CN110889896B - 获取血管狭窄病变区间及三维合成方法、装置和系统 - Google Patents
获取血管狭窄病变区间及三维合成方法、装置和系统 Download PDFInfo
- Publication number
- CN110889896B CN110889896B CN201911099041.XA CN201911099041A CN110889896B CN 110889896 B CN110889896 B CN 110889896B CN 201911099041 A CN201911099041 A CN 201911099041A CN 110889896 B CN110889896 B CN 110889896B
- Authority
- CN
- China
- Prior art keywords
- blood vessel
- image
- skeleton
- acquiring
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 206010057469 Vascular stenosis Diseases 0.000 title claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 5
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 169
- 230000003902 lesion Effects 0.000 claims abstract description 61
- 230000002792 vascular Effects 0.000 claims abstract description 44
- 210000004351 coronary vessel Anatomy 0.000 claims abstract description 35
- 208000031481 Pathologic Constriction Diseases 0.000 claims abstract description 30
- 230000036262 stenosis Effects 0.000 claims abstract description 30
- 208000037804 stenosis Diseases 0.000 claims abstract description 30
- 230000002966 stenotic effect Effects 0.000 claims abstract description 29
- 238000000605 extraction Methods 0.000 claims description 90
- 238000002586 coronary angiography Methods 0.000 claims description 27
- 238000012216 screening Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 9
- 230000002194 synthesizing effect Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000000877 morphologic effect Effects 0.000 claims description 6
- 238000002601 radiography Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000002583 angiography Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
- G06T2207/20104—Interactive definition of region of interest [ROI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20116—Active contour; Active surface; Snakes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Quality & Reliability (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本申请提供了一种获取血管狭窄病变区间及三维合成方法、装置和系统。精确获取血管狭窄病变区间的方法包括:读取至少两个体位的冠状动脉二维造影图像组;提取血管骨架;获取感兴趣的血管段;根据所述血管骨架,提取感兴趣的所述血管段的中心线和轮廓线;获取所述血管段的几何结构信息;获取感兴趣的所述血管段的狭窄病变区间以及狭窄点。本申请通过读取至少两个体位的冠状动脉二维造影图像组;提取血管骨架、中心线和轮廓线;再根据几何结构信息获取狭窄病变区间,无需医生根据经验人为判断狭窄,获得方式更加准确。
Description
技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种精确获取血管狭窄病变区间及三维血管的合成方法、装置、冠状动脉分析系统及计算机存储介质。
背景技术
世界卫生组织统计,心血管疾病已经成为人类健康的“头号杀手”。近些年,使用血流动力学分析心血管疾病的生理和病理行为也已经成为心血管疾病诊断的一个非常重要的手段。
在诸多冠状动脉生理功能评估技术中,血流储备分数(FFR)是目前公认最准确的一种功能学评估指标。而且,FFR已成为临床上诊断冠心病的金标准,被欧洲心脏病学会(ESC)指南推荐为Ia级临床证据,且被美国心脏病学会(ACC)指南推荐为IIa级临床证据。
获取FFR参数,首先要判断血管的狭窄病变区间,现有技术均是医生通过拍摄的冠状动脉二维造影图像,根据经验人为判断狭窄病变区间,以及狭窄严重程度;因此现有技术的狭窄病变判断存在主观性并且与医生的经验有很大的关系,判断的结果存在不准确和不稳定性。
发明内容
本发明提供了一种精确获取血管狭窄病变区间及三维血管的合成方法、装置、冠状动脉分析系统及计算机存储介质,以解决现有技术中狭窄病变判断存在主观性并且与医生的经验有很大的关系,判断的结果存在不准确和不稳定性的问题。
为实现上述目的,第一方面,本申请提供了一种精确获取血管狭窄病变区间的方法,其特征在于,包括:
读取至少两个体位的冠状动脉二维造影图像组;
提取血管骨架;
获取感兴趣的血管段;
根据所述血管骨架,提取感兴趣的所述血管段的中心线和轮廓线;
获取所述血管段的几何结构信息;
获取感兴趣的所述血管段的狭窄病变区间以及狭窄点。
可选地,上述的精确获取血管狭窄病变区间的方法,所述读取至少两个体位的冠状动脉二维造影图像组的方法包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或
通过存储装置读取至少两个体位的冠状动脉二维造影图像组。
可选地,上述的精确获取血管狭窄病变区间的方法,在所述读取至少两个体位的冠状动脉二维造影图像组之后,在所述提取血管骨架之前还包括:
从每组的N幅所述冠状动脉二维造影图像中选取至少一幅清晰图像;
每幅所述清晰图像均需清晰的拍摄出狭窄病变区域;
如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
可选地,上述的精确获取血管狭窄病变区间的方法,所述提取血管骨架的方法包括:
采用海森矩阵对所述待处理图像中血管的管状结构进行检测;
采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
可选地,上述的精确获取血管狭窄病变区间的方法,所述获取感兴趣的血管段的方法包括:
拾取感兴趣的所述血管的首末点;
获取感兴趣的所述血管段。
可选地,上述的精确获取血管狭窄病变区间的方法,所述提取所述血管中心线的方法包括:
依据血管延伸方向,以及两点之间获取最短路径的原则;
沿着所述血管骨架,提取所述首末点之间感兴趣的所述血管段的血管中心线。
可选地,上述的精确获取血管狭窄病变区间的方法,所述沿着所述血管骨架,提取所述首末点之间感兴趣的所述血管段的血管中心线的方法还包括:
在感兴趣的所述血管段上添加至少一个种子点;
根据所述首末点、种子点,沿着所述血管骨架,重新生成所述血管中心线。
可选地,上述的精确获取血管狭窄病变区间的方法,所述提取所述血管的轮廓线的方法包括:
对感兴趣的所述血管段进行图形处理;
提取所述血管段的初级血管轮廓线;
检查血管轮廓线的准确性;
沿着所述中心线、所述血管骨架调整所述血管轮廓线的位置;
获取所述血管段的终级血管轮廓线。
可选地,上述的精确获取血管狭窄病变区间的方法,所述获取所述血管段的几何结构信息的方法包括:
获取所述冠状动脉二维造影图像的体位信息;
获取所述中心线的长度L;
计算所述中心线上的N个点分别至所述轮廓线上最近点的距离,获取所述血管段的N个直径D;
根据中心线上的N个点的位置、中心线的长度L,以及直径D,生成中心线L-直径D构成的平滑曲线。
可选地,上述的精确获取血管狭窄病变区间的方法,所述获取感兴趣的所述血管段的狭窄点以及狭窄病变区间的方法包括:
根据血管直径D、所述血管骨架模拟生成中心线L-直径D的正常血管的平滑曲线;
将模拟生成的所述正常血管的平滑曲线与患者真实的所述中心线L-直径D构成的平滑曲线进行比较,获取感兴趣的所述血管段的狭窄病变区间;
在所述狭窄病变区间内,拾取所述中心线L-直径D构成的平滑曲线的直径最小点A,所述A点为所述血管段的狭窄点。
第二方面,本申请提供了一种三维血管的合成方法,包括:
上述的精确获取血管狭窄病变区间的方法;
获取每幅冠状动脉二维造影图像的体位的角度值;
根据体位的所述角度值,将至少两个体位的提取了血管的中心线、轮廓线的冠状动脉二维造影图像在三维平面上投影,合成三维血管。
可选地,上述的三维血管的合成方法,获取所述三维血管的中心线,重复上述的精确获取血管狭窄病变区间的方法,重新获取感兴趣的所述血管段的狭窄病变区间以及狭窄点。
第三方面,本申请提供了一种精确获取血管狭窄病变区间的装置,用于上述的精确获取血管狭窄病变区间的方法,包括:图像读取单元、血管骨架提取单元、血管段提取单元、中心线提取单元、轮廓线提取单元、几何信息获取单元、狭窄病变区间获取单元和狭窄点获取单元;所述图像读取单元与所述血管骨架提取单元连接,所述血管骨架提取单元与所述血管段提取单元、中心线提取单元、轮廓线提取单元连接;所述图像读取单元、所述中心线提取单元、轮廓线提取单元均与所述几何信息获取单元连接;所述狭窄病变区间获取单元与所述几何信息获取单元、所述狭窄点获取单元连接;
所述图像读取单元,用于读取至少两个体位的冠状动脉二维造影图像组;
所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中的血管骨架;
所述血管段提取单元,用于接收所述血管骨架提取单元的血管骨架,获取感兴趣的血管段;
所述中心线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的中心线;
所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,接收所述中心线提取单元的中心线,接收所述轮廓线提取单元的轮廓线,获取所述血管段的几何结构信息;
所述狭窄病变区间获取单元,用于获取感兴趣的所述血管段的狭窄病变区间;
所述狭窄点获取单元,用于获取所述狭窄病变区间内的狭窄点。
可选地,上述的精确获取血管狭窄病变区间的装置,所述图像读取单元包括:图像读取模块和图像筛选模块,所述图像筛选模块与所述图像读取模块、所述血管骨架提取单元、所述几何信息获取单元连接;
所述图像读取模块,用于通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或通过存储装置读取至少两个体位的冠状动脉二维造影图像组;
所述图像筛选模块,用于从每组的N幅所述冠状动脉二维造影图像中选取至少一幅清晰图像;每幅所述清晰图像均需清晰的拍摄出狭窄病变区域;如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
可选地,上述的精确获取血管狭窄病变区间的装置,所述血管骨架提取单元包括:血管监测模块和血管骨架提取模块;所述血管监测模块与所述图像筛选模块、所述骨架提取模块连接;
所述血管监测模块,用于接收所述图像筛选模块发送的待处理图像,采用海森矩阵对所述待处理图像中血管的管状结构进行检测;
所述血管骨架提取模块,用于采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
第四方面,本申请提供了一种冠状动脉分析系统,包括:上述的精确获取血管狭窄病变区间的装置。
第五方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的获取一个心动周期内冠脉出口处的平均血流量的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了精确获取血管狭窄病变区间的方法,通过读取至少两个体位的冠状动脉二维造影图像组;提取血管骨架、中心线和轮廓线;再根据几何结构信息获取狭窄病变区间,无需医生根据经验人为判断狭窄,获得方式更加准确,解决了现有技术中狭窄病变判断存在主观性并且与医生的经验有很大的关系,判断的结果存在不准确和不稳定性的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的精确获取血管狭窄病变区间的方法的流程图;
图2为本申请的S100的流程图;
图3为本申请的S200的流程图;
图4为本申请的S300的流程图;
图5为本申请的S400的流程图;
图6为本申请的S420中提取血管中心线的方法的流程图;
图7为本申请的S420中提取血管的轮廓线的方法的流程图;
图8为本申请的S500的流程图;
图9为本申请的S600的流程图;
图10为申请的三维血管的合成方法的流程图;
图11为本申请的精确获取血管狭窄病变区间的装置的一个实施例的结构框图;
图12为本申请的精确获取血管狭窄病变区间的装置的另一实施例的结构框图;
下面对附图标记进行说明:
图像读取单元100,图像读取模块110,图像筛选模块120,血管骨架提取单元200,血管监测模块210,血管骨架提取模块220,血管段提取单元300,中心线提取单元400,最短路径模块410,添加种子点模块420,中心线提取模块430,轮廓线提取单元500,图形处理模块510,初级提取模块520,准确性检查模块530,调整模块540,轮廓线生成模块550,几何信息获取单元600,体位信息获取单元610,中心长度获取单元620,血管段直径D获取单元630,曲线生成单元640,狭窄病变区间获取单元700,狭窄点获取单元800,三维血管合成单元900。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
在诸多冠状动脉生理功能评估技术中,血流储备分数(FFR)是目前公认最准确的一种功能学评估指标。而且,FFR已成为临床上诊断冠心病的金标准,被欧洲心脏病学会(ESC)指南推荐为Ia级临床证据,且被美国心脏病学会(ACC)指南推荐为IIa级临床证据。
获取FFR参数,首先要判断血管的狭窄病变区间,现有技术均是医生通过拍摄的冠状动脉二维造影图像,根据经验人为判断狭窄病变区间,以及狭窄严重程度;因此现有技术的狭窄病变判断存在主观性并且与医生的经验有很大的关系,判断的结果存在不准确和不稳定性。
如图1所示,本申请为了解决上述问题,提供了一种精确获取血管狭窄病变区间的方法,包括:
S100,读取至少两个体位的冠状动脉二维造影图像组;
S200,提取血管骨架;
S300,获取感兴趣的血管段;
S400,根据血管骨架,提取感兴趣的血管段的中心线和轮廓线;
S500,获取血管段的几何结构信息;
S600,获取感兴趣的血管段的狭窄病变区间以及狭窄点。
本申请提供了精确获取血管狭窄病变区间的方法,通过读取至少两个体位的冠状动脉二维造影图像组;提取血管骨架、中心线和轮廓线;再根据几何结构信息获取狭窄病变区间,无需医生根据经验人为判断狭窄,获得方式更加准确,解决了现有技术中狭窄病变判断存在主观性并且与医生的经验有很大的关系,判断的结果存在不准确和不稳定性的问题。
本申请的一个实施例中,S100包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或
通过存储装置读取至少两个体位的冠状动脉二维造影图像组。
如图2所示,本申请的一个实施例中,在S100之后,在S200之前还包括:
S110,从每组的N幅冠状动脉二维造影图像中选取至少一幅清晰图像;
S120,每幅清晰图像均需清晰的拍摄出狭窄病变区域;
S130,如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
如图3所示,本申请的一个实施例中,S200包括:
S210,采用海森矩阵对待处理图像中血管的管状结构进行检测;
S220,采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
如图4所示,本申请的一个实施例中,S300包括:
S310,拾取感兴趣的血管的首末点;
S320,获取感兴趣的血管段。
如图5所示,本申请的一个实施例中,S400中提取血管中心线的方法包括:
S410,依据血管延伸方向,以及两点之间获取最短路径的原则;
S420,沿着血管骨架,提取首末点之间感兴趣的血管段的血管中心线。
如图6所示,本申请的一个实施例中,S420还包括:
S421,在感兴趣的血管段上添加至少一个种子点;
S422,根据首末点、种子点,沿着血管骨架,重新生成血管中心线。
如图7所示,本申请的一个实施例中,S400中提取血管的轮廓线的方法包括:
S430,对感兴趣的血管段进行图形处理;
S440,提取血管段的初级血管轮廓线;
S450,检查血管轮廓线的准确性;
S460,沿着中心线、血管骨架调整血管轮廓线的位置;
S470,获取血管段的终级血管轮廓线。
如图8所示,本申请的一个实施例中,S500包括:
S510,获取冠状动脉二维造影图像的体位信息;
S520,获取中心线的长度L;
S530,计算中心线上的N个点分别至轮廓线上最近点的距离,获取血管段的N个直径D;
S540,根据中心线上的N个点的位置、中心线的长度L,以及直径D,生成中心线L-直径D构成的平滑曲线。
如图9所示,本申请的一个实施例中,S600包括:
S610,根据血管直径D、血管骨架模拟生成中心线L-直径D的正常血管的平滑曲线;
S620,将模拟生成的正常血管的平滑曲线与患者真实的中心线L-直径D构成的平滑曲线进行比较,获取感兴趣的血管段的狭窄病变区间;
S630,在狭窄病变区间内,拾取中心线L-直径D构成的平滑曲线的直径最小点A,A点为血管段的狭窄点。
如图10所示,本申请提供了一种三维血管的合成方法,包括:
上述的精确获取血管狭窄病变区间的方法S100~S600;
S700,获取每幅冠状动脉二维造影图像的体位的角度值;
S800,根据体位的角度值,将至少两个体位的提取了血管的中心线、轮廓线的冠状动脉二维造影图像在三维平面上投影,合成三维血管。
如图10所示,本申请的一个实施例中还包括:S900,获取三维血管的中心线,重复上述的精确获取血管狭窄病变区间的方法,重新获取感兴趣的血管段的狭窄病变区间以及狭窄点。
如图11所示,本申请提供了一种精确获取血管狭窄病变区间的装置,用于上述的精确获取血管狭窄病变区间的方法,包括:图像读取单元100、血管骨架提取单元200、血管段提取单元300、中心线提取单元400、轮廓线提取单元500、几何信息获取单元600、狭窄病变区间获取单元700和狭窄点获取单元800;图像读取单元100与血管骨架提取单元200连接,血管骨架提取单元200与血管段提取单元300、中心线提取单元400、轮廓线提取单元500连接;图像读取单元100、中心线提取单元400、轮廓线提取单元500均与几何信息获取单元600连接;狭窄病变区间获取单元700与几何信息获取单元600、狭窄点获取单元800连接;图像读取单元100,用于读取至少两个体位的冠状动脉二维造影图像组;血管骨架提取单元200,用于接收图像读取单元100发送的冠状动脉二维造影图像,提取图像中的血管骨架;血管段提取单元300,用于接收血管骨架提取单元200的血管骨架,获取感兴趣的血管段;中心线提取单元400,用于接收血管骨架提取单元200的血管骨架,根据血管骨架,提取感兴趣的血管段的中心线;轮廓线提取单元500,用于接收血管骨架提取单元200的血管骨架,根据血管骨架,提取感兴趣的血管段的轮廓线;几何信息获取单元600,用于接收图像读取单元100的冠状动脉二维造影图像,接收中心线提取单元400的中心线,接收轮廓线提取单元500的轮廓线,获取血管段的几何结构信息;狭窄病变区间获取单元700,用于接收几何信息获取单元600发送的几何信息,根据所述几何信息获取感兴趣的血管段的狭窄病变区间;狭窄点获取单元800,用于接收几何信息获取单元600发送的几何信息,以及接收狭窄病变区间获取单元700发送的狭窄病变区间,根据几何信息和狭窄病变区间获取狭窄病变区间内的狭窄点。
如图12所示,本申请的一个实施例中,图像读取单元100包括:图像读取模块110和图像筛选模块120,图像筛选模块120与图像读取模块110、血管骨架提取单元200、几何信息获取单元600连接;图像读取模块110,用于通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或通过存储装置读取至少两个体位的冠状动脉二维造影图像组;图像筛选模块120,用于从每组的N幅冠状动脉二维造影图像中选取至少一幅清晰图像;每幅清晰图像均需清晰的拍摄出狭窄病变区域;如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
如图12所示,本申请的一个实施例中,血管骨架提取单元200包括:血管监测模块210和血管骨架提取模块220;血管监测模块210与图像筛选模块120、血管骨架提取模块220连接;血管监测模块210,用于接收图像筛选模块120发送的待处理图像,采用海森矩阵对待处理图像中血管的管状结构进行检测;血管骨架提取模块220,用于采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
如图12所示,本申请的一个实施例中,中心线提取单元400中还包括:最短路径模块410、添加种子点模块420和中心线提取模块430,最短路径模块410与中心线提取模块430连接,用于为中心线提取模块430提供最短路径原则;添加种子点模块420与血管段提取单元300连接,用于在感兴趣的血管段上添加至少一个种子点;中心线提取模块430用于根据根据首末点、种子点,沿着血管骨架和最短路径原则,重新生成血管中心线。
如图12所示,本申请的一个实施例中,轮廓线提取单元500还包括:依次连接的图形处理模块510、初级提取模块520、准确性检查模块530、调整模块540和轮廓线生成模块550;图形处理模块510与血管段提取模块连接,用于对感兴趣的血管段进行图形处理;初级提取模块520用于提取血管段的初级血管轮廓线;准确性检查模块530用于检查血管轮廓线的准确性;调整模块540用于沿着中心线、血管骨架调整血管轮廓线的位置;轮廓线生成模块550用于获取血管段的终级血管轮廓线。
如图12所示,本申请的一个实施例中,几何信息获取单元600还包括:体位信息获取单元610、中心长度获取单元620、血管段直径D获取单元630和曲线生成单元640,体位信息获取单元610用于获取冠状动脉二维造影图像的体位信息,包括:拍摄角度和实物距离拍摄面的距离;中心长度获取单元620用于获取中心线的长度L;血管段直径D获取单元630用于计算中心线上的N个点分别至轮廓线上最近点的距离,获取血管段的N个直径D;曲线生成单元640用于0,根据中心线上的N个点的位置、中心线的长度L,以及直径D,生成中心线L-直径D构成的平滑曲线。
如图12所示,本申请的一个实施例中,还包括:均与图像读取单元100、中心线提取单元400、轮廓线提取单元500、几何信息获取单元600连接的三维血管合成单元900,三维血管合成单元900用于根据体位的角度值,将至少两个体位的提取了血管的中心线、轮廓线的冠状动脉二维造影图像在三维平面上投影,合成三维血管。
本申请提供了一种冠状动脉分析系统,包括:上述的精确获取血管狭窄病变区间的装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的获取一个心动周期内冠脉出口处的平均血流量的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (15)
1.一种精确获取血管狭窄病变区间的方法,其特征在于,包括:
读取至少两个体位的冠状动脉二维造影图像组;
提取血管骨架;
获取感兴趣的血管段;
根据所述血管骨架,提取感兴趣的所述血管段的中心线和轮廓线;
获取所述冠状动脉二维造影图像的体位信息;
获取所述中心线的长度L;
计算所述中心线上的N个点分别至所述轮廓线上最近点的距离,获取所述血管段的N个直径D;
根据中心线上的N个点的位置、中心线的长度L,以及直径D,生成中心线L-直径D构成的平滑曲线;
根据血管直径D、所述血管骨架模拟生成中心线L-直径D的正常血管的平滑曲线;
将模拟生成的所述正常血管的平滑曲线与患者真实的所述中心线L-直径D构成的平滑曲线进行比较,获取感兴趣的所述血管段的狭窄病变区间;
在所述狭窄病变区间内,拾取所述中心线L-直径D构成的平滑曲线的直径最小点A,所述A点为所述血管段的狭窄点。
2.根据权利要求1所述的精确获取血管狭窄病变区间的方法,其特征在于,所述读取至少两个体位的冠状动脉二维造影图像组的方法包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或
通过存储装置读取至少两个体位的冠状动脉二维造影图像组。
3.根据权利要求1所述的精确获取血管狭窄病变区间的方法,其特征在于,在所述读取至少两个体位的冠状动脉二维造影图像组之后,在所述提取血管骨架之前还包括:
从每组的N幅所述冠状动脉二维造影图像中选取至少一幅清晰图像;
每幅所述清晰图像均需清晰的拍摄出狭窄病变区域;
如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
4.根据权利要求3所述的精确获取血管狭窄病变区间的方法,其特征在于,所述提取血管骨架的方法包括:
采用海森矩阵对所述待处理图像中血管的管状结构进行检测;
采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
5.根据权利要求1所述的精确获取血管狭窄病变区间的方法,其特征在于,所述获取感兴趣的血管段的方法包括:
拾取感兴趣的所述血管的首末点;
获取感兴趣的所述血管段。
6.根据权利要求5所述的精确获取血管狭窄病变区间的方法,其特征在于,所述提取所述血管中心线的方法包括:
依据血管延伸方向,以及两点之间获取最短路径的原则;
沿着所述血管骨架,提取所述首末点之间感兴趣的所述血管段的血管中心线。
7.根据权利要求6所述的精确获取血管狭窄病变区间的方法,其特征在于,所述沿着所述血管骨架,提取所述首末点之间感兴趣的所述血管段的血管中心线的方法还包括:
在感兴趣的所述血管段上添加至少一个种子点;
根据所述首末点、种子点,沿着所述血管骨架,重新生成所述血管中心线。
8.根据权利要求6所述的精确获取血管狭窄病变区间的方法,其特征在于,所述提取所述血管的轮廓线的方法包括:
对感兴趣的所述血管段进行图形处理;
提取所述血管段的初级血管轮廓线;
检查血管轮廓线的准确性;
沿着所述中心线、所述血管骨架调整所述血管轮廓线的位置;
获取所述血管段的终级血管轮廓线。
9.一种三维血管的合成方法,其特征在于,包括:
权利要求1~8任一项所述的精确获取血管狭窄病变区间的方法;
获取每幅冠状动脉二维造影图像的体位的角度值;
根据体位的所述角度值,将至少两个体位的提取了血管的中心线、轮廓线的冠状动脉二维造影图像在三维平面上投影,合成三维血管。
10.根据权利要求9所述的三维血管的合成方法,其特征在于,获取所述三维血管的中心线,重复所述权利要求1~8任一项所述的精确获取血管狭窄病变区间的方法,重新获取感兴趣的所述血管段的狭窄病变区间以及狭窄点。
11.一种精确获取血管狭窄病变区间的装置,用于权利要求1~8任一项所述的精确获取血管狭窄病变区间的方法,其特征在于,包括:图像读取单元、血管骨架提取单元、血管段提取单元、中心线提取单元、轮廓线提取单元、几何信息获取单元、狭窄病变区间获取单元和狭窄点获取单元;所述图像读取单元与所述血管骨架提取单元连接,所述血管骨架提取单元与所述血管段提取单元、中心线提取单元、轮廓线提取单元连接;所述图像读取单元、所述中心线提取单元、轮廓线提取单元均与所述几何信息获取单元连接;所述狭窄病变区间获取单元与所述几何信息获取单元、所述狭窄点获取单元连接;
所述图像读取单元,用于读取至少两个体位的冠状动脉二维造影图像组;
所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中的血管骨架;
所述血管段提取单元,用于接收所述血管骨架提取单元的血管骨架,获取感兴趣的血管段;
所述中心线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的中心线;
所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,接收所述中心线提取单元的中心线,接收所述轮廓线提取单元的轮廓线,获取所述血管段的几何结构信息;
所述狭窄病变区间获取单元,用于获取感兴趣的所述血管段的狭窄病变区间;
所述狭窄点获取单元,用于获取所述狭窄病变区间内的狭窄点。
12.根据权利要求11所述的精确获取血管狭窄病变区间的装置,其特征在于,所述图像读取单元包括:图像读取模块和图像筛选模块,所述图像筛选模块与所述图像读取模块、所述血管骨架提取单元、所述几何信息获取单元连接;
所述图像读取模块,用于通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少两个体位的冠状动脉二维造影图像组;或通过存储装置读取至少两个体位的冠状动脉二维造影图像组;
所述图像筛选模块,用于从每组的N幅所述冠状动脉二维造影图像中选取至少一幅清晰图像;每幅所述清晰图像均需清晰的拍摄出狭窄病变区域;如果选取的图像不清晰或/和未清晰的拍摄出狭窄病变区域,则需要重新选取满足上述要求的冠状动脉二维造影图像作为待处理图像。
13.根据权利要求12所述的精确获取血管狭窄病变区间的装置,其特征在于,所述血管骨架提取单元包括:血管监测模块和血管骨架提取模块;所述血管监测模块与所述图像筛选模块、所述骨架提取模块连接;
所述血管监测模块,用于接收所述图像筛选模块发送的待处理图像,采用海森矩阵对所述待处理图像中血管的管状结构进行检测;
所述血管骨架提取模块,用于采用形态学处理方法对检测到的血管管状结构进行腐蚀,提取得到血管的骨架结构。
14.一种冠状动脉分析系统,其特征在于,包括:权利要求11~13任一项所述的精确获取血管狭窄病变区间的装置。
15.一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~8任一项所述的精确获取血管狭窄病变区间的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911099041.XA CN110889896B (zh) | 2019-11-11 | 2019-11-11 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
PCT/CN2019/120099 WO2021092997A1 (zh) | 2019-11-11 | 2019-11-22 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911099041.XA CN110889896B (zh) | 2019-11-11 | 2019-11-11 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110889896A CN110889896A (zh) | 2020-03-17 |
CN110889896B true CN110889896B (zh) | 2024-03-22 |
Family
ID=69747274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911099041.XA Active CN110889896B (zh) | 2019-11-11 | 2019-11-11 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110889896B (zh) |
WO (1) | WO2021092997A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112164020B (zh) * | 2020-03-31 | 2024-01-23 | 苏州润迈德医疗科技有限公司 | 精确提取血管中心线的方法、装置、分析系统和存储介质 |
CN111681226B (zh) * | 2020-06-09 | 2024-07-12 | 上海联影医疗科技股份有限公司 | 基于血管识别的目标组织定位方法和装置 |
CN111627023B (zh) * | 2020-04-27 | 2021-02-09 | 数坤(北京)网络科技有限公司 | 一种冠脉投影图像生成的方法、装置及计算机可读介质 |
CN111862062B (zh) * | 2020-07-27 | 2024-06-07 | 强联智创(北京)科技有限公司 | 一种中心线优化的方法、装置以及设备 |
CN112419484B (zh) * | 2020-11-25 | 2024-03-22 | 苏州润迈德医疗科技有限公司 | 三维血管合成方法、系统及冠状动脉分析系统和存储介质 |
CN112419280B (zh) * | 2020-11-25 | 2024-05-31 | 苏州润迈德医疗科技有限公司 | 精确获取狭窄病变区间的方法及存储介质 |
CN112419277B (zh) * | 2020-11-25 | 2024-02-23 | 苏州润迈德医疗科技有限公司 | 三维血管中心线合成方法、系统及存储介质 |
CN112419276B (zh) * | 2020-11-25 | 2023-12-05 | 苏州润迈德医疗科技有限公司 | 调节血管轮廓及中心线的方法及存储介质 |
CN112419462B (zh) * | 2020-11-25 | 2024-07-02 | 苏州润迈德医疗科技有限公司 | 三维血管的渲染合成方法、系统及存储介质 |
CN112419279B (zh) * | 2020-11-25 | 2024-02-23 | 苏州润迈德医疗科技有限公司 | 二维图像选取及三维血管合成的方法和存储介质 |
CN112487342B (zh) * | 2020-11-25 | 2024-08-09 | 苏州润迈德医疗科技有限公司 | 精确获取狭窄病变区间的方法、系统及存储介质 |
CN114170134B (zh) * | 2021-11-03 | 2023-03-10 | 杭州脉流科技有限公司 | 基于颅内dsa影像的狭窄评估方法及装置 |
CN114145719B (zh) * | 2022-02-08 | 2022-04-26 | 天津恒宇医疗科技有限公司 | 双模冠脉血管图像三维融合的方法和融合系统 |
CN115690309B (zh) * | 2022-09-29 | 2023-07-18 | 中国人民解放军总医院第一医学中心 | 一种冠脉cta自动三维后处理方法和装置 |
CN116612102A (zh) * | 2023-05-31 | 2023-08-18 | 上海博动医疗科技股份有限公司 | 血管图像处理系统、装置及存储介质 |
CN116740768B (zh) * | 2023-08-11 | 2023-10-20 | 南京诺源医疗器械有限公司 | 基于鼻颅镜的导航可视化方法、系统、设备及存储介质 |
CN117274502B (zh) * | 2023-11-17 | 2024-03-01 | 北京唯迈医疗设备有限公司 | 一种辅助介入手术的图像处理方法及装置 |
CN118115458A (zh) * | 2024-03-01 | 2024-05-31 | 语坤(北京)网络科技有限公司 | 人体医学信息确定方法、装置、计算设备及存储介质 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102258381A (zh) * | 2010-03-12 | 2011-11-30 | 西门子公司 | 用于自动检测和分类心脏ct容积中的冠状动脉狭窄的方法和系统 |
CN102415898A (zh) * | 2010-09-15 | 2012-04-18 | 株式会社东芝 | 医用图像处理装置和医用图像处理方法 |
CN103340602A (zh) * | 2013-06-27 | 2013-10-09 | 北京理工大学 | 多分支感兴趣血管段的最佳视角优化方法 |
US8977339B1 (en) * | 2013-12-05 | 2015-03-10 | Intrinsic Medical Imaging Llc | Method for assessing stenosis severity through stenosis mapping |
CN104867147A (zh) * | 2015-05-21 | 2015-08-26 | 北京工业大学 | 基于冠状动脉造影图像分割的syntax自动评分方法 |
WO2016159881A1 (en) * | 2015-03-31 | 2016-10-06 | Agency For Science, Technology And Research | Method and apparatus for assessing blood vessel stenosis |
KR20170090284A (ko) * | 2016-01-28 | 2017-08-07 | 연세대학교 산학협력단 | 협착 병변의 수학적 모델링을 이용한 심혈관 정보 결정 방법 |
CN109069014A (zh) * | 2016-03-16 | 2018-12-21 | 哈特弗罗公司 | 用于估计在冠状动脉中的健康管腔直径和狭窄定量的系统和方法 |
CN109222980A (zh) * | 2018-06-19 | 2019-01-18 | 北京红云智胜科技有限公司 | 基于深度学习的测量冠状动脉造影图像血管直径的方法 |
CN109493323A (zh) * | 2018-10-22 | 2019-03-19 | 北京师范大学 | 基于截面形变几何信息的冠脉狭窄双重判定方法 |
CN109805949A (zh) * | 2019-03-19 | 2019-05-28 | 苏州润迈德医疗科技有限公司 | 基于压力传感器和造影图像计算血流储备分数的方法 |
CN110367965A (zh) * | 2018-09-19 | 2019-10-25 | 苏州润迈德医疗科技有限公司 | 便捷测量冠状动脉血管评定参数的方法、装置及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6718193B2 (en) * | 2000-11-28 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for analyzing vessels displayed as unfolded structures |
CN100378750C (zh) * | 2003-09-25 | 2008-04-02 | 派昂公司 | 用于管状器官的三维重建的系统和方法 |
CN108294735B (zh) * | 2012-03-13 | 2021-09-07 | 西门子公司 | 用于冠状动脉狭窄的非侵入性功能评估的方法和系统 |
US9974442B2 (en) * | 2013-06-24 | 2018-05-22 | Toshiba Medical Systems Corporation | Method of, and apparatus for, processing volumetric image data |
CN103679801B (zh) * | 2013-12-01 | 2017-01-04 | 北京航空航天大学 | 一种基于多视角x光片的心血管三维重建方法 |
US9943277B2 (en) * | 2014-04-02 | 2018-04-17 | International Business Machines Corporation | Detecting coronary stenosis through spatio-temporal tracking |
-
2019
- 2019-11-11 CN CN201911099041.XA patent/CN110889896B/zh active Active
- 2019-11-22 WO PCT/CN2019/120099 patent/WO2021092997A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102258381A (zh) * | 2010-03-12 | 2011-11-30 | 西门子公司 | 用于自动检测和分类心脏ct容积中的冠状动脉狭窄的方法和系统 |
CN102415898A (zh) * | 2010-09-15 | 2012-04-18 | 株式会社东芝 | 医用图像处理装置和医用图像处理方法 |
CN103340602A (zh) * | 2013-06-27 | 2013-10-09 | 北京理工大学 | 多分支感兴趣血管段的最佳视角优化方法 |
US8977339B1 (en) * | 2013-12-05 | 2015-03-10 | Intrinsic Medical Imaging Llc | Method for assessing stenosis severity through stenosis mapping |
CN107613874A (zh) * | 2015-03-31 | 2018-01-19 | 新加坡科技研究局 | 用于评估血管狭窄的方法和装置 |
WO2016159881A1 (en) * | 2015-03-31 | 2016-10-06 | Agency For Science, Technology And Research | Method and apparatus for assessing blood vessel stenosis |
CN104867147A (zh) * | 2015-05-21 | 2015-08-26 | 北京工业大学 | 基于冠状动脉造影图像分割的syntax自动评分方法 |
KR20170090284A (ko) * | 2016-01-28 | 2017-08-07 | 연세대학교 산학협력단 | 협착 병변의 수학적 모델링을 이용한 심혈관 정보 결정 방법 |
CN109069014A (zh) * | 2016-03-16 | 2018-12-21 | 哈特弗罗公司 | 用于估计在冠状动脉中的健康管腔直径和狭窄定量的系统和方法 |
CN109222980A (zh) * | 2018-06-19 | 2019-01-18 | 北京红云智胜科技有限公司 | 基于深度学习的测量冠状动脉造影图像血管直径的方法 |
CN110367965A (zh) * | 2018-09-19 | 2019-10-25 | 苏州润迈德医疗科技有限公司 | 便捷测量冠状动脉血管评定参数的方法、装置及系统 |
CN109493323A (zh) * | 2018-10-22 | 2019-03-19 | 北京师范大学 | 基于截面形变几何信息的冠脉狭窄双重判定方法 |
CN109805949A (zh) * | 2019-03-19 | 2019-05-28 | 苏州润迈德医疗科技有限公司 | 基于压力传感器和造影图像计算血流储备分数的方法 |
Non-Patent Citations (2)
Title |
---|
一种针对造影图像中血管狭窄的自动识别技术;冯瑶;刘宁;冯亚崇;;生物医学工程学杂志;20130425(02);全文 * |
基于造影图像的冠状动脉血管三维表面重建方法;陈晓冬, 黄家祥, 郁道银, 孙正;工程图学学报;20050930(03);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110889896A (zh) | 2020-03-17 |
WO2021092997A1 (zh) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110889896B (zh) | 获取血管狭窄病变区间及三维合成方法、装置和系统 | |
US11191490B2 (en) | Personalized assessment of patients with acute coronary syndrome | |
US11881299B2 (en) | Estimating flow, resistance or pressure from pressure or flow measurements and antiography | |
CA2905203C (en) | Vascular data processing and image registration systems, methods, and apparatuses | |
US20160174925A1 (en) | Vascular Data Processing and Image Registration Systems, Methods, and Apparatuses | |
US10052032B2 (en) | Stenosis therapy planning | |
EP4064181A1 (en) | Method and apparatus for acquiring contour lines of blood vessel according to center line of blood vessel | |
CN110786841B (zh) | 基于微循环阻力指数调节最大充血状态流速的方法及装置 | |
CN112132949B (zh) | 具有狭窄病变区间的血管三维建模方法、装置和系统 | |
CN110786842B (zh) | 测量舒张期血流速度的方法、装置、系统及存储介质 | |
CN112419484B (zh) | 三维血管合成方法、系统及冠状动脉分析系统和存储介质 | |
CN107851463A (zh) | 用于介入性血液动力学测量的辅助设备和方法 | |
WO2021087967A1 (zh) | 基于生理参数获取血管评定参数的方法、装置及存储介质 | |
JP2006524087A (ja) | 血管造影x線写真撮影用の機器 | |
JP2018140045A (ja) | 血流解析装置および方法並びにプログラム | |
CN112419462B (zh) | 三维血管的渲染合成方法、系统及存储介质 | |
JP7049402B2 (ja) | プロセッサ装置の作動方法 | |
CN112446867A (zh) | 血流参数的确定方法、装置、设备及存储介质 | |
Van Hamersvelt et al. | Diagnostic performance of on-site coronary CT angiography–derived fractional flow reserve based on patient-specific lumped parameter models | |
CN112472112B (zh) | 调节血管狭窄区间的方法、系统及存储介质 | |
CN111815584B (zh) | 基于ct序列图像获取心脏重心的方法和系统 | |
CN110929604B (zh) | 基于造影图像的流速的筛选方法、装置、系统和存储介质 | |
KR20180097037A (ko) | 관상동맥의 시작점을 자동으로 추출하기 위한 방법 및 그 장치 | |
CN111815590A (zh) | 基于ct序列图像获取心脏重心和脊椎重心的方法和系统 | |
CN117576006A (zh) | 冠状动脉血流储备分数的确定方法、装置、设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |