of the RGB difference between the starting point and the intersection on the surrounding m grids is searched for As the second point, search for the point where the minimum value of the RGB difference between the second point and the m grids on the periphery is located as the third point, and repeat the above steps for the third point , Until reaching the end point, where m is a positive integer greater than or equal to 1;
  • connection select one connection as the centerline of the blood vessel.
  • the method of obtaining a straightened blood vessel image according to the two-dimensional coronary angiography image includes:
  • the correspondingly set image is the straightened blood vessel image.
  • the method for obtaining a straightened blood vessel contour line based on the straightened blood vessel centerline and the straightened blood vessel image includes:
  • Step by step the preset contour line of the blood vessel is moved closer to the center line of the blood vessel to obtain the straightened blood vessel contour line.
  • the method of moving the preset contour line of the blood vessel to the center line of the blood vessel step by step to obtain the straightened blood vessel contour line includes:
  • z points are respectively stepped closer to the center of the blood vessel to generate z close points, where z is a positive integer;
  • the RGB difference threshold to the ⁇ RGB threshold .
  • the RGB value of the close point is compared with the RGB value of the point on the center line of the blood vessel.
  • the close-in point stops moving straight to the center of the blood vessel;
  • the smooth curve formed by sequentially connecting the contour points is the blood vessel contour line.
  • the geometric information of the blood vessel includes: the geometric information includes the real-time diameter D t of the blood vessel, the blood vessel stenosis point, the blood vessel stenosis interval and the blood vessel center linear length L.
  • the method for acquiring the real-time diameter D t of the blood vessel includes:
  • the distance between all the contour points set relative to each other is obtained, that is, the real-time diameter D t of the blood vessel.
  • the method for obtaining the stenosis section includes:
  • the simulated smooth curve of the normal blood vessel is compared with the smooth curve formed by the patient's true central straight length L-diameter D t to obtain the stenosis lesion zone.
  • the method for obtaining a stenosis point of the blood vessel includes: picking up the patient's true centerline L-diameter D t in the narrow lesion area
  • the point A of the smallest diameter of the smooth curve is the stenosis point of the blood vessel segment.
  • performing three-dimensional modeling according to the geometric information, the center line and the contour line, and the method for obtaining a three-dimensional blood vessel model with a narrow lesion area includes:
  • the real-time diameter D t of the blood vessel in the stenosis zone is projected onto the frustum three-dimensional model to obtain the three-dimensional blood vessel model with the stenosis lesion zone.
  • the present application provides a blood vessel three-dimensional modeling device with a narrow lesion area, including: a centerline extraction unit, a straightening unit, a contour line unit, a geometric information unit, and a three-dimensional modeling unit that are sequentially connected;
  • the straightening unit is connected with the geometric information unit, and the three-dimensional modeling unit is connected with the straightening unit and the contour line unit;
  • the centerline extraction unit is configured to extract a blood vessel centerline from two-dimensional coronary angiography images of at least two positions along the direction from the entrance of the coronary artery to the end of the coronary artery;
  • the straightening unit is configured to receive the blood vessel centerline sent by the centerline extraction unit, and obtain a straightened blood vessel image according to the two-dimensional coronary angiography image and the blood vessel centerline;
  • the contour line unit is configured to receive the straightened blood vessel image sent by the straightening unit, and obtain the straightened blood vessel contour line according to the straightened blood vessel center line and the straightened blood vessel image;
  • the geometric information unit is configured to receive the straightened blood vessel image sent by the straightening unit and the blood vessel contour line sent by the contour line unit, and obtain geometric information of the straightened blood vessel;
  • the three-dimensional modeling unit is configured to receive the straightened blood vessel image sent by the straightening unit, the blood vessel contour line sent by the contour line unit, and the geometric information of the blood vessel sent by the geometric information unit, according to the geometric information ,
  • the center line and the contour line are three-dimensionally modeled to obtain a three-dimensional blood vessel model with a narrow lesion area.
  • the above-mentioned apparatus for three-dimensional modeling of blood vessels with narrow lesion sections further includes: an image segmentation unit connected to the centerline extraction unit;
  • the image segmentation unit is used to segment the local blood vessel area map corresponding to the start point and the end point from the two-dimensional coronary angiography image, or to determine the start point, the seed point, and the two adjacent points of the end point. Segmentation of the two-dimensional angiographic image to obtain at least two partial blood vessel region maps.
  • the centerline extraction unit further includes: a blood vessel path module and a blood vessel centerline extraction module connected in sequence, the blood vessel path module and the image segmentation unit connection;
  • the blood vessel path module is configured to extract at least one blood vessel path line from the local blood vessel area map of each body position;
  • the blood vessel centerline extraction module is configured to select one of the blood vessel path lines sent by the blood vessel path module as the blood vessel centerline.
  • the present application provides a coronary artery analysis system, including: the above-mentioned three-dimensional blood vessel modeling device with stenotic lesion area.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned three-dimensional modeling method for blood vessels with stenotic lesions is realized.
  • This application provides a three-dimensional modeling method for blood vessels with narrow lesions.
  • the straightened blood vessel contour line is obtained according to the centerline; the straightened blood vessel is obtained Geometric information; perform three-dimensional modeling according to the geometric information, the center line, and the contour line to obtain a three-dimensional blood vessel model with a narrow lesion area; three-dimensionally display the narrow lesion area to patients and doctors through a three-dimensional blood vessel model , It is more vivid, and all angles of stenosis lesions can be displayed, which reduces the influence of the two-dimensional angiographic image shooting angle on the evaluation of coronary artery stenosis, and can accurately determine the stenosis lesion area of the blood vessel.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for three-dimensional modeling of a blood vessel with a narrow lesion area according to the present application;
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for three-dimensional modeling of a blood vessel with a narrow lesion area of the present application;
  • FIG. 3 is a flow chart of S400 of this application.
  • FIG. 4 is a flowchart of S500 of the application.
  • FIG. 5 is a flowchart of the first method of S510 of this application.
  • FIG. 6 is a flowchart of S520 of the application.
  • FIG. 7 is a flowchart of the second method of S510 of this application.
  • FIG. 8 is a flowchart of S530' of the application.
  • Fig. 9 is a flowchart of S600 of this application.
  • FIG. 10 is a flowchart of S700 of the application.
  • FIG. 11 is a flowchart of S730 of this application.
  • FIG. 12 is a flowchart of S900 of the application.
  • Figure 13 is a three-dimensional blood vessel model with a narrow lesion area
  • FIG. 14 is a structural block diagram of an embodiment of a blood vessel three-dimensional modeling device with narrow lesion area according to the present application.
  • FIG. 15 is another structural block diagram of an embodiment of the blood vessel three-dimensional modeling device with narrow lesion area of the present application.
  • the two-dimensional coronary angiography image is affected by the shooting angle, the stenosis lesion area of the angiography is blocked due to the overlap and entanglement of the blood vessels. Therefore, it is difficult to determine the vascular stenosis lesion area through the two-dimensional coronary angiography image, and it is impossible to image Show patients and doctors vividly the narrowed blood vessels with lesions; the error of coronary artery stenosis judged by two-dimensional angiography images is large.
  • the present application provides a three-dimensional modeling method of blood vessels with stenosis lesions, including:
  • S900 Perform three-dimensional modeling according to the geometric information, the center line, and the contour line to obtain a three-dimensional blood vessel model with a narrow lesion area.
  • the present application provides a method for three-dimensional modeling of blood vessels with stenotic lesions, including:
  • S400 segmenting a local blood vessel area map corresponding to the start point and the end point from the two-dimensional coronary angiography image, as shown in FIG. 3, including:
  • S410 Pick up at least one seed point of the blood vessel segment of interest
  • S420 Separate the two-dimensional contrast images between two adjacent points of the start point, the seed point, and the end point, respectively, to obtain at least two partial blood vessel area maps;
  • the first method is:
  • S510 Extract at least one blood vessel path line from the local blood vessel area map of each body position, as shown in FIG. 5, including:
  • each local blood vessel area map take the blood vessel segment of interest as the foreground and other areas as the background, strengthen the foreground and weaken the background, to obtain a rough blood vessel map with strong contrast;
  • S522 Take the blood vessel path line that is least in use as the blood vessel center line.
  • the second method is:
  • S600 Obtain a straightened blood vessel image according to the two-dimensional coronary angiography image and the blood vessel centerline, as shown in FIG. 9, including:
  • S620 Divide the local blood vessel area map into x units along the blood vessel extension direction from the starting point to the ending point, where x is a positive integer;
  • S630 Correspondingly set the blood vessel center line of each unit along the blood vessel center line;
  • the correspondingly set image is a straightened blood vessel image
  • S700 Obtain the straightened blood vessel contour line according to the straightened blood vessel center line and the straightened blood vessel image, as shown in FIG. 10, including:
  • S731 Divide the preset contour line of the blood vessel into y units, where y is a positive integer;
  • S736 The smooth curve formed by sequentially connecting contour points is the blood vessel contour line
  • the geometric information of the blood vessel includes: the geometric information includes: (1) the real-time diameter of the blood vessel D t , (2) the vascular stenosis interval, (3) the blood vessel stenosis point (4) the center line of the blood vessel Length L;
  • the methods for obtaining the real-time blood vessel diameter D t include:
  • the distance between all the contour points set relative to each other is obtained, that is, the real-time diameter D t of the blood vessel.
  • the methods of obtaining the vascular stenosis interval include:
  • the smooth curve of the normal blood vessel generated by the simulation is compared with the smooth curve formed by the true central straight length L-diameter D t of the patient to obtain the stenosis lesion zone.
  • Methods of obtaining vascular stenosis points include:
  • point A is the stenosis point of the blood vessel segment.
  • S900 Perform three-dimensional modeling according to the geometric information, centerline, and contour line to obtain a three-dimensional blood vessel model with a narrow lesion area, as shown in Figure 12, including:
  • the present application provides a blood vessel three-dimensional modeling device with a narrow lesion area, including: a centerline extraction unit 100, a straightening unit 200, a contour line unit 300, a geometric information unit 400, and a three-dimensional Modeling unit 500; the straightening unit 200 is connected to the geometric information unit 400, and the three-dimensional modeling unit 500 is connected to the straightening unit 200 and the contour line unit 300; the centerline extraction unit 100 is used to follow the direction from the entrance of the coronary artery to the end of the coronary artery , Extracting a blood vessel centerline from the two-dimensional coronary angiography images of at least two positions; the straightening unit 200 is used to receive the blood vessel centerline sent by the centerline extraction unit 100, according to the coronary two-dimensional angiography image and the blood vessel centerline Obtain the straightened blood vessel image; the contour line unit 300 is used to receive the straightened blood vessel image sent by the straightening unit 200, and obtain the straightened blood vessel contour line according to the
  • the above-mentioned device further includes: an image segmentation unit 600 connected to the centerline extraction unit 100; and the image segmentation unit 600 is used to segment the coronary artery two-dimensional angiography image.
  • the local blood vessel area map corresponding to the start point and the end point, or the two-dimensional contrast image between two adjacent points of the start point, the seed point, and the end point are segmented to obtain at least two local blood vessel area maps.
  • the centerline extraction unit 100 further includes: a blood vessel path module 110 and a blood vessel centerline extraction module 120 that are connected in sequence, and the blood vessel path module 110 is connected to the image segmentation unit 600; and the blood vessel path The module 110 is used to extract at least one blood vessel path line from the local blood vessel area map of each body position; the blood vessel center line extraction module 120 is used to select one of the blood vessel path lines sent by the blood vessel path module 110 as the blood vessel center line.
  • the present application provides a coronary artery analysis system, which includes: the above-mentioned three-dimensional modeling device for blood vessels with stenotic lesions.
  • the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned three-dimensional modeling method for blood vessels with stenotic lesions is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or in a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or a Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block of the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, thereby producing a machine that makes these computer program instructions when executed by the processors of the computer or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams is produced.
  • These computer program instructions can also be stored in a computer-readable medium. These instructions make computers, other programmable data processing devices, or other devices work in a specific manner, so that the instructions stored in the computer-readable medium generate An article of manufacture that implements instructions for the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be executed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种具有狭窄病变区间的血管三维建模方法、装置和系统。沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线(S500);根据冠状动脉二维造影图像和血管中心线获取拉直血管图像(S600);根据拉直后的血管中心线和拉直血管图像,获取拉直后的血管轮廓线(S700);获取拉直后的血管的几何信息(S800);根据几何信息、中心线和轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型(S900)。将狭窄病变区间通过三维血管模型的方式立体的展示给患者和医生,更加形象生动,且狭窄病变的各个角度均能够显示,降低了二维造影图像拍摄角度对评判冠状动脉狭窄评判结果的影响,能够准确的判断出血管的狭窄病变区域。

Description

具有狭窄病变区间的血管三维建模方法、装置和系统 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种具有狭窄病变区间的血管三维建模方法、装置、冠状动脉分析系统及计算机存储介质。
背景技术
人体血液中的脂类及糖类物质在血管壁上的沉积将在血管壁上形成斑块,继而导致血管狭窄;特别是发生在心脏冠脉附近的血管狭窄将导致心肌供血不足,诱发冠心病、心绞痛等病症,对人类的健康造成严重威胁。据统计,我国现有冠心病患者约1100万人,心血管介入手术治疗患者数量每年增长大于10%。
冠脉造影CAG、计算机断层扫描CT等常规医用检测手段虽然可以显示心脏冠脉血管狭窄的严重程度,但是并不能准确评价冠脉的缺血情况。为提高冠脉血管功能评价的准确性,1993年Pijls提出了通过压力测定推算冠脉血管功能的新指标——血流储备分数(Fractional Flow Reserve,FFR),经过长期的基础与临床研究,FFR已成为冠脉狭窄功能性评价的金标准。
血流储备分数(FFR)通常是指心肌血流储备分数,定义为病变冠脉能为心肌提供的最大血流与该冠脉完全正常时最大供血流量之比,研究表明,在冠脉最大充血状态下,血流量的比值可以用压力值来代替。即FFR值的测量可在冠脉最大充血状态下,通过压力传感器对冠脉远端狭窄处的压力和冠脉狭窄近端压力进行测定继而计算得出。
由于冠状动脉二维造影图像受拍摄体位角度的影响,由于血管的重叠、缠绕,造影狭窄病变区域存在被遮挡的问题,因此通过冠状动脉二维造影图像很难判断出血管狭窄病变区间,无法形象生动的将具有病变的狭窄血管展示给患者和医生;根据二维造影图像评判的冠状动脉狭窄误差大。
发明内容
本发明提供了一种具有狭窄病变区间的血管三维建模方法、装置及系统,以解决现有技术中通过冠状动脉二维造影图像无法准确的判断出狭窄病变区间的问题。
为实现上述目的,第一方面,本申请提供了一种具有狭窄病变区间的血管三维建模方法,包括:
沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线;
根据所述冠状动脉二维造影图像和所述血管中心线获取拉直血管图像;
根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线;
获取拉直后的血管的几何信息;
根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
可选地,上述的具有狭窄病变区间的血管三维建模方法,在沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法之前还包括:
读取至少两个体位的冠状动脉二维造影图像;
获取感兴趣的血管段;
拾取所述感兴趣的血管段的起始点和结束点;
从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图的方法还包括:
拾取所述感兴趣的血管段的至少一个种子点;
分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法包括:
分别从每个体位的所述局部血管区域图上提取至少一条血管路径线;
选取一条所述血管路径线作为所述血管中心线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述分别从每个体位的所述局部血管区域图上提取至少一条血管路径线的方法包括:
对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图;
对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管路径线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图的方法,包括:
在每幅所述局部血管区域图中,以所述感兴趣的血管段作为前景,其他区域作为背景,强化所述前景,弱化所述背景,得到对比强烈的所述粗略血管图。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管路径线的方法包括:
对所述粗略血管图进行网格划分;
沿着所述起始点至所述结束点的血管延伸方向,搜索所述起始点与周边n个网格上的交叉点的最短时间路径作为第二个点,搜索所述第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,所述第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;
按照搜索顺序,从所述起始点至所述结束点的血管延伸方向连线,获得至少一条血管路径线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述选取一条所述血管路径线作为所述血管中心线的方法包括:
如果血管路径线为两条或两条以上,则对每条血管路径线从所述起始点至所述结束点所用的时间求和;
取用时最少的所述血管路径线作为所述血管中心线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法包括:
对所述局部血管区域图进行图像处理,获取所述起始点和所述结束点之间的血管粗略走向线;
获取血管粗略边缘线,包含有所述血管粗略走向线的所述血管粗略边缘线之间的图像即为血管骨架;
从所述血管骨架上提取所述血管中心线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述对从所述血管骨架上提取所述血管中心线的方法包括:
对处理后的所述区域图像进行网格划分;
沿着所述起始点至所述结束点方向,根据RGB值,对所述血管骨架进行搜索,搜索所述起始点与所述周边m个网格上的交叉点的RGB差值的最小值所在的点作为第二个点,搜索所述第二个点与周边m个网格上的交叉点的RGB差值的最小值所在的点作为第三个点,所述第三个点重复上述步骤,直至到达结束点,其中,m为大于等于1的正整数;
按照搜索顺序,从所述起始点至所述结束点获得至少一条连线;
如果连线为两条或两条以上,选取一条连线作为所述血管中心线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述根据所述冠状动脉二维造影图像获取拉直血管图像的方法包括:
将所述血管中心线拉直,获得血管中心直线;
沿着所述起始点至所述结束点的血管延伸方向,将所述局部血管区域图分为x个单元,其中x为正整数;
将每个所述单元的血管中心线沿着所述血管中心直线对应设置;
对应设置后的图像为所述拉直血管图像。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线的方法包括:
在所述拉直血管图像上,设定血管直径阈值D
根据所述D ,在所述血管中心直线两侧生成血管预设轮廓线;
将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后的血管轮廓线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后的血管轮廓线的方法包括:
将所述血管预设轮廓线分成y个单元,其中y为正整数;
获取每个所述单元的位于每条所述血管预设轮廓线上的z个点;
沿着垂直于所述血管中心直线方向,将z个点分别向所述血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;
设定RGB差值阈值为ΔRGB ,沿着垂直于所述血管中心直线方向,每次靠拢均将所述靠拢点的RGB值与所述血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB 时,则所述靠拢点停止向所述血管中心直线靠拢;
获取所述靠拢点作为轮廓点;
依次连接所述轮廓点形成的平滑曲线即为所述血管轮廓线。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述血管的几何信息包括:所述几何信息包括血管实时直径D t、血管狭窄点、血管狭窄区间和血管中心直线长度L。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述血管实时直径D t的获取方法包括:
沿着垂直于所述血管中心直线方向,获取相对设置的所有所述轮廓点之间的距离,即为血管实时直 径D t
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述狭窄区间的获取方法包括:
根据设置的正常血管延伸趋势,以及所述血管实时直径D t、所述血管中心直线长度L模拟生成正常血管的平滑曲线;
将模拟生成的所述正常血管的平滑曲线与患者真实的所述中心直线长度L-直径D t构成的平滑曲线进行比较,获取狭窄病变区间。
可选地,上述的具有狭窄病变区间的血管三维建模方法,所述血管狭窄点的获取方法包括:在所述狭窄病变区间内,拾取患者真实的所述中心线L-直径D t构成的平滑曲线的直径最小点A,所述A点为所述血管段的狭窄点。
可选地,上述的具有狭窄病变区间的血管三维建模方法,根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型的方法包括:
从所述血管实时直径D t内获取血管起始直径D 和血管结束直径D ,以及血管中心直线长度L;
根据所述D 和D 和L三维建模,形成圆台三维模型;
将所述狭窄区间的中心直线对应投影到所述血管中线直线上;
沿着与所述血管中心直线的垂直方向,在所述圆台三维模型上获取血管三维狭窄区间;
将所述狭窄区间的血管实时直径D t投影到圆台三维模型上,获得所述具有狭窄病变区间的三维血管模型。
第二方面,本申请提供了一种具有狭窄病变区间的血管三维建模装置,包括:依次连接的中心线提取单元、拉直单元、轮廓线单元、几何信息单元和三维建模单元;所述拉直单元与所述几何信息单元连接,所述三维建模单元与所述拉直单元、所述轮廓线单元连接;
所述中心线提取单元,用于沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线;
所述拉直单元,用于接收所述中心线提取单元发送的血管中心线,根据所述冠状动脉二维造影图像和所述血管中心线获取拉直血管图像;
所述轮廓线单元,用于接收所述拉直单元发送的拉直血管图像,根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线;
所述几何信息单元,用于接收所述拉直单元发送的拉直血管图像、所述轮廓线单元发送的血管轮廓线,获取拉直后的血管的几何信息;
所述三维建模单元,用于接收所述拉直单元发送的拉直血管图像、所述轮廓线单元发送的血管轮廓线、所述几何信息单元发送的血管的几何信息,根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
可选地,上述的具有狭窄病变区间的血管三维建模装置,还包括:与所述中心线提取单元连接的图像分割单元;
所述图像分割单元,用于从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图,或者对所述起始点、种子点、所述结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图。
可选地,上述的具有狭窄病变区间的血管三维建模装置,所述中心线提取单元还包括:依次连接的 血管路径模块和血管中心线提取模块,所述血管路径模块与所述图像分割单元连接;
所述血管路径模块,用于分别从每个体位的所述局部血管区域图上提取至少一条血管路径线;
所述血管中心线提取模块,用于从所述血管路径模块发送的血管路径线中选取一条作为所述血管中心线。
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的具有狭窄病变区间的血管三维建模装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的具有狭窄病变区间的血管三维建模方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了具有狭窄病变区间的血管三维建模方法,通过沿着冠脉入口至冠脉末端提取一条血管中心线,根据中心线获取拉直后的血管轮廓线;获取拉直后的血管的几何信息;根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型;将狭窄病变区间通过三维血管模型的方式立体的展示给患者和医生,更加形象生动,且狭窄病变的各个角度均能够显示,降低了二维造影图像拍摄角度对评判冠状动脉狭窄评判结果的影响,能够准确的判断出血管的狭窄病变区域。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的具有狭窄病变区间的血管三维建模方法的实施例1的流程图;
图2为本申请的具有狭窄病变区间的血管三维建模方法的实施例2的流程图;
图3为本申请的S400的流程图;
图4为本申请的S500的流程图;
图5为本申请的S510的第一种方法的流程图;
图6为本申请的S520的流程图;
图7为本申请的S510的第二种方法的流程图;
图8为本申请的S530’的流程图;
图9为本申请的S600的流程图;
图10为本申请的S700的流程图;
图11为本申请的S730的流程图;
图12为本申请的S900的流程图;
图13为具有狭窄病变区间的三维血管模型;
图14为本申请的具有狭窄病变区间的血管三维建模装置的一个实施例的结构框图;
图15为本申请的具有狭窄病变区间的血管三维建模装置的一个实施例的另一结构框图;
下面对附图标记进行说明:
中心线提取单元100,血管路径模块110,血管中心线提取模块120,拉直单元200,轮廓线单元300,几何信息单元400,三维建模单元500,图像分割单元600。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发 明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
由于冠状动脉二维造影图像受拍摄体位角度的影响,由于血管的重叠、缠绕,造影狭窄病变区域存在被遮挡的问题,因此通过冠状动脉二维造影图像很难判断出血管狭窄病变区间,无法形象生动的将具有病变的狭窄血管展示给患者和医生;根据二维造影图像评判的冠状动脉狭窄误差大。
实施例1:
如图1所示,本申请为了解决上述问题,提供了一种具有狭窄病变区间的血管三维建模方法,包括:
S500,沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线;
S600,根据冠状动脉二维造影图像和血管中心线获取拉直血管图像;
S700,根据拉直后的血管中心线和拉直血管图像,获取拉直后的血管轮廓线;
S800,获取拉直后的血管的几何信息;
S900,根据几何信息、中心线和轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
实施例2:
如图2所示,本申请为了解决上述问题,提供了本申请提供了一种具有狭窄病变区间的血管三维建模方法,包括:
S100,读取至少两个体位的冠状动脉二维造影图像;优选地,两个体位之间的夹角大于等于30度;
S200,获取感兴趣的血管段;
S300,拾取感兴趣的血管段的起始点和结束点;
S400,从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图,如图3所示,包括:
S410,拾取感兴趣的血管段的至少一个种子点;
S420,分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
S500,沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像的局部血管区域图中均提取一条血管中心线,包括两种方法:
如图4所示,第一种方法为:
S510,分别从每个体位的局部血管区域图上提取至少一条血管路径线,如图5所示,包括:
S511,在每幅局部血管区域图中,以感兴趣的血管段作为前景,其他区域作为背景,强化前景,弱化背景,得到对比强烈的粗略血管图;
S512,对粗略血管图进行网格划分;
S513,沿着起始点至结束点的血管延伸方向,搜索起始点与周边n个网格上的交叉点的最短时间路径作为第二个点,搜索第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;
S514,按照搜索顺序,从起始点至结束点的血管延伸方向连线,获得至少一条血管路径线;
S520,选取一条血管路径线作为血管中心线,如图6所示,包括:
S521,如果血管路径线为两条或两条以上,则对每条血管路径线从起始点至结束点所用的时间求和;
S522,取用时最少的血管路径线作为血管中心线。
如图7所示,第二种方法为:
S510’,对局部血管区域图进行图像处理,获取起始点和结束点之间的血管粗略走向线;
S520’,获取血管粗略边缘线,包含有血管粗略走向线的血管粗略边缘线之间的图像即为血管骨架;
S530’,从血管骨架上提取血管中心线,如图8所示,包括:
S531’,对处理后的区域图像进行网格划分;
S532’,沿着起始点至结束点方向,根据RGB值,对血管骨架进行搜索,搜索起始点与周边m个网格上的交叉点的RGB差值的最小值所在的点作为第二个点,搜索第二个点与周边m个网格上的交叉点的RGB差值的最小值所在的点作为第三个点,第三个点重复上述步骤,直至到达结束点,其中,m为大于等于1的正整数;
S533’,按照搜索顺序,从起始点至结束点获得至少一条连线;
S534’,如果连线为两条或两条以上,选取一条连线作为血管中心线。
S600,根据冠状动脉二维造影图像和血管中心线获取拉直血管图像,如图9所示,包括:
S610,将血管中心线拉直,获得血管中心直线;
S620,沿着起始点至结束点的血管延伸方向,将局部血管区域图分为x个单元,其中x为正整数;
S630,将每个单元的血管中心线沿着血管中心直线对应设置;
S640,对应设置后的图像为拉直血管图像;
S700,根据拉直后的血管中心线和拉直血管图像,获取拉直后的血管轮廓线,如图10所示,包括:
S710,在拉直血管图像上,设定血管直径阈值D
S720,根据D ,在血管中心直线两侧生成血管预设轮廓线;
S730,将血管预设轮廓线向血管中心直线逐级靠拢,获取拉直后的血管轮廓线,如图11所示,包括:
S731,将血管预设轮廓线分成y个单元,其中y为正整数;
S732,获取每个单元的位于每条血管预设轮廓线上的z个点;
S733,沿着垂直于血管中心直线方向,将z个点分别向血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;
S734,设定RGB差值阈值为ΔRGB ,沿着垂直于血管中心直线方向,每次靠拢均将靠拢点的RGB值与血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB 时,则靠拢点停止向血管中心直线靠拢;
S735,获取靠拢点作为轮廓点;
S736,依次连接轮廓点形成的平滑曲线即为血管轮廓线;
S800,获取拉直后的血管的几何信息,血管的几何信息包括:几何信息包括:(1)血管实时直径D t、(2)血管狭窄区间、(3)血管狭窄点(4)血管中心直线长度L;
(1)血管实时直径D t的获取方法包括:
沿着垂直于血管中心直线方向,获取相对设置的所有轮廓点之间的距离,即为血管实时直径D t
(2)血管狭窄区间的获取方法包括:
根据设置的正常血管延伸趋势,以及血管实时直径D t、血管中心直线长度L模拟生成正常血管的平滑曲线;
将模拟生成的正常血管的平滑曲线与患者真实的中心直线长度L-直径D t构成的平滑曲线进行比较, 获取狭窄病变区间。
(3)血管狭窄点的获取方法包括:
在狭窄病变区间内,拾取患者真实的中心线L-直径D t构成的平滑曲线的直径最小点A,A点为血管段的狭窄点。
S900,根据几何信息、中心线和轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型,如图12所示,包括:
S910,从血管实时直径D t内获取血管起始直径D 和血管结束直径D ,以及血管中心直线长度L;
S920,根据D 和D 和L三维建模,形成圆台三维模型;
S930,将狭窄区间的中心直线对应投影到血管中线直线上;
S940,沿着与血管中心直线的垂直方向,在如图13所示的圆台三维模型上获取血管三维狭窄区间S 1S 2
S950,将狭窄区间的血管实时直径D t投影到圆台三维模型上,获得如图13所示的具有狭窄病变区间S 1S 2以及狭窄点S 0的三维血管模型。
实施例3:
如图14所示,本申请提供了一种具有狭窄病变区间的血管三维建模装置,包括:依次连接的中心线提取单元100、拉直单元200、轮廓线单元300、几何信息单元400和三维建模单元500;拉直单元200与几何信息单元400连接,三维建模单元500与拉直单元200、轮廓线单元300连接;中心线提取单元100用于沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线;拉直单元200用于接收中心线提取单元100发送的血管中心线,根据冠状动脉二维造影图像和血管中心线获取拉直血管图像;轮廓线单元300用于接收拉直单元200发送的拉直血管图像,根据拉直后的血管中心线和拉直血管图像,获取拉直后的血管轮廓线;几何信息单元400用于接收拉直单元200发送的拉直血管图像、轮廓线单元300发送的血管轮廓线,获取拉直后的血管的几何信息;三维建模单元500用于接收拉直单元200发送的拉直血管图像、轮廓线单元300发送的血管轮廓线、几何信息单元400发送的血管的几何信息,根据几何信息、中心线和轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
如图15所示,本申请的一个实施例中,上述装置还包括:与中心线提取单元100连接的图像分割单元600;图像分割单元600,用于从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图,或者对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图。
如图15所示,本申请的一个实施例中,中心线提取单元100还包括:依次连接的血管路径模块110和血管中心线提取模块120,血管路径模块110与图像分割单元600连接;血管路径模块110,用于分别从每个体位的局部血管区域图上提取至少一条血管路径线;血管中心线提取模块120,用于从血管路径模块110发送的血管路径线中选取一条作为血管中心线。
本申请提供了一种冠状动脉分析系统,包括:上述的具有狭窄病变区间的血管三维建模装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的具有狭窄病变区间的血管三维建模方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处 理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种具有狭窄病变区间的血管三维建模方法,其特征在于,包括:
    沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线;
    根据所述冠状动脉二维造影图像和所述血管中心线获取拉直血管图像;
    根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线;
    获取拉直后的血管的几何信息;
    根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
  2. 根据权利要求1所述的具有狭窄病变区间的血管三维建模方法,其特征在于,在沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法之前还包括:
    读取至少两个体位的冠状动脉二维造影图像;
    获取感兴趣的血管段;
    拾取所述感兴趣的血管段的起始点和结束点;
    从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图。
  3. 根据权利要求2所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图的方法还包括:
    拾取所述感兴趣的血管段的至少一个种子点;
    分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图。
  4. 根据权利要求2所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法包括:
    分别从每个体位的所述局部血管区域图上提取至少一条血管路径线;
    选取一条所述血管路径线作为所述血管中心线。
  5. 根据权利要求4所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述分别从每个体位的所述局部血管区域图上提取至少一条血管路径线的方法包括:
    对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图;
    对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管路径线。
  6. 根据权利要求5所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图的方法,包括:
    在每幅所述局部血管区域图中,以所述感兴趣的血管段作为前景,其他区域作为背景,强化所述前景,弱化所述背景,得到对比强烈的所述粗略血管图。
  7. 根据权利要求5所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管路径线的方法,包括:
    对所述粗略血管图进行网格划分;
    沿着所述起始点至所述结束点的血管延伸方向,搜索所述起始点与周边n个网格上的交叉点的最短 时间路径作为第二个点,搜索所述第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,所述第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;
    按照搜索顺序,从所述起始点至所述结束点的血管延伸方向连线,获得至少一条血管路径线。
  8. 根据权利要求7所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述选取一条所述血管路径线作为所述血管中心线的方法包括:
    如果血管路径线为两条或两条以上,则对每条血管路径线从所述起始点至所述结束点所用的时间求和;
    取用时最少的所述血管路径线作为所述血管中心线。
  9. 根据权利要求2所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图像中均提取一条血管中心线的方法包括:
    对所述局部血管区域图进行图像处理,获取所述起始点和所述结束点之间的血管粗略走向线;
    获取血管粗略边缘线,包含有所述血管粗略走向线的所述血管粗略边缘线之间的图像即为血管骨架;
    从所述血管骨架上提取所述血管中心线。
  10. 根据权利要求9所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述从所述血管骨架上提取所述血管中心线的方法包括:
    对处理后的所述区域图像进行网格划分;
    沿着所述起始点至所述结束点方向,根据RGB值,对所述血管骨架进行搜索,搜索所述起始点与周边m个网格上的交叉点的RGB差值的最小值所在的点作为第二个点,搜索所述第二个点与周边m个网格上的交叉点的RGB差值的最小值所在的点作为第三个点,所述第三个点重复上述步骤,直至到达结束点,其中,m为大于等于1的正整数;
    按照搜索顺序,从所述起始点至所述结束点获得至少一条连线;
    如果连线为两条或两条以上,选取一条连线作为所述血管中心线。
  11. 根据权利要求2所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述根据所述冠状动脉二维造影图像获取拉直血管图像的方法包括:
    将所述血管中心线拉直,获得血管中心直线;
    沿着所述起始点至所述结束点的血管延伸方向,将所述局部血管区域图分为x个单元,其中x为正整数;
    将每个所述单元的血管中心线沿着所述血管中心直线对应设置;
    对应设置后的图像为所述拉直血管图像。
  12. 根据权利要求1所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线的方法包括:
    在所述拉直血管图像上,设定血管直径阈值D
    根据所述D ,在所述血管中心直线两侧生成血管预设轮廓线;
    将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后的血管轮廓线。
  13. 根据权利要求12所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后的血管轮廓线的方法包括:
    将所述血管预设轮廓线分成y个单元,其中y为正整数;
    获取每个所述单元的位于每条所述血管预设轮廓线上的z个点;
    沿着垂直于所述血管中心直线方向,将z个点分别向所述血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;
    设定RGB差值阈值为ΔRGB ,沿着垂直于所述血管中心直线方向,每次靠拢均将所述靠拢点的RGB值与所述血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB 时,则所述靠拢点停止向所述血管中心直线靠拢;
    获取所述靠拢点作为轮廓点;
    依次连接所述轮廓点形成的平滑曲线即为所述血管轮廓线。
  14. 根据权利要求13所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述血管的几何信息包括:所述几何信息包括血管实时直径D t、血管狭窄点、血管狭窄区间和血管中心直线长度L。
  15. 根据权利要求14所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述血管实时直径D t的获取方法包括:
    沿着垂直于所述血管中心直线方向,获取相对设置的所有所述轮廓点之间的距离,即为血管实时直径D t
  16. 根据权利要求15所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述狭窄区间的获取方法包括:
    根据设置的正常血管延伸趋势,以及所述血管实时直径D t、所述血管中心直线长度L模拟生成正常血管的平滑曲线;
    将模拟生成的所述正常血管的平滑曲线与患者真实的所述中心直线长度L-直径D t构成的平滑曲线进行比较,获取狭窄病变区间。
  17. 根据权利要求16所述的具有狭窄病变区间的血管三维建模方法,其特征在于,所述血管狭窄点的获取方法包括:在所述狭窄病变区间内,拾取患者真实的所述中心线L-直径D t构成的平滑曲线的直径最小点A,所述点A为所述血管段的狭窄点。
  18. 根据权利要求17所述的具有狭窄病变区间的血管三维建模方法,其特征在于,根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型的方法包括:
    从所述血管实时直径D t内获取血管起始直径D 和血管结束直径D ,以及血管中心直线长度L;
    根据所述D 和D 和L三维建模,形成圆台三维模型;
    将所述狭窄区间的中心直线对应投影到所述血管中线直线上;
    沿着与所述血管中心直线的垂直方向,在所述圆台三维模型上获取血管三维狭窄区间;
    将所述狭窄区间的血管实时直径D t投影到圆台三维模型上,获得所述具有狭窄病变区间的三维血管模型。
  19. 一种具有狭窄病变区间的血管三维建模装置,用于权利要求1~18任一项所述的具有狭窄病变区间的血管三维建模方法,其特征在于,包括:依次连接的中心线提取单元、拉直单元、轮廓线单元、几何信息单元和三维建模单元;所述拉直单元与所述几何信息单元连接,所述三维建模单元与所述拉直单元、所述轮廓线单元连接;
    所述中心线提取单元,用于沿着冠脉入口至冠脉末端方向,从至少两个体位的冠状动脉二维造影图 像中均提取一条血管中心线;
    所述拉直单元,用于接收所述中心线提取单元发送的血管中心线,根据所述冠状动脉二维造影图像和所述血管中心线获取拉直血管图像;
    所述轮廓线单元,用于接收所述拉直单元发送的拉直血管图像,根据拉直后的所述血管中心线和所述拉直血管图像,获取拉直后的血管轮廓线;
    所述几何信息单元,用于接收所述拉直单元发送的拉直血管图像、所述轮廓线单元发送的血管轮廓线,获取拉直后的血管的几何信息;
    所述三维建模单元,用于接收所述拉直单元发送的拉直血管图像、所述轮廓线单元发送的血管轮廓线、所述几何信息单元发送的血管的几何信息,根据所述几何信息、所述中心线和所述轮廓线进行三维建模,获得具有狭窄病变区间的三维血管模型。
  20. 根据权利要求19所述的具有狭窄病变区间的血管三维建模装置,其特征在于,还包括:与所述中心线提取单元连接的图像分割单元;
    所述图像分割单元,用于从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图,或者对所述起始点、种子点、所述结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图。
  21. 根据权利要求20所述的具有狭窄病变区间的血管三维建模装置,其特征在于,所述中心线提取单元还包括:依次连接的血管路径模块和血管中心线提取模块,所述血管路径模块与所述图像分割单元连接;
    所述血管路径模块,用于分别从每个体位的所述局部血管区域图上提取至少一条血管路径线;
    所述血管中心线提取模块,用于从所述血管路径模块发送的血管路径线中选取一条作为所述血管中心线。
  22. 一种冠状动脉分析系统,其特征在于,包括:权利要求20或21所述的具有狭窄病变区间的血管三维建模装置。
  23. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~18任一项所述的具有狭窄病变区间的血管三维建模方法。
PCT/CN2019/120342 2019-11-19 2019-11-22 具有狭窄病变区间的血管三维建模方法、装置和系统 WO2021097820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911136721.4 2019-11-19
CN201911136721.4A CN112132949B (zh) 2019-11-19 2019-11-19 具有狭窄病变区间的血管三维建模方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2021097820A1 true WO2021097820A1 (zh) 2021-05-27

Family

ID=73849645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120342 WO2021097820A1 (zh) 2019-11-19 2019-11-22 具有狭窄病变区间的血管三维建模方法、装置和系统

Country Status (2)

Country Link
CN (1) CN112132949B (zh)
WO (1) WO2021097820A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239992B (zh) * 2021-04-28 2024-05-07 深圳睿心智能医疗科技有限公司 血管分类方法及装置
CN113177928B (zh) * 2021-05-18 2022-05-17 数坤(北京)网络科技股份有限公司 一种图像识别方法、装置、电子设备及存储介质
CN113344897B (zh) * 2021-06-24 2022-01-11 推想医疗科技股份有限公司 肺部图像的管径测量方法及装置、图像处理方法及装置
CN113674392B (zh) * 2021-07-06 2023-06-02 北京阅影科技有限公司 三维血管模型的生成方法及其装置
CN114419047B (zh) * 2022-03-30 2022-07-12 中国科学院自动化研究所 用于确定血管形态特征的方法、装置、设备和存储介质
CN117036640B (zh) * 2023-10-10 2023-12-19 杭州脉流科技有限公司 冠状动脉血管模型重构方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100061611A1 (en) * 2008-09-11 2010-03-11 Siemens Corporate Research, Inc. Co-registration of coronary artery computed tomography and fluoroscopic sequence
CN104933756A (zh) * 2014-03-21 2015-09-23 北京冠生云医疗技术有限公司 三维冠状动脉分析模型的构建方法和系统
CN107945169A (zh) * 2017-12-01 2018-04-20 中国人民解放军第三军医大学 一种冠状动脉影像分析方法及数据结构
CN110458848A (zh) * 2019-07-05 2019-11-15 心医国际数字医疗系统(大连)有限公司 判断影像的冠脉分割中冠脉分支及掩膜数据转换为中心线点集的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867147A (zh) * 2015-05-21 2015-08-26 北京工业大学 基于冠状动脉造影图像分割的syntax自动评分方法
CN106340021B (zh) * 2016-08-18 2020-11-27 上海联影医疗科技股份有限公司 血管提取方法
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN108257196A (zh) * 2018-01-11 2018-07-06 苏州润心医疗器械有限公司 一种基于心脏ct图像的血管拉直重建方法
CN109461138B (zh) * 2018-09-29 2020-10-27 深圳睿心智能医疗科技有限公司 参数计算方法、系统、可读存储介质及计算机设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100061611A1 (en) * 2008-09-11 2010-03-11 Siemens Corporate Research, Inc. Co-registration of coronary artery computed tomography and fluoroscopic sequence
CN104933756A (zh) * 2014-03-21 2015-09-23 北京冠生云医疗技术有限公司 三维冠状动脉分析模型的构建方法和系统
CN107945169A (zh) * 2017-12-01 2018-04-20 中国人民解放军第三军医大学 一种冠状动脉影像分析方法及数据结构
CN110458848A (zh) * 2019-07-05 2019-11-15 心医国际数字医疗系统(大连)有限公司 判断影像的冠脉分割中冠脉分支及掩膜数据转换为中心线点集的方法

Also Published As

Publication number Publication date
CN112132949B (zh) 2024-01-23
CN112132949A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2021097820A1 (zh) 具有狭窄病变区间的血管三维建模方法、装置和系统
JP7308238B2 (ja) X線画像特徴検出および位置合わせのシステムおよび方法
CN110889896B (zh) 获取血管狭窄病变区间及三维合成方法、装置和系统
WO2021097817A1 (zh) 根据血管中心线获取血管轮廓线的方法和装置
US9907527B2 (en) Vascular data processing and image registration systems, methods, and apparatuses
WO2021196536A1 (zh) 精确提取血管中心线的方法、装置、分析系统和存储介质
CN112419484B (zh) 三维血管合成方法、系统及冠状动脉分析系统和存储介质
JP2016516466A (ja) 血管データ処理及び画像位置合わせのシステム、方法並びにデバイス
Meuschke et al. Combined visualization of vessel deformation and hemodynamics in cerebral aneurysms
WO2022109905A1 (zh) 调节血管轮廓及中心线的方法及存储介质
WO2022109906A1 (zh) 三维血管的渲染合成方法、系统及存储介质
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
JP7436548B2 (ja) プロセッサ装置の作動方法
US20220319116A1 (en) Method and device for synthesizing mathematical model of blood vessel having stenotic lesion
WO2021087967A1 (zh) 基于生理参数获取血管评定参数的方法、装置及存储介质
WO2022109902A1 (zh) 三维血管中心线合成方法、系统及存储介质
WO2022109904A1 (zh) 二维图像选取及三维血管合成的方法和存储介质
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
WO2021109116A1 (zh) 用于流体力学分析的圆台血管数学模型的合成方法和装置
WO2022109907A1 (zh) 精确获取狭窄病变区间的方法及存储介质
WO2021092889A1 (zh) 基于造影图像的流速的筛选方法、装置、系统和存储介质
JP2018192287A (ja) プロセッサ装置の作動方法
WO2022109909A1 (zh) 精确获取狭窄病变区间的方法、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953667

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19953667

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2023)