WO2022109903A1 - 三维血管合成方法、系统及冠状动脉分析系统和存储介质 - Google Patents
三维血管合成方法、系统及冠状动脉分析系统和存储介质 Download PDFInfo
- Publication number
- WO2022109903A1 WO2022109903A1 PCT/CN2020/131699 CN2020131699W WO2022109903A1 WO 2022109903 A1 WO2022109903 A1 WO 2022109903A1 CN 2020131699 W CN2020131699 W CN 2020131699W WO 2022109903 A1 WO2022109903 A1 WO 2022109903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- dimensional
- centerline
- dimensional blood
- point
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 496
- 210000004351 coronary vessel Anatomy 0.000 title claims abstract description 14
- 238000004458 analytical method Methods 0.000 title claims abstract description 8
- 238000001308 synthesis method Methods 0.000 title abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 89
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 50
- 238000002583 angiography Methods 0.000 claims description 41
- 238000002586 coronary angiography Methods 0.000 claims description 29
- 238000000605 extraction Methods 0.000 claims description 27
- 230000005855 radiation Effects 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 238000003786 synthesis reaction Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 10
- 238000013459 approach Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 5
- 238000006073 displacement reaction Methods 0.000 abstract description 3
- 238000010009 beating Methods 0.000 abstract 1
- 230000029058 respiratory gaseous exchange Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 201000000057 Coronary Stenosis Diseases 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 206010057469 Vascular stenosis Diseases 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000004218 vascular function Effects 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 206010011089 Coronary artery stenosis Diseases 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 150000002632 lipids Chemical group 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/66—Analysis of geometric attributes of image moments or centre of gravity
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Definitions
- the invention relates to the technical field of coronary medicine, in particular to a three-dimensional blood vessel synthesis method and system, a coronary artery analysis system and a storage medium.
- Fractional flow reserve usually refers to the fractional myocardial blood flow reserve, which is defined as the ratio of the maximum blood flow that the diseased coronary artery can provide to the myocardium to the maximum blood flow when the coronary artery is completely normal. In the state, the ratio of blood flow can be replaced by the pressure value. That is, the measurement of the FFR value can be calculated by measuring the pressure at the distal stenosis of the coronary artery and the pressure at the proximal end of the coronary stenosis through the pressure sensor under the state of maximum coronary hyperemia.
- the invention provides a three-dimensional blood vessel synthesis method and system, a coronary artery analysis system and a storage medium.
- the three-dimensional blood vessel is synthesized by image simulation without using pressure guide wire measurement, which solves the problem of using the pressure guide wire in the prior art.
- a method for synthesizing a three-dimensional blood vessel comprising:
- a three-dimensional blood vessel is synthesized according to the three-dimensional blood vessel centerline and the three-dimensional blood vessel radius.
- the method for acquiring image information of at least two coronary two-dimensional angiography images with different shooting angles includes:
- a two-dimensional angiography image of interest is selected from each group of the two-dimensional coronary angiography images.
- the method for obtaining a three-dimensional blood vessel centerline according to the two-dimensional coronary angiography image includes:
- each of the two-dimensional blood vessel centerlines is projected into a three-dimensional space to synthesize the three-dimensional blood vessel centerlines.
- the centerline of each two-dimensional blood vessel is projected into a three-dimensional space, and then synthesized.
- the three-dimensional blood vessel centerline method includes:
- the above-mentioned method for synthesizing three-dimensional blood vessels the method of projecting each point (x, y) into a three-dimensional space to obtain a series of three-dimensional coordinate points P, the coordinates being (x", y", z") ,include:
- the above-mentioned method for synthesizing a three-dimensional blood vessel includes:
- the coordinates of R in the three-dimensional space are (a, b, c).
- the method of sequentially connecting the points on the three-dimensional blood vessel centerline to obtain the three-dimensional blood vessel centerline includes:
- the obtained series of points on the centerline of the three-dimensional blood vessel are sequentially connected to obtain the three-dimensional blood vessel centerline.
- the method for obtaining a blood vessel centerline and a three-dimensional blood vessel radius according to the two-dimensional coronary angiography image includes:
- the three-dimensional blood vessel radius is obtained according to the two-dimensional blood vessel radius.
- the method for obtaining the three-dimensional blood vessel radius according to the two-dimensional blood vessel radius includes:
- R represents the three-dimensional blood vessel radius
- r 1 , r 2 , and rn represent the two-dimensional blood vessel radius of the first, second, and nth two-dimensional contrast images of interest, respectively.
- the method for extracting a two-dimensional blood vessel centerline from each of the two-dimensional coronary angiography images includes:
- One of the blood vessel path lines is selected as the two-dimensional blood vessel centerline.
- the method for extracting at least one local blood vessel path line from each of the local blood vessel area maps includes:
- Meshing the rough blood vessel map and extracting at least one local path line of the blood vessel along the direction from the start point to the end point.
- the method of performing image enhancement processing on the local blood vessel area map to obtain a rough blood vessel map with strong contrast includes:
- each local blood vessel area map the blood vessel segment of interest is used as the foreground and other regions are used as the background, the foreground is enhanced and the background is weakened to obtain the rough blood vessel map with strong contrast.
- the method for performing grid division on the rough blood vessel map, and along the direction from the starting point to the ending point, extracting at least one local path line of the blood vessel includes:
- n is a positive integer greater than or equal to 1;
- the method for selecting one of the blood vessel path lines as the two-dimensional blood vessel centerline includes:
- the blood vessel path line with the least amount of time is taken as the two-dimensional blood vessel center line.
- the above-mentioned method for synthesizing a three-dimensional blood vessel is characterized in that, comprising:
- a preset contour line of the blood vessel is generated on both sides of the blood vessel center straight line;
- the contour of the straightened blood vessel is projected back onto the image from which the two-dimensional blood vessel centerline is extracted to obtain a two-dimensional blood vessel contour.
- the method for obtaining a straightened blood vessel image according to the two-dimensional blood vessel centerline includes:
- the correspondingly set image is the straightened blood vessel image.
- the method for moving the preset contour line of the blood vessel toward the center of the blood vessel step by step, and obtaining the contour line of the blood vessel after straightening includes:
- the z points are respectively moved closer to the center line of the blood vessel in a graded manner to generate z close points, where z is a positive integer;
- the RGB difference threshold as the ⁇ RGB threshold , along the line perpendicular to the center of the blood vessel, compare the RGB value of the close point with the RGB value of the point on the line of the center of the blood vessel for each approach, and the difference is When the value is less than or equal to the ⁇ RGB threshold , the approaching point stops straightly approaching the center of the blood vessel;
- the smooth curve formed by sequentially connecting the contour points is the contour line of the straightened blood vessel.
- the method for synthesizing a three-dimensional blood vessel according to the three-dimensional blood vessel centerline and the three-dimensional blood vessel radius includes:
- Each point on the center line of the three-dimensional blood vessel is drawn in the three-dimensional space along the corresponding three-dimensional blood vessel radius to obtain a plurality of edge points, and the edge points are connected in sequence to obtain an approximate circle polygon;
- Points on two adjacent polygons are connected in sequence in the form of right-angled triangles to obtain a three-dimensional blood vessel.
- the present application provides a three-dimensional blood vessel synthesis system, comprising: an image reading device, a three-dimensional blood vessel centerline acquisition device, a three-dimensional blood vessel radius acquisition device, and a three-dimensional blood vessel synthesis device connected in sequence, the three-dimensional blood vessel radius acquisition device connected with the image reading device and the three-dimensional blood vessel centerline acquisition device;
- the image reading device is used for acquiring image information of at least two coronary two-dimensional angiography images with different shooting angles;
- the three-dimensional blood vessel centerline acquisition device is configured to receive the image information of the coronary two-dimensional angiography image transmitted by the image reading device, and obtain the three-dimensional blood vessel centerline according to the image information;
- the three-dimensional blood vessel radius acquisition device is configured to receive the image information of the coronary two-dimensional angiography image transmitted by the image reading device, and receive the three-dimensional blood vessel centerline transmitted by the three-dimensional blood vessel centerline acquisition device. obtaining the three-dimensional blood vessel radius from the image information and the three-dimensional blood vessel centerline;
- the three-dimensional blood vessel synthesis device is configured to receive the three-dimensional blood vessel centerline transmitted by the three-dimensional blood vessel centerline acquisition device, and receive the three-dimensional blood vessel radius transmitted by the three-dimensional blood vessel radius acquisition device, according to the three-dimensional blood vessel center line
- the line and the three-dimensional vessel radius form a three-dimensional vessel.
- the three-dimensional blood vessel centerline acquisition device includes: a two-dimensional blood vessel centerline extraction structure and the three-dimensional blood vessel centerline acquisition structure connected to the image reading device, the two The three-dimensional blood vessel centerline extraction structure is connected with the three-dimensional blood vessel centerline acquisition structure;
- the two-dimensional blood vessel centerline extraction structure is configured to receive a coronary two-dimensional angiography image sent by the image reading device, and extract a two-dimensional blood vessel centerline from each of the two-dimensional angiography images of interest;
- the three-dimensional blood vessel centerline acquisition structure is used to receive the two-dimensional blood vessel centerline sent by the two-dimensional blood vessel centerline extraction structure, and to receive the two-dimensional blood vessel centerline sent by the image reading device. According to the shooting angle of the image, each of the two-dimensional blood vessel centerlines is projected into a three-dimensional space to synthesize the three-dimensional blood vessel centerlines.
- the two-dimensional blood vessel centerline extraction structure includes: a centerline extraction unit, a straightening unit, a first blood vessel outline unit, and a second blood vessel outline unit connected in sequence;
- the centerline extraction unit connected to the image reading device, is used for extracting the centerline of the blood vessel according to the two-dimensional coronary angiography image;
- the straightening unit configured to obtain a straightened blood vessel image according to the blood vessel centerline extracted by the centerline extraction unit;
- the first blood vessel contour line unit is configured to set the blood vessel diameter threshold D threshold on the straightened blood vessel image sent by the straightening unit; Setting a contour line; moving the preset contour line of the blood vessel to the center of the blood vessel step by step, to obtain the contour line of the blood vessel after straightening;
- the second blood vessel contour line unit is configured to project the straightened blood vessel contour line sent by the first blood vessel contour line unit back onto the image of the blood vessel center line to obtain the blood vessel contour line.
- the present application provides a coronary artery analysis system, comprising: the above-mentioned three-dimensional blood vessel synthesis system.
- the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for synthesizing a three-dimensional blood vessel is implemented.
- This application provides a method for synthesizing three-dimensional blood vessels, which can effectively simulate the state of blood vessels in real scenes, including the shape, direction and diameter information of blood vessels, and solves the influence of external conditions on the image during the operation, including the displacement of the equipment, the heart It also solves the problem of high risk and high cost of guide wire measurement, and provides a basis for calculating vascular evaluation parameters such as fractional flow reserve FFR.
- Fig. 1 is the flow chart of the synthesis method of the three-dimensional blood vessel of the present application
- Fig. 2 is the flow chart of S100 of this application.
- Fig. 3 is the flow chart of S200 of this application.
- Fig. 5 is the flow chart of S215 of this application.
- FIG. 8 is a flowchart of S220 of the application.
- Fig. 9 is the flow chart of S225 of this application.
- FIG. 14 is a structural block diagram of the three-dimensional blood vessel synthesis system of the present application.
- 15 is another structural block diagram of the three-dimensional blood vessel synthesis system of the present application.
- FIG. 16 is a structural block diagram of the two-dimensional blood vessel centerline extraction structure 210 of the present application.
- the present application provides a method for synthesizing three-dimensional blood vessels, including:
- This application provides a method for synthesizing three-dimensional blood vessels, which can effectively simulate the state of blood vessels in real scenes, including the shape, direction and diameter information of blood vessels, and solves the influence of external conditions on the image during the operation, including the displacement of the equipment, the heart It also solves the problem of high risk and high cost of guide wire measurement, and provides a basis for calculating vascular evaluation parameters such as fractional flow reserve FFR.
- a method for synthesizing three-dimensional blood vessels including:
- S130 select a two-dimensional angiography image of interest from each group of coronary two-dimensional angiography images respectively.
- S210 extracts a two-dimensional blood vessel centerline from each two-dimensional angiography image of interest, including:
- S2151 perform image enhancement processing on the local blood vessel area map to obtain a rough blood vessel map with strong contrast, including: in each local blood vessel area map, the blood vessel segment of interest is used as the foreground, and other areas are used as the background to enhance the foreground and weaken the background. , to obtain a rough blood vessel map with strong contrast.
- S217 as shown in Figure 7, select a blood vessel path line as the two-dimensional blood vessel center line, including:
- S221 take the heart as the coordinate origin, establish a three-dimensional coordinate system
- the coordinates of R in the three-dimensional space are (a, b, c).
- Vascular centerline including:
- S230 obtaining a two-dimensional blood vessel contour line according to the two-dimensional blood vessel centerline in S210, as shown in FIG. 10, in the prior art, when calculating the blood vessel evaluation parameters by using the blood vessel three-dimensional model, it is often necessary to extract the blood vessel contour line.
- the problem of unclear edges makes it very difficult to extract the contour of the blood vessel, and the calculation data is huge and cumbersome. Therefore, how to quickly extract the contour of the blood vessel and the accuracy of the extraction have always been problems that technicians need to solve.
- this application further implemented S230, including:
- the correspondingly set image is a straightened blood vessel image.
- the RGB difference threshold as the ⁇ RGB threshold , along the line perpendicular to the center of the blood vessel, compare the RGB value of the close point with the RGB value of the point on the line at the center of the blood vessel for each approach, and when the difference is less than or equal to ⁇ RGB When the threshold is reached, the approach point stops straightly approaching the center of the blood vessel;
- the smooth curve formed by sequentially connecting the contour points is the contour line of the blood vessel after straightening.
- R represents the three-dimensional blood vessel radius
- r 1 , r 2 , and rn represent the two-dimensional blood vessel radius of the first, second, and nth two-dimensional contrast images of interest, respectively.
- each point on the center line of the three-dimensional blood vessel is drawn in the three-dimensional space along the corresponding three-dimensional blood vessel radius to obtain a plurality of edge points, and the edge points are connected in sequence to obtain a polygon that is approximately a circle;
- S320 Connect the points on two adjacent polygons in sequence in the form of a right-angled triangle to obtain a three-dimensional blood vessel.
- a straightened blood vessel image is obtained according to the blood vessel center line; on the straightened blood vessel image, a blood vessel diameter threshold D threshold is set; according to the D threshold , a blood vessel preset is generated on both sides of the blood vessel center straight line contour line; move the preset contour line of the blood vessel to the center of the blood vessel step by step to obtain the contour line of the blood vessel after straightening; project the contour line of the blood vessel after straightening back to the image of the blood vessel center line , to obtain the blood vessel contour; the blood vessel contour extraction is fast and accurate.
- the present application provides a three-dimensional blood vessel synthesis system, including: an image reading device 100, a three-dimensional blood vessel centerline acquisition device 200, a three-dimensional blood vessel radius acquisition device 300, and a three-dimensional blood vessel synthesis device 400, which are connected in sequence.
- the blood vessel radius obtaining device 300 is connected to the image reading device 100; the image reading device 100 is used for obtaining image information of at least two coronary two-dimensional angiography images with different shooting angles; the three-dimensional blood vessel centerline obtaining device 200 is used for receiving image readings Obtain the image information of the coronary two-dimensional angiography image transmitted by the device, and obtain the three-dimensional blood vessel centerline according to the image information; the three-dimensional blood vessel radius acquiring device 300 is configured to receive the image information of the coronary two-dimensional angiography image transmitted by the image reading device, and receive The three-dimensional blood vessel centerline transmitted by the three-dimensional blood vessel centerline acquisition device obtains the three-dimensional blood vessel radius according to the image information and the three-dimensional blood vessel centerline; the three-dimensional blood vessel synthesis device 400 is configured to receive the three-dimensional blood vessel centerline transmitted by the three-dimensional blood vessel centerline acquisition device, and receive the three-dimensional blood vessel centerline.
- the three-dimensional blood vessel radius transmitted by the blood vessel radius acquiring device is used
- the three-dimensional blood vessel centerline acquisition device 200 includes: a two-dimensional blood vessel centerline extraction structure 210 and a three-dimensional blood vessel centerline acquisition structure 220 connected to the image reading device 100 .
- the blood vessel centerline extraction structure 210 is connected with the three-dimensional blood vessel centerline acquisition structure 220; the two-dimensional blood vessel centerline extraction structure 210 is used for receiving the coronary two-dimensional angiography images sent by the image reading device, and from each interested two-dimensional angiography image A two-dimensional blood vessel centerline is extracted from the center line; the three-dimensional blood vessel centerline acquisition structure 220 is used to receive the two-dimensional blood vessel centerline sent by the two-dimensional blood vessel centerline extraction structure, and receive the two-dimensional blood vessel centerline sent by the image reading device.
- the shooting angle of the angiography image is to project each two-dimensional blood vessel centerline into a three-dimensional space to synthesize the three-dimensional blood vessel centerline.
- the two-dimensional blood vessel centerline extraction structure 210 includes: a centerline extraction unit 211 , a straightening unit 212 , a first blood vessel outline unit 213 , and a second blood vessel outline connected in sequence Line unit 214; the centerline extraction unit 211 is connected to the image reading device 100, and is used to extract the blood vessel centerline according to the coronary two-dimensional angiography image; the straightening unit 212 is used to obtain the blood vessel centerline extracted by the centerline extraction unit 211.
- the first blood vessel contour line unit 213 is used to set the blood vessel diameter threshold D threshold on the straightened blood vessel image sent by the straightening unit 212; according to the D threshold, the blood vessel preset contour line is generated on both sides of the blood vessel center line ; Move the preset contour line of the blood vessel to the center of the blood vessel step by step to obtain the contour line of the blood vessel after straightening; the second blood vessel contour line unit 214 is used to send the contour line of the straight blood vessel sent by the first blood vessel contour unit 213 Projection back onto the image of the vessel centerline to obtain vessel contours.
- the present application provides a coronary artery analysis system, including: the above-mentioned three-dimensional blood vessel synthesis system.
- the present application provides a computer storage medium, and when the computer program is executed by a processor, the above-mentioned method for synthesizing a three-dimensional blood vessel is implemented.
- aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, various aspects of the present invention may be embodied in the form of an entirely hardware implementation, an entirely software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software aspects, It may be collectively referred to herein as a "circuit,” "module,” or “system.” Furthermore, in some embodiments, aspects of the present invention may also be implemented in the form of a computer program product on one or more computer-readable media having computer-readable program code embodied thereon. Implementation of the method and/or system of embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or a combination thereof.
- a data processor such as a computing platform for executing a plurality of instructions.
- the data processor includes volatile storage for storing instructions and/or data and/or non-volatile storage for storing instructions and/or data, such as a magnetic hard disk and/or a Move media.
- a network connection is also provided.
- a display and/or user input device such as a keyboard or mouse, is optionally also provided.
- the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
- the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
- a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
- a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
- a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
- Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
- computer program code for performing operations for various aspects of the invention may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages, such as The "C" programming language or similar programming language.
- the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
- the remote computer may be connected to the user's computer through any kind of network - including a local area network (LAN) or a wide area network (WAN) - or may be connected to an external computer (eg using an Internet service provider via Internet connection).
- LAN local area network
- WAN wide area network
- These computer program instructions can also be stored on a computer-readable medium, the instructions cause a computer, other programmable data processing apparatus, or other device to operate in a particular manner, whereby the instructions stored on the computer-readable medium produce a An article of manufacture of instructions implementing the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
- Computer program instructions can also be loaded on a computer (eg, a coronary artery analysis system) or other programmable data processing device to cause a series of operational steps to be performed on the computer, other programmable data processing device or other device to produce a computer-implemented process , such that instructions executing on a computer, other programmable apparatus, or other device provide a process for implementing the functions/acts specified in the flowchart and/or one or more block diagram blocks.
- a computer eg, a coronary artery analysis system
- other programmable data processing device to produce a computer-implemented process , such that instructions executing on a computer, other programmable apparatus, or other device provide a process for implementing the functions/acts specified in the flowchart and/or one or more block diagram blocks.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Computer Graphics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种三维血管合成方法、系统及冠状动脉分析系统和存储介质。所述方法包括:获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息(S100);根据冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径(S200);依据三维血管中心线和三维血管半径合成三维血管(S300)。所述方法能有效的模拟真实场景中的血管状态,包括血管的形状、走向及直径信息,解决了在手术过程中外界条件对图像的影响,包括设备的位移,心脏的跳动及患者的呼吸,以及解决了导丝测量危险高、费用昂贵的问题,为计算血流储备分数FFR等血管评定参数提供了基础。
Description
本发明涉及冠状动脉医学技术领域,特别是涉及一种三维血管合成方法、系统及冠状动脉分析系统和存储介质。
人体血液中的脂类及糖类物质在血管壁上的沉积将在血管壁上形成斑块,继而导致血管狭窄;特别是发生在心脏冠脉附近的血管狭窄将导致心肌供血不足,诱发冠心病、心绞痛等病症,对人类的健康造成严重威胁。据统计,我国现有冠心病患者约1100万人,心血管介入手术治疗患者数量每年增长大于10%。
冠脉造影CAG、计算机断层扫描CT等常规医用检测手段虽然可以显示心脏冠脉血管狭窄的严重程度,但是并不能准确评价冠脉的缺血情况。为提高冠脉血管功能评价的准确性,1993年Pijls提出了通过压力测定推算冠脉血管功能的新指标——血流储备分数(Fractional Flow Reserve,FFR),经过长期的基础与临床研究,FFR已成为冠脉狭窄功能性评价的金标准。
血流储备分数(FFR)通常是指心肌血流储备分数,定义为病变冠脉能为心肌提供的最大血流与该冠脉完全正常时最大供血流量之比,研究表明,在冠脉最大充血状态下,血流量的比值可以用压力值来代替。即FFR值的测量可在冠脉最大充血状态下,通过压力传感器对冠脉远端狭窄处的压力和冠脉狭窄近端压力进行测定继而计算得出。
存在的问题:通过压力传感器获得血流储备分数FFR等血管评定参数的方式,需要医生从动脉将传感器通过导丝牵引到病变处,该过程中会有若干难点需要解决,如其操作的有创性、测量的复杂性以及压力导丝成本昂贵,都会成为FFR推广的障碍。
发明内容
本发明提供了一种三维血管合成方法、系统及冠状动脉分析系统和存储介质,不采用压力导丝测量,而通过图像模拟合成三维血管,解决了现有技术压力导丝的使用问题。
为实现上述目的,第一方面,一种三维血管的合成方法,包括:
获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;
根据所述冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径;
依据所述三维血管中心线和所述三维血管半径合成三维血管。
可选地,上述的三维血管的合成方法,所述获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息的方法包括:
获取至少两组拍摄角度不同的冠状动脉二维造影图像组;
读取每组所述冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;
根据所述探测距离,分别从每组所述冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
可选地,上述的三维血管的合成方法,所述根据所述冠状动脉二维造影图像获取三维血管中心线的方法包括:
从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;
根据每幅所述冠状动脉二维造影图像的拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
可选地,上述的三维血管的合成方法,所述根据每幅所述冠状动脉二维造影图像的的拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线的方法包括:
以心脏为坐标原点,建立三维坐标系;
获取每幅所述感兴趣的二维造影图像的左右角度α、前后角度β,以及人体与平板探测器之间的距离S,所述二维血管中心线上各点的坐标为(x,y);
将各点(x,y)投影到三维空间内,获得一系列三维坐标点P,坐标为(x”、y”、z”);
将放射源投影到所述三维空间内形成放射点R;
将每个所述三维坐标点P均与所述放射点R进行连线,从PR连线上获得所述三维血管中心线上的点,将所述三维血管中心线上的点依次连接获得所述三维血管中心线。
可选地,上述的三维血管的合成方法,所述将各点(x,y)投影到三维空间内,获得一系列三维坐标点P,坐标为(x”、y”、z”)的方法,包括:
将各点(x,y)绕y轴旋转获得(x’、y’、z’)系列点,具体公式为:
将(x’、y’、z’)系列点绕x轴旋转获得一系列三维坐标点P,坐标为(x”、y”、z”);
可选地,上述的三维血管的合成方法,所述将将放射源投影到所述三维空间内形成放射点R的方法,包括:
获得每幅所述感兴趣的二维造影图像中人体与放射源之间的距离S’;
其中,R在三维空间内的坐标为(a,b,c)。
可选地,上述的三维血管的合成方法,所述将每个所述三维坐标点P均与所述放射点R进行连线,从PR连线上获得所述三维血管中心线上的点,将所述三维血管中心线上的点依次连接获得所述三维血管中心线的方法,包括:
将从同一幅所述感兴趣的二维造影图像中获得的一系列三维坐标点P和放射点R对应连接,获得多条PR直线;
获取所述血管的同一位置的两条PR直线之间的最小距离的点,分别为A点和B点;
将所述A点与所述B点连线,获取所述AB线段的中点作为所述三维血管的中心线上的点;
将获得的一系列的所述三维血管的中心线上的点依次连接,获得所述三维血管中心线。
可选地,上述的三维血管的合成方法,所述根据所述冠状动脉二维造影图像获取血管中心线和三维血管半径的方法包括:
根据所述二维血管中心线获取二维血管轮廓线;
根据所述二维血管轮廓线获取每幅所述感兴趣的二维造影图像中的二维血管半径;
根据所述二维血管半径获取所述三维血管半径。
可选地,上述的三维血管的合成方法,所述根据所述二维血管半径获取所述三维血管半径的方法包括:
其中,R表示三维血管半径,r
1、r
2、r
n分别表示第一幅、第二幅、第n 幅感兴趣的二维造影图像的二维血管半径。
可选地,上述的三维血管的合成方法,所述分别从每幅所述冠状动脉二维造影图像中提取一条二维血管中心线的方法包括:
读取冠状动脉二维造影图像;
获取感兴趣的血管段;
拾取所述感兴趣的血管段的起始点、种子点和结束点;
分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
从每个所述局部血管区域图中提取至少一条血管局部路径线;
将每个所述局部血管区域图上相对应的血管局部路径线连接,获得至少一条所述血管路径线;
选取一条所述血管路径线作为所述二维血管中心线。
可选地,上述的三维血管的合成方法,所述从每个所述局部血管区域图上提取至少一条血管局部路径线的方法包括:
对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图;
对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管局部路径线。
可选地,上述的三维血管的合成方法,所述对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图的方法,包括:
在每幅所述局部血管区域图中,以所述感兴趣的血管段作为前景,其他区域作为背景,强化所述前景,弱化所述背景,得到对比强烈的所述粗略血管图。
可选地,上述的三维血管的合成方法,所述对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管局部路径线的方法包括:
对所述粗略血管图进行网格划分;
沿着所述起始点至所述结束点的血管延伸方向,搜索所述起始点与周边n个网格上的交叉点的最短时间路径作为第二个点,搜索所述第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,所述第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;
按照搜索顺序,从所述起始点至所述结束点的血管延伸方向连线,获得至少一条血管局部路径线。
可选地,上述的三维血管的合成方法,所述选取一条所述血管路径线作为所述二维血管中心线的方法包括:
如果血管路径线为两条或两条以上,则对每条血管路径线从所述起始点至所述结束点所用的时间求和;
取用时最少的所述血管路径线作为所述二维血管中心线。
可选地,上述的三维血管的合成方法,所述根据所述血管中心线获取二维血管轮廓线的方法,其特征在于,包括:
根据冠状动脉二维造影图像提取二维血管中心线;
根据所述二维血管中心线,获得拉直血管图像,;
在所述拉直血管图像上,设定血管直径阈值D
阈;
根据所述D
阈,在血管中心直线两侧生成血管预设轮廓线;
将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;
将所述拉直后血管的轮廓线投射回提取所述二维血管中心线的图像上,获得二维血管轮廓线。
可选地,上述的三维血管的合成方法,所述根据所述二维血管中心线,获得拉直血管图像的方法包括:
将所述二维血管中心线拉直,获得血管中心直线;
沿着所述起始点至所述结束点的血管延伸方向,将所述局部血管区域图分为x个单元,其中x为正整数;
将每个所述单元的二维血管中心线沿着所述血管中心直线对应设置;
对应设置后的图像为所述拉直血管图像。
可选地,上述的三维血管的合成方法,所述将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线的方法包括:
将所述血管预设轮廓线分成y个单元,其中y为正整数;
获取每个所述单元的位于每条所述血管预设轮廓线上的z个点;
沿着垂直于所述血管中心直线方向,将z个点分别向所述血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;
设定RGB差值阈值为ΔRGB
阈,沿着垂直于所述血管中心直线方向,每次靠拢均将所述靠拢点的RGB值与所述血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB
阈时,则所述靠拢点停止向所述血管中心直线靠拢;
获取所述靠拢点作为轮廓点;
依次连接所述轮廓点形成的平滑曲线即为所述拉直后血管的轮廓线。
可选地,上述的三维血管的合成方法,所述依据所述三维血管中心线和所述三维血管半径合成三维血管的方法包括:
每个所述三维血管中心线上的点,均沿着对应的三维血管半径在所述三维空间内画图,得到多个边缘点,将所述边缘点依次连接,得到一个近似圆的多边形;
将相邻两个所述多边形上的点按照直角三角形的形式依次连接,得到三维血管。
第二方面,本申请提供了一种三维血管合成系统,包括:依次连接的图像 读取装置、三维血管中心线获取装置、三维血管半径获取装置和三维血管合成装置,所述三维血管半径获取装置与所述图像读取装置、所述三维血管中心线获取装置连接;
所述图像读取装置,用于获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;
所述三维血管中心线获取装置,用于接收所述图像读取装置传递的冠状动脉二维造影图像的图像信息,根据所述图像信息获取三维血管中心线;
所述三维血管半径获取装置,用于接收所述图像读取装置传递的冠状动脉二维造影图像的图像信息,以及接受所述三维血管中心线获取装置传递的所述三维血管中心线,根据所述图像信息和所述三维血管中心线获取三维血管半径;
所述三维血管合成装置,用于接收所述三维血管中心线获取装置传递的所述三维血管中心线,以及接受所述三维血管半径获取装置传递的所述三维血管半径,依据所述三维血管中心线和所述三维血管半径合成三维血管。
可选地,上述的三维血管合成系统,所述三维血管中心线获取装置包括:与所述图像读取装置连接的二维血管中心线提取结构和所述三维血管中心线获取结构,所述二维血管中心线提取结构与所述三维血管中心线获取结构连接;
所述二维血管中心线提取结构,用于接收所述图像读取装置发送的冠状动脉二维造影图像,从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;
所述三维血管中心线获取结构,用于接收所述二维血管中心线提取结构发送的二维血管中心线,以及接收所述图像读取装置发送的,根据每幅所述冠状动脉二维造影图像的拍摄角度,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
可选地,上述的三维血管的合成方法,所述二维血管中心线提取结构包括:依次连接的中心线提取单元、拉直单元、第一血管轮廓线单元、第二血管轮廓线单元;
所述中心线提取单元,与所述图像读取装置连接,用于根据冠状动脉二维造影图像提取血管中心线;
所述拉直单元,用于根据所述所述中心线提取单元提取的血管中心线,获得拉直血管图像;
所述第一血管轮廓线单元,用于在所述拉直单元发送的拉直血管图像上,设定血管直径阈值D
阈;根据所述D
阈,在所述血管中心直线两侧生成血管预设轮廓线;将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;
所述第二血管轮廓线单元,用于将所述第一血管轮廓线单元发送的所述拉直后血管的轮廓线投射回所述血管中心线的图像上,获得血管轮廓线。
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的三维血管合成系统。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的三维血管的合成方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了三维血管的合成方法,能有效的模拟真实场景中的血管状态,包括血管的形状、走向及直径信息,解决了在手术过程中外界条件对图像的影响,包括设备的位移,心脏的跳动及患者的呼吸,以及解决了导丝测量危险高、费用昂贵的问题,为计算血流储备分数FFR等血管评定参数提供了基础。
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
下面对附图标记进行说明:
图1为本申请的三维血管的合成方法的流程图;
图2为本申请的S100的流程图;
图3为本申请的S200的流程图;
图4为本申请的S210的流程图;
图5为本申请的S215的流程图;
图6为本申请的S2152的流程图;
图7为本申请的S217的流程图;
图8为本申请的S220的流程图;
图9为本申请的S225的流程图;
图10为本申请的S230的流程图;
图11为本申请的S232的流程图;
图12为本申请的S235的流程图;
图13为本申请的S300的流程图;
图14为本申请的三维血管合成系统的结构框图;
图15为本申请的三维血管合成系统的另一结构框图;
图16为本申请的二维血管中心线提取结构210的结构框图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施 例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
现有技术的问题:通过压力传感器获得血流储备分数FFR等血管评定参数的方式,需要医生从动脉将传感器通过导丝牵引到病变处,该过程中会有若干难点需要解决,如其操作的有创性、测量的复杂性以及压力导丝成本昂贵,都会成为FFR推广的障碍。
实施例1:
如图1所示,本申请为了解决上述问题,提供了一种三维血管的合成方法,包括:
S100,获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;
S200,根据冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径;
S300,依据三维血管中心线和三维血管半径合成三维血管。
本申请提供了三维血管的合成方法,能有效的模拟真实场景中的血管状态,包括血管的形状、走向及直径信息,解决了在手术过程中外界条件对图像的影响,包括设备的位移,心脏的跳动及患者的呼吸,以及解决了导丝测量危险高、费用昂贵的问题,为计算血流储备分数FFR等血管评定参数提供了基础。
实施例2:
在实施例1的基础上,进一步的优化本实施例;
如图1所示,提供了一种三维血管的合成方法,包括:
S100,如图2所示,获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息,包括:
S110,获取至少两组拍摄角度不同的冠状动脉二维造影图像组;
S120,读取每组冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;
S130,根据探测距离,分别从每组冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
S200,如图3所示,根据冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径,包括:
S210,如图4所示,从每幅感兴趣的二维造影图像中提取一条二维血管中心线,包括:
S211,读取冠状动脉二维造影图像;
S212,获取感兴趣的血管段;
S213,拾取感兴趣的血管段的起始点、种子点和结束点;
S214,分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;
S215,如图5所示,从每个局部血管区域图中提取至少一条血管局部路径线,包括:
S2151,对局部血管区域图做图像增强处理,得到对比强烈的粗略血管图,包括:在每幅局部血管区域图中,以感兴趣的血管段作为前景,其他区域作为背景,强化前景,弱化背景,得到对比强烈的粗略血管图。
S2152,如图6所示,对粗略血管图做网格划分,沿着起始点至结束点方向,提取至少一条血管局部路径线,包括:
S21521,对粗略血管图进行网格划分;
S21522,沿着起始点至结束点的血管延伸方向,搜索起始点与周边n个网 格上的交叉点的最短时间路径作为第二个点,搜索第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;
S21523,按照搜索顺序,从起始点至结束点的血管延伸方向连线,获得至少一条血管局部路径线。
S216,将每个局部血管区域图上相对应的血管局部路径线连接,获得至少一条血管路径线;
S217,如图7所示,选取一条血管路径线作为二维血管中心线,包括:
S2171,如果血管路径线为两条或两条以上,则对每条血管路径线从起始点至结束点所用的时间求和;
S2172,取用时最少的血管路径线作为二维血管中心线。
S220,如图8所示,根据每幅冠状动脉二维造影图像的拍摄角度和探测距离,将每条二维血管中心线投影到三维空间内,合成三维血管中心线,包括:
S221,以心脏为坐标原点,建立三维坐标系;
S222,获取每幅感兴趣的二维造影图像的左右角度α、前后角度β,以及人体与平板探测器之间的距离S,二维血管中心线上各点的坐标为(x,y);
S223,将各点(x,y)投影到三维空间内,获得一系列三维坐标点P,坐标为(x”、y”、z”),包括:
将各点(x,y)绕y轴旋转获得(x’、y’、z’)系列点,具体公式为:
将(x’、y’、z’)系列点绕x轴旋转获得一系列三维坐标点P,坐标为(x”、y”、z”);
S224,将放射源投影到三维空间内形成放射点R,包括:
获得每幅感兴趣的二维造影图像中人体与放射源之间的距离S’;
其中,R在三维空间内的坐标为(a,b,c)。
S225,如图9所示,将每个三维坐标点P均与放射点R进行连线,从PR连线上获得三维血管中心线上的点,将三维血管中心线上的点依次连接获得三维血管中心线,包括:
S2251,将从同一幅感兴趣的二维造影图像中获得的一系列三维坐标点P和放射点R对应连接,获得多条PR直线;
S2252,获取血管的同一位置的两条PR直线之间的最小距离的点,分别为A点和B点;
S2253,将A点与B点连线,获取AB线段的中点作为三维血管的中心线上的点;
S2254,将获得的一系列的三维血管的中心线上的点依次连接,获得三维血管中心线。
S230,根据S210中的二维血管中心线获取二维血管轮廓线,如图10所示,现有技术中通过血管三维模型计算血管评价参数时常常需要提取血管轮廓线,由于血管存在卷曲、且边缘不清晰的问题,导致血管轮廓提取特别困难,且运算数据庞大、繁冗,因此如何快速提取血管轮廓线,以及提取的准确度一直是技术人员需要解决的问题,为了解决上述问题,本申请进一步地实施了S230,包括:
S231,根据冠状动脉二维造影图像提取二维血管中心线;
S232,如图11所示,根据二维血管中心线,获得拉直血管图像,包括:
S2321,将二维血管中心线拉直,获得血管中心直线;
S2322,沿着起始点至结束点的血管延伸方向,将局部血管区域图分为x个单元,其中x为正整数;
S2323,将每个单元的二维血管中心线沿着血管中心直线对应设置;
S2324,对应设置后的图像为拉直血管图像。
S233,在拉直血管图像上,设定血管直径阈值D
阈;
S234,根据D
阈在血管中心直线两侧生成血管预设轮廓线;
S235,如图12所示,将血管预设轮廓线向血管中心直线逐级靠拢,获取拉直后血管的轮廓线,包括:
S2351,将血管预设轮廓线分成y个单元,其中y为正整数;
S2352,获取每个单元的位于每条血管预设轮廓线上的z个点;
S2353,沿着垂直于血管中心直线方向,将z个点分别向血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;
S2354,设定RGB差值阈值为ΔRGB
阈,沿着垂直于血管中心直线方向,每次靠拢均将靠拢点的RGB值与血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB
阈时,则靠拢点停止向血管中心直线靠拢;
S2355,获取靠拢点作为轮廓点;
S2356,依次连接轮廓点形成的平滑曲线即为拉直后血管的轮廓线。
S236,将拉直后血管的轮廓线投射回提取二维血管中心线的图像上,获得二维血管轮廓线。
S240,根据二维血管轮廓线获取每幅感兴趣的二维造影图像中的二维血管半径;
S250,根据二维血管半径获取三维血管半径,具体公式为:
其中,R表示三维血管半径,r
1、r
2、r
n分别表示第一幅、第二幅、第n幅感兴趣的二维造影图像的二维血管半径。
S300,如图13所示,依据三维血管中心线和三维血管半径合成三维血管,包括:
S310,每个三维血管中心线上的点,均沿着对应的三维血管半径在三维空间内画图,得到多个边缘点,将边缘点依次连接,得到一个近似圆的多边形;
S320,将相邻两个多边形上的点按照直角三角形的形式依次连接,得到三维血管。
本申请根据所述血管中心线,获得拉直血管图像;在所述拉直血管图像上,设定血管直径阈值D
阈;根据所述D
阈,在所述血管中心直线两侧生成血管预设轮廓线;将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;将所述拉直后血管的轮廓线投射回所述血管中心线的图像上,获得血管轮廓线;血管轮廓线提取快速、准确。
如图14所示,本申请提供了一种三维血管合成系统,包括:依次连接的图像读取装置100、三维血管中心线获取装置200、三维血管半径获取装置300和三维血管合成装置400,三维血管半径获取装置300与图像读取装置100连接;图像读取装置100用于获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;三维血管中心线获取装置200用于接收图像读取装置传递的冠状动脉二维造影图像的图像信息,根据图像信息获取三维血管中心线;三维血管半径获取装置300用于接收图像读取装置传递的冠状动脉二维造影图像的图像信息,以及接受三维血管中心线获取装置传递的三维血管中心线,根据图像信息和三维血管中心线获取三维血管半径;三维血管合成装置400用于接收三维血管中心线获取装置传递的三维血管中心线,以及接受三维血管半径获取 装置传递的三维血管半径,依据三维血管中心线和三维血管半径合成三维血管。
如图15所示,本申请的一个实施例中,三维血管中心线获取装置200包括:与图像读取装置100连接的二维血管中心线提取结构210和三维血管中心线获取结构220,二维血管中心线提取结构210与三维血管中心线获取结构220连接;二维血管中心线提取结构210用于接收图像读取装置发送的冠状动脉二维造影图像,从每幅感兴趣的二维造影图像中提取一条二维血管中心线;三维血管中心线获取结构220用于接收二维血管中心线提取结构发送的二维血管中心线,以及接收图像读取装置发送的,根据每幅冠状动脉二维造影图像的拍摄角度,将每条二维血管中心线投影到三维空间内,合成三维血管中心线。
如图16所示,本申请的一个实施例中,二维血管中心线提取结构210包括:依次连接的中心线提取单元211、拉直单元212、第一血管轮廓线单元213、第二血管轮廓线单元214;中心线提取单元211与图像读取装置100连接,用于根据冠状动脉二维造影图像提取血管中心线;拉直单元212用于根据中心线提取单元211提取的血管中心线,获得拉直血管图像;第一血管轮廓线单元213用于在拉直单元212发送的拉直血管图像上,设定血管直径阈值D
阈;根据D阈在血管中心直线两侧生成血管预设轮廓线;将血管预设轮廓线向血管中心直线逐级靠拢,获取拉直后血管的轮廓线;第二血管轮廓线单元214用于将第一血管轮廓线单元213发送的拉直后血管的轮廓线投射回血管中心线的图像上,获得血管轮廓线。
本申请提供了一种冠状动脉分析系统,包括:上述的三维血管合成系统。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的三维血管的合成方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法 或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存 储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (23)
- 一种三维血管的合成方法,其特征在于,包括:获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;根据所述冠状动脉二维造影图像的图像信息获取三维血管中心线和三维血管半径;依据所述三维血管中心线和所述三维血管半径合成三维血管。
- 根据权利要求1所述的三维血管的合成方法,其特征在于,所述获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息的方法包括:获取至少两组拍摄角度不同的冠状动脉二维造影图像组;读取每组所述冠状动脉二维造影图像组的图像信息,包括拍摄角度和探测距离;根据所述探测距离,分别从每组所述冠状动脉二维造影图像中选取一幅感兴趣的二维造影图像。
- 根据权利要求2所述的三维血管的合成方法,其特征在于,所述根据所述冠状动脉二维造影图像获取三维血管中心线的方法包括:从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;根据每幅所述冠状动脉二维造影图像的拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
- 根据权利要求3所述的三维血管的合成方法,其特征在于,所述根据每幅所述冠状动脉二维造影图像的的拍摄角度和探测距离,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线的方法包括:以心脏为坐标原点,建立三维坐标系;获取每幅所述感兴趣的二维造影图像的左右角度α、前后角度β,以及人体与平板探测器之间的距离S,所述二维血管中心线上各点的坐标为(x,y);将各点(x,y)投影到三维空间内,获得一系列三维坐标点P,坐标为(x”、y”、z”);将放射源投影到所述三维空间内形成放射点R;将每个所述三维坐标点P均与所述放射点R进行连线,从PR连线上获得所述三维血管中心线上的点,将所述三维血管中心线上的点依次连接获得所述三维血管中心线。
- 根据权利要求6所述的三维血管的合成方法,其特征在于,所述将每个所述三维坐标点P均与所述放射点R进行连线,从PR连线上获得所述三维血管中心线上的点,将所述三维血管中心线上的点依次连接获得所述三维血管中心线的方法,包括:将从同一幅所述感兴趣的二维造影图像中获得的一系列三维坐标点P和放射点R对应连接,获得多条PR直线;获取所述血管的同一位置的两条PR直线之间的最小距离的点,分别为A点和B点;将所述A点与所述B点连线,获取所述AB线段的中点作为所述三维血管的中心线上的点;将获得的一系列的所述三维血管的中心线上的点依次连接,获得所述三维血管中心线。
- 根据权利要求3所述的三维血管的合成方法,其特征在于,所述根据所述冠状动脉二维造影图像获取血管中心线和三维血管半径的方法包括:根据所述二维血管中心线获取二维血管轮廓线;根据所述二维血管轮廓线获取每幅所述感兴趣的二维造影图像中的二维血管半径;根据所述二维血管半径获取所述三维血管半径。
- 根据权利要求3所述的三维血管的合成方法,其特征在于,所述分别从每幅所述冠状动脉二维造影图像中提取一条二维血管中心线的方法包括:读取冠状动脉二维造影图像;获取感兴趣的血管段;拾取所述感兴趣的血管段的起始点、种子点和结束点;分别对起始点、种子点、结束点的相邻两点间的二维造影图像进行分割,得到至少两个局部血管区域图;从每个所述局部血管区域图中提取至少一条血管局部路径线;将每个所述局部血管区域图上相对应的血管局部路径线连接,获得至少一条所述血管路径线;选取一条所述血管路径线作为所述二维血管中心线。
- 根据权利要求10所述的三维血管的合成方法,其特征在于,所述从每个所述局部血管区域图上提取至少一条血管局部路径线的方法包括:对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图;对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管局部路径线。
- 根据权利要求11所述的三维血管的合成方法,其特征在于,所述对所述局部血管区域图做图像增强处理,得到对比强烈的粗略血管图的方法,包括:在每幅所述局部血管区域图中,以所述感兴趣的血管段作为前景,其他区域作为背景,强化所述前景,弱化所述背景,得到对比强烈的所述粗略血管图。
- 根据权利要求12所述的三维血管的合成方法,其特征在于,所述对所述粗略血管图做网格划分,沿着所述起始点至所述结束点方向,提取至少一条血管局部路径线的方法包括:对所述粗略血管图进行网格划分;沿着所述起始点至所述结束点的血管延伸方向,搜索所述起始点与周边n个网格上的交叉点的最短时间路径作为第二个点,搜索所述第二个点与周边n个网格上的交叉点的最短时间路径作为第三个点,所述第三个点重复上述步骤,直至最短时间路径到达结束点,其中,n为大于等于1的正整数;按照搜索顺序,从所述起始点至所述结束点的血管延伸方向连线,获得至少一条血管局部路径线。
- 根据权利要求13所述的三维血管的合成方法,其特征在于,所述选取一条所述血管路径线作为所述二维血管中心线的方法包括:如果血管路径线为两条或两条以上,则对每条血管路径线从所述起始点至所述结束点所用的时间求和;取用时最少的所述血管路径线作为所述二维血管中心线。
- 根据权利要求8所述的三维血管的合成方法,其特征在于,所述根据所述血管中心线获取二维血管轮廓线的方法,其特征在于,包括:根据冠状动脉二维造影图像提取二维血管中心线;根据所述二维血管中心线,获得拉直血管图像,;在所述拉直血管图像上,设定血管直径阈值D 阈;根据所述D 阈,在血管中心直线两侧生成血管预设轮廓线;将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;将所述拉直后血管的轮廓线投射回提取所述二维血管中心线的图像上,获得二维血管轮廓线。
- 根据权利要求15所述的三维血管的合成方法,其特征在于,所述根据所述二维血管中心线,获得拉直血管图像的方法包括:将所述二维血管中心线拉直,获得血管中心直线;沿着所述起始点至所述结束点的血管延伸方向,将所述局部血管区域图分为x个单元,其中x为正整数;将每个所述单元的二维血管中心线沿着所述血管中心直线对应设置;对应设置后的图像为所述拉直血管图像。
- 根据权利要求16所述的三维血管的合成方法,其特征在于,所述将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线的方法包括:将所述血管预设轮廓线分成y个单元,其中y为正整数;获取每个所述单元的位于每条所述血管预设轮廓线上的z个点;沿着垂直于所述血管中心直线方向,将z个点分别向所述血管中心直线分级靠拢,产生z个靠拢点,其中z为正整数;设定RGB差值阈值为ΔRGB 阈,沿着垂直于所述血管中心直线方向,每次靠拢均将所述靠拢点的RGB值与所述血管中心直线上的点的RGB值作比较,当差值小于等于ΔRGB 阈时,则所述靠拢点停止向所述血管中心直线靠拢;获取所述靠拢点作为轮廓点;依次连接所述轮廓点形成的平滑曲线即为所述拉直后血管的轮廓线。
- 根据权利要求1所述的三维血管的合成方法,其特征在于,所述依据所述三维血管中心线和所述三维血管半径合成三维血管的方法包括:每个所述三维血管中心线上的点,均沿着对应的三维血管半径在所述三维空间内画图,得到多个边缘点,将所述边缘点依次连接,得到一个近似圆的多边形;将相邻两个所述多边形上的点按照直角三角形的形式依次连接,得到三维血管。
- 一种三维血管合成系统,用于权利要求1~18任一项所述的三维血管的 合成方法,其特征在于,包括:依次连接的图像读取装置、三维血管中心线获取装置、三维血管半径获取装置和三维血管合成装置,所述三维血管半径获取装置与所述图像读取装置、所述三维血管中心线获取装置连接;所述图像读取装置,用于获取至少两幅拍摄角度不同的冠状动脉二维造影图像的图像信息;所述三维血管中心线获取装置,用于接收所述图像读取装置传递的冠状动脉二维造影图像的图像信息,根据所述图像信息获取三维血管中心线;所述三维血管半径获取装置,用于接收所述图像读取装置传递的冠状动脉二维造影图像的图像信息,以及接受所述三维血管中心线获取装置传递的所述三维血管中心线,根据所述图像信息和所述三维血管中心线获取三维血管半径;所述三维血管合成装置,用于接收所述三维血管中心线获取装置传递的所述三维血管中心线,以及接受所述三维血管半径获取装置传递的所述三维血管半径,依据所述三维血管中心线和所述三维血管半径合成三维血管。
- 根据权利要求19所述的三维血管合成系统,其特征在于,所述三维血管中心线获取装置包括:与所述图像读取装置连接的二维血管中心线提取结构和所述三维血管中心线获取结构,所述二维血管中心线提取结构与所述三维血管中心线获取结构连接;所述二维血管中心线提取结构,用于接收所述图像读取装置发送的冠状动脉二维造影图像,从每幅所述感兴趣的二维造影图像中提取一条二维血管中心线;所述三维血管中心线获取结构,用于接收所述二维血管中心线提取结构发送的二维血管中心线,以及接收所述图像读取装置发送的,根据每幅所述冠状动脉二维造影图像的拍摄角度,将每条所述二维血管中心线投影到三维空间内,合成所述三维血管中心线。
- 根据权利要求20所述的三维血管合成系统,其特征在于,所述二维血管中心线提取结构包括:依次连接的中心线提取单元、拉直单元、第一血管轮廓线单元、第二血管轮廓线单元;所述中心线提取单元,与所述图像读取装置连接,用于根据冠状动脉二维造影图像提取血管中心线;所述拉直单元,用于根据所述所述中心线提取单元提取的血管中心线,获得拉直血管图像;所述第一血管轮廓线单元,用于在所述拉直单元发送的拉直血管图像上,设定血管直径阈值D 阈;根据所述D 阈,在所述血管中心直线两侧生成血管预设轮廓线;将所述血管预设轮廓线向所述血管中心直线逐级靠拢,获取拉直后血管的轮廓线;所述第二血管轮廓线单元,用于将所述第一血管轮廓线单元发送的所述拉直后血管的轮廓线投射回所述血管中心线的图像上,获得血管轮廓线。
- 一种冠状动脉分析系统,其特征在于,包括:权利要求19~21任一项所述的三维血管合成系统。
- 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~18任一项所述的三维血管的合成方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011337609.XA CN112419484B (zh) | 2020-11-25 | 2020-11-25 | 三维血管合成方法、系统及冠状动脉分析系统和存储介质 |
CN202011337609.X | 2020-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022109903A1 true WO2022109903A1 (zh) | 2022-06-02 |
Family
ID=74842083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131699 WO2022109903A1 (zh) | 2020-11-25 | 2020-11-26 | 三维血管合成方法、系统及冠状动脉分析系统和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112419484B (zh) |
WO (1) | WO2022109903A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116012522A (zh) * | 2022-11-03 | 2023-04-25 | 成都寻创信息技术有限公司 | 头颈颌面部软组织、骨骼及血管的三维成像系统 |
CN117058328A (zh) * | 2023-10-11 | 2023-11-14 | 杭州脉流科技有限公司 | 冠状动脉血管树分级方法、设备、存储介质和程序产品 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114391792B (zh) * | 2021-09-13 | 2023-02-24 | 南京诺源医疗器械有限公司 | 基于窄带成像的肿瘤预测方法、装置及成像内镜 |
CN116712157B (zh) * | 2023-01-16 | 2024-03-08 | 天津市鹰泰利安康医疗科技有限责任公司 | 一种用于心脏脉管内不可逆穿孔系统 |
CN117036640B (zh) * | 2023-10-10 | 2023-12-19 | 杭州脉流科技有限公司 | 冠状动脉血管模型重构方法、装置、设备和存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060036167A1 (en) * | 2004-07-03 | 2006-02-16 | Shina Systems Ltd. | Vascular image processing |
CN109727242A (zh) * | 2018-12-28 | 2019-05-07 | 上海联影医疗科技有限公司 | 血管中心线提取方法、装置、计算机设备和存储介质 |
CN110889896A (zh) * | 2019-11-11 | 2020-03-17 | 苏州润迈德医疗科技有限公司 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
CN111127552A (zh) * | 2020-03-26 | 2020-05-08 | 南京景三医疗科技有限公司 | 血管三维重建方法、医疗设备及存储介质 |
CN111161342A (zh) * | 2019-12-09 | 2020-05-15 | 杭州脉流科技有限公司 | 基于冠脉造影图像获取血流储备分数的方法、装置、设备、系统及可读存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6047080A (en) * | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
JP5129480B2 (ja) * | 2003-09-25 | 2013-01-30 | パイエオン インコーポレイテッド | 管状臓器の3次元再構成を行うシステム及び血管撮像装置の作動方法 |
CN110367965B (zh) * | 2018-09-19 | 2022-03-08 | 苏州润迈德医疗科技有限公司 | 便捷测量冠状动脉血管评定参数的方法、装置及系统 |
CN109872321A (zh) * | 2019-02-26 | 2019-06-11 | 数坤(北京)网络科技有限公司 | 一种血管狭窄检测方法及设备 |
CN110287956B (zh) * | 2019-06-13 | 2021-05-25 | 北京理工大学 | 血管中心线自动匹配方法及装置 |
-
2020
- 2020-11-25 CN CN202011337609.XA patent/CN112419484B/zh active Active
- 2020-11-26 WO PCT/CN2020/131699 patent/WO2022109903A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060036167A1 (en) * | 2004-07-03 | 2006-02-16 | Shina Systems Ltd. | Vascular image processing |
CN109727242A (zh) * | 2018-12-28 | 2019-05-07 | 上海联影医疗科技有限公司 | 血管中心线提取方法、装置、计算机设备和存储介质 |
CN110889896A (zh) * | 2019-11-11 | 2020-03-17 | 苏州润迈德医疗科技有限公司 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
CN111161342A (zh) * | 2019-12-09 | 2020-05-15 | 杭州脉流科技有限公司 | 基于冠脉造影图像获取血流储备分数的方法、装置、设备、系统及可读存储介质 |
CN111127552A (zh) * | 2020-03-26 | 2020-05-08 | 南京景三医疗科技有限公司 | 血管三维重建方法、医疗设备及存储介质 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116012522A (zh) * | 2022-11-03 | 2023-04-25 | 成都寻创信息技术有限公司 | 头颈颌面部软组织、骨骼及血管的三维成像系统 |
CN116012522B (zh) * | 2022-11-03 | 2023-11-14 | 成都寻创信息技术有限公司 | 头颈颌面部软组织、骨骼及血管的三维成像系统 |
CN117058328A (zh) * | 2023-10-11 | 2023-11-14 | 杭州脉流科技有限公司 | 冠状动脉血管树分级方法、设备、存储介质和程序产品 |
CN117058328B (zh) * | 2023-10-11 | 2024-01-09 | 杭州脉流科技有限公司 | 冠状动脉血管树分级方法、设备、存储介质和程序产品 |
Also Published As
Publication number | Publication date |
---|---|
CN112419484B (zh) | 2024-03-22 |
CN112419484A (zh) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022109903A1 (zh) | 三维血管合成方法、系统及冠状动脉分析系统和存储介质 | |
US11896416B2 (en) | Method for calculating coronary artery fractional flow reserve on basis of myocardial blood flow and CT images | |
US10687777B2 (en) | Vascular data processing and image registration systems, methods, and apparatuses | |
WO2021196536A1 (zh) | 精确提取血管中心线的方法、装置、分析系统和存储介质 | |
WO2021097817A1 (zh) | 根据血管中心线获取血管轮廓线的方法和装置 | |
WO2021092997A1 (zh) | 获取血管狭窄病变区间及三维合成方法、装置和系统 | |
WO2021097820A1 (zh) | 具有狭窄病变区间的血管三维建模方法、装置和系统 | |
US11017531B2 (en) | Shell-constrained localization of vasculature | |
US20220351388A1 (en) | Method and terminal for detecting protrusion in intestinal tract, and computer-readable storage medium | |
WO2022109906A1 (zh) | 三维血管的渲染合成方法、系统及存储介质 | |
WO2022109905A1 (zh) | 调节血管轮廓及中心线的方法及存储介质 | |
US20220319116A1 (en) | Method and device for synthesizing mathematical model of blood vessel having stenotic lesion | |
JP7049402B2 (ja) | プロセッサ装置の作動方法 | |
WO2021097821A1 (zh) | 从冠状动脉二维造影图像中提取血管中心线的方法和装置 | |
WO2022109902A1 (zh) | 三维血管中心线合成方法、系统及存储介质 | |
WO2022000977A1 (zh) | 基于深度学习获取主动脉图像的系统 | |
CN112669449A (zh) | 基于3d重建技术的cag和ivus精准联动分析方法及系统 | |
WO2022109904A1 (zh) | 二维图像选取及三维血管合成的方法和存储介质 | |
WO2022000730A1 (zh) | 基于ct序列图像获取心脏重心的方法和系统 | |
WO2021092889A1 (zh) | 基于造影图像的流速的筛选方法、装置、系统和存储介质 | |
Song et al. | Geometrical force constraint method for vessel and x-ray angiogram simulation | |
WO2022000731A1 (zh) | 基于ct序列图像获取心脏重心和脊椎重心的方法和系统 | |
WO2018173273A1 (ja) | 生体モデル生成装置、生体モデル生成方法、および生体モデル生成プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20962794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20962794 Country of ref document: EP Kind code of ref document: A1 |