WO2021087961A1 - 测量舒张期血流速度的方法、装置、系统及存储介质 - Google Patents

测量舒张期血流速度的方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2021087961A1
WO2021087961A1 PCT/CN2019/116637 CN2019116637W WO2021087961A1 WO 2021087961 A1 WO2021087961 A1 WO 2021087961A1 CN 2019116637 W CN2019116637 W CN 2019116637W WO 2021087961 A1 WO2021087961 A1 WO 2021087961A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow velocity
blood vessel
blood flow
dimensional
difference
Prior art date
Application number
PCT/CN2019/116637
Other languages
English (en)
French (fr)
Inventor
刘广志
龚艳君
李建平
易铁慈
郑博
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Publication of WO2021087961A1 publication Critical patent/WO2021087961A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0275Measuring blood flow using tracers, e.g. dye dilution

Definitions

  • the present invention relates to the technical field of coronary arteries, in particular to a method and device for measuring diastolic blood flow velocity, a method for calculating blood vessel evaluation parameters, a coronary artery analysis system and a computer storage medium.
  • cardiovascular disease has become the "number one killer" of human health.
  • hemodynamics to analyze the physiology and pathological behavior of cardiovascular diseases has also become a very important means for the diagnosis of cardiovascular diseases.
  • Blood flow and velocity are very important parameters of hemodynamics. How to accurately and conveniently measure blood flow and velocity has become the focus of research by the majority of researchers.
  • Vascular evaluation parameters include: coronary artery diastolic blood flow velocity IFR, and coronary artery diastolic microcirculation resistance index IFMR, etc.; and IFR and IFMR need to be based on coronary blood flow velocity during diastole and current diastolic blood flow The speed is obtained by a non-invasive blood pressure meter, and there is a problem of inaccurate measurement of the blood flow speed in the diastolic period.
  • the present invention provides a method and device for measuring diastolic blood flow velocity, a method for calculating blood vessel evaluation parameters, a coronary artery analysis system, and a computer storage medium to solve the problem of inaccurate diastolic blood flow velocity obtained by a non-invasive blood pressure meter. problem.
  • the present application provides a method for measuring the diastolic blood flow velocity, which includes:
  • the blood flow velocity is calculated
  • the maximum value of the blood flow velocity is selected as the diastolic blood flow velocity.
  • the method for reading a set of two-dimensional coronary angiography images of at least one body position includes:
  • the two-dimensional coronary angiography image group of at least one body position is read through the storage device.
  • the method for extracting a blood vessel segment of interest from the set of two-dimensional coronary angiography images includes:
  • the method for extracting the center line of the blood vessel segment includes:
  • the center line of the blood vessel segment is extracted.
  • the method for extracting the centerline of the blood vessel segment along the blood vessel skeleton further includes:
  • the blood vessel centerline is regenerated along the blood vessel skeleton.
  • the time for the contrast agent in any two frames of coronary two-dimensional angiography images to flow through the blood vessel segment is made difference, and the difference is ⁇ t, and the difference is ⁇ t.
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery, that is, the first point of the blood vessel segment is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth Frame image
  • the time difference is ⁇ t 1 ,..., ⁇ t b ,..., ⁇ t a ,..., ⁇ t N-1 ;
  • the center line length difference is ⁇ L 1 ,..., ⁇ L b ,..., ⁇ L a ,... , ⁇ L N-1 ;
  • ⁇ t m ⁇ fps, because each group of two-dimensional coronary angiography image group contains multiple frames of two-dimensional coronary angiography images that are played continuously, so m represents the two selected coronary arteries in each group of two-dimensional coronary angiography image groups
  • v ⁇ L/ ⁇ t
  • v represents the blood flow velocity
  • the images from the Nth frame to the N-1th frame are obtained respectively,..., the Nbth frame,..., the Nath frame,..., the first
  • the blood flow velocity of the frame image is v 1 , ..., v b , ..., v a , ..., v N-1 .
  • the time for the contrast agent in any two frames of coronary two-dimensional angiography images to flow through the blood vessel segment is made difference, and the difference is ⁇ t, and the difference is ⁇ t.
  • v ⁇ L/ ⁇ t
  • v represents the blood flow velocity
  • the Nth frame to the bth frame, the N-1th frame to the b-1th frame,..., the Nbath frame to the Nath frame are obtained, respectively. .., the blood flow velocity of the images from N-b+1 to the first frame.
  • the method for selecting the maximum value of the blood flow velocity, that is, the blood flow velocity in the diastolic phase includes:
  • the maximum value of the blood flow velocity is selected, which is the blood flow velocity in the diastolic phase;
  • the maximum value of the blood flow velocity is selected as the blood flow velocity during the diastole; the minimum value of the blood flow velocity is selected as the blood flow velocity during the systole.
  • the contrast agent in any two frames of coronary two-dimensional angiographic images flows through all the images.
  • the time difference of the blood vessel segment, the difference is ⁇ t
  • the difference between the center line of the segment, and the difference value ⁇ L before the method also includes:
  • the geometric structure information of the blood vessel segment project the two-dimensional angiographic images of the coronary arteries in at least two positions with the center line and contour line of the blood vessel extracted on a three-dimensional plane to synthesize a three-dimensional blood vessel model.
  • the method for calculating the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t includes:
  • the blood flow velocity v is calculated.
  • this application provides a method for calculating blood vessel evaluation parameters, including the method for measuring diastolic blood flow velocity as described in any one of the above.
  • the present application provides a device for measuring diastolic blood flow velocity, which is used in any of the above-mentioned methods for measuring diastolic blood flow velocity, including: sequentially connected image reading units, blood vessel segment extraction Unit, center line extraction unit, time difference unit connected to said image reading unit, blood flow velocity acquisition unit connected to said time difference unit and said center line difference unit respectively; said center line difference unit and said center Line extraction unit connection;
  • the image reading unit is used to read a set of two-dimensional coronary angiography images of at least one body position
  • the blood vessel segment extraction unit is configured to receive the coronary two-dimensional angiography image sent by the image reading unit, and extract the blood vessel segment of interest in the image;
  • the centerline extraction unit is configured to receive the blood vessel segment sent by the blood vessel segment extraction unit, and extract the centerline of the blood vessel segment;
  • the time difference unit is configured to receive any two frames of coronary two-dimensional angiography images sent by the image reading unit, and to determine the time when the contrast agent in the two frames of coronary two-dimensional angiography images flows through the blood vessel segment Difference, the difference is ⁇ t;
  • the centerline difference unit is configured to receive the segmented centerline of the blood vessel segment where the contrast agent in the two frames of coronary two-dimensional angiography images sent by the centerline extraction unit is used to make a difference to the segmented centerline,
  • the difference is ⁇ L;
  • the blood flow velocity acquisition unit includes a blood flow velocity calculation module and a diastolic blood flow velocity calculation module.
  • the blood flow velocity calculation module is respectively connected to the time difference unit and the center line difference unit.
  • the flow velocity calculation module is connected to the blood flow velocity calculation module;
  • a blood flow velocity calculation module configured to receive the ⁇ L and the ⁇ t sent by the time difference unit and the centerline difference unit, and calculate the blood flow velocity according to the ratio of the ⁇ L to the ⁇ t;
  • the diastolic blood flow velocity calculation module is configured to receive the blood flow velocity value sent by the blood flow velocity calculation module, and select the maximum value of the blood flow velocity, which is the blood flow velocity in the diastole.
  • the above-mentioned apparatus for measuring diastolic blood flow velocity further includes: a blood vessel skeleton extraction unit, a geometric information acquisition unit, a three-dimensional blood vessel reconstruction unit, and the blood vessel skeleton extraction unit all connected to the image reading unit
  • the connected contour line extraction unit is a geometric information acquisition unit connected to the centerline extraction unit, and the three-dimensional blood vessel reconstruction unit; the three-dimensional blood vessel reconstruction unit is connected to the geometric information acquisition unit;
  • the blood vessel skeleton extraction unit is configured to receive the coronary two-dimensional angiography image sent by the image reading unit, and extract the blood vessel skeleton in the image;
  • the contour line extraction unit is configured to receive the blood vessel skeleton of the blood vessel skeleton extraction unit, and extract the contour line of the blood vessel segment of interest according to the blood vessel skeleton;
  • the geometric information acquisition unit is configured to receive a two-dimensional coronary angiography image of the image reading unit, receive the center line of the center line extraction unit, receive the contour line of the contour line extraction unit, and obtain the blood vessel The geometric structure information of the segment;
  • the three-dimensional blood vessel reconstruction unit is configured to receive the contour line, the geometric structure information and the center line sent by the contour line extraction unit, the geometric information acquisition unit, and the center line extraction unit, and receive the transmission from the image reading unit
  • the two-dimensional coronary angiography images of the coronary arteries are used to project the coronary two-dimensional angiography images of at least two positions with the center line and contour line of the blood vessel extracted on a three-dimensional plane according to the geometric structure information of the blood vessel segment, Synthesize three-dimensional blood vessel model.
  • the present application provides a coronary artery analysis system, including: the above-mentioned device for measuring diastolic blood flow velocity.
  • the present application provides a computer storage medium, and when a computer program is executed by a processor, the method for measuring diastolic blood flow velocity described in any one of the above is implemented.
  • This application provides a method for measuring the diastolic blood flow velocity, by making a difference in the time for the contrast agent in any two frames of coronary two-dimensional angiography images to flow through the blood vessel segment, and the difference is ⁇ t, and the difference is ⁇ t.
  • the difference between the segmented center lines is ⁇ L; the blood flow velocity is calculated according to the ratio of the ⁇ L to the ⁇ t; the maximum value of the blood flow velocity is selected, which is the blood flow velocity in the diastolic period; there is no need to pass non-invasively
  • the blood pressure meter measures the diastolic blood flow velocity so measured will not be affected by external factors such as emotions, which improves the accuracy of measuring the diastolic blood flow velocity.
  • FIG. 1 is a flowchart of Embodiment 1 of the method for measuring diastolic blood flow velocity in this application;
  • FIG. 2 is a flowchart of S200 of the application
  • FIG. 3 is a flow chart of S300 of this application.
  • FIG. 4 is a flowchart of S330 of the application.
  • FIG. 5 is a flowchart of an embodiment of S400 of this application.
  • FIG. 6 is a flowchart of another embodiment of S400 of this application.
  • FIG. 7 is a flowchart of Embodiment 3 of the method for measuring diastolic blood flow velocity of this application;
  • Fig. 8 is a flowchart of S700 of the application.
  • FIG. 9 is a structural block diagram of an embodiment of a device for measuring diastolic blood flow velocity according to the present application.
  • FIG. 10 is a structural block diagram of another embodiment of the device for measuring diastolic blood flow velocity according to the application.
  • Image reading unit 1 blood vessel segment extraction unit 2, center line extraction unit 3, time difference unit 4, center line difference unit 5, blood flow velocity acquisition unit 6, blood flow velocity calculation module 610, diastolic blood flow velocity calculation module 620 , The blood vessel skeleton extraction unit 7, the geometric information acquisition unit 8, the three-dimensional blood vessel reconstruction unit 9, and the contour line extraction unit 10.
  • Vascular evaluation parameters include: coronary artery diastolic blood flow velocity IFR, and coronary artery diastolic microcirculation resistance index IFMR, etc.; and IFR and IFMR need to be based on coronary blood flow velocity during diastole and current diastolic blood flow The speed is obtained by a non-invasive blood pressure meter, and there is a problem of inaccurate measurement of the blood flow speed in the diastolic period.
  • the present application provides a method for measuring the diastolic blood flow velocity, including:
  • S200 Extract a blood vessel segment of interest from a set of two-dimensional coronary angiography images
  • S400 Make a difference in the time of the contrast agent flowing through the blood vessel segment in any two frames of coronary two-dimensional angiography images, the difference is ⁇ t, and the segment center line is made a difference, and the difference is ⁇ L;
  • the maximum value of the blood flow velocity is selected, which is the blood flow velocity during the diastole.
  • This application provides a method for measuring the diastolic blood flow velocity, by making a difference in the time for the contrast agent in any two frames of coronary two-dimensional angiography images to flow through the blood vessel segment, and the difference is ⁇ t, and the difference is ⁇ t.
  • the difference between the segmented center lines is ⁇ L; the blood flow velocity is calculated according to the ratio of the ⁇ L to the ⁇ t; the maximum value of the blood flow velocity is selected, which is the blood flow velocity in the diastolic period; there is no need to pass non-invasively
  • the blood pressure meter measures the diastolic blood flow velocity so measured will not be affected by external factors such as emotions, which improves the accuracy of measuring the diastolic blood flow velocity.
  • the present application provides a method for measuring diastolic blood flow velocity, including:
  • S200 Extract a blood vessel segment of interest from a set of two-dimensional coronary angiography images, as shown in FIG. 2 specifically, including:
  • S210 Select N frames of two-dimensional coronary angiography images from the group of two-dimensional coronary angiography images;
  • S220 Pick up the first and last points of the blood vessel of interest on the two-dimensional coronary angiography image, and obtain the blood vessel segment of interest;
  • S331 Add at least one seed point on the blood vessel segment of interest;
  • S400 Make a difference in the time of the contrast agent flowing through the blood vessel segment in any two frames of coronary two-dimensional angiography images, the difference is ⁇ t, and the segment center line is made a difference, and the difference is ⁇ L;
  • the maximum value of blood flow velocity is selected, which is the blood flow velocity in the diastolic period; preferably, the application adopts a recursive algorithm or a bubbling algorithm to select the maximum blood flow velocity, which is the blood flow velocity in the diastole period.
  • S200 further includes: defining the first frame of the coronary two-dimensional angiography image with the catheter as the reference image, and defining the k-th frame of the coronary two-dimensional angiography image with the complete coronary artery as the target Image, k is a positive integer greater than 1; subtract the target image from the reference image to extract the feature point O of the catheter; preferably, remove part of the static noise; further, use mean filtering to remove part of the dynamic noise; and pass the grayscale histogram Image analysis, using the threshold to further denoise; subtract the reference image from the target image to extract the regional image of the position of the coronary artery; the regional image uses the feature points of the catheter as the seed point for dynamic growth to obtain the image of the blood vessel segment of interest.
  • S400 includes two acquisition methods.
  • Method A as shown in FIG. 5, includes:
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery that is, the first point of the blood vessel segment is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth frame of image
  • S420A sequentially solve the time difference and the center line length difference of the image from the Nth frame to the N-1th frame,..., the Nbth frame,..., the Nath frame,..., the time difference of the image of the first frame, respectively ⁇ t 1 ,..., ⁇ t b ,..., ⁇ t a ,..., ⁇ t N-1 ;
  • the centerline length difference is ⁇ L 1 ,..., ⁇ L b ,..., ⁇ L a,. .., ⁇ L N-1 ;
  • ⁇ t m ⁇ fps, because each group of two-dimensional coronary angiography image group contains multiple frames of two-dimensional coronary angiography images that are played continuously, so m represents the two selected coronary arteries in each group of two-dimensional coronary angiography image groups
  • S400 includes two acquisition methods.
  • Method B as shown in FIG. 6, includes:
  • the coronary angiography image when the contrast agent flows to the entrance of the coronary artery that is, the first point of the blood vessel segment is taken as the first frame of image
  • the coronary angiography image when the contrast agent flows to the end point of the blood vessel segment is taken as the Nth frame of image
  • ⁇ t m ⁇ fps, because each group of two-dimensional coronary angiography image group contains multiple frames of two-dimensional coronary angiography images that are played continuously, so m represents the two selected coronary arteries in each group of two-dimensional coronary angiography image groups
  • a recursive algorithm or a bubbling algorithm can also be used to select the minimum blood flow velocity, that is, the blood flow velocity during the systole.
  • the present application obtains the centerline length of the blood vessel segment and the blood flow velocity during diastole through three-dimensional modeling, including:
  • S200 Extract a blood vessel segment of interest from a set of two-dimensional coronary angiography images
  • the time for the contrast agent in any two two-dimensional coronary angiography images to flow through the vascular segment is made difference, and the difference is ⁇ t; according to the three-dimensional blood vessel model, the center line of the three-dimensional blood vessel model is obtained, and the two-dimensional angiography of the coronary artery The center line of the image extraction is corrected, and the corrected segment center line is corrected, and the difference is ⁇ L'; the blood flow velocity v is calculated according to the ratio of ⁇ L' to ⁇ t.
  • the maximum value of the blood flow velocity is selected, which is the blood flow velocity during the diastole.
  • S700 includes:
  • S710 Acquire geometric structure information of the blood vessel segment
  • S740 According to the geometric structure information of the blood vessel segment, project the two-dimensional angiographic images of the coronary arteries in at least two positions from which the center line and contour line of the blood vessel are extracted on a three-dimensional plane to synthesize a three-dimensional blood vessel model.
  • This application provides a method for calculating blood vessel evaluation parameters, including: any one of the above methods for measuring diastolic blood flow velocity.
  • Vascular evaluation parameters include: IMR, IFR, etc.
  • the present application provides a device for measuring diastolic blood flow velocity.
  • the method for measuring diastolic blood flow velocity of any one of the above includes: an image reading unit 1 and a blood vessel segment connected in sequence.
  • the extraction unit 3 is connected;
  • the image reading unit 1 is used to read at least one body position of the coronary two-dimensional angiography image group;
  • the blood vessel segment extraction unit 2 is used to receive the coronary two-dimensional angiography image sent by the image reading unit 1, Extract the blood vessel segment of interest in the image;
  • the center line extraction unit 3 is used to receive the blood vessel segment sent by the blood vessel segment extraction unit 2 and extract the center line of the blood vessel segment;
  • the time difference unit 4 is used to receive any information sent by the image reading unit 1 Two frames of two-dimensional coronary
  • Diastolic blood flow velocity calculation module 620 blood flow velocity calculation module 610 is respectively connected to time difference unit 4 and center line difference unit 5, diastolic blood flow velocity calculation module 620 is connected to blood flow velocity calculation module 610; blood flow velocity The calculation module 610 is used to receive the ⁇ L and ⁇ t sent by the time difference unit 4 and the center line difference unit 5, and calculate the blood flow velocity v according to the ratio of ⁇ L to ⁇ t; the diastolic blood flow velocity calculation module 620 is used to receive the blood flow velocity The blood flow velocity v value sent by the calculation module 610 selects the maximum value v max of the blood flow velocity, which is the blood flow velocity in the diastolic phase.
  • an embodiment of the present application further includes: a blood vessel skeleton extraction unit 7, a geometric information acquisition unit 8, a three-dimensional blood vessel reconstruction unit 9, and a blood vessel skeleton extraction unit 7 all connected to the image reading unit 1.
  • the connected contour line extraction unit 10 is the geometric information acquisition unit 8 and the three-dimensional blood vessel reconstruction unit 9 connected to the centerline extraction unit 3; the three-dimensional blood vessel reconstruction unit 9 is connected to the geometric information acquisition unit 8; and the blood vessel skeleton extraction unit 7 is used for Receive the coronary two-dimensional angiography image sent by the image reading unit 1, and extract the blood vessel skeleton in the image;
  • the contour line extraction unit 10 is used to receive the blood vessel skeleton of the blood vessel skeleton extraction unit 7, and extract the blood vessel segment of interest according to the blood vessel skeleton
  • the contour line; the geometric information acquisition unit 8 is used to receive the two-dimensional coronary angiography image of the image reading unit 1, the center line of the center line extraction unit 3, the contour line of the contour line extraction unit 10, and the acquisition of
  • the present application provides a coronary artery analysis system, including: the above-mentioned device for measuring the diastolic blood flow velocity.
  • the present application provides a computer storage medium, and when a computer program is executed by a processor, any one of the above-mentioned methods for measuring diastolic blood flow velocity is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or in a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or a Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block of the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, thereby producing a machine that makes these computer program instructions when executed by the processors of computers or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced.
  • These computer program instructions can also be stored in a computer-readable medium. These instructions make computers, other programmable data processing devices, or other devices work in a specific manner, so that the instructions stored in the computer-readable medium generate An article of manufacture that implements instructions for the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be executed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种测量舒张期血流速度的方法、装置、系统及存储介质。测量舒张期血流速度的方法包括:读取至少一个体位的冠状动脉二维造影图像组(S100);从冠状动脉二维造影图像组中,提取感兴趣的血管段(S200);提取血管段的中心线(S300);对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt,且对分段中心线做差,差值为ΔL(S400);根据ΔL与Δt的比值,求解血流速度(S500);选取血流速度的最大值,即为舒张期的血流速度(S600)。该方法无需通过无创血压仪测量,如此测量的舒张期的血流速度不会受到情绪等外界因素的影响,提高了测量舒张期血流速度的准确度。

Description

测量舒张期血流速度的方法、装置、系统及存储介质 技术领域
本发明涉及冠状动脉技术领域,特别是涉及一种测量舒张期血流速度的方法、装置、血管评定参数的计算方法、冠状动脉分析系统及计算机存储介质。
背景技术
世界卫生组织统计,心血管疾病已经成为人类健康的“头号杀手”。近些年,使用血流动力学分析心血管疾病的生理和病理行为也已经成为心血管疾病诊断的一个非常重要的手段。
血液流量和流速作为血流动力学的非常重要的参数,如何准确、便捷地测量血液流量和流速成为广大研究学者研究的重点。
血管评定参数包括:冠状动脉舒张期的血流速度IFR,以及冠状动脉舒张期的微循环阻力指数IFMR等;而IFR和IFMR均需要基于冠状动脉舒张期的血流速度,目前舒张期的血流速度均是通过无创血压仪获得的,存在舒张期的血流速度测量不准确的问题。
发明内容
本发明提供了一种测量舒张期血流速度的方法、装置、血管评定参数的计算方法、冠状动脉分析系统及计算机存储介质,以解决通过无创血压仪获得的舒张期的血流速度不准确的问题。
为实现上述目的,第一方面,本申请提供了一种测量舒张期血流速度的方法,包括:
读取至少一个体位的冠状动脉二维造影图像组;
从所述冠状动脉二维造影图像组中,提取感兴趣的血管段;
提取所述血管段的中心线;
对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;
根据所述ΔL与所述Δt的比值,求解血流速度;
选取所述血流速度的最大值,即为舒张期的血流速度。
可选地,上述的测量舒张期血流速度的方法,所述读取至少一个体位的冠状动脉二维 造影图像组的方法包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少一个体位的冠状动脉二维造影图像组;或
通过存储装置读取至少一个体位的冠状动脉二维造影图像组。
可选地,上述的测量舒张期血流速度的方法,所述从所述冠状动脉二维造影图像组中,提取感兴趣的血管段的方法,包括:
从所述冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
在所述冠状动脉二维造影图像上,拾取感兴趣的所述血管的首末点,获取感兴趣的所述血管段。
可选地,上述的测量舒张期血流速度的方法,所述提取所述血管段的中心线的方法包括:
从所述冠状动脉二维造影图像中提取血管骨架;
依据所述血管段的延伸方向,以及两点之间获取最短路径的原则;
沿着所述血管骨架,提取所述血管段的中心线。
可选地,上述的测量舒张期血流速度的方法,所述沿着所述血管骨架,提取所述血管段的中心线的方法还包括:
在感兴趣的所述血管段上添加至少一个种子点;
根据所述首末点、种子点,沿着所述血管骨架,重新生成所述血管中心线。
可选地,上述的测量舒张期血流速度的方法,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
以造影剂流至冠状动脉入口,即所述血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至所述血管段的末点时的冠脉造影图像作为第N帧图像;
依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
Δt=m×fps,由于每组冠状动脉二维造影图像组中含有连续播放的多帧冠状动脉二维造影图像,因此m表示每组冠状动脉二维造影图像组中,选取的两帧冠状动脉二维造影图像 所处帧数的差值,fps表示相邻两帧图像之间切换的间隔时间,优选地,fps=1/15秒。
根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
可选地,上述的测量舒张期血流速度的方法,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差;
根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
可选地,上述的测量舒张期血流速度的方法,所述选取所述血流速度的最大值,即为舒张期的血流速度的方法,包括:
通过递归算法或者冒泡算法,选取所述血流速度的最大值,即为舒张期的血流速度;或
通过递归算法或者冒泡算法,选取所述血流速度的最大值,即为舒张期的血流速度;选取所述血流速度的最小值,即为收缩期的血流速度。
可选地,上述的测量舒张期血流速度的方法,在所述提取所述血管段的中心线的方法之后,在所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL的方法之前,还包括:
读取至少两个体位的冠状动脉二维造影图像组;
获取所述血管段的几何结构信息;
对感兴趣的所述血管段进行图形处理;
提取所述血管段的血管轮廓线;
根据所述血管段的几何结构信息,将至少两个体位的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
可选地,上述的测量舒张期血流速度的方法,所述根据所述ΔL与所述Δt的比值,求解血流速度的方法包括:
对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;根据三维血管模型,获取三维血管模型的中心线,对通过冠状动脉二维造影图像提取的中心线进行修正,且对修正后的分段中心线做差,差值为ΔL’;
根据ΔL’与Δt的比值,求解血流速度v。
第二方面,本申请提供了一种血管评定参数的计算方法,包括:上述任一项所述的测量舒张期血流速度的方法。
第三方面,本申请提供了一种测量舒张期血流速度的装置,用于上述任一项所述的测量舒张期血流速度的方法,包括:依次连接的图像读取单元、血管段提取单元、中心线提取单元,与所述图像读取单元连接的时间差单元,分别与所述时间差单元、所述中心线差单元连接的血流速度获取单元;所述中心线差单元与所述中心线提取单元连接;
所述图像读取单元,用于读取至少一个体位的冠状动脉二维造影图像组;
所述血管段提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中感兴趣的血管段;
所述中心线提取单元,用于接收所述血管段提取单元发送的血管段,提取所述血管段的中心线;
所述时间差单元,用于接收所述图像读取单元发送的任意两帧冠状动脉二维造影图像,对所述两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt;
所述中心线差单元,用于接收所述中心线提取单元发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对所述分段中心线做差,差值为ΔL;
所述血流速度获取单元,包括血流速度计算模块、舒张期血流速度计算模块,所述血流速度计算模块分别与所述时间差单元、所述中心线差单元连接,所述舒张期血流速度计算模块与所述血流速度计算模块连接;
血流速度计算模块,用于接收所述时间差单元和所述中心线差单元发送的所述ΔL与所述Δt,根据所述ΔL与所述Δt的比值,求解血流速度;
所述舒张期血流速度计算模块,用于接收所述血流速度计算模块发送的血流速度值,选取所述血流速度的最大值,即为舒张期的血流速度。
可选地,上述的测量舒张期血流速度的装置,还包括:均与所述图像读取单元连接的血管骨架提取单元、几何信息获取单元、三维血管重建单元,与所述血管骨架提取单元连接的轮廓线提取单元,均与所述中心线提取单元连接的几何信息获取单元、所述三维血管 重建单元;所述三维血管重建单元与所述几何信息获取单元连接;
所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中的血管骨架;
所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,接收所述中心线提取单元的中心线,接收所述轮廓线提取单元的轮廓线,获取所述血管段的几何结构信息;
所述三维血管重建单元,用于接收所述轮廓线提取单元、所述几何信息获取单元、所述中心线提取单元发送的轮廓线、几何结构信息和中心线,接收所述图像读取单元发送的冠状动脉二维造影图像,用于根据所述血管段的几何结构信息,将至少两个体位的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
第四方面,本申请提供了一种冠状动脉分析系统,包括:上述的测量舒张期血流速度的装置。
第五方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述任一项所述的测量舒张期血流速度的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了一种测量舒张期血流速度的方法,通过对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度;选取所述血流速度的最大值,即为舒张期的血流速度;无需通过无创血压仪测量,如此测量的舒张期的血流速度不会受到情绪等外界因素的影响,提高了测量舒张期血流速度的准确度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的测量舒张期血流速度的方法的实施例1的流程图;
图2为本申请的S200的流程图;
图3为本申请的S300的流程图;
图4为本申请的S330的流程图;
图5为本申请的S400的一个实施例的流程图;
图6为本申请的S400的另一实施例的流程图;
图7为本申请的测量舒张期血流速度的方法的实施例3的流程图;
图8为本申请的S700的流程图;
图9为本申请的测量舒张期血流速度的装置的一个实施例的结构框图;
图10为申请的测量舒张期血流速度的装置的另一实施例的结构框图;
下面对附图标记进行说明:
图像读取单元1,血管段提取单元2,中心线提取单元3,时间差单元4,中心线差单元5,血流速度获取单元6,血流速度计算模块610,舒张期血流速度计算模块620,血管骨架提取单元7,几何信息获取单元8,三维血管重建单元9,轮廓线提取单元10。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
血管评定参数包括:冠状动脉舒张期的血流速度IFR,以及冠状动脉舒张期的微循环阻力指数IFMR等;而IFR和IFMR均需要基于冠状动脉舒张期的血流速度,目前舒张期的血流速度均是通过无创血压仪获得的,存在舒张期的血流速度测量不准确的问题。
实施例1:
为了解决上述问题,如图1所示,本申请提供了一种测量舒张期血流速度的方法,包括:
S100,读取至少一个体位的冠状动脉二维造影图像组;
S200,从冠状动脉二维造影图像组中,提取感兴趣的血管段;
S300,提取血管段的中心线;
S400,对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt,且对分段中心线做差,差值为ΔL;
S500,根据ΔL与Δt的比值,求解血流速度;
S600,选取血流速度的最大值,即为舒张期的血流速度。
本申请提供了一种测量舒张期血流速度的方法,通过对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度;选取所述血流速度的最大值,即为舒张期的血流速度;无需通过无创血压仪测量,如此测量的舒张期的血流速度不会受到情绪等外界因素的影响,提高了测量舒张期血流速度的准确度。
实施例2:
如图1所示,本申请提供了一种测量舒张期血流速度的方法,包括:
S100,读取至少一个体位的冠状动脉二维造影图像组,具体包括:
通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少一个体位的冠状动脉二维造影图像组;或通过存储装置读取至少一个体位的冠状动脉二维造影图像组;
S200,从冠状动脉二维造影图像组中,提取感兴趣的血管段,具体如图2所示,包括:
S210,从冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
S220,在冠状动脉二维造影图像上,拾取感兴趣的血管的首末点,获取感兴趣的血管段;
S300,提取血管段的中心线,具体如图3所示,包括:
S310,从冠状动脉二维造影图像中提取血管骨架;
S320,依据血管段的延伸方向,以及两点之间获取最短路径的原则;
S330,沿着血管骨架,提取血管段的中心线,具体如图4所示,包括:
S331,在感兴趣的血管段上添加至少一个种子点;
S332,根据首末点、种子点,沿着血管骨架,重新生成血管中心线;
S400,对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt,且对分段中心线做差,差值为ΔL;
S500,根据ΔL与Δt的比值,求解血流速度;
S600,选取血流速度的最大值,即为舒张期的血流速度;优选地,本申请通过递归算法或者冒泡算法,选取血流速度的最大值,即为舒张期的血流速度。
本申请的一个实施例中,S200还包括:将有导管出现的第一帧冠状动脉二维造影图像定义为参考图像,将有完整冠状动脉出现的第k帧冠状动脉二维造影图像定义为目标图像,k为大于1的正整数;将参考图像减去目标图像,提取导管的特征点O;优选地,除去部分静态噪声;进一步地,采用均值滤波,除去部分动态噪声;以及通过灰度直方图分析,利用阈值进一步去噪;将目标图像减去的参考图像,提取冠状动脉所处位置的区域图像;区域图像以导管的特征点作为种子点进行动态生长,获得感兴趣的血管段图像。
本申请的一个实施例中,S400包括两种获取方法,A方法如图5所示,包括:
S410A,以造影剂流至冠状动脉入口,即血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至血管段的末点时的冠脉造影图像作为第N帧图像;
S420A,依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
Δt=m×fps,由于每组冠状动脉二维造影图像组中含有连续播放的多帧冠状动脉二维造影图像,因此m表示每组冠状动脉二维造影图像组中,选取的两帧冠状动脉二维造影图像所处帧数的差值,fps表示相邻两帧图像之间切换的间隔时间,优选地,fps=1/15秒;
S430A,根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
本申请的一个实施例中,S400包括两种获取方法,B方法如图6所示,包括:
S410B,以造影剂流至冠状动脉入口,即血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至血管段的末点时的冠脉造影图像作为第N帧图像;
S420B,依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差;
Δt=m×fps,由于每组冠状动脉二维造影图像组中含有连续播放的多帧冠状动脉二维造影图像,因此m表示每组冠状动脉二维造影图像组中,选取的两帧冠状动脉二维造影图像所处帧数的差值,fps表示相邻两帧图像之间切换的间隔时间,优选地,fps=1/15秒;
S430B,根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
本申请也可以通过递归算法或者冒泡算法,选取血流速度的最小值,即为收缩期的血流速度。
实施例3:
如图7所示,本申请通过三维建模获取血管段中心线长度和舒张期的血流速度,包括:
S100,读取至少两个体位的冠状动脉二维造影图像组;
S200,从冠状动脉二维造影图像组中,提取感兴趣的血管段;
S300,提取血管段的中心线;
S700,将至少两个体位的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型;
S400,对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;根据三维血管模型,获取三维血管模型的中心线,对通过冠状动脉二维造影图像提取的中心线进行修正,且对修正后的分段中心线做差,差值为ΔL’;根据ΔL’与Δt的比值,求解血流速度v。
S500,根据ΔL’与Δt的比值,求解血流速度;
S600,选取血流速度的最大值,即为舒张期的血流速度。
如图8所示,本申请的一个实施例中,S700包括:
S710,获取血管段的几何结构信息;
S720,对感兴趣的血管段进行图形处理;
S730,提取血管段的血管轮廓线;
S740,根据血管段的几何结构信息,将至少两个体位的提取了血管的中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
实施例4:
本申请提供了一种血管评定参数的计算方法,包括:上述任一项的测量舒张期血流速度的方法。
血管评定参数包括:IMR、IFR等。
实施例5:
如图9所示,本申请提供了一种测量舒张期血流速度的装置,用于上述任一项的测量舒张期血流速度的方法,包括:依次连接的图像读取单元1、血管段提取单元2、中心线提取单元3,与图像读取单元1连接的时间差单元4,分别与时间差单元4、中心线差单元5连接的血流速度获取单元6,中心线差单元5与中心线提取单元3连接;图像读取单元1,用于读取至少一个体位的冠状动脉二维造影图像组;血管段提取单元2,用于接收图像读取单元1发送的冠状动脉二维造影图像,提取图像中感兴趣的血管段;中心线提取单元3,用于接收血管段提取单元2发送的血管段,提取血管段的中心线;时间差单元4,用于接收图像读取单元1发送的任意两帧冠状动脉二维造影图像,对两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;中心线差单元5,用于接收中心线提取单元3发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对分段中心线做差,差值为ΔL;血流速度获取单元6,包括血流速度计算模块610、舒张期血流速度计算模块620,血流速度计算模块610分别与时间差单元4、中心线差单元5连接,舒张期血流速度计算模块620与血流速度计算模块610连接;血流速度计算模块610,用于接收时间差单元4和中心线差单元5发送的ΔL与Δt,根据ΔL与Δt的比值,求解血流速度v;舒张期血流速度计算模块620,用于接收血流速度计算模块610发送的血流速度v值,选取血流速度的最大值v max,即为舒张期的血流速度。
如图10所示,本申请的一个实施例中,还包括:均与图像读取单元1连接的血管骨架提取单元7、几何信息获取单元8、三维血管重建单元9,与血管骨架提取单元7连接的轮廓线提取单元10,均与中心线提取单元3连接的几何信息获取单元8、三维血管重建单元9;三维血管重建单元9与几何信息获取单元8连接;血管骨架提取单元7,用于接收图像读取单元1发送的冠状动脉二维造影图像,提取图像中的血管骨架;轮廓线提取单元10,用于接收血管骨架提取单元7的血管骨架,根据血管骨架,提取感兴趣的血管段的轮廓线;几何信息获取单元8,用于接收图像读取单元1的冠状动脉二维造影图像,接收中心线提取单元3的中心线,接收轮廓线提取单元10的轮廓线,获取血管段的几何结构信息;三维血管重建单元9,用于接收轮廓线提取单元10、几何信息获取单元8、中心线提取单元3发送的轮廓线、几何结构信息和中心线,接收图像读取单元1发送的冠状动脉二维造影图像,用于根据血管段的几何结构信息(包括体位拍摄角度、患者性别、年龄等),将至少两个体位的提取了血管的中心线以及中心线长度、轮廓线的冠状动脉二维造影图像投影在三维平 面上,合成三维血管模型。
本申请提供了一种冠状动脉分析系统,包括:上述的测量舒张期血流速度的装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述任一项的测量舒张期血流速度的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种测量舒张期血流速度的方法,其特征在于,包括:
    读取至少一个体位的冠状动脉二维造影图像组;
    从所述冠状动脉二维造影图像组中,提取感兴趣的血管段;
    提取所述血管段的中心线;
    对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;
    根据所述ΔL与所述Δt的比值,求解血流速度;
    选取所述血流速度的最大值,即为舒张期的血流速度。
  2. 根据权利要求1所述的测量舒张期血流速度的方法,其特征在于,所述读取至少一个体位的冠状动脉二维造影图像组的方法包括:
    通过无线或者有线方式从造影图像拍摄装置或者医院平台上,直接读取至少一个体位的冠状动脉二维造影图像组;或
    通过存储装置读取至少一个体位的冠状动脉二维造影图像组。
  3. 根据权利要求1所述的测量舒张期血流速度的方法,其特征在于,所述从所述冠状动脉二维造影图像组中,提取感兴趣的血管段的方法,包括:
    从所述冠状动脉二维造影图像组中选取N帧冠状动脉二维造影图像;
    在所述冠状动脉二维造影图像上,拾取感兴趣的所述血管的首末点,获取感兴趣的所述血管段。
  4. 根据权利要求3所述的测量舒张期血流速度的方法,其特征在于,所述提取所述血管段的中心线的方法包括:
    从所述冠状动脉二维造影图像中提取血管骨架;
    依据所述血管段的延伸方向,以及两点之间获取最短路径的原则;
    沿着所述血管骨架,提取所述血管段的中心线。
  5. 根据权利要求4所述的测量舒张期血流速度的方法,其特征在于,所述沿着所述血管骨架,提取所述血管段的中心线的方法还包括:
    在感兴趣的所述血管段上添加至少一个种子点;
    根据所述首末点、种子点,沿着所述血管骨架,重新生成所述血管中心线。
  6. 根据权利要求5所述的测量舒张期血流速度的方法,其特征在于,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
    以造影剂流至冠状动脉入口,即所述血管段的首点时的冠脉造影图像作为第一帧图像,以造影剂流至所述血管段的末点时的冠脉造影图像作为第N帧图像;
    依次求解第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的时间差和中心线长度差,时间差分别为Δt 1,...,Δt b,...,Δt a,...,Δt N-1;中心线长度差分别为ΔL 1,...,ΔL b,...,ΔL a,...,ΔL N-1
    根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧图像至第N-1帧,...,第N-b帧,...,第N-a帧,...,第1帧图像的血流速度,血流速度分别为v 1,...,v b,...,v a,...,v N-1
  7. 根据权利要求5所述的测量舒张期血流速度的方法,其特征在于,所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL;根据所述ΔL与所述Δt的比值,求解血流速度的方法,包括:
    依次求解第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧的图像的时间差和中心线长度差;
    根据v=ΔL/Δt,其中,v表示血流速度,分别得到第N帧至第b帧,第N-1帧至第b-1帧,...,第N-b-a帧至第N-a帧,...,第N-b+1至第1帧图像的血流速度。
  8. 根据权利要求6或7所述的测量舒张期血流速度的方法,其特征在于,所述选取所述血流速度的最大值,即为舒张期的血流速度的方法,包括:
    通过递归算法或者冒泡算法,从权利要求6或者权利要求7中选取所述血流速度的最大值,即为舒张期的血流速度;或
    通过递归算法或者冒泡算法,从权利要求6或者权利要求7中选取所述血流速度的最大值,即为舒张期的血流速度;选取所述血流速度的最小值,即为收缩期的血流速度。
  9. 根据权利要求1所述的测量舒张期血流速度的方法,其特征在于,在所述提取所述血管段的中心线的方法之后,在所述对任意两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt,且对所述分段中心线做差,差值为ΔL的方法之前,还包括:
    读取至少两个体位的冠状动脉二维造影图像组;
    获取所述血管段的几何结构信息;
    对感兴趣的所述血管段进行图形处理;
    提取所述血管段的血管轮廓线;
    根据所述血管段的几何结构信息,将至少两个体位的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
  10. 根据权利要求9所述的测量舒张期血流速度的方法,其特征在于,所述根据所述ΔL与所述Δt的比值,求解血流速度的方法包括:
    对任意两帧冠状动脉二维造影图像中的造影剂流经血管段的时间做差,差值为Δt;根据三维血管模型,获取三维血管模型的中心线,对通过冠状动脉二维造影图像提取的中心线进行修正,且对修正后的分段中心线做差,差值为ΔL’;
    根据ΔL’与Δt的比值,求解血流速度v。
  11. 一种血管评定参数的计算方法,其特征在于,包括:权利要求1~10任一项所述的测量舒张期血流速度的方法。
  12. 一种测量舒张期血流速度的装置,用于权利要求1~10任一项所述的测量舒张期血流速度的方法,其特征在于,包括:依次连接的图像读取单元、血管段提取单元、中心线提取单元,与所述图像读取单元连接的时间差单元,分别与所述时间差单元、所述中心线差单元连接的血流速度获取单元;所述中心线差单元与所述中心线提取单元连接;
    所述图像读取单元,用于读取至少一个体位的冠状动脉二维造影图像组;
    所述血管段提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中感兴趣的血管段;
    所述中心线提取单元,用于接收所述血管段提取单元发送的血管段,提取所述血管段的中心线;
    所述时间差单元,用于接收所述图像读取单元发送的任意两帧冠状动脉二维造影图像,对所述两帧冠状动脉二维造影图像中的造影剂流经所述血管段的时间做差,差值为Δt;
    所述中心线差单元,用于接收所述中心线提取单元发送的两帧冠状动脉二维造影图像中的造影剂流经血管段的分段中心线,对所述分段中心线做差,差值为ΔL;
    所述血流速度获取单元,包括血流速度计算模块、舒张期血流速度计算模块,所述血流速度计算模块分别与所述时间差单元、所述中心线差单元连接,所述舒张期血流速度计 算模块与所述血流速度计算模块连接;
    血流速度计算模块,用于接收所述时间差单元和所述中心线差单元发送的所述ΔL与所述Δt,根据所述ΔL与所述Δt的比值,求解血流速度;
    所述舒张期血流速度计算模块,用于接收所述血流速度计算模块发送的血流速度值,选取所述血流速度的最大值,即为舒张期的血流速度。
  13. 根据权利要求12所述的测量舒张期血流速度的装置,其特征在于,还包括:均与所述图像读取单元连接的血管骨架提取单元、几何信息获取单元、三维血管重建单元,与所述血管骨架提取单元连接的轮廓线提取单元,均与所述中心线提取单元连接的几何信息获取单元、所述三维血管重建单元;所述三维血管重建单元与所述几何信息获取单元连接;
    所述血管骨架提取单元,用于接收所述图像读取单元发送的冠状动脉二维造影图像,提取所述图像中的血管骨架;
    所述轮廓线提取单元,用于接收所述血管骨架提取单元的血管骨架,根据所述血管骨架,提取感兴趣的所述血管段的轮廓线;
    所述几何信息获取单元,用于接收所述图像读取单元的冠状动脉二维造影图像,接收所述中心线提取单元的中心线,接收所述轮廓线提取单元的轮廓线,获取所述血管段的几何结构信息;
    所述三维血管重建单元,用于接收所述轮廓线提取单元、所述几何信息获取单元、所述中心线提取单元发送的轮廓线、几何结构信息和中心线,接收所述图像读取单元发送的冠状动脉二维造影图像,用于根据所述血管段的几何结构信息,将至少两个体位的提取了血管的所述中心线、轮廓线的冠状动脉二维造影图像投影在三维平面上,合成三维血管模型。
  14. 一种冠状动脉分析系统,其特征在于,包括:权利要求12或13所述的测量舒张期血流速度的装置。
  15. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~10任一项所述的测量舒张期血流速度的方法。
PCT/CN2019/116637 2019-11-04 2019-11-08 测量舒张期血流速度的方法、装置、系统及存储介质 WO2021087961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911066599.8A CN110786842B (zh) 2019-11-04 2019-11-04 测量舒张期血流速度的方法、装置、系统及存储介质
CN201911066599.8 2019-11-04

Publications (1)

Publication Number Publication Date
WO2021087961A1 true WO2021087961A1 (zh) 2021-05-14

Family

ID=69442600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116637 WO2021087961A1 (zh) 2019-11-04 2019-11-08 测量舒张期血流速度的方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN110786842B (zh)
WO (1) WO2021087961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117058327A (zh) * 2022-11-23 2023-11-14 杭州脉流科技有限公司 获得冠脉血流储备分数的方法和计算机设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112785580B (zh) * 2021-01-28 2024-02-02 深圳睿心智能医疗科技有限公司 确定血管流速的方法及装置
CN113269806B (zh) * 2021-04-30 2023-04-14 北京阅影科技有限公司 测量血管内部血流流量的方法、装置与处理器
CN115337096A (zh) * 2021-05-13 2022-11-15 苏州润迈德医疗科技有限公司 用于内脏动脉去交感神经的消融方法、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140276011A1 (en) * 2009-09-23 2014-09-18 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN110226923A (zh) * 2018-03-05 2019-09-13 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2792415Y (zh) * 2005-04-25 2006-07-05 中山医科大学生物医学工程开发中心 血管保健康复治疗仪
CN103110420A (zh) * 2013-01-31 2013-05-22 深圳先进技术研究院 磁共振血管成像方法和系统
EP3062248A1 (en) * 2015-02-27 2016-08-31 Pie Medical Imaging BV Method and apparatus for quantitative flow analysis
EP3403582B1 (en) * 2017-05-15 2023-06-07 Pie Medical Imaging BV Method and apparatus for determining blood velocity in x-ray angiography images
CN108133478B (zh) * 2018-01-11 2021-11-23 苏州润迈德医疗科技有限公司 一种提取冠状动脉血管中心线的方法
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN109770888A (zh) * 2019-03-19 2019-05-21 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算瞬时无波形比率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140276011A1 (en) * 2009-09-23 2014-09-18 Lightlab Imaging, Inc. Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN110226923A (zh) * 2018-03-05 2019-09-13 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117058327A (zh) * 2022-11-23 2023-11-14 杭州脉流科技有限公司 获得冠脉血流储备分数的方法和计算机设备
CN117058327B (zh) * 2022-11-23 2024-01-09 杭州脉流科技有限公司 获得冠脉血流储备分数的方法和计算机设备

Also Published As

Publication number Publication date
CN110786842A (zh) 2020-02-14
CN110786842B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
WO2021092997A1 (zh) 获取血管狭窄病变区间及三维合成方法、装置和系统
WO2021196536A1 (zh) 精确提取血管中心线的方法、装置、分析系统和存储介质
US20220254028A1 (en) Method and apparatus for adjusting blood flow velocity in maximum hyperemia state based on index for microcirculatory resistance
US20210236000A1 (en) Method, device and system for acquiring blood vessel evaluation parameters based on angiographic image
US20220277447A1 (en) Method and apparatus for acquiring contour line of blood vessel according to centerline of blood vessel
US20220261997A1 (en) Method and apparatus for acquiring blood vessel evaluation parameter based on physiological parameter, and storage medium
WO2021097820A1 (zh) 具有狭窄病变区间的血管三维建模方法、装置和系统
CN110384493A (zh) 测量微循环阻力指数的系统以及冠脉分析系统
WO2021097821A1 (zh) 从冠状动脉二维造影图像中提取血管中心线的方法和装置
WO2021031355A1 (zh) 测量无波形期压力、比率方法、装置、系统及存储介质
WO2020083390A1 (zh) 获取心表大动脉的血流量的方法、装置、系统及存储介质
US11779294B2 (en) Method, device and system for calculating microcirculation indicator based on image and pressure sensor
CN110929604B (zh) 基于造影图像的流速的筛选方法、装置、系统和存储介质
US20220183643A1 (en) Simplified method, apparatus and system for measuring coronary artery vascular evaluation parameters
US20220183644A1 (en) Method, apparatus and system for conveniently measuring coronary artery vascular evaluation parameters
EP4005472A1 (en) Method and apparatus for correcting blood flow velocity on the basis of interval time between angiographic images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951738

Country of ref document: EP

Kind code of ref document: A1