CN112164020B - 精确提取血管中心线的方法、装置、分析系统和存储介质 - Google Patents

精确提取血管中心线的方法、装置、分析系统和存储介质 Download PDF

Info

Publication number
CN112164020B
CN112164020B CN202010248890.3A CN202010248890A CN112164020B CN 112164020 B CN112164020 B CN 112164020B CN 202010248890 A CN202010248890 A CN 202010248890A CN 112164020 B CN112164020 B CN 112164020B
Authority
CN
China
Prior art keywords
blood vessel
image
dimensional
point
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010248890.3A
Other languages
English (en)
Other versions
CN112164020A (zh
Inventor
王鹏
王之元
曹文斌
徐磊
刘广志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Rainmed Medical Technology Co Ltd
Original Assignee
Suzhou Rainmed Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Rainmed Medical Technology Co Ltd filed Critical Suzhou Rainmed Medical Technology Co Ltd
Priority to CN202010248890.3A priority Critical patent/CN112164020B/zh
Priority to US17/995,094 priority patent/US20230245301A1/en
Priority to EP20928342.3A priority patent/EP4131150A4/en
Priority to PCT/CN2020/116106 priority patent/WO2021196536A1/zh
Priority to JP2022560075A priority patent/JP7481483B2/ja
Publication of CN112164020A publication Critical patent/CN112164020A/zh
Application granted granted Critical
Publication of CN112164020B publication Critical patent/CN112164020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Quality & Reliability (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Physiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本申请提供了精确提取血管中心线的方法、装置、分析系统和存储介质。精确提取血管中心线的方法包括:选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;从冠状动脉二维造影图像中获取感兴趣的血管段;拾取感兴趣的血管段的起始点和结束点;从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图;对局部血管区域图进行滤波处理,得到第一图像;对第一图像进行血管增强,得到第二图像;从第二图像中提取血管初始中心线;对血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。本申请实现了血管轮廓线的精确提取,且提取快速。

Description

精确提取血管中心线的方法、装置、分析系统和存储介质
技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及精确提取血管中心线的方法、装置、分析系统和存储介质。
背景技术
人体血液中的脂类及糖类物质在血管壁上的沉积将在血管壁上形成斑块,继而导致血管狭窄;特别是发生在心脏冠脉附近的血管狭窄将导致心肌供血不足,诱发冠心病、心绞痛等病症,对人类的健康造成严重威胁。据统计,我国现有冠心病患者约1100万人,心血管介入手术治疗患者数量每年增长大于10%。
冠脉造影CAG、计算机断层扫描CT等常规医用检测手段虽然可以显示心脏冠脉血管狭窄的严重程度,但是并不能准确评价冠脉的缺血情况。为提高冠脉血管功能评价的准确性,1993年Pijls提出了通过压力测定推算冠脉血管功能的新指标——血流储备分数(Fractional Flow Reserve,FFR),经过长期的基础与临床研究,FFR已成为冠脉狭窄功能性评价的金标准。
血流储备分数(FFR)通常是指心肌血流储备分数,定义为病变冠脉能为心肌提供的最大血流与该冠脉完全正常时最大供血流量之比,研究表明,在冠脉最大充血状态下,血流量的比值可以用压力值来代替。即FFR值的测量可在冠脉最大充血状态下,通过压力传感器对冠脉远端狭窄处的压力和冠脉狭窄近端压力进行测定继而计算得出。
现有技术中通过血管三维模型计算血管评价参数时常常需要提取血管中心线,但是如何提高提取血管中心线的准确度一直是技术人员需要解决的问题。
发明内容
本发明提供了一种精确提取血管中心线的方法、装置、冠状动脉分析系统及计算机存储介质,以解决如何精确提取血管中心线的问题。
为实现上述目的,第一方面,本申请提供了一种精确提取血管中心线的方法,包括:
选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;
从所述冠状动脉二维造影图像中获取感兴趣的血管段;
拾取所述感兴趣的血管段的起始点和结束点;
从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图;
对所述局部血管区域图进行滤波处理,得到第一图像;
对所述第一图像进行血管增强,得到第二图像;
从所述第二图像中提取血管初始中心线;
对所述血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
可选地,上述的精确提取血管中心线的方法,所述从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图的方法包括:
拾取所述感兴趣的血管段的至少一个种子点;
分别对起始点、种子点、结束点的相邻两点间的所述第二图像进行分割,得到至少两个局部血管区域图。
可选地,上述的精确提取血管中心线的方法,所述对所述局部血管区域图进行滤波处理的方法,包括:
W、H分别表示所述二维核函数的宽和高;
通过二维核函数滤波;
其中,x∈[0,W),y∈[0,H);σ表示标准差,σ=0.5~5.0,e表示自然常数。
可选地,上述的精确提取血管中心线的方法,所述W=H=6σ+1。
可选地,上述的精确提取血管中心线的方法,所述对所述第一图像进行血管增强的方法包括:
根据不同的所述标准差σ和矩阵大小,分别计算出多个矩阵特征值;
从所有矩阵特征值中选取最大值作为输出值,所述输出值对应的图像即为血管增强后的第二图像。
可选地,上述的精确提取血管中心线的方法,所述根据不同的所述标准差σ和矩阵大小,分别计算出多个矩阵特征值的方法包括:
根据不同的所述标准差σ和矩阵大小,获取多个二维矩阵H(x,y);
获取每个所述二维矩阵对应的第一参数和第二参数;
根据所述第一参数、所述第二参数,获得每个所述二维矩阵的矩阵特征值。
可选地,上述的精确提取血管中心线的方法,所述根据不同的所述标准差σ和矩阵大小,获取多个二维矩阵H(x,y)的方法包括:
根据所述二维核函数g(x,y),通过公式获得图像在x方向的二阶导数;
根据二维核函数g(x,y),通过公式获得图像在y方向的二阶导数;
根据二维核函数g(x,y),通过公式获得图像在与x、y的夹角均为45°方向的二阶导数;
根据所述Ixx、Ixy、Iyy,得到二维矩阵
其中,σ表示标准差,σ=0.5~5.0,e表示常数,表示卷积,I(x,y)表示图像像素值,Ixx、Ixy、Iyy分别表示图像在x方向、与x、y夹角均为45°方向、以及y方向的二阶导数。
可选地,上述的精确提取血管中心线的方法,所述获取每个所述二维矩阵对应的第一参数和第二参数的方法包括:
根据所述Ixx、所述Iyy,通过公式K=(Ixx+Iyy)/2获得K;
根据所述Ixx、所述Ixy、所述Iyy,通过公式获得Q;
根据所述K、所述Q,通过公式获得第一参数;
根据所述K、所述Q,通过公式获得第二参数;
其中,λ1表示第一参数,λ2表示第二参数,Ixx、Ixy、Iyy分别表示图像在x方向、与x、y夹角均为45°方向、以及y方向的二阶导数。
可选地,上述的精确提取血管中心线的方法,所述根据所述第一参数、所述第二参数,获得每个所述二维矩阵的矩阵特征值的方法包括:
根据所述第一参数、所述第二参数,通过公式获得RB
根据所述第一参数、所述第二参数,通过公式获得S;
根据所述RB、所述S,通过公式获得矩阵特征值V;其中,β表示用于调整线状和块状的区别的参数,β=0.4~0.8;γ表示控制线状物整体平滑的参数,γ=3.0~5.0。
可选地,上述的精确提取血管中心线的方法,所述从所述第二图像中提取血管初始中心线的方法包括:
从所述第二图像中提取血管骨架;
拾取血管的分叉点,与起始点、终点共同创建无向图;
沿着血管骨架方向,搜索所述无向图中的相邻两点之间的最短距离,沿着起始点至终点方向,得出所有路径;
沿着所述无向图的起始点至所述结束点方向,将所有路径中距离最短的血管路径线作为所述血管初始中心线。
可选地,上述的精确提取血管中心线的方法,所述对所述血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线的方法包括:
所述血管初始中心线是由很多个血管中心点连线而成,对每个所述血管中心点做法线;
沿着所述法线方向,进行灰度值统计,如果图像为增强后的第二图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最大的位置,即完成修正;如果图像为原始图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最小的位置,即完成修正;
重新连接修正后的所述血管中心点,得到血管精确中心线。
第二方面,本申请提供了一种精确提取血管中心线的装置,包括:依次连接的冠状动脉二维造影图像读取单元、图像选取单元、感兴趣血管段拾取单元、图像分割单元、滤波单元、图像增强单元、初始中心线提取单元和中心线修正单元;
所述冠状动脉二维造影图像读取单元,用于读取患者至少一个体位,至少两个拍摄角度的冠状动脉二维造影图像;
所述图像选取单元,用于从所述冠状动脉二维造影图像读取单元中选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;
所述感兴趣血管段拾取单元,用于从所述冠状动脉二维造影图像中获取感兴趣的血管段;以及拾取所述感兴趣的血管段的起始点和结束点;
所述图像分割单元,用于从所述感兴趣血管段拾取单元中的所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图;
所述滤波单元,用于对所述图像分割单元中的所述局部血管区域图进行滤波处理,得到第一图像;
所述图像增强单元,用于对所述滤波单元中的所述第一图像进行血管增强,得到第二图像;
所述初始中心线提取单元,用于从所述图像增强单元的所述第二图像中提取血管初始中心线;
所述中心线修正单元,用于对所述初始中心线提取单元提取的血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
可选地,上述的精确提取血管中心线的装置,所述图像增强单元包括:依次连接的二维矩阵模块、参数计算模块、矩阵特征值计算模块、矩阵特征值筛选模块和第二图像模块;
所述二维矩阵模块,用于根据不同的所述标准差和矩阵大小,获取多个二维矩阵;
所述参数计算模块,用于根据所述二维矩阵模块中的多个二维矩阵,获取每个所述二维矩阵对应的第一参数和第二参数;
所述矩阵特征值模块,用于根据所述参数计算模块计算得到的所述第一参数和所述第二参数,获得每个所述二维矩阵的矩阵特征值;
所述矩阵特征值筛选模块,用于从所述矩阵特征值模块中的所有矩阵特征值中选取最大值作为输出值;
所述第二图像模块,用于根据所述矩阵特征值筛选模块的输出值,将所述输出值对应的图像作为血管增强后的第二图像。
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的精确提取血管中心线的装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的精确提取血管中心线的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了精确提取血管中心线的方法,由于造影剂颜色深,如果造影剂没有充满血管,会导致血管的形态不完整,边缘存在颜色浅,导致血管拍摄出的图像不完整,后期容易造成血管边缘拾取不准确的问题,因此本申请选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像,能够完整的显示出血管形态。
为了减少运算量,本申请从冠状动脉二维造影图像中获取感兴趣的血管段;拾取所述感兴趣的血管段的起始点和结束点;从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图,由于局部血管区域图小于冠状动脉造影图像,因此运算量低,系统响应速度快。
由于图像存在噪音,为了降低噪音对图像的影响,本申请对局部血管区域图进行滤波处理,得到第一图像。为了得到清晰的血管,本申请对第一图像进行血管增强,得到第二图像。本申请从第二图像中提取血管初始中心线,速度较快。
由于血管存在枝杈,以及血管中心线与血管的质量,以及血管边缘均有关系,因此血管初始中心线上的点存在误差,为了对血管初始中心线进行校正,本申请沿着血管初始中心线的法线方向,进行灰度值统计,如果所在的图像为增强后的第二图像,则将偏离血管中心的血管中心点沿着法线方向移动至血管区域内灰度值最大的位置,即完成修正,得到血管精确中心线,提高了血管中心线提取的准确度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的精确提取血管中心线的方法的流程图;
图2为本申请的冠状动脉二维造影图像;
图3为本申请的步骤S600的流程图;
图4为本申请的步骤S610的流程图;
图5为本申请的第二图像;
图6为本申请的步骤S700的流程图;
图7为本申请的步骤S800的流程图;
图8为本申请的提取出的含有血管中心线的图像;
图9为本申请的精确提取血管中心线的装置的结构框图;
图10为本申请的图像增强单元600的结构框图;
下面对附图标记进行说明:
冠状动脉二维造影图像读取单元100,图像选取单元200,感兴趣血管段拾取单元300,图像分割单元400,滤波单元500,图像增强单元600,二维矩阵模块610,参数计算模块620,矩阵特征值计算模块630,矩阵特征值筛选模块640,第二图像模块650,初始中心线提取单元700,中心线修正单元800。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
现有技术中通过血管三维模型计算血管评价参数时常常需要提取血管轮廓线,由于血管存在卷曲、且边缘不清晰的问题,导致血管轮廓提取特别困难,且运算数据庞大、繁冗,因此如何快速提取血管轮廓线,以及提取的准确度一直是技术人员需要解决的问题。
实施例1:
如图1所示,本申请为了解决上述问题,提供了提供了一种精确提取血管中心线的方法,包括:
S100,选取造影剂在血管内处于充盈状态的一帧如图2所示的冠状动脉二维造影图像;
S200,从冠状动脉二维造影图像中获取感兴趣的血管段;
S300,拾取感兴趣的血管段的起始点和结束点;
S400,从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图;
S500,对局部血管区域图进行滤波处理,得到第一图像;
S600,对第一图像进行血管增强,得到第二图像;
S700,从第二图像中提取血管初始中心线;
S800,对血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
本申请提供了精确提取血管中心线的方法,由于造影剂颜色深,如果造影剂没有充满血管,会导致血管的形态不完整,边缘存在颜色浅,导致血管拍摄出的图像不完整,后期容易造成血管边缘拾取不准确的问题,因此本申请选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像,能够完整的显示出血管形态。
为了减少运算量,本申请从冠状动脉二维造影图像中获取感兴趣的血管段;拾取感兴趣的血管段的起始点和结束点;从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图,由于局部血管区域图小于冠状动脉造影图像,因此运算量低,系统响应速度快。
由于图像存在噪音,为了降低噪音对图像的影响,本申请对局部血管区域图进行滤波处理,得到第一图像。为了得到清晰的血管,本申请对第一图像进行血管增强,得到第二图像。本申请从第二图像中提取血管初始中心线,速度较快。
由于血管存在枝杈,以及血管中心线与血管的质量,以及血管边缘均有关系,因此血管初始中心线上的点存在误差,为了对血管初始中心线进行校正,本申请沿着血管初始中心线的法线方向,进行灰度值统计,如果所在的图像为增强后的第二图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最大的位置,即完成修正,得到血管精确中心线,提高了血管中心线提取的准确度。
实施例2:
如图1所示,本申请为了解决上述问题,提供了一种精确提取血管中心线的方法,包括:
S100,选取造影剂在血管内处于充盈状态的一帧如图2所示的冠状动脉二维造影图像;
S200,从冠状动脉二维造影图像中获取感兴趣的血管段;
S300,拾取感兴趣的血管段的起始点和结束点;
S400,从冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图;优选地,为了提高血管拾取的准确度,本申请还可以在起始点和结束点之间额外拾取感兴趣的血管段的至少一个种子点;分别对起始点、种子点、结束点的相邻两点间的第二图像进行分割,得到至少两个局部血管区域图;
S500,对局部血管区域图进行滤波处理,得到第一图像,包括:
W、H分别表示所述二维核函数的宽和高;
通过二维核函数滤波;
其中,x∈[0,W),y∈[0,H);σ表示标准差,σ=0.5~5.0,e表示自然常数。
优选地,为了减少运算量,σ可以取σ={0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}此区间内的值,且W=H=6σ+1时进行计算,提高了运算速度;
S600,对第一图像进行血管增强,得到第二图像,如图3所示,包括:
S610,根据不同的标准差σ和矩阵大小,分别计算出多个矩阵特征值,如图4所示,包括:
S611,根据不同的标准差σ和矩阵大小,获取多个二维矩阵H(x,y),具体为:
A)根据二维核函数g(x,y),通过公式获得图像在x方向的二阶导数;
B)根据二维核函数g(x,y),通过公式获得图像在y方向的二阶导数;
C)根据二维核函数g(x,y),通过公式获得图像在与x、y的夹角均为45°方向的二阶导数;
D)根据Ixx、Ixy、Iyy,得到二维矩阵
其中,σ表示标准差,σ=0.5~5.0,e表示常数,表示卷积,I(x,y)表示图像像素值,Ixx、Ixy、Iyy分别表示图像在x方向、与x、y夹角均为45°方向、以及y方向的二阶导数;
S612,获取每个二维矩阵对应的第一参数和第二参数,具体为:
I)根据Ixx、Iyy,通过公式K=(Ixx+Iyy)/2获得K;
II)根据Ixx、Ixy、Iyy,通过公式获得Q;
III)根据K、Q,通过公式获得第一参数;
IV)根据K、Q,通过公式获得第二参数;
其中,λ1表示第一参数,λ2表示第二参数,Ixx、Ixy、Iyy分别表示图像在x方向、与x、y夹角均为45°方向、以及y方向的二阶导数;
S613,根据第一参数、第二参数,获得每个二维矩阵的矩阵特征值,具体为:
①根据第一参数、第二参数,通过公式获得RB
②根据第一参数、第二参数,通过公式获得S;
③根据RB、S,通过公式获得矩阵特征值V;其中,β表示用于调整线状和块状的区别的参数,β=0.4~0.8;γ表示控制线状物整体平滑的参数,γ=3.0~5.0;
本申请采用不同标准差,得到不同的W和H,目的是能够对不同管径的血管进行增强;通过图像增强的计算,即使是图像不清晰的血管,本申请也能够得到相对清晰的增强血管,适用性广泛。
S620,从所有矩阵特征值中选取最大值作为输出值,输出值对应的图像即为血管增强后的如图5所示的第二图像;
S700,从第二图像中提取血管初始中心线,如图6所示,包括:
S710,从第二图像中提取血管骨架;
S720,拾取血管的分叉点,与起始点、终点共同创建无向图;
S730,沿着血管骨架方向,搜索所述无向图中的相邻两点之间的最短距离,沿着起始点至终点方向,得出所有路径;
S740,沿着无向图的起始点至结束点方向,将所有路径中距离最短的血管路径线作为所述血管初始中心线。
S800,对血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线,如图7所示,具体为:
S810,血管初始中心线是由很多个血管中心点连线而成,对每个血管中心点做法线;
S820,沿着法线方向,进行灰度值统计,如果所在的图像为增强后的第二图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最大的位置,即完成修正;如果网格所在的图像为原始图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最小的位置,即完成修正;
S830,重新连接修正后的血管中心点,得到如图8所示的血管精确中心线。
第二方面,本申请提供了一种精确提取血管中心线的装置,如图9所示,包括:依次连接的冠状动脉二维造影图像读取单元100、图像选取单元200、感兴趣血管段拾取单元300、图像分割单元400、滤波单元500、图像增强单元600、初始中心线提取单元700和中心线修正单元800;冠状动脉二维造影图像读取单元100用于读取患者至少一个体位,至少两个拍摄角度的冠状动脉二维造影图像;图像选取单元200用于从冠状动脉二维造影图像读取单元中选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;感兴趣血管段拾取单元300用于从冠状动脉二维造影图像中获取感兴趣的血管段;以及拾取感兴趣的血管段的起始点和结束点;图像分割单元400用于从感兴趣血管段拾取单元中的冠状动脉二维造影图像中分割出起始点、结束点对应的局部血管区域图;滤波单元500用于对图像分割单元中的局部血管区域图进行滤波处理,得到第一图像;图像增强单元600用于对滤波单元中的第一图像进行血管增强,得到第二图像;初始中心线提取单元700用于从图像增强单元的第二图像中提取血管初始中心线;中心线修正单元800用于对初始中心线提取单元提取的血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
可选地,上述的精确提取血管中心线的装置,如图10所示,图像增强单元600包括:依次连接的二维矩阵模块610、参数计算模块620、矩阵特征值计算模块630、矩阵特征值筛选模块640和第二图像模块650;二维矩阵模块610用于根据不同的标准差和矩阵大小,获取多个二维矩阵;参数计算模块620用于根据二维矩阵模块610中的多个二维矩阵,获取每个二维矩阵对应的第一参数和第二参数;矩阵特征值模块630用于根据参数计算模块620计算得到的第一参数和第二参数,获得每个二维矩阵的矩阵特征值;矩阵特征值筛选模块640用于从矩阵特征值模块630中的所有矩阵特征值中选取最大值作为输出值;第二图像模块650用于根据矩阵特征值筛选模块640的输出值,将输出值对应的图像作为血管增强后的第二图像。
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的精确提取血管中心线的装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的精确提取血管中心线的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种精确提取血管中心线的方法,其特征在于,包括:
选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;
从所述冠状动脉二维造影图像中获取感兴趣的血管段;
拾取所述感兴趣的血管段的起始点和结束点;
从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图;
对所述局部血管区域图进行滤波处理,得到第一图像;
所述局部血管区域图进行滤波处理的方法,包括:
W、H分别表示二维核函数的宽和高;
其中,W=H=6σ+1;
通过二维核函数滤波;
其中,x∈[0,W),y∈[0,H);σ表示标准差,σ=0.5~5.0,e表示自然常数;
对所述第一图像进行血管增强,得到第二图像;
所述第一图像进行血管增强的方法,包括:
根据不同的所述标准差σ和矩阵大小,分别计算出多个矩阵特征值;
从所有矩阵特征值中选取最大值作为输出值,所述输出值对应的图像即为血管增强后的第二图像;
其中,所述根据不同的所述标准差σ和矩阵大小,分别计算出多个矩阵特征值的方法,包括:
根据不同的所述标准差σ和矩阵大小,获取多个二维矩阵H(x,y);
获取每个所述二维矩阵对应的第一参数和第二参数;
根据所述第一参数、所述第二参数,获得每个所述二维矩阵的矩阵特征值;
从所述第二图像中提取血管初始中心线;
对所述血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
2.根据权利要求1所述的精确提取血管中心线的方法,其特征在于,所述从所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图的方法包括:
拾取所述感兴趣的血管段的至少一个种子点;
分别对起始点、种子点、结束点的相邻两点间的所述第二图像进行分割,得到至少两个局部血管区域图。
3.根据权利要求1所述的精确提取血管中心线的方法,其特征在于,所述根据不同的所述标准差σ和矩阵大小,获取多个二维矩阵H(x,y)的方法包括:
根据所述二维核函数g(x,y),通过公式获得图像在x方向的二阶导数;
根据二维核函数g(x,y),通过公式获得图像在y方向的二阶导数;
根据二维核函数g(x,y),通过公式获得图像在与x、y的夹角均为45°方向的二阶导数;
根据所述Ixx、Ixy、Iyy,得到二维矩阵
其中,σ表示标准差,σ=0.5~5.0,e表示常数,表示卷积,I(x,y)表示图像像素值,Ixx、Ixy、Iyy分别表示图像在x方向、与x、y夹角均为45°方向、以及y方向的二阶导数。
4.根据权利要求3所述的精确提取血管中心线的方法,其特征在于,所述获取每个所述二维矩阵对应的第一参数和第二参数的方法包括:
根据所述Ixx、所述Iyy,通过公式K=(Ixx+Iyy)/2获得K;
根据所述Ixx、所述Ixy、所述Iyy,通过公式获得Q;
根据所述K、所述Q,通过公式获得第一参数;
根据所述K、所述Q,通过公式获得第二参数;
其中,λ1表示第一参数,λ2表示第二参数,Ixx、Ixy、Iyy分别表示图像在x方向、与x、少夹角均为45°方向、以及y方向的二阶导数。
5.根据权利要求4所述的精确提取血管中心线的方法,其特征在于,所述根据所述第一参数、所述第二参数,获得每个所述二维矩阵的矩阵特征值的方法包括:
根据所述第一参数、所述第二参数,通过公式获得RB
根据所述第一参数、所述第二参数,通过公式获得S;
根据所述RB、所述S,通过公式获得矩阵特征值V;其中,β表示用于调整线状和块状的区别的参数,β=0.4~0.8;γ表示控制线状物整体平滑的参数,γ=3.0~5.0。
6.根据权利要求1所述的精确提取血管中心线的方法,其特征在于,所述从所述第二图像中提取血管初始中心线的方法包括:
从所述第二图像中提取血管骨架;
拾取血管的分叉点,与起始点、终点共同创建无向图;
沿着血管骨架方向,搜索所述无向图中的相邻两点之间的最短距离,沿着起始点至终点方向,得出所有路径;
沿着所述无向图的起始点至所述结束点方向,将所有路径中距离最短的血管路径线作为所述血管初始中心线。
7.根据权利要求6所述的精确提取血管中心线的方法,其特征在于,所述对所述血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线的方法包括:
所述血管初始中心线是由很多个血管中心点连线而成,对每个所述血管中心点做法线;
沿着所述法线方向,进行灰度值统计,如果图像为增强后的所述第二图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最大的位置,即完成修正;如果图像为原始图像,则将偏离血管中心的点沿着法线方向移动至血管区域内灰度值最小的位置,即完成修正;
重新连接修正后的所述血管中心点,得到血管精确中心线。
8.一种精确提取血管中心线的装置,用于权利要求1~7任一项所述的精确提取血管中心线的方法,其特征在于,包括:依次连接的冠状动脉二维造影图像读取单元、图像选取单元、感兴趣血管段拾取单元、图像分割单元、滤波单元、图像增强单元、初始中心线提取单元和中心线修正单元;
所述冠状动脉二维造影图像读取单元,用于读取患者至少一个体位,至少两个拍摄角度的冠状动脉二维造影图像;
所述图像选取单元,用于从所述冠状动脉二维造影图像读取单元中选取造影剂在血管内处于充盈状态的一帧冠状动脉二维造影图像;
所述感兴趣血管段拾取单元,用于从所述冠状动脉二维造影图像中获取感兴趣的血管段;以及拾取所述感兴趣的血管段的起始点和结束点;
所述图像分割单元,用于从所述感兴趣血管段拾取单元中的所述冠状动脉二维造影图像中分割出所述起始点、结束点对应的局部血管区域图;
所述滤波单元,用于对所述图像分割单元中的所述局部血管区域图进行滤波处理,得到第一图像;
所述图像增强单元,用于对所述滤波单元中的所述第一图像进行血管增强,得到第二图像;
所述初始中心线提取单元,用于从所述图像增强单元的所述第二图像中提取血管初始中心线;
所述中心线修正单元,用于对所述初始中心线提取单元提取的血管初始中心线进行校正,将偏离血管中心的点修正到血管中心上,得到血管精确中心线。
9.一种冠状动脉分析系统,其特征在于,包括:权利要求8所述的精确提取血管中心线的装置。
10.一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~7任一项所述的精确提取血管中心线的方法。
CN202010248890.3A 2020-03-31 2020-03-31 精确提取血管中心线的方法、装置、分析系统和存储介质 Active CN112164020B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010248890.3A CN112164020B (zh) 2020-03-31 2020-03-31 精确提取血管中心线的方法、装置、分析系统和存储介质
US17/995,094 US20230245301A1 (en) 2020-03-31 2020-09-18 Method and apparatus for accurately extracting vascular centerline, analysis system, and storage medium
EP20928342.3A EP4131150A4 (en) 2020-03-31 2020-09-18 METHOD AND APPARATUS FOR PRECISE EXTRACTION OF A VESSEL CENTRAL LINE, ANALYSIS SYSTEM, AND STORAGE MEDIUM
PCT/CN2020/116106 WO2021196536A1 (zh) 2020-03-31 2020-09-18 精确提取血管中心线的方法、装置、分析系统和存储介质
JP2022560075A JP7481483B2 (ja) 2020-03-31 2020-09-18 血管の中心線を精密に抽出する方法、装置、分析システム、及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010248890.3A CN112164020B (zh) 2020-03-31 2020-03-31 精确提取血管中心线的方法、装置、分析系统和存储介质

Publications (2)

Publication Number Publication Date
CN112164020A CN112164020A (zh) 2021-01-01
CN112164020B true CN112164020B (zh) 2024-01-23

Family

ID=73859624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010248890.3A Active CN112164020B (zh) 2020-03-31 2020-03-31 精确提取血管中心线的方法、装置、分析系统和存储介质

Country Status (5)

Country Link
US (1) US20230245301A1 (zh)
EP (1) EP4131150A4 (zh)
JP (1) JP7481483B2 (zh)
CN (1) CN112164020B (zh)
WO (1) WO2021196536A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3948886A4 (en) 2019-04-01 2022-12-21 CathWorks Ltd. METHOD AND DEVICE FOR SELECTING ANGIOGRAPHIC IMAGES
WO2021059165A1 (en) 2019-09-23 2021-04-01 Cathworks Ltd. Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device
CN113100801B (zh) * 2021-04-14 2022-11-25 清华大学 动脉瘤的入射角的确定方法、装置、电子设备及存储介质
CN113344873A (zh) * 2021-06-04 2021-09-03 联想(北京)有限公司 一种血管分割方法、装置及计算机可读介质
CN115375705B (zh) * 2022-08-04 2023-03-31 北京医准智能科技有限公司 一种血管分割方法、装置、电子设备及存储介质
CN115482358B (zh) * 2022-10-12 2023-04-28 北京医准智能科技有限公司 一种三角网格曲面的生成方法、装置、设备及存储介质
CN115944389B (zh) * 2023-03-14 2023-05-23 杭州脉流科技有限公司 弹簧圈模拟植入的方法和计算机设备
CN116636866B (zh) * 2023-05-17 2024-03-19 北京唯迈医疗设备有限公司 血管造影图像的支架的精显方法、装置以及存储介质
CN116664644B (zh) * 2023-07-28 2023-11-28 北京清影华康科技有限公司 一种基于磁共振图像的血管中心线配准方法及装置
CN117036640B (zh) * 2023-10-10 2023-12-19 杭州脉流科技有限公司 冠状动脉血管模型重构方法、装置、设备和存储介质
CN117115150B (zh) * 2023-10-20 2024-01-26 柏意慧心(杭州)网络科技有限公司 用于确定分支血管的方法、计算设备和介质
CN117373070B (zh) * 2023-12-07 2024-03-12 瀚依科技(杭州)有限公司 血管分段标注的方法及装置、电子设备和存储介质
CN117911490B (zh) * 2024-01-24 2024-10-18 强联智创(北京)科技有限公司 用于生成血管中心线的方法、设备和计算机可读存储介质
CN117934522B (zh) * 2024-03-25 2024-06-28 江西师范大学 一种两阶段冠状动脉图像分割方法、系统及计算机设备
CN117974720B (zh) * 2024-03-29 2024-07-26 杭州脉流科技有限公司 导丝实时追踪方法、计算机设备及可读存储介质
CN118177841B (zh) * 2024-05-16 2024-09-10 北京阿迈特医疗器械有限公司 二氧化碳血管造影控制方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283911A (zh) * 2008-06-05 2008-10-15 华北电力大学 一种冠状动脉血管轴线的四维重建方法
CN101393644A (zh) * 2008-08-15 2009-03-25 华中科技大学 一种肝门静脉血管树建模方法及其系统
CN104992437A (zh) * 2015-06-29 2015-10-21 北京欣方悦医疗科技有限公司 一种冠脉三维图像分割的方法
CN105136454A (zh) * 2015-10-15 2015-12-09 上海电机学院 一种风电机组齿轮箱故障识别方法
CN106127819A (zh) * 2016-06-30 2016-11-16 上海联影医疗科技有限公司 医学图像中提取血管中心线的方法及其装置
CN108765363A (zh) * 2018-03-24 2018-11-06 语坤(北京)网络科技有限公司 一种基于人工智能的冠脉cta自动后处理系统
CN110288572A (zh) * 2019-06-13 2019-09-27 北京理工大学 血管中心线自动提取方法及装置
CN110310323A (zh) * 2018-03-20 2019-10-08 天津工业大学 基于Hessian矩阵和二维高斯拟合的视网膜血管管径测量方法
CN110786841A (zh) * 2019-11-04 2020-02-14 苏州润迈德医疗科技有限公司 基于微循环阻力指数调节最大充血状态流速的方法及装置
CN110823241A (zh) * 2019-11-19 2020-02-21 齐鲁工业大学 基于可通行区域骨架提取的机器人路径规划方法及系统
CN110889896A (zh) * 2019-11-11 2020-03-17 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053117B2 (ja) * 1997-10-17 2008-02-27 東芝医用システムエンジニアリング株式会社 画像処理装置
US6937776B2 (en) 2003-01-31 2005-08-30 University Of Chicago Method, system, and computer program product for computer-aided detection of nodules with three dimensional shape enhancement filters
JP4421203B2 (ja) 2003-03-20 2010-02-24 株式会社東芝 管腔状構造体の解析処理装置
JP2006246941A (ja) 2005-03-08 2006-09-21 Toshiba Corp 画像処理装置及び管走行トラッキング方法
CN101425186B (zh) * 2008-11-17 2012-03-28 华中科技大学 一种基于ct图像的肝脏分段方法及其系统
JP2012143435A (ja) 2011-01-13 2012-08-02 Shimadzu Corp 診断用画像処理方法
CN111652917B (zh) 2013-03-12 2024-07-09 光学实验室成像公司 血管数据处理和图像配准系统、方法及装置
WO2017086433A1 (ja) 2015-11-19 2017-05-26 国立大学法人 東京大学 医用画像処理方法及び装置及びシステム及びプログラム
WO2017139367A1 (en) * 2016-02-08 2017-08-17 Imago Systems, Inc. System and method for the visualization and characterization of objects in images
CN108697354B (zh) * 2016-02-23 2022-12-06 梅约医学教育与研究基金会 超声血流成像
EP4241694A3 (en) 2016-05-16 2023-12-20 Cathworks Ltd. Selection of vascular paths from images
WO2018001099A1 (zh) * 2016-06-30 2018-01-04 上海联影医疗科技有限公司 一种血管提取方法与系统
KR102050649B1 (ko) * 2018-01-08 2019-12-17 숭실대학교산학협력단 2차원 x-선 조영영상의 혈관 구조 추출 방법, 이를 수행하기 위한 기록매체 및 장치
CN110786840B (zh) * 2019-11-04 2021-06-08 苏州润迈德医疗科技有限公司 基于生理参数获取血管评定参数的方法、装置及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283911A (zh) * 2008-06-05 2008-10-15 华北电力大学 一种冠状动脉血管轴线的四维重建方法
CN101393644A (zh) * 2008-08-15 2009-03-25 华中科技大学 一种肝门静脉血管树建模方法及其系统
CN104992437A (zh) * 2015-06-29 2015-10-21 北京欣方悦医疗科技有限公司 一种冠脉三维图像分割的方法
CN105136454A (zh) * 2015-10-15 2015-12-09 上海电机学院 一种风电机组齿轮箱故障识别方法
CN106127819A (zh) * 2016-06-30 2016-11-16 上海联影医疗科技有限公司 医学图像中提取血管中心线的方法及其装置
CN110310323A (zh) * 2018-03-20 2019-10-08 天津工业大学 基于Hessian矩阵和二维高斯拟合的视网膜血管管径测量方法
CN108765363A (zh) * 2018-03-24 2018-11-06 语坤(北京)网络科技有限公司 一种基于人工智能的冠脉cta自动后处理系统
CN110288572A (zh) * 2019-06-13 2019-09-27 北京理工大学 血管中心线自动提取方法及装置
CN110786841A (zh) * 2019-11-04 2020-02-14 苏州润迈德医疗科技有限公司 基于微循环阻力指数调节最大充血状态流速的方法及装置
CN110889896A (zh) * 2019-11-11 2020-03-17 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和系统
CN110823241A (zh) * 2019-11-19 2020-02-21 齐鲁工业大学 基于可通行区域骨架提取的机器人路径规划方法及系统

Also Published As

Publication number Publication date
EP4131150A4 (en) 2024-03-20
WO2021196536A1 (zh) 2021-10-07
JP7481483B2 (ja) 2024-05-10
CN112164020A (zh) 2021-01-01
US20230245301A1 (en) 2023-08-03
EP4131150A1 (en) 2023-02-08
JP2023520481A (ja) 2023-05-17

Similar Documents

Publication Publication Date Title
CN112164020B (zh) 精确提取血管中心线的方法、装置、分析系统和存储介质
US10172582B2 (en) X-ray image feature detection and registration systems and methods
US20220277447A1 (en) Method and apparatus for acquiring contour line of blood vessel according to centerline of blood vessel
JP2022169579A (ja) リアルタイムで診断上有用な結果
JP6388632B2 (ja) プロセッサ装置の作動方法
CN112419484B (zh) 三维血管合成方法、系统及冠状动脉分析系统和存储介质
CN112132949B (zh) 具有狭窄病变区间的血管三维建模方法、装置和系统
WO2022109905A1 (zh) 调节血管轮廓及中心线的方法及存储介质
CN112419462B (zh) 三维血管的渲染合成方法、系统及存储介质
US20160066795A1 (en) Stenosis therapy planning
JP7437077B2 (ja) 生理パラメータに基づき血管評定パラメータを取得する方法、装置及び記憶媒体
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
JP7049402B2 (ja) プロセッサ装置の作動方法
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
CN112419277B (zh) 三维血管中心线合成方法、系统及存储介质
CN112472112B (zh) 调节血管狭窄区间的方法、系统及存储介质
CN112419279B (zh) 二维图像选取及三维血管合成的方法和存储介质
CN112419280B (zh) 精确获取狭窄病变区间的方法及存储介质
CN112487342B (zh) 精确获取狭窄病变区间的方法、系统及存储介质
JP2022544052A (ja) 造影画像間隔時間に基づいて血流速度を補正する方法及び装置
CN113658172A (zh) 图像处理方法及装置、计算机可读存储介质及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant