WO2021017327A1 - 基于造影图像间隔时间修正血流速度的方法及装置 - Google Patents

基于造影图像间隔时间修正血流速度的方法及装置 Download PDF

Info

Publication number
WO2021017327A1
WO2021017327A1 PCT/CN2019/120328 CN2019120328W WO2021017327A1 WO 2021017327 A1 WO2021017327 A1 WO 2021017327A1 CN 2019120328 W CN2019120328 W CN 2019120328W WO 2021017327 A1 WO2021017327 A1 WO 2021017327A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow velocity
blood flow
correcting
resting state
unit
Prior art date
Application number
PCT/CN2019/120328
Other languages
English (en)
French (fr)
Inventor
刘广志
王之元
戴威
陈琳
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910704330.1A external-priority patent/CN110384494A/zh
Priority claimed from CN201911138512.3A external-priority patent/CN112155580B/zh
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Priority to EP19939547.6A priority Critical patent/EP4005472B1/en
Priority to JP2022505584A priority patent/JP7260218B2/ja
Publication of WO2021017327A1 publication Critical patent/WO2021017327A1/zh
Priority to US17/587,264 priority patent/US20220151579A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to the technical field of coronary artery medicine, in particular to a method for correcting blood flow velocity based on the interval time of contrast images, a coronary artery analysis system and a computer storage medium.
  • the influence of abnormal coronary microcirculation function on myocardial ischemia has gradually attracted attention.
  • the coronary vascular system is composed of epicardial coronary arteries and microcirculation.
  • the degree of epicardial coronary artery stenosis greater than or equal to 50% can lead to insufficient blood supply to the myocardium, which is clinically diagnosed as coronary heart disease.
  • clinical studies have shown that abnormal coronary microcirculation may also lead to insufficient blood supply to the myocardium.
  • Coronary microcirculation refers to the blood circulation between arterioles and venules, and is the place where blood and tissue cells exchange substances. Studies have shown that although the coronary blood flow reaches TIMI3 level after successful percutaneous coronary intervention, nearly 30% of patients still have abnormal microvascular function, leading to a poor prognosis. Therefore, with the continuous deepening of research, people gradually realize that coronary microvascular dysfunction is an important mechanism of the pathophysiology of many heart diseases, and it is necessary to accurately assess the functional state of coronary microcirculation.
  • Coronary microcirculation resistance index (index of microcirculatory resistance IMR) is an index for evaluating the function of coronary microcirculation.
  • contrast agents instead of adenosine to induce microcirculation congestion.
  • the specific operation is similar to the intracoronary route of administration of adenosine.
  • the dose of contrast agent used in most studies is 5-10ml.
  • the time for the coronary microcirculation to recover from hyperemia to baseline is 12-30s on average.
  • the surgeon will perform imaging from different postural angles for the detected blood vessels. Since the time to adjust the C-arm of the radiography machine to the specified angle is different each time, and the time to start the radiography is also different, the flow rate of each radiography will be affected by whether the previous radiography returns to the baseline state.
  • the present invention provides a method and device for correcting blood flow velocity and microcirculation parameters based on contrast images, so as to reduce the problem in the prior art whether the previous contrast returns to the baseline state and the effect on the contrast flow rate.
  • the present application provides a method for correcting blood flow velocity in a resting state based on an angiographic image, including:
  • the blood flow velocity V j in the resting state is obtained.
  • the method for obtaining the blood flow velocity V j in a resting state according to the correction coefficient K and the blood flow velocity V h includes:
  • V j V h /K
  • the method for obtaining the correction coefficient K according to the time difference ⁇ t includes:;
  • the above-mentioned method for correcting the blood flow velocity in a resting state based on the contrast image, in the contrast state includes:
  • L represents the length of blood vessels through which the contrast agent flows in the heartbeat cycle area
  • N represents the number of coronary angiography image frames contained in the heartbeat cycle area
  • fps represents the number of frames transmitted per second.
  • the method for measuring the average blood flow velocity V h includes: a contrast agent traversal distance algorithm, a Stewart-Hamilton algorithm, and a first-pass distribution analysis method , Optical flow method or fluid continuous method.
  • this application provides a method for correcting the maximum dilated blood flow velocity based on an angiographic image, including:
  • the maximum expanded blood flow velocity is obtained according to the blood flow velocity V j in the resting state.
  • the method for obtaining the maximum expansion blood flow velocity according to the resting blood flow velocity V j includes:
  • V max represents the maximum expansion blood flow velocity
  • a represents a constant with a value ranging from 1 to 3
  • b represents a constant with a value ranging from 50 to 300.
  • this application provides a method for correcting coronary microcirculation vascular evaluation parameters based on angiographic images, including:
  • the contrast image obtaining an average value of the pressure in the inlet of coronary heart cycle region P a;
  • the maximum dilated blood flow velocity V max , and ⁇ P and P a are obtained to obtain the corrected coronary microcirculation vascular evaluation parameters.
  • the present application provides a device for correcting blood flow velocity based on contrast images, which is used in the above-mentioned method for correcting blood flow velocity based on contrast images in a resting state, including: a first blood flow velocity unit, a time difference unit, A correction coefficient unit and a second blood flow velocity unit; the first blood flow velocity unit is connected to the second blood flow velocity unit, and the correction coefficient unit is respectively connected to the time difference unit and the second blood flow velocity unit ;
  • the first blood flow velocity unit is used to obtain the average blood flow velocity V h from the entrance of the coronary artery to the distal end of the coronary artery stenosis in the angiographic state;
  • the time difference unit is used to obtain the difference ⁇ t between the start times of two adjacent boluses of contrast agent
  • the correction coefficient unit is configured to receive the time difference ⁇ t transmitted by the time difference unit to obtain the correction coefficient K;
  • the second blood flow velocity unit is configured to receive the average blood flow velocity V h in the contrast state sent by the first blood flow velocity unit, and receive the correction coefficient K sent by the correction coefficient unit, according to the correction
  • the coefficient K and the blood flow velocity V h obtain the blood flow velocity V j in the resting state.
  • the present application provides an apparatus for correcting the maximum dilated blood flow velocity based on an angiographic image, which is used in the above-mentioned method for correcting the maximum dilated blood flow velocity based on an angiographic image, including: A device, and a third blood flow velocity unit connected to the above-mentioned device for correcting blood flow velocity based on contrast images;
  • the third blood flow velocity unit is used to obtain the maximum expanded blood flow velocity according to the blood flow velocity V j in the resting state.
  • the present application provides a coronary artery analysis system, including: a base body, a blood pressure acquisition device all arranged on the base body, and the above-mentioned device for correcting the maximum expansion blood flow velocity based on the contrast image.
  • the present application provides a computer storage medium.
  • a computer program is executed by a processor, the above-mentioned method of correcting blood flow velocity in a resting state based on an angiographic image is realized.
  • This application provides a method for correcting blood flow velocity based on angiographic images.
  • the correction coefficient K is obtained; according to the correction coefficient K and the blood flow velocity V h , the resting state blood flow velocity V j is obtained , which reduces the prior art The effect of whether the last angiography is restored to the baseline state on the angiography flow rate.
  • FIG. 1 is a flowchart of Embodiment 1 of the method for correcting blood flow velocity based on contrast images of this application;
  • FIG. 2 is a flowchart of a method for correcting coronary microcirculation vascular evaluation parameters based on angiographic images of the present application
  • Figure 3 is a reference image
  • Figure 4 is a target image to be segmented
  • Figure 5 is another target image to be segmented
  • Figure 6 is an enhanced catheter image
  • Figure 7 is a binarized image of the feature points of the catheter
  • Figure 8 is an enhanced target image
  • Figure 9 is a regional image of the location of the coronary artery
  • Figure 10 is the result image
  • Figure 11 is a cross-sectional screenshot
  • Figure 12 is a screenshot of the longitudinal section
  • Figure 13 shows two posture contrast images
  • the left picture of Fig. 14 is a graph of blood vessel length and blood vessel diameter
  • Figure 15 is a three-dimensional structure diagram of coronary arteries generated from Figure 14 combined with body position angle and coronary artery centerline;
  • Fig. 16 is a diagram showing the number of frames of a divided image
  • Figure 17 is a graph of coronary artery inlet pressure test
  • Figure 18 is the IMR test diagram
  • Figure 19 is a block diagram of a device for correcting blood flow velocity based on contrast images
  • FIG. 20 is another structural block diagram of a device for correcting blood flow velocity based on an angiographic image
  • Figure 21 is a block diagram of the three-dimensional modeling device
  • the dose of contrast agent used in most studies is 5-10ml.
  • the time for the coronary microcirculation to recover from hyperemia to baseline is 12-30s on average.
  • the surgeon will perform imaging from different postural angles for the detected blood vessels. Since the time to adjust the C-arm of the radiography machine to the specified angle is different each time, and the time to start the radiography is also different, the flow rate of each radiography will be affected by whether the previous radiography returns to the baseline state.
  • this application provides a method for correcting the blood flow speed based on the contrast image, including:
  • ⁇ t is divided into 4 situations that affect K, specifically:
  • This application provides a method for correcting blood flow velocity based on contrast images, obtaining a correction coefficient K according to the time difference ⁇ t; according to the correction coefficient K and blood flow velocity V h , obtaining the blood flow velocity V j in the resting state, which reduces Whether the last angiography returns to the baseline state will affect the angiography flow rate.
  • the method of S100 includes:
  • V h If the contrast agent transport time algorithm is used to obtain V h , then: obtain the number of coronary angiography image frames contained in the heartbeat cycle area, and obtain the blood vessel length through which the contrast agent flows in the heartbeat cycle area;
  • L represents the length of blood vessels through which the contrast agent flows in the heartbeat cycle area
  • N represents the number of coronary angiography image frames contained in the heartbeat cycle area
  • the average blood flow velocity is measured
  • the methods include: contrast agent traversal distance algorithm, Stewart-Hamilton algorithm, First-pass distribution analysis method, optical flow method or fluid continuity method.
  • the present application provides a method for correcting the maximum dilated blood flow velocity based on an angiographic image, including:
  • the present application provides a method for correcting coronary microcirculation vascular evaluation parameters based on angiographic images, including:
  • S001 Obtain the average value P a of the coronary artery inlet pressure in the heartbeat cycle area according to the angiographic image, the specific method is: real-time measurement of P a by the blood pressure acquisition device;
  • Static noise is noise that is static in time, such as ribs in the chest cavity.
  • Dynamic noise is the noise that changes in time, such as part of lung tissue and part of heart tissue, using mean filtering to remove part of dynamic noise;
  • the reference image shown in Figure 3 is subtracted from the target image shown in Figures 4 and 5 to extract the characteristic point O of the catheter; the image after denoising is enhanced; the enhanced image shown in Figure 6 is The catheter image is binarized to obtain a binarized image with a set of catheter feature points O as shown in FIG. 3;
  • denoise including: static noise and dynamic noise
  • use a multi-scale Hessian matrix to enhance the image after denoising
  • an embodiment of the present application uses a standard sweeping method for meshing to generate structural Three-dimensional hexahedral mesh; further, based on the reconstructed three-dimensional model of the coronary artery, this application may also use other methods (for example: segmentation method, hybrid method) for meshing to generate a structural three-dimensional hexahedral mesh;
  • the grid is divided into m points along the centerline of the coronary artery, the cross-section corresponding to each point of the coronary artery centerline is divided into n nodes, and ⁇ P i represents all
  • the average value of the pressure of all nodes on the cross section of the i-th point on the centerline of the coronary artery is the pressure drop ⁇ P from the entrance of the coronary artery to the distal end of the coronary artery stenosis;
  • the pressure drop ⁇ P i is calculated using the following formula:
  • P 1 represents the pressure value of the first node on the cross section of the i-th point in the three-dimensional structure grid
  • P 2 represents the pressure value of the second node on the cross section of the i-th point in the three-dimensional structure grid
  • P n represents the pressure value of the n-th node on the cross section of the i-th point
  • m and n are both positive integers
  • the pressure value of P n is calculated by the Navier-Stokes equation
  • the IMR value obtained by the maximum expansion blood flow velocity V max is more accurate, which reduces the influence of the last imaging time and the bolus pressure during the bolus injection of the contrast agent on the accuracy of the IMR value calculation.
  • the present application provides a device for correcting blood flow velocity based on contrast images, including: a first blood flow velocity unit 100, a time difference unit 200, a correction coefficient unit 400, and a second blood flow velocity unit 500;
  • a blood flow velocity unit 100 is connected to the second blood flow velocity unit 500, and the correction coefficient unit 400 is respectively connected to the time difference unit 200 and the second blood flow velocity unit 500;
  • the first blood flow velocity unit 100 is used to obtain The average blood flow velocity V h from the entrance of the coronary artery to the distal end of the coronary stenosis;
  • the time difference unit 200 is used to obtain the difference ⁇ t between the start times of two adjacent boluses of contrast agent;
  • the correction coefficient unit 400 is used to receive the transmission of the time difference unit 200
  • the second blood flow velocity unit 500 is used to receive the average blood flow velocity V h sent by the first blood flow velocity unit 100, and the correction coefficient K sent by the correction coefficient unit 400, according to the correction coefficient K, blood flow velocity V h , obtain resting
  • an embodiment of the present application further includes: a three-dimensional modeling device 600 connected to the first blood flow velocity unit 100.
  • the three-dimensional modeling device is used to read coronary angiography images and select coronary angiography In a heartbeat cycle area of the image, measure the length L of the blood vessel in the heartbeat cycle area, perform three-dimensional modeling, and obtain the three-dimensional structure of the coronary artery.
  • the three-dimensional modeling device 600 includes an image reading module 610, a segmentation module 620, a blood vessel length measurement module 630, and a three-dimensional modeling module 640.
  • the blood vessel length measurement module 630 and the three-dimensional modeling module 640 are connected.
  • the blood vessel length measurement module 630 is connected to the first blood flow velocity unit 100; the image reading module 610 is used to read the angiographic image; the segmentation module 620 is used to select the coronary arteries A heartbeat cycle area of the contrast image; the blood vessel length measurement module 630 is used to measure the length L of the blood vessel in the heartbeat cycle area, and transmit the blood vessel length L to the first blood flow velocity unit 10; the three-dimensional modeling module 640 is used to The coronary angiography image selected by the segmentation module 620 performs three-dimensional modeling to obtain the three-dimensional structure of the coronary artery.
  • the present application provides a device for correcting the maximum dilated blood flow velocity based on an angiographic image, including: the device for correcting the blood flow velocity based on the angiographic image in Embodiment 6 and the above-mentioned device for correcting the blood flow based on the angiographic image.
  • it further includes: a coronary artery microcirculation blood vessel assessment parameter measurement device connected to the third blood flow velocity unit 400, and a pressure drop connected to the coronary artery microcirculation blood vessel assessment parameter measurement device Measurement module.
  • the coronary angiography images of two positions taken by a patient As shown in Figure 13, the coronary angiography images of two positions taken by a patient; the position angle of the left picture is right anterior oblique RAO: 25° and head position CRA: 23°; the right picture of the posture angle is right anterior oblique RAO : 3° and head position CRA: 30°;
  • the blood vessel length L value of the three-dimensional structure of the coronary artery 120mm; the generated three-dimensional structure of the coronary artery is shown in Fig. 15;
  • the present application provides a coronary artery analysis system, including: a base body, a blood pressure acquisition device all arranged on the base body and the above-mentioned device for correcting the maximum expansion blood flow velocity based on an angiographic image, a pressure drop measurement module, and a blood pressure acquisition device ,
  • the devices for correcting the maximum expansion blood flow velocity based on the angiographic image are all connected with the coronary microcirculation blood vessel evaluation parameter measurement device.
  • the present application provides a computer storage medium, and when a computer program is executed by a processor, the above-mentioned method for correcting blood flow velocity in a resting state based on an angiographic image is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or a combination thereof.
  • a data processor such as a computing platform for executing multiple instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider to pass Internet connection.
  • each block of the flowcharts and/or block diagrams and combinations of blocks in the flowcharts and/or block diagrams can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices to produce a machine that makes these computer program instructions when executed by the processors of the computer or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be performed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device, or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device, or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Cardiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种基于造影图像间隔时间修正血流速度的方法及装置,其中方法包括:在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h(S100);获取相邻两次推注造影剂时的开始时间之差Δt(S200);根据时间差,获得修正系数K(S300);根据修正系数K、血流速度V h,获得静息态下血流速度V j(S400),装置为执行上述方法的设备。本申请根据修正系数K、血流速度V h,获得静息态下血流速度V j,降低了现有技术中上次造影是否恢复到基线状态对造影流速产生的影响。

Description

基于造影图像间隔时间修正血流速度的方法及装置 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种基于造影图像间隔时间修正血流速度的方法、装置冠状动脉分析系统及计算机存储介质。
背景技术
冠状动脉微循环功能异常对于心肌缺血的影响逐渐得到关注,冠脉系统由心外膜冠脉以及微循环组成。
一般来说,心外膜冠脉狭窄程度大于等于50%可导致心肌供血不足,临床诊断为冠心病。但是,临床研究显示,冠脉微循环异常也有可能导致心肌供血不足。
冠脉微循环是指微动脉和微静脉之间的血液循环,是血液与组织细胞进行物质交换的场所。研究表明尽管患者经皮冠状动脉介入治疗术成功后冠脉血流达TIMI3级,但仍有近30%的病人出现微血管功能异常,导致预后不佳。因此,随着研究的不断深入,人们逐渐认识到冠脉微血管功能异常是许多心脏疾病病理生理的一个重要机制,有必要准确评估冠脉微循环的功能状态。
冠脉微循环阻力指数(index of microcirculatory resistance IMR)是评估冠脉微循环功能状况的指标。
造影剂本身也对血管有扩张作用,早在1959年,研究人员就发现给狗冠脉内注射造影剂后,冠脉血流量将增加60%,提示造影剂可以诱发冠脉微循环的部分充血。1985年有研究发现,在有冠脉临界病变的患者冠脉内注射76%的泛影葡胺可明显增加跨病变压差;1995年,研究者进一步确定冠脉内注射8ml碘克沙醇270可以获得最大血流量的59%,而冠脉内注射腺苷200ug后也仅得到最大血流量的94%;到了2003年,基本明确了造影剂的微循环充血作用,但略弱于其它经典血管扩张剂的充血作用。后续研究发现造影剂的渗透压作用可促发血管内皮细胞钾离子通道开放,进而引起冠脉微循环的扩张。
基于造影剂的这些药理作用,临床专家探讨以造影剂代替腺苷诱导微循环充血,具体操作类似于腺苷等冠脉内途径给药过程。
目前多数研究采用的造影剂剂量为5~10ml。注射造影剂后冠脉微循环由充血状态恢复至基线状态的时间平均为12-30s。进行冠脉检查时,术者会针对检测血管从不同的体位角度进行造影。由于每次调节造影机的C臂到规定的角度的时间不同,以及开始造影的时间也有所不同,导致每次造影流速会受上次造影是否恢复到基线状态的影响。
发明内容
本发明提供了一种基于造影图像修正血流速度和微循环参数的方法及装置,以降低现有技术中上次造影是否恢复到基线状态对造影流速产生的影响的问题。
为实现上述目的,第一方面,本申请提供了一种基于造影图像修正静息态下血流速度的方法,包括:
在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h
获取相邻两次推注造影剂时的开始时间之差Δt;
根据时间差Δt,获得修正系数K;
根据所述修正系数K、所述血流速度V h,获得静息态下血流速度V j
可选地,上述的基于造影图像修正血流速度的方法,所述根据所述修正系数K、所述血流速度V h, 获得静息态下血流速度V j的方法包括:
根据公式V j=V h/K,获得静息态下血流速度V j
可选地,上述的基于造影图像修正血流速度的方法,所述根据时间差Δt,获得修正系数K的方法包括:;
如果Δt≥30s,则K=1;
如果20s≤Δt<30s,则1<K≤1.5;
如果10s<Δt<20s,则1.5<K<2.0;
如果Δt≤10s,则K=2。
可选地,上述的基于造影图像修正静息态下血流速度的方法,所述在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h的方法包括:
获取所述心跳周期区域内包含的冠状动脉造影图像帧数;
Figure PCTCN2019120328-appb-000001
其中,L表示心跳周期区域内造影剂流过的血管长度,N表示心跳周期区域包含的冠状动脉造影图像帧数,fps表示画面每秒传输帧数。
可选地,上述的基于造影图像修正静息态下血流速度的方法,L的取值范围为50~150mm;或L=100mm。
可选地,上述的基于造影图像修正静息态下血流速度的方法,测量所述平均血流速度V h的方法包括:造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法。
第二方面,本申请提供了一种基于造影图像修正最大扩张血流速度的方法,包括:
上述的基于造影图像修正静息态下血流速度的方法;
根据静息态下血流速度V j获取最大扩张血流速度。
可选地,上述的基于造影图像修正最大扩张血流速度的方法,所述根据静息态下血流速度V j获取最大扩张血流速度的方法包括:
根据公式Vmax=aV j+b;
其中,V max表示最大扩张血流速度,a表示取值范围为1~3的常数、b表示取值范围为50~300的常数。
第三方面,本申请提供了一种基于造影图像修正冠状动脉微循环血管评定参数的方法,包括:
根据造影图像,获取心跳周期区域内的冠脉入口压力的平均值P a
获取冠脉入口到冠脉狭窄远端的压力降ΔP;
根据上述的基于造影图像修正静息态下血流速度的方法获得的最大扩张血流速度V max,以及ΔP、P a获得修正后的冠状动脉微循环血管评定参数。
第四方面,本申请提供了一种基于造影图像修正血流速度的装置,用于上述的基于造影图像修正静息态下血流速度的方法,包括:第一血流速度单元、时间差单元、修正系数单元和第二血流速度单元;所述第一血流速度单元与所述第二血流速度单元连接,所述修正系数单元分别与所述时间差单元所述第 二血流速度单元连接;
所述第一血流速度单元,用于在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h
所述时间差单元,用于获取相邻两次推注造影剂时的开始时间之差Δt;
所述修正系数单元,用于接收所述时间差单元传送的时间差Δt,获得修正系数K;
所述第二血流速度单元,用于接收所述第一血流速度单元发送的造影态下的平均血流速度V h,以及接收所述修正系数单元发送的修正系数K,根据所述修正系数K、所述血流速度V h,获得静息态下血流速度V j
第五方面,本申请提供了一种基于造影图像修正最大扩张血流速度的装置,用于上述的基于造影图像修正最大扩张血流速度的方法,包括:上述的基于造影图像修正血流速度的装置,以及与上述的基于造影图像修正血流速度的装置连接的第三血流速度单元;
所述第三血流速度单元,用于根据静息态下血流速度V j获取最大扩张血流速度。
第六方面,本申请提供了一种冠状动脉分析系统,包括:基体,以及均设置于所述基体上的血压采集装置和上述的基于造影图像修正最大扩张血流速度的装置。
第七方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于造影图像修正静息态下血流速度的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了基于造影图像修正血流速度的方法,根据时间差Δt,获得修正系数K;根据修正系数K、血流速度V h,获得静息态下血流速度V j,降低了现有技术中上次造影是否恢复到基线状态对造影流速产生的影响。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的基于造影图像修正血流速度的方法的实施例1的流程图;
图2为本申请的基于造影图像修正冠状动脉微循环血管评定参数的方法的流程图;
图3为参考图像;
图4为待分割的一目标图像;
图5为待分割的另一目标图像;
图6为增强后的导管图像;
图7为导管特征点的二值化图像;
图8为增强后的目标图像;
图9为冠状动脉所处位置的区域图像;
图10为结果图像;
图11为横切面截图;
图12为纵切面截图;
图13为两个体位造影图像;
图14的左图为血管长度与血管直径的曲线图;
图15为由图14结合体位角度以及冠脉中心线生成的冠状动脉三维结构图;
图16为分割图像的帧数个数图;
图17为冠脉入口压力测试图;
图18为IMR测试图;
图19为基于造影图像修正血流速度的装置的结构框图;
图20为基于造影图像修正血流速度的装置的另一结构框图;
图21为三维建模装置的结构框图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些习知惯用的结构与组件在图式中将以简单的示意的方式绘示之。
目前多数研究采用的造影剂剂量为5~10ml。注射造影剂后冠脉微循环由充血状态恢复至基线状态的时间平均为12-30s。进行冠脉检查时,术者会针对检测血管从不同的体位角度进行造影。由于每次调节造影机的C臂到规定的角度的时间不同,以及开始造影的时间也有所不同,导致每次造影流速会受上次造影是否恢复到基线状态的影响。
实施例1:
为了解决每次造影流速会受上次造影是否恢复到基线状态的影响的问题,如图1所示,本申请提供了一种基于造影图像修正血流速度的方法,包括:
S100,在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h
S200,获取相邻两次推注造影剂时的开始时间之差Δt;
S300,根据时间差Δt获得修正系数K;
S400,根据修正系数K、血流速度V h,获得静息态下血流速度V j,具体公式为V j=V h/K。
本申请的一个实施例中,Δt分为4种情况对K产生影响,具体为:
(1)如果Δt≥30s,则K=1;
(2)如果20s≤Δt<30s,则1<K≤1.5;
(3)如果10s<Δt<20s,则1.5<K<2.0;
(4)如果Δt≤10s,则K=2。
本申请提供了基于造影图像修正血流速度的方法,根据时间差Δt获得修正系数K;根据修正系数K、血流速度V h,获得静息态下血流速度V j,降低了现有技术中上次造影是否恢复到基线状态对造影流速产生的影响。
本申请的一个实施例中,S100的方法包括:
如果采用造影剂运输时间算法获取V h,则:获取心跳周期区域内包含的冠状动脉造影图像帧数,以及获取心跳周期区域内造影剂流过的血管长度;
根据公式
Figure PCTCN2019120328-appb-000002
计算V h
其中,L表示心跳周期区域内造影剂流过的血管长度;N表示心跳周期区域包含的冠状动脉造影图 像帧数,fps表示画面每秒传输帧数,优选地,fps=15帧/秒;
本申请的一个实施例中,测量平均血流速度
Figure PCTCN2019120328-appb-000003
的方法包括:造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法。
本申请的一个实施例中,L的取值范围为50~150mm;或L=100mm。
实施例2:
如图2所示,本申请提供了一种基于造影图像修正最大扩张血流速度的方法,包括:
上述的基于造影图像修正静息态下血流速度的方法;
S500,根据静息态下血流速度V j获取最大扩张血流速度,包括:根据公式V max=aV j+b;其中,V max表示最大扩张血流速度,a表示取值范围为1~3的常数、b表示取值范围为50~300的常数。
实施例2:
如图2所示,本申请提供了一种基于造影图像修正冠状动脉微循环血管评定参数的方法,包括:
S001,根据造影图像,获取心跳周期区域内的冠脉入口压力的平均值P a,具体方法为:通过血压采集装置实时测量P a
S002,获取冠脉入口到冠脉狭窄远端的压力降ΔP,包括:
A,提取至少两个体位的冠脉造影图像;优选地,两个体位的拍摄角度>30°;
B,对冠脉造影图像去噪,包括:静态噪声和动态噪声;
静态噪声为在时间中静止不变的噪声,如胸腔中的肋骨。
动态噪声为在时间中变化的噪声,如部分肺部组织、部分心脏组织,采用均值滤波,除去部分动态噪声;
以及包括:通过灰度直方图分析,利用阈值进一步去噪。
C,去除冠脉造影图像的干扰血管,得到如图10所示的结果图像,包括:
将有导管出现的第一帧分割图像定义为如图3所示的参考图像,将有完整冠状动脉出现的第k帧分割图像定义为如图4和图5所示的目标图像,k为大于1的正整数;
将如图3所示的参考图像减去如图4和图5所示的目标图像,提取导管的特征点O;对去噪后的图像进行图像增强;对如图6所示的增强后的导管图像进行二值化处理,得到如图3所示的具有一组导管特征点O的二值化图像;
将如图4和图5所示的目标图像减去如图3所示的参考图像;去噪,包括:静态噪声和动态噪声;采用多尺度海森矩阵对去噪后的图像进行图像增强;根据如图8所示的增强后的目标图像中各区域与导管特征点的位置关系,确定并提取冠状动脉的区域,即为如图9所示的冠状动脉所处位置的区域图像;
对如图9所示的冠状动脉所处位置的区域图像进行二值化处理,获得二值化冠状动脉图像;
对二值化冠状动脉图像进行形态学运算,以导管的特征点作为种子点,二值化冠状动脉图像依据种子点所处位置进行动态区域生长,获得如图10所示的结果图像;
D,沿着冠状动脉的延伸方向,提取每幅结果图像的冠脉中心线和直径;
E,将每根冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维结构,包括:获取每幅冠脉造影图像的体位拍摄角度;将每根冠脉中心线结合体位拍摄角度以及血管长度L值和血管直径D值投射于三维空间上,生成冠状动脉三维结构;
F,对冠状动脉三维结构进行网格划分,如图11和图12所示,基于重构的冠状动脉三维结构,本申请的一个实施例采用标准的扫掠法进行网格划分,生成结构性三维六面体网格;进一步地,基于重构的冠脉三维模型,本申请也可以采用其它方法(例如:切分法、混合法)进行网格划分,生成结构性三维六面体网格;
G,以冠脉中心线作为纵轴,网格沿所述冠脉中心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值,即为冠脉入口到冠脉狭窄远端的压力降ΔP;
所述压力降ΔP i采用如下公式计算:
Figure PCTCN2019120328-appb-000004
P 1表示三维结构网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维结构网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;P n的压力值采用纳维-斯托克斯方程计算得出;
S003,根据实施例1~3最大扩张血流速度V max,以及ΔP、P a获得修正后的冠状动脉微循环血管评定参数。
如果冠状动脉微循环血管评定参数为微循环阻力指数IMR,则IMR=(P a-ΔP)×L/V max
本申请通过最大扩张血流速度V max获得的IMR值更加准确,降低了上次造影时间以及推注造影剂时的推注压力对IMR值计算准确性的影响。
实施例6:
如图19所示,本申请提供了一种基于造影图像修正血流速度的装置,包括:第一血流速度单元100、时间差单元200、修正系数单元400和第二血流速度单元500;第一血流速度单元100与第二血流速度单元500连接,修正系数单元400分别与时间差单元200、第二血流速度单元500连接;第一血流速度单元100用于在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h;时间差单元200用于获取相邻两次推注造影剂时的开始时间之差Δt;修正系数单元400用于接收时间差单元200传送的时间差Δt,获得修正系数K;第二血流速度单元500用于接收第一血流速度单元100发送的平均血流速度V h,以及接收修正系数单元400发送的修正系数K,根据修正系数K、血流速度V h,获得静息态血流速度V j
如图20所示,本申请的一个实施例中,还包括:与第一血流速度单元100连接的三维建模装置600,三维建模装置用于读取冠状动脉造影图像,选取冠状动脉造影图像的一个心跳周期区域,测量心跳周期区域内的血管的长度L,进行三维建模,获得冠状动脉三维结构。
如图21所示,本申请的一个实施例中,三维建模装置600包括图像读取模块610、分割模块620、血管长度测量模块630和三维建模模块640,分割模块620与图像读取模块610、血管长度测量模块630、三维建模模块640连接,血管长度测量模块630与第一血流速度单元100连接;图像读取模块610用于读取造影图像;分割模块620用于选取冠状动脉造影图像的一个心跳周期区域;血管长度测量模块630用于测量心跳周期区域内的血管的长度L,并将血管的长度L传递给第一血流速度单元10;三维建模模块640用于根据分割模块620选取的冠脉造影图像进行三维建模,获得冠状动脉三维结构。
实施例7:
如图21所示,本申请提供了一种基于造影图像修正最大扩张血流速度的装置,包括:实施例6中的基于造影图像修正血流速度的装置,以及与上述的基于造影图像修正血流速度的装置连接的第三血流速度单元700;第三血流速度单元400,用于根据静息态下血流速度V j获取最大扩张血流速度V max
本申请的一个实施例中,还包括:与所述第三血流速度单元400连接的冠状动脉微循环血管评定参数测量装置,以及与所述冠状动脉微循环血管评定参数测量装置连接的压力降测量模块。
下面结合具体样例对本申请进行具体阐述:
如图13所示,为一位患者拍摄的两个体位的冠脉造影图像;左图的体位角度为右前斜RAO:25°和头位CRA:23°;右图的体位角度为右前斜RAO:3°和头位CRA:30°;
如图14所示,冠状动脉三维结构的血管长度L值=120mm;生成的冠状动脉三维结构如图15所示;
血管直径D值=2~4mm;
如图16所示,
Figure PCTCN2019120328-appb-000005
由于相邻两次推注造影剂的开始时间差为20s≤Δt<30s,因此,K取值1.1,
因此,V j=300/1.1=272.7;
V max=272.7+295=567.7
如图17所示,P a=100mmHg;
如图18所示,ΔP=7;因此IMR=(100-7)×120/567.7=19.66;如果不修正,则计算得到的IMR=(100-7)×120/(300+295)=18.75;
因此可知,通过系数K修正前与修正后的IMR的测量结果之差为0.91,误差很大,因此采用系数对血流速度进行修正,获得更加准确的微循环血管评价参数是必要的,提高了测量结果的准确性。
本申请提供了一种冠状动脉分析系统,包括:基体,以及均设置于所述基体上的血压采集装置和上述的基于造影图像修正最大扩张血流速度的装置,压力降测量模块、血压采集装置、基于造影图像修正最大扩张血流速度的装置均与冠状动脉微循环血管评定参数测量装置连接。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于造影图像修正静息态下血流速度的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地, 也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理 解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,包括:
    在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h
    获取相邻两次推注造影剂时的开始时间之差Δt;
    根据所述时间差Δt,获得修正系数K;
    根据所述修正系数K、所述血流速度V h进行修正,获得静息态下血流速度V j
  2. 根据权利要求1所述的基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,所述根据所述修正系数K、所述血流速度V h进行修正,获得静息态下血流速度V j的方法包括:
    根据公式V j=V h/K,获得静息态下血流速度V j
  3. 根据权利要求1所述的基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,所述根据时间差Δt,获得修正系数K的方法包括:
    如果Δt≥30s,则K=1;
    如果20s≤Δt<30s,则1<K≤1.5;
    如果10s<Δt<20s,则1.5<K<2.0;
    如果Δt≤10s,则K=2。
  4. 根据权利要求1所述的基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,所述在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h的方法包括:
    获取心跳周期区域内包含的冠状动脉造影图像帧数;
    Figure PCTCN2019120328-appb-100001
    其中,L表示心跳周期区域内造影剂流过的血管长度,N表示心跳周期区域包含的冠状动脉造影图像帧数,fps表示画面每秒传输帧数。
  5. 根据权利要求4所述的基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,L的取值范围为50~150mm;或L=100mm。
  6. 根据权利要求1所述的基于造影图像间隔时间修正静息态下血流速度的方法,其特征在于,测量所述平均血流速度V h的方法包括:造影剂遍历距离算法、Stewart—Hamilton算法、First—pass分布分析法、光流法或者流体连续法。
  7. 一种基于造影图像修正最大扩张血流速度的方法,其特征在于,包括:
    权利要求1~6任一项所述的基于造影图像间隔时间修正静息态下血流速度的方法;
    根据静息态下血流速度V j获取最大扩张血流速度。
  8. 根据权利要求7所述的基于造影图像修正最大扩张血流速度的方法,其特征在于,所述根据静息态下血流速度V j获取最大扩张血流速度的方法包括:
    根据公式V max=aV j+b;
    其中,V max表示最大扩张血流速度,a表示取值范围为1~3的常数、b表示取值范围为50~300的常数。
  9. 一种基于造影图像修正冠状动脉微循环血管评定参数的方法,其特征在于,包括:
    根据造影图像,获取心跳周期区域内的冠脉入口压力的平均值P a
    获取冠脉入口到冠脉狭窄远端的压力降ΔP;
    根据权利要求1~6任一项所述的基于造影图像间隔时间修正静息态下血流速度的方法,以及ΔP、P a获得修正后的冠状动脉微循环血管评定参数。
  10. 一种基于造影图像间隔时间修正静息态下血流速度的装置,用于权利要求1~6任一项所述的基于造影图像修正静息态下血流速度的方法,其特征在于,包括:第一血流速度单元、时间差单元、修正系数单元和第二血流速度单元;所述第一血流速度单元与所述第二血流速度单元连接,所述修正系数单元分别与所述时间差单元、所述第二血流速度单元连接;
    所述第一血流速度单元,用于在造影态下,获取冠脉入口至冠脉狭窄远端的平均血流速度V h
    所述时间差单元,用于获取相邻两次推注造影剂时的开始时间之差Δt;
    所述修正系数单元,用于接收所述时间差单元传送的时间差Δt,获得修正系数K;
    所述第二血流速度单元,用于接收所述第一血流速度单元发送的造影态下的平均血流速度V h,以及接收所述修正系数单元发送的修正系数K,根据所述修正系数K、所述血流速度V h,获得静息态下血流速度V j
  11. 一种基于造影图像间隔时间修正静息态下血流速度的装置,用于权利要求7或8任一项所述的基于造影图像修正最大扩张血流速度的方法,其特征在于,包括:权利要求10所述的基于造影图像修正血流速度的装置,以及与所述基于造影图像修正血流速度的装置连接的第三血流速度单元;
    所述第三血流速度单元,用于根据静息态下血流速度V j获取最大扩张血流速度。
  12. 一种冠状动脉分析系统,其特征在于,包括:基体,以及均设置于所述基体上的血压采集装置和权利要求11所述的基于造影图像修正最大扩张血流速度的装置。
  13. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~6任一项所述的基于造影图像间隔时间修正静息态下血流速度的方法。
PCT/CN2019/120328 2019-07-31 2019-11-22 基于造影图像间隔时间修正血流速度的方法及装置 WO2021017327A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19939547.6A EP4005472B1 (en) 2019-07-31 2019-11-22 Method and apparatus for correcting blood flow velocity on the basis of interval time between angiographic images
JP2022505584A JP7260218B2 (ja) 2019-07-31 2019-11-22 造影画像間隔時間に基づいて血流速度を補正する方法及び装置
US17/587,264 US20220151579A1 (en) 2019-07-31 2022-01-28 Method and apparatus for correcting blood flow velocity on the basis of interval time between angiogram images

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910704330.1 2019-07-31
CN201910704330.1A CN110384494A (zh) 2018-09-19 2019-07-31 测量微循环阻力指数的方法
CN201911138512.3 2019-11-20
CN201911138512.3A CN112155580B (zh) 2019-11-20 2019-11-20 基于造影图像修正血流速度和微循环参数的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/587,264 Continuation US20220151579A1 (en) 2019-07-31 2022-01-28 Method and apparatus for correcting blood flow velocity on the basis of interval time between angiogram images

Publications (1)

Publication Number Publication Date
WO2021017327A1 true WO2021017327A1 (zh) 2021-02-04

Family

ID=90971338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120328 WO2021017327A1 (zh) 2019-07-31 2019-11-22 基于造影图像间隔时间修正血流速度的方法及装置

Country Status (4)

Country Link
US (1) US20220151579A1 (zh)
EP (1) EP4005472B1 (zh)
JP (1) JP7260218B2 (zh)
WO (1) WO2021017327A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172734A1 (en) * 2011-12-30 2013-07-04 General Electric Company Flow measurement with time-resolved data
CN103839281A (zh) * 2014-03-27 2014-06-04 武汉大学 一种利用造影微泡测量血流速度的方法
CN105559810A (zh) * 2015-12-10 2016-05-11 上海交通大学 血管单位时间血流量与血流速度的计算方法
CN108186038A (zh) * 2018-02-11 2018-06-22 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
US20180330507A1 (en) * 2017-05-15 2018-11-15 Pie Medical Imaging B.V. Method and Apparatus for Determining Blood Velocity in X-Ray Angiography Images
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660607B2 (ja) * 2010-10-28 2015-01-28 学校法人藤田学園 画像処理装置及びプログラム
WO2015041312A1 (ja) * 2013-09-20 2015-03-26 国立大学法人旭川医科大学 血管内血流動態の画像処理方法及びシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172734A1 (en) * 2011-12-30 2013-07-04 General Electric Company Flow measurement with time-resolved data
CN103839281A (zh) * 2014-03-27 2014-06-04 武汉大学 一种利用造影微泡测量血流速度的方法
CN105559810A (zh) * 2015-12-10 2016-05-11 上海交通大学 血管单位时间血流量与血流速度的计算方法
US20180330507A1 (en) * 2017-05-15 2018-11-15 Pie Medical Imaging B.V. Method and Apparatus for Determining Blood Velocity in X-Ray Angiography Images
CN108186038A (zh) * 2018-02-11 2018-06-22 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4005472A4 *

Also Published As

Publication number Publication date
JP7260218B2 (ja) 2023-04-18
US20220151579A1 (en) 2022-05-19
EP4005472B1 (en) 2024-05-22
EP4005472A4 (en) 2023-08-16
EP4005472A1 (en) 2022-06-01
JP2022544052A (ja) 2022-10-17

Similar Documents

Publication Publication Date Title
US10395774B2 (en) Vascular flow assessment
JP6918912B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP6522175B2 (ja) 血管形状及び生理学から血流特性を推定するシステム及びその作動方法
US20240126958A1 (en) Method and apparatus for quantitative flow analysis
JP6466992B2 (ja) 血流特性のモデリングにおける感度解析方法及びシステム
Coenen et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm
JP6661613B2 (ja) 心筋ブリッジ及び患者に及ぼす影響を自動的に判定するためのシステム及び方法
Zhang et al. Simplified models of non-invasive fractional flow reserve based on CT images
CN112543618B (zh) 用于进行定量血液动力学流量分析的方法和装置
WO2020057324A1 (zh) 测量微循环阻力指数的系统以及冠脉分析系统
JP6484760B2 (ja) 非侵襲的血流予備量比(ffr)に対する側副血流モデル化
JP2016533815A (ja) 患者に特異的な解剖学的データからパーソナライズされた血管移植を特定するためのシステム及び方法
JP7303260B2 (ja) 動脈網における流量および圧力勾配を患者特定コンピュータ断層撮影アルゴリズムに基づくコントラスト分布から判断するための方法
JP6362851B2 (ja) 血管解析装置、血管解析プログラム、及び血管解析装置の作動方法
WO2020057323A2 (zh) 测量微循环阻力指数的方法
CN112155580B (zh) 基于造影图像修正血流速度和微循环参数的方法及装置
Kakouros et al. Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
Liu et al. Physiologically personalized coronary blood flow model to improve the estimation of noninvasive fractional flow reserve
JP2024040317A (ja) プロセッサ装置の作動方法
WO2021087967A1 (zh) 基于生理参数获取血管评定参数的方法、装置及存储介质
CN114052764A (zh) 获取血流储备分数的方法、装置、系统和计算机存储介质
WO2021017327A1 (zh) 基于造影图像间隔时间修正血流速度的方法及装置
JP2016156644A (ja) 部分冠動脈血流予備能を予測する指標を算出する核医学検査方法
WO2021046990A1 (zh) 基于影像和压力传感器计算微循环指标的方法装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019939547

Country of ref document: EP

Effective date: 20220228