WO2021046990A1 - 基于影像和压力传感器计算微循环指标的方法装置及系统 - Google Patents

基于影像和压力传感器计算微循环指标的方法装置及系统 Download PDF

Info

Publication number
WO2021046990A1
WO2021046990A1 PCT/CN2019/115072 CN2019115072W WO2021046990A1 WO 2021046990 A1 WO2021046990 A1 WO 2021046990A1 CN 2019115072 W CN2019115072 W CN 2019115072W WO 2021046990 A1 WO2021046990 A1 WO 2021046990A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronary artery
image
microcirculation
coronary
blood vessel
Prior art date
Application number
PCT/CN2019/115072
Other languages
English (en)
French (fr)
Inventor
刘广志
王之元
戴威
陈琳
霍勇
龚艳君
李建平
易铁慈
郑博
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811093192.XA external-priority patent/CN109363651A/zh
Priority claimed from CN201910206541.2A external-priority patent/CN109770888A/zh
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Priority to JP2020573149A priority Critical patent/JP7093584B2/ja
Priority to EP19938107.0A priority patent/EP4029438A4/en
Priority to US17/158,355 priority patent/US11779294B2/en
Publication of WO2021046990A1 publication Critical patent/WO2021046990A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30021Catheter; Guide wire
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to the technical field of coronary artery medicine, in particular to a method, a device, a coronary artery analysis system and a storage medium for calculating microcirculation indexes based on images and pressure sensors.
  • the heart is a high energy-consuming organ. In the resting state, the oxygen uptake of myocardial metabolism can reach 60% to 80% of the blood oxygen content. Therefore, under stress conditions such as exercise, it is difficult for the heart to meet the increased demand for myocardial hypoxia by increasing the oxygen uptake capacity of the tissue, and most of it is to increase the myocardial blood flow to ensure the oxygen demand for myocardial metabolism.
  • Myocardial microcirculation occupies 95% of the coronary circulation. It plays a role in regulating myocardial blood flow through various factors such as local metabolites, endothelium, neuroendocrine, and myogenic origin. Studies have shown that abnormal coronary microcirculation is an important predictor of poor long-term prognosis in patients with coronary heart disease.
  • Coronary artery microvascular function is accomplished by detecting the response of microvessels to vasodilators.
  • the changes in these two aspects of the guidelines also indicate the importance of coronary microvascular function tests.
  • the measurement index used for coronary microvascular function refers to the maximum expansion of coronary microvessels, that is, Coronary Flow Reserve (CFR).
  • the vasodilators used mainly include endothelium-independent vasodilators that act on vascular smooth muscle and their effects An endothelium-dependent vasodilator for vascular endothelial cells, including adenosine and acetylcholine.
  • the current examination methods mainly include the coronary artery blood flow reserve (FFR) and the microcirculation resistance index (IMR).
  • the IMR uses a soft pressure guide wire to simultaneously record the coronary pressure and temperature, and the two temperature sensors on the guide wire detect the temperature.
  • the changing time difference can know the average transit time (transit mean time, Tmn) of the saline from the guide catheter to the temperature sensor at the tip of the guide wire.
  • the IMR value can be obtained.
  • existing inspection methods simplifies the process, improves safety, and optimizes the results. Therefore, the recommended level of the guidelines has been improved compared with the previous ones.
  • non-invasive examinations including transthoracic Doppler ultrasound, radionuclide imaging technology, and nuclear magnetic resonance imaging technology, are valuable in the diagnosis of microcirculation diseases, but they all have varying degrees of deficiencies and fail to become microscopic. Recommended method for cyclic function evaluation.
  • Existing CFR measurement methods include: (1) Doppler guide wire measurement method, the Doppler guide wire is sent into the coronary artery (distal to the lesion) to directly measure the blood flow in the coronary artery at rest and maximum congestion. Speed, CFR can be calculated. (2) The thermodilution curve measurement method, through the dual-sensing guide wire with temperature-baroreceptor, can directly sense the changes in the temperature in the coronary arteries, and obtain the thermodilution curve in the coronary arteries at rest and maximum congestion, using blood flow The average conduction time replaces the coronary artery flow velocity to calculate the CFR.
  • the measurement of IMR and CFR by the pressure guide wire sensor has the following problems: (1) The Tmn measured by the pressure guide wire sensor too close to the coronary ostium is too small, resulting in a small IMR result. Too far and the measurement of Tmn will be too large, resulting in a large IMR result; (2) A total of 6 injections of normal saline are required in the resting state and the maximum hyperemic state. If the position of the pressure guide wire sensor moves, the result of each measurement will be different. Comparable, and the measurement process is cumbersome; (3) The Tmn that may be obtained for each injection of saline is quite different.
  • the distance of the pressure guidewire susceptor, the injection speed of saline, the injection volume, and the temperature of the saline will directly affect the measurement results, resulting in inaccurate results and cumbersome measurement process; and continuous injection of dilatation drugs for a long time will have a greater impact on the patient. Severe discomfort.
  • the present invention provides a method, device, coronary artery analysis system and computer storage medium for calculating microcirculation indicators based on images and pressure sensors to solve the problem of long-term continuous injection of dilatation drugs when CFR is measured by a pressure guide wire in the prior art. It has a greater impact on the patient, causing serious discomfort, and the pressure guide wire measurement process is cumbersome, and the measurement results are inaccurate.
  • the present application provides a method for calculating microcirculation indicators based on images and pressure sensors, including:
  • the contrast agent in the first body position contrast image is obtained from the entrance of the blood vessel segment outlet elapsed time T 1, to obtain a contrast agent in the second position T 2 from the blood vessel contrast image section outlet to the inlet of an elapsed time;
  • the times T 1 and T 2 are calculated according to the ratio of the number of frames of the partial area image divided into the heartbeat cycle area and the number of transmission frames per second.
  • the angle between the first body position and the second body position is greater than 30°.
  • the obtaining a three-dimensional coronary artery three-dimensional vascular model based on the first body position angiography image and the second body position angiography image includes:
  • the centerline and diameter of each coronary artery are projected on a three-dimensional space for three-dimensional modeling, and a three-dimensional coronary artery model is obtained.
  • the microcirculation indicators include: coronary artery microcirculation resistance index IMR;
  • the coronary artery microcirculation resistance index IMR is obtained.
  • the IMR (P a - ⁇ P i ) ⁇ T 2 .
  • the measuring the pressure drop ⁇ P i from the entrance of the coronary artery to the distal end of the coronary artery stenosis includes:
  • the three-dimensional coronary vascular model is meshed, with the centerline of the coronary artery as the longitudinal axis, the grid is divided into m points along the centerline of the coronary artery, and the cross-section corresponding to each point of the centerline of the coronary artery is divided Is n nodes, ⁇ P i represents the average value of the pressures of all nodes on the cross section of the i-th point on the coronary center line;
  • the pressure drop ⁇ P i is calculated using the following formula:
  • P 1 represents the pressure value of the first node on the cross section of the i-th point in the three-dimensional blood vessel model grid
  • P 2 represents the pressure value of the second node on the cross section of the i-th point in the three-dimensional blood vessel model grid Value
  • P n represents the pressure value of the nth node on the cross section of the i-th point
  • m and n are both positive integers
  • the pressure value of each node is calculated using the Navier-Stokes equation.
  • this application provides a device for obtaining microcirculation indicators based on images and pressure sensors, which is used in the above-mentioned method for calculating microcirculation indicators based on images and pressure sensors, including: pressure sensors, extraction of coronary angiography units, three-dimensional A modeling unit and a parameter measurement unit, the extraction coronary angiography unit is connected to a three-dimensional modeling unit, and the parameter measurement unit is connected to the pressure sensor and the three-dimensional modeling unit;
  • the pressure sensor is used to measure the coronary artery inlet pressure Pa;
  • the extracting coronary angiography unit is used to select the first posture angiography image and the second posture angiography image of the measuring blood vessel;
  • the three-dimensional modeling unit is configured to receive the first posture angiography image and the second posture angiography image delivered by the extracted coronary angiography unit, and obtain a coronary artery three-dimensional vascular model through three-dimensional modeling;
  • the parameter measurement unit is configured to receive the coronary artery three-dimensional blood vessel model transmitted by the three-dimensional modeling unit, obtain the time T 1 that the contrast agent in the first body position contrast image has passed from the entrance to the exit of the blood vessel segment, and obtain the second The elapsed time T 2 for the contrast agent in the body position contrast image from the entrance to the exit of the blood vessel segment; the microcirculation index is obtained according to T 1 and T 2.
  • the present application provides a coronary artery analysis system, including: the above-mentioned apparatus for obtaining microcirculation indicators based on images and pressure sensors.
  • the present application provides a computer storage medium.
  • the computer program is executed by a processor, the above-mentioned method for calculating microcirculation indicators based on the image and pressure sensor is realized.
  • This application provides a method for calculating microcirculation indicators based on images and pressure sensors.
  • the expansion drug is injected only during the imaging process.
  • the injection of the expansion drug can be stopped in a few seconds during the imaging process, reducing the injection time of the expansion drug, and then passing the coronary artery
  • CFR is measured according to T 1 and T 2 , no pressure guide wire is required, the measurement process is simple, and the test result is accurate, which overcomes the problem of using pressure guide wire to measure CFR.
  • FIG. 1 is a flowchart of an embodiment of a method for calculating microcirculation indicators based on an image and a pressure sensor according to the present application;
  • FIG. 2 is a flowchart of step S130 of this application.
  • FIG. 3 is a flowchart of another embodiment of the method for calculating microcirculation indicators based on images and pressure sensors of the present application;
  • FIG. 4 is a structural block diagram of an embodiment of the apparatus for obtaining microcirculation indicators based on image and pressure sensors according to the present application;
  • FIG. 5 is a schematic diagram of the structure of the pressure sensor of this application.
  • FIG. 6 is a structural block diagram of another embodiment of the apparatus for acquiring microcirculation indicators based on image and pressure sensors according to the present application;
  • FIG. 7 is a structural block diagram of an embodiment of the three-dimensional modeling unit of this application.
  • FIG. 8 is a structural block diagram of another embodiment of the three-dimensional modeling unit of this application.
  • FIG. 9 is a structural block diagram of the image processing module of this application.
  • Figure 10 is a reference image
  • Figure 11 is a target image to be segmented
  • Figure 12 is another target image to be segmented
  • Figure 13 is an enhanced catheter image
  • Figure 14 is a binarized image of the feature points of the catheter
  • Figure 15 is an enhanced target image
  • Figure 16 is an image of the area where the coronary arteries are located
  • Figure 17 is the result image
  • Figure 18 shows two posture contrast images
  • Figure 19 is a diagram of a three-dimensional coronary artery vascular model generated by combining the body position angle and the coronary centerline of Figure 18;
  • Pressure sensor 110 pressure sensing chip 1, peristaltic pump head 2, hose 3, luer connector 4, laser transmitter 5, display screen 6, one-way valve 7, extraction coronary angiography unit 120, three-dimensional modeling unit 130, Image reading module 131, segmentation module 132, blood vessel length measurement module 133, three-dimensional modeling module 134, image processing module 135, image denoising module 1350, catheter feature point extraction module 1351, coronary artery extraction module 1352, coronary artery centerline
  • this application provides a method for calculating microcirculation indicators based on images and pressure sensors, including:
  • This application provides a method for obtaining coronary blood flow reserve based on angiographic images.
  • the dilatation drug is injected only during the angiography.
  • the angiography process only takes a few seconds to stop the dilatation drug injection, reducing the injection time of the dilatation drug, and then passing the coronary artery
  • Perform three-dimensional modeling of the contrast image to obtain the time T 1 from the entrance to the exit of the blood vessel segment for the contrast agent in the first body position contrast image, and obtain the contrast agent in the second body position contrast image from the entrance to the exit of the blood vessel segment in the expanded state
  • the elapsed time T 2 ; CFR is measured according to T 1 and T 2 , no pressure guide wire is needed, the measurement process is simple, the test result is accurate, and the problem of using the pressure guide wire to measure CFR is overcome.
  • dilatation drugs includes: intravenous or intracoronary injection of dilatation drugs.
  • the infusion methods include: the dilatation drugs can be mixed with contrast media and injected into the vein or coronary artery, or they can be injected in divided intervals. All are protected by this application. Within the scope; as long as the drugs that can play an expansion effect, including adenosine, ATP, etc., are within the protection scope of this application.
  • the times T 1 and T 2 in S140 are calculated according to the ratio of the number of frames of the partial area image divided into the heartbeat cycle area and the number of transmitted frames per second; namely:
  • T N/fps
  • N represents the number of frames of the image of the partial area divided into the heartbeat cycle area
  • fps represents the number of frames played per second, in general, refers to the number of animation or video frames
  • T represents the image of a certain body position
  • the CFR is also measured through the three-dimensional coronary vascular model without relying on the pressure guide wire sensor, which overcomes the pressure guide wire sensor in the saline It is easy to move under the impact and the measurement is inaccurate, and when the measurement is based on the contrast image, there is no need to inject saline. Therefore, it avoids the influence of the injection speed, the injection volume, and the temperature of the saline on the CFR measurement results, and improves the measurement accuracy.
  • the angle between the first position and the second position is greater than 30°.
  • S130 includes:
  • Denoise the coronary angiography image including: static noise and dynamic noise;
  • the target image is subtracted from the reference image, and the characteristic point O of the catheter is extracted.
  • the specific method is: subtracting the target image from the reference image; denoising, including: static noise and dynamic noise; Image enhancement is performed on the denoised image; binarization is performed on the enhanced catheter image to obtain a binarized image with a set of catheter feature points O;
  • the reference image is subtracted from the target image to extract the regional image of the position of the coronary artery.
  • the specific method is: subtracting the reference image from the target image; denoising, including: static noise and dynamic noise Image enhancement is performed on the denoised image; according to the positional relationship between each region in the enhanced target image and the feature point of the catheter, the region of the coronary artery is determined and extracted, that is, the coronary artery is located Regional image of location;
  • the regional image uses the characteristic points of the catheter as seed points to dynamically grow to obtain the result image.
  • the specific method is: binarize the regional image of the position of the coronary artery to obtain a binary coronary Artery image; performing morphological operations on the binarized coronary artery image, using feature points of the catheter as seed points, and the binarized coronary artery image undergoes dynamic region growth according to the location of the seed point to obtain The result image;
  • S133 Project the centerline and diameter of each coronary artery on a three-dimensional space to perform three-dimensional modeling to obtain a three-dimensional coronary artery model.
  • the specific method is as follows:
  • the center line of each coronary artery is combined with the posture shooting angle to be projected on a three-dimensional space, and the projection is performed to generate a three-dimensional coronary artery model.
  • the microcirculation index includes: coronary artery microcirculation resistance index IMR, and the specific measurement method is:
  • S300 Select a heartbeat cycle area of the coronary artery three-dimensional blood vessel model, and measure the length L of the blood vessel in the heartbeat cycle area;
  • measuring the pressure drop ⁇ P i from the entrance of the coronary artery to the distal end of the coronary artery stenosis includes:
  • the coronary artery three-dimensional vascular model with the coronary artery centerline as the vertical axis, the grid is divided into m points along the coronary artery centerline, and the cross section corresponding to each point of the coronary artery centerline is divided into n nodes , ⁇ P i represents the average pressure of all nodes on the cross section of the i-th point on the coronary center line;
  • the pressure drop ⁇ P i is calculated using the following formula:
  • P 1 represents the pressure value of the first node on the cross section of the i-th point in the three-dimensional blood vessel model grid
  • P 2 represents the pressure value of the second node on the cross section of the i-th point in the three-dimensional blood vessel model grid Value
  • P n represents the pressure value of the nth node on the cross section of the i-th point
  • m and n are both positive integers
  • the pressure value of each node is calculated using the Navier-Stokes equation.
  • the present application provides a device for obtaining microcirculation indicators based on images and pressure sensors, which is used in the above-mentioned method for calculating microcirculation indicators based on images and pressure sensors, including: pressure sensor 110, extracting coronary angiography
  • the unit 120, the three-dimensional modeling unit 130 and the parameter measurement unit 140, the extraction coronary angiography unit 120 is connected to the three-dimensional modeling unit 130, and the parameter measurement unit 140 is connected to the pressure sensor 110 and the three-dimensional modeling unit 130;
  • the pressure sensor 110 is used for measurement Coronary entrance pressure Pa;
  • the extraction coronary angiography unit 120 is used to select the first body position angiography image and the second body position angiography image of the measurement blood vessel;
  • the three-dimensional modeling unit 130 is used to receive the first body that is transmitted by the extraction coronary angiography unit 120
  • the three-dimensional angiography image and the second angiography image are used for three-dimensional modeling to obtain a three-dimensional coronary artery vascular model;
  • the parameter measurement unit 140 includes: a T 1 measurement module, a T 2 measurement module, and a CFR measurement module, all of which are connected to the three-dimensional modeling unit 130, and the T 1 measurement module and T 2 measurement module are all connected to the CFR measurement module.
  • the pressure sensor 110 includes a pressure sensor chip 1, and also includes a peristaltic pump head 2.
  • the peristaltic pump head 2 includes a rotating wheel, and the rotating wheel is provided with a rotating shaft connected to an external motor.
  • the peristaltic pump head 2 is equipped with a hose 3, one end of the hose 3 is connected with the pressure sensing chip 1, and the other end is connected with the saline bag through an infusion tube.
  • One end of the pressure sensor is connected to the saline bag, and the other end is connected to the patient’s aorta through an external device.
  • the purpose of the pressure sensor is to connect to the patient’s aorta.
  • the middle is filled with saline to form a path with the aorta.
  • There is a baroreceptor chip inside the pressure sensor 1 The dynamic pressure of the aorta can be converted into analog signals, and the collected analog signals can be converted into digital models through the circuit inside the pressure sensor to obtain the coronary inlet pressure Pa of the aortic pressure.
  • the coronary inlet pressure Pa of this coronary artery is systolic pressure.
  • the average value of the sum of diastolic blood pressure and systolic blood pressure, diastolic blood pressure and coronary artery inlet pressure Pa are displayed on the display screen 6.
  • the connecting end of the hose 3 and the infusion tube is provided with a luer connector 4 and connected to the infusion tube; a one-way valve is connected between the hose 3 and the pressure sensing chip 1 7.
  • the allowable flow direction of the one-way valve 7 is from the saline bag to the pressure sensing chip 1;
  • the pressure sensor also includes a laser transmitter 5, and the laser transmitter 5 and the pressure sensing chip 1 are at the same level.
  • the laser transmitter 5 can emit a horizontal beam to irradiate the heart of the patient to ensure that the height of the laser transmitter 5 is at the same level as the heart.
  • the beam plays a role in assisting the alignment, making the alignment easier.
  • the barorecepting chip 1 is designed to be at the same level as the laser transmitter 5, so as to ensure that the barorecepting chip 1 is at the same level as the heart and can accurately measure the aortic pressure.
  • the three-dimensional modeling unit 130 includes an image reading module 131, a segmentation module 132, a blood vessel length measurement module 133, and a three-dimensional modeling module 134, the segmentation module 132 and the image reading module 131.
  • the blood vessel length measurement module 133 and the three-dimensional modeling module 134 are connected; the image reading module 131 is used to read the angiographic image; the segmentation module 132 is used to select a heartbeat cycle region of the coronary angiography image; the blood vessel length measurement module 133 is used to Measure the length L of the blood vessel in the heartbeat cycle area, and pass the length L of the blood vessel to the segmentation module 132; the three-dimensional modeling module 134 is used to perform three-dimensional modeling according to the coronary angiography image selected by the segmentation module 132 to obtain the three-dimensional coronary artery model.
  • the three-dimensional modeling unit 130 further includes: an image processing module 135, a coronary artery centerline extraction module 136, and a blood vessel diameter measurement module 137.
  • the image processing module 135 and the coronary artery centerline The extraction module 136 is connected, and the three-dimensional modeling module 134 is connected with the coronary artery centerline extraction module 136 and the blood vessel diameter measurement module 137.
  • the image processing module 135 is used to receive the coronary angiography images of at least two positions transmitted by the segmentation module 132, and remove the interfering blood vessels of the coronary angiography images to obtain the result image as shown in FIG.
  • the coronary artery centerline extraction module 136 uses To extract the coronary artery centerline of each result image as shown in FIG. 17 along the extension direction of the coronary arteries; the blood vessel diameter measuring module 137 is used to measure the blood vessel diameter D; the three-dimensional modeling module 134 is used to integrate each coronary artery The centerline and diameter are projected on the three-dimensional space for three-dimensional modeling, and a three-dimensional coronary artery model is obtained.
  • This application realizes the synthesis of a three-dimensional coronary artery vascular model based on coronary angiography images, which fills up the gap in the industry, and has a positive effect on the field of medical technology.
  • an image denoising module 1350 is provided inside the image processing module 135 to denoise the coronary angiography image, including static noise and dynamic noise.
  • the denoising module 1350 removes the interference factors in the coronary angiography image and improves the quality of image processing.
  • the image processing module 135 is internally provided with a catheter feature point extraction module 1351 and a coronary artery extraction module 1352, which are all connected to the coronary artery centerline extraction module 136, and the catheter feature point extraction module 1351 Connected to the coronary artery extraction module 1352 and the image denoising module 1350; the catheter feature point extraction module 1351 is used to define the first segmented image where the catheter appears as a reference image as shown in Figure 10, which will have a complete coronary artery.
  • the k-th frame segmented image is defined as the target image shown in Figure 11 and Figure 12, and k is a positive integer greater than 1.
  • the target image shown in Figures 11 and 12 is enhanced to obtain the target image shown in Figures 13 and 15.
  • the enhanced image shown in Fig. 10; the reference image shown in Fig. 10 is subtracted from the target image shown in Fig. 11 and Fig. 12 to extract the characteristic point O of the catheter shown in Fig. 14; the coronary artery extraction module 1352 is used for
  • the target image shown in Figure 11 and Figure 12 is subtracted from the reference image shown in Figure 10, and the positional relationship between each region and the catheter feature point in the enhanced target image shown in Figure 15 is determined and extracted
  • the area of the coronary artery is the image of the area where the coronary artery is located as shown in FIG. 16; the area image shown in FIG. 16 uses the characteristic points of the catheter as shown in FIG. Figure 17 shows the resulting image.
  • the image processing module 135 is also provided with a binarization processing module, which is used to perform binarization processing on the image to obtain a three-dimensional coronary artery vessel model.
  • FIG. 18 it is a coronary angiography image of two positions taken by a patient; the left picture is the angiography image with the right anterior oblique RAO: 25° and the head position CRA: 23°; the right picture is in the expanded state , And the body position angle is the contrast image with right anterior oblique RAO: 3° and head position CRA: 30°;
  • the blood vessel length L value of the coronary three-dimensional blood vessel model 120mm; the generated three-dimensional coronary blood vessel model is shown in Figure 19;
  • Comparative Example 1 and Example 1 are both the same coronary angiography image taken by the same patient;
  • the catheter Place the pressure guidewire sensor on the distal end of the patient's coronary artery (>5cm from the opening of the guiding catheter), and inject 3ml of saline into the blood vessel through the catheter. If the blood temperature is detected to return to the normal value, the catheter will be injected into the blood vessel again Inject 3ml of normal saline, repeat the above process 3 times, and then record T 1 , T 1 is 1.28s; pass the dilatation drug into the blood vessel to make the blood vessel reach and maintain the expansion state (make sure the pressure guide wire sensor before and after the dilatation drug is in the same Position), inject 3ml of saline into the blood vessel through the catheter.
  • Example 1 Comparative Example 1
  • the measurement results of Example 1 are accurate, and the example of the present application does not require a pressure guide wire, only needs to measure the coronary inlet pressure, and does not need to pass through the coronary artery.
  • the distal end of arterial vascular stenosis reduces the difficulty and risk of surgery; and the measurement of IMR is achieved through angiographic images, which makes up for the gap in the industry, and the operation is simpler.
  • the present application provides a coronary artery analysis system, including: the above-mentioned apparatus for obtaining microcirculation indicators based on images and pressure sensors.
  • the present application provides a computer storage medium.
  • a computer program is executed by a processor, the above-mentioned method for calculating microcirculation indicators based on an image and a pressure sensor is realized.
  • aspects of the present invention can be implemented as a system, a method, or a computer program product. Therefore, various aspects of the present invention can be specifically implemented in the following forms, namely: complete hardware implementation, complete software implementation (including firmware, resident software, microcode, etc.), or a combination of hardware and software implementations, Here can be collectively referred to as "circuit", "module” or "system”.
  • various aspects of the present invention may also be implemented in the form of a computer program product in one or more computer-readable media, and the computer-readable medium contains computer-readable program code.
  • the implementation of the method and/or system of the embodiments of the present invention may involve performing or completing selected tasks manually, automatically, or in a combination thereof.
  • a data processor such as a computing platform for executing a plurality of instructions.
  • the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile memory for storing instructions and/or data, for example, a magnetic hard disk and/or a Move the media.
  • a network connection is also provided.
  • a display and/or user input device such as a keyboard or mouse, is also provided.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media would include the following:
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including (but not limited to) wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • any combination of one or more programming languages can be used to write computer program codes for performing operations for various aspects of the present invention, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional process programming languages, such as "C" programming language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block of the flowchart and/or block diagram and the combination of each block in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, thereby producing a machine that makes these computer program instructions when executed by the processors of the computer or other programmable data processing devices , A device that implements the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams is produced.
  • These computer program instructions can also be stored in a computer-readable medium. These instructions make computers, other programmable data processing devices, or other devices work in a specific manner, so that the instructions stored in the computer-readable medium generate An article of manufacture that implements instructions for the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • Computer program instructions can also be loaded onto a computer (for example, a coronary artery analysis system) or other programmable data processing equipment to cause a series of operation steps to be executed on the computer, other programmable data processing equipment or other equipment to produce a computer-implemented process , Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.
  • a computer for example, a coronary artery analysis system
  • other programmable data processing equipment or other equipment to produce a computer-implemented process
  • Causing instructions executed on a computer, other programmable device or other equipment to provide a process for implementing the functions/actions specified in the flowchart and/or one or more block diagrams.

Abstract

一种基于影像和压力传感器计算微循环指标的方法、装置及系统,血流储备测量方法包括:注射扩张药物,对测量血管进行冠脉造影(S110);选取测量血管静息态下的至少一幅第一体位造影图像和扩张状态下的第二体位造影图像(S120);选取从冠脉近端到远端的一段血管进行分割,三维建模获得冠状动脉三维血管模型(S130);注射造影剂,根据造影剂在冠状动脉三维血管模型内的流动,分别获得第一体位造影图像和第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1、T 2(S140);根据T 1、T 2获得微循环指标(S150)。基于影像和压力传感器计算微循环指标的方法、装置及系统只在造影时注射扩张药物,降低了扩张药物的注射时间,基于冠脉造影图像测量微循环指标等冠状动脉血管评定参数,测量过程简单,测试结果准确。

Description

基于影像和压力传感器计算微循环指标的方法装置及系统 技术领域
本发明涉及冠状动脉医学技术领域,特别是涉及一种基于影像和压力传感器计算微循环指标的方法、装置、冠状动脉分析系统及存储介质。
背景技术
心脏属于高耗能器官。静息状态下,心肌代谢的摄氧量即可达血液氧含量的60%~80%。因此,在运动等应激状态下,心脏难以通过提高组织的摄氧能力来满足心肌缺氧量增加的需求,而绝大部分是通过增加心肌血流量来保证心肌代谢的氧需要量。心肌微循环占冠状动脉循环组成的95%,通过局部代谢产物、内皮、神经内分泌、肌源性等各种因素发挥调控心肌血流量的作用。研究显示,冠状动脉微循环功能异常是冠心病患者远期预后不良的重要预测因素。
在2013年指南进行了变迁,指出“对于怀疑存在微血管性心绞痛的患者,如果冠脉造影未见明显异常,可以考虑在造影期间腔内注射乙酰胆碱或腺苷进行多普勒测量,计算内皮依赖或非内皮以来的CFR,明确是否存在微循环/心外膜血管的痉挛”,并将此列为IIB类的推荐。
2019年指南增加了1个IIA类推荐和2个IIB类推荐。提出“对于持续存在症状的患者但冠脉造影正常或中等狭窄且iwfr/FFR值保留的患者,应当考虑使用基于导丝测量的CFR和/或微循环阻力测量”,并列为IIA类的推荐。
冠状动脉微血管功能是通过检测微血管对于血管扩张剂的反应来完成的。指南这两个方面的变迁,也提示冠状动脉微血管功能检查的重要性。冠状动脉微血管功能采用的测量指标是指冠状动脉微血管最大扩张程度即冠脉血流储备(Coronary Flow Reserve)CFR,所使用血管扩张剂主要包括作用于血管平滑肌的非内皮依赖性血管扩张剂以及作用于血管内皮细胞的内皮依赖性血管扩张剂,其中包括腺苷和乙酰胆碱。
对于冠状造影未见明显狭窄,但怀疑冠心病(CAD)的患者,我们既往的检查手段是注射腺苷和乙酰胆碱,来检测微血管对于血管扩张剂的反应。现在的检查方法主要包括冠状动脉血流储备分数(FFR)和微循环阻力指数(IMR),IMR通过软压力导丝同步记录冠脉压力和温度,导丝杆上的两个温度感受器探测到温度变化的时间差就可知道盐水从指引导管到达导丝头端温度感受器运行的平均传导时间(transit mean time,Tmn),根据定义冠脉远端的压力Pd与Tmn的乘积就可得出IMR值。但是总体来说现在评估微循环的方法并不多。现有的检查手段简化了流程、提高了安全性,对结果也进行了优化,所以指南的推荐级别较以前有所提升。除此之外,无创检查包括经胸多普勒超声、放射性核素显像技术、核磁共振成像技术等手段在微循环疾病的诊断中具有价值,但是都有不同程度的不足,未能成为微循环功能评估的推荐方法。
现有的CFR测量方法包括:(1)多普勒导丝测量方法,将多普勒导丝送入冠状动脉血 管内(病变远端)直接测量静息和最大充血状态下冠状动脉内血流速度,即可计算出CFR。(2)热稀释曲线测量方法,通过双重感应导丝崁有温度-压力感受器,能直接感受冠状动脉内温度的变化,可获得静息和最大充血状态下的冠状动脉内热稀释曲线,采用血流平均传导时间替代冠状动脉流量速度来计算CFR。
通过压力导丝传感器测量IMR和CFR存在如下问题:(1)压力导丝传感器离冠脉口太近测量的Tmn太小导致IMR结果偏小。太远又会测量Tmn太大导致IMR结果偏大;(2)在静息态和最大充血态时共要注射6次生理盐水,压力导丝传感器位置如果有移动会导致每次测量的结果不具备可比性,且测量过程繁琐;(3)每次注射盐水可能得到的Tmn差异较大,如果某次数值与其他2个数值相差超过30%,需要再次注射盐水测量,增加盐水注射次数;(4)压力导丝感受器测量注射盐水温度下降不够迅速会导致无法记录数值,要提高注射速度,提高注射量,用更低温度的盐水。影响因素太多;(5)注射后温度没有足够快恢复原始值也会出错,从开始注射,到温度恢复正常时间太长(>0.6秒);可能是注射太慢,注射速度不均匀,注射量太大等。因此,压力导丝感受器的距离、注射盐水速度、注射量、盐水的温度均会直接影响测量结果,导致结果不准确,测量过程繁琐;且长时间持续注射扩张药物,对病人有较大影响产生严重的不适感。
发明内容
本发明提供了一种基于影像和压力传感器计算微循环指标的方法、装置、冠状动脉分析系统及计算机存储介质,以解决现有技术中通过压力导丝测量CFR时存在长时间持续注射扩张药物,对病人有较大影响产生严重的不适感,以及压力导丝测量过程繁琐,测量结果不准确的问题。
为实现上述目的,第一方面,本申请提供了一种基于影像和压力传感器计算微循环指标的方法,包括:
常规造影;
注射扩张药物,对测量血管进行冠脉造影;
选取测量所述血管静息态下的至少一幅第一体位造影图像和扩张状态下的第二体位造影图像;
选取从冠脉近端到远端的一段血管进行分割,根据所述第一体位造影图像和所述第二体位造影图像三维建模获得冠状动脉三维血管模型;
注射造影剂,根据所述冠状动脉三维血管模型和流体力学公式,根据所述造影剂在所述冠状动脉三维血管模型内的流动,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2
根据T 1、T 2获得微循环指标。
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述微循环指标包括冠状动脉血流储备CFR,所述CFR=T 1/T 2
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述时间T 1和T 2根据 心跳周期区域被分成的局部区域图像的帧数与每秒传输帧数的比值计算。
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述第一体位与所述第二体位的夹角大于30°。
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述根据所述第一体位造影图像和所述第二体位造影图像三维建模获得冠状动脉三维血管模型包括:
去除所述第一体位造影图像和所述第二体位造影图像的干扰血管,得到结果图像;
沿着所述冠状动脉的延伸方向,提取每幅所述结果图像的冠脉中心线和直径;
将每根所述冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维血管模型。
可选地,上述的基于影像和压力传感器计算微循环指标的方法,微循环指标包括:冠状动脉微循环阻力指数IMR;
通过压力传感器测量冠脉入口压力P a,获得扩张状态下,冠脉入口到冠脉狭窄远端的压力降ΔP i
根据冠脉入口压力P a、压力降ΔP i、T 2,获得冠状动脉微循环阻力指数IMR。
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述IMR=(P a-ΔP i)×T 2
可选地,上述的基于影像和压力传感器计算微循环指标的方法,所述测量冠脉入口到冠脉狭窄远端的压力降ΔP i包括:
对冠状动脉三维血管模型进行网格划分,以冠脉中心线作为纵轴,网格沿所述冠脉中心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值;
所述压力降ΔP i采用如下公式计算:
Figure PCTCN2019115072-appb-000001
P 1表示三维血管模型网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维血管模型网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
每个所述节点的压力值采用纳维-斯托克斯方程计算得出。
第二方面,本申请提供了一种基于影像和压力传感器获取微循环指标的装置,用于上述的基于影像和压力传感器计算微循环指标的方法,包括:压力传感器、提取冠脉造影单元、三维建模单元和参数测量单元,所述提取冠脉造影单元与三维建模单元连接,所述参数测量单元与所述压力传感器、所述三维建模单元连接;
所述压力传感器用于测量冠脉入口压力Pa;
所述提取冠脉造影单元,用于选取所述测量血管的第一体位造影图像和第二体位造影图像;
所述三维建模单元,用于接收所述提取冠脉造影单元传递的第一体位造影图像和所述第二体位造影图像,三维建模获得冠状动脉三维血管模型;
所述参数测量单元,用于接收所述三维建模单元传递的冠状动脉三维血管模型,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2;根据T 1、T 2获得微循环指标。
可选地,上述的基于影像和压力传感器获取微循环指标的装置,所述参数测量单元包括:CFR测量模块,所述CFR测量模块,用于测量冠状动脉血流储备CFR,所述CFR=T 1/T 2;和/或
所述计算微循环指标的装置还包括:与所述参数测量单元连接的微循环阻力指数测量装置,所述微循环阻力指数测量装置用于测量微循环阻力指数IMR,IMR=(P a-ΔP i)×T 2;和/或
所述计算微循环指标的装置还包括:与所述参数测量单元连接的冠状动脉血流储备分数测量装置,所述冠状动脉血流储备分数测量装置,用于测量冠状动脉血流储备分数FFR,FFR=(P a-ΔP i)/P a
第三方面,本申请提供了一种冠状动脉分析系统,包括:上述的基于影像和压力传感器获取微循环指标的装置。
第四方面,本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于影像和压力传感器计算微循环指标的方法。
本申请实施例提供的方案带来的有益效果至少包括:
本申请提供了基于影像和压力传感器计算微循环指标的方法,只在造影时,注射扩张药物,造影过程只需几秒钟即可停止扩张药物注射,降低扩张药物的注射时间,然后通过冠脉造影图像进行三维建模,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得扩张状态下第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2;根据T 1、T 2测量CFR,无需压力导丝,测量过程简单,测试结果准确,克服了使用压力导丝测量CFR的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本申请的基于影像和压力传感器计算微循环指标的方法的一个实施例的流程图;
图2为本申请的步骤S130的流程图;
图3为本申请的基于影像和压力传感器计算微循环指标的方法的另一实施例的流程图;
图4为本申请的基于影像和压力传感器获取微循环指标的装置的一个实施例的结构框图;
图5为本申请的压力传感器的结构示意图;
图6为本申请的基于影像和压力传感器获取微循环指标的装置的另一实施例的结构框图;
图7为本申请的三维建模单元的一个实施例的结构框图;
图8为本申请的三维建模单元的另一实施例的结构框图;
图9为本申请的图像处理模块的结构框图;
图10为参考图像;
图11为待分割的一目标图像;
图12为待分割的另一目标图像;
图13为增强后的导管图像;
图14为导管特征点的二值化图像;
图15为增强后的目标图像;
图16为冠状动脉所处位置的区域图像;
图17为结果图像;
图18为两个体位造影图像;
图19为由图18结合体位角度以及冠脉中心线生成的冠状动脉三维血管模型图;
下面对附图标记进行说明:
压力传感器110,压力感受芯片1,蠕动泵头2,软管3,鲁尔接头4,激光发射器5,显示屏6,单向阀7,提取冠脉造影单元120,三维建模单元130,图像读取模块131,分割模块132,血管长度测量模块133,三维建模模块134,图像处理模块135,图像去噪模块1350,导管特征点提取模块1351,冠状动脉提取模块1352,冠脉中心线提取模块136,血管直径测量模块137,参数测量单元140,CFR测量模块141,微循环阻力指数测量装置200,冠状动脉血流储备分数测量装置300。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。
如图1所示,本申请提供了一种基于影像和压力传感器计算微循环指标的方法,包括:
S100,常规造影;
S110,注射扩张药物,对测量血管进行冠脉造影;
S120,选取测量血管静息态下的至少一幅第一体位造影图像和扩张状态下的第二体位造影图像;
S130,选取从冠脉近端到远端的一段血管进行分割,根据第一体位造影图像和第二体位造影图像三维建模获得冠状动脉三维血管模型;
S140,注射造影剂,根据冠状动脉三维血管模型和流体力学公式,根据造影剂在冠状动脉三维血管模型内的流动,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2
S150,根据T 1、T 2获得微循环指标。
本申请提供了基于造影图像获取冠状动脉血流储备的方法,只在造影时,注射扩张药物,造影过程只需几秒钟即可停止扩张药物注射,降低扩张药物的注射时间,然后通过冠脉造影图像进行三维建模,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得扩张状态下第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2;根据T 1、T 2测量CFR,无需压力导丝,测量过程简单,测试结果准确,克服了使用压力导丝测量CFR的问题。
需要注意的是:注射扩张药物包括:静脉或者冠脉内注射扩张药物,打入方式包括:扩张药物可以与造影剂混合注射进入静脉或者冠脉,也可以分次间隔注射均在本申请的保护范围内;只要能够起到扩张作用的药物包括腺苷、ATP等均在本申请的保护范围内。
本申请的一个实施例中,微循环指标包括冠状动脉血流储备CFR,CFR=T 1/T 2。本申请依据扩张状态下的第二体位造影图像,通过CFR=T 1/T 2公司获得CFR值。
本申请的一个实施例中,S140中的时间T 1和T 2根据心跳周期区域被分成的局部区域图像的帧数与每秒传输帧数的比值计算;即:
T=N/fps,N表示心跳周期区域被分成的局部区域图像的帧数,fps表示画面每秒播放帧数,通俗来讲就是指动画或视频的画面数,T表示某一体位造影图像中的造影剂从血管段入口到出口所经过的时间T,因此T 1和T 2可以根据上述公式计算得出。本申请的一个实施例中,fps=10~30;优选地,fps=15。
由于T 1和T 2均是基于造影图像获得的冠状动脉三维血管模型测得,因此CFR也是通过冠状动脉三维血管模型测得,无需依赖于压力导丝传感器,因此克服了压力导丝传感器在盐水的冲击下容易移动,测量不准确的问题,且测量基于造影图像时无需注射盐水,因此避免了注射盐水速度、注射量、盐水的温度对CFR测量结果的影响,提高了测量的准确率。
本申请的一个实施例中,第一体位与第二体位的夹角大于30°。
如图2所示,本申请的一个实施例中,S130包括:
S131,去除第一体位造影图像和第二体位造影图像的干扰血管,得到结果图像,具体为:
去除第一体位造影图像和第二体位造影图像的干扰血管;
对冠脉造影图像去噪,包括:静态噪声和动态噪声;
将有导管出现的第一帧分割图像定义为参考图像,将有完整冠状动脉出现的第k帧所述分割图像定义为目标图像,k为大于1的正整数;
将所述参考图像减去所述目标图像,提取所述导管的特征点O,具体方法为:将所述参考图像减去所述目标图像;去噪,包括:静态噪声和动态噪声;对所述去噪后的图像进 行图像增强;对增强后的导管图像进行二值化处理,得到具有一组导管特征点O的二值化图像;
将所述目标图像减去所述参考图像,提取所述冠状动脉所处位置的区域图像,具体方法为:将所述目标图像减去所述参考图像;去噪,包括:静态噪声和动态噪声;对去噪后的所述图像进行图像增强;根据增强后的所述目标图像中各区域与所述导管特征点的位置关系,确定并提取冠状动脉的区域,即为所述冠状动脉所处位置的区域图像;
所述区域图像以所述导管的特征点作为种子点进行动态生长,获得所述结果图像,具体方法为:对所述冠状动脉所处位置的区域图像进行二值化处理,获得二值化冠状动脉图像;对所述二值化冠状动脉图像进行形态学运算,以所述导管的特征点作为种子点,所述二值化冠状动脉图像依据所述种子点所处位置进行动态区域生长,获得所述结果图像;
S132,沿着冠状动脉的延伸方向,提取每幅结果图像的冠脉中心线和直径;
S133,将每根冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维血管模型,具体方法为:
获取每幅冠脉造影图像的体位拍摄角度;
将每根所述冠脉中心线结合体位拍摄角度投射于三维空间上,进行投影,生成冠状动脉三维血管模型。
如图3所示,本申请的一个实施例中,微循环指标包括:冠状动脉微循环阻力指数IMR,具体测量方法为:
S100,常规造影;
S110,注射扩张药物,对测量血管进行冠脉造影;
S200,通过压力传感器获得冠脉入口压力冠脉入口P a,以及扩张状态下,冠脉入口到冠脉狭窄远端的压力降ΔP i
S120,选取测量血管静息态下的至少一幅第一体位造影图像和扩张状态下的第二体位造影图像;
S130,选取从冠脉近端到远端的一段血管进行分割,根据第一体位造影图像和第二体位造影图像三维建模获得冠状动脉三维血管模型;
S300,选取冠状动脉三维血管模型的一个心跳周期区域,测量心跳周期区域内的血管的长度L;
S140,注射造影剂,根据冠状动脉三维血管模型和流体力学公式,根据造影剂在冠状动脉三维血管模型内的流动,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2
S400,根据冠脉入口压力P a、压力降ΔP i、T 2,获得冠状动脉微循环阻力指数IMR。
本申请依据获取的扩张状态下的第二体位造影图像,根据IMR=(P a-ΔP i)×T 2;IMR>25则被认为存在微循环病变,与压力导丝测量获取IMR时的评价标准一致,但是本申请无需采用压力导丝,测量过程简单,克服了压力导丝测量IMR时的问题。
本申请的一个实施例中,S400中,测量冠脉入口到冠脉狭窄远端的压力降ΔP i包括:
对冠状动脉三维血管模型进行网格划分,以冠脉中心线作为纵轴,网格沿冠脉中心线划分为m个点,冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示冠脉中心线上第i个点的横截面上所有节点的压力的平均值;
压力降ΔP i采用如下公式计算:
Figure PCTCN2019115072-appb-000002
P 1表示三维血管模型网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维血管模型网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
每个节点的压力值采用纳维-斯托克斯方程计算得出。
如图4所示,本申请提供了一种基于影像和压力传感器获取微循环指标的装置,用于上述的基于影像和压力传感器计算微循环指标的方法,包括:压力传感器110、提取冠脉造影单元120、三维建模单元130和参数测量单元140,提取冠脉造影单元120与三维建模单元130连接,参数测量单元140与压力传感器110、三维建模单元130连接;压力传感器110用于测量冠脉入口压力Pa;提取冠脉造影单元120用于选取测量血管的第一体位造影图像和第二体位造影图像;三维建模单元130用于接收提取冠脉造影单元120传递的第一体位造影图像和第二体位造影图像,三维建模获得冠状动脉三维血管模型;参数测量单元140用于接收三维建模单元130传递的冠状动脉三维血管模型,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2;根据T 1、T 2获得冠状动脉血流储备CFR,CFR=T 1/T 2
参数测量单元140包括:T 1测量模块、T 2测量模块和CFR测量模块,均与三维建模单元130连接,且T 1测量模块、T 2测量模块均与CFR测量模块连接。
如图5所示,本申请的一个实施例中,压力传感器110包括压力感受芯片1,还包括蠕动泵头2,蠕动泵头2包括旋转轮,旋转轮上设有与外部电机旋转轴连接的连接结构,蠕动泵头2内置有软管3,软管3一端与压力感受芯片1连接,另一端通过输液管与盐水袋连接。压力传感器一端与盐水袋连接,另一端通过外部装置连接至患者主动脉,压力传感器的用途就是连接患者主动脉,中间充满生理盐水使其能够与主动脉形成通路,压力传感器内部有压力感受芯片1,可以将主动脉的动态压力转换成模拟信号,通过压力传感器内部的电路将采集到的模拟信号转换成数字型号,得到主动脉压的冠脉入口压力Pa,本冠脉入口压力Pa采用收缩压与舒张压之和的平均值;收缩压、舒张压和冠脉入口压力Pa显示于显示屏6上。
如图5所示,本申请的一个实施例中,软管3与输液管连接端设有鲁尔接头4并以之与输液管连接;软管3与压力感受芯片1之间接有单向阀7,单向阀7的允许流向为盐水袋至压力感受芯片1;压力传感器还包括激光发射器5,激光发射器5与压力感受芯片1位于同一水平高度。激光发射器5可发射一条水平的光束照射到患者身体心脏部位,保证激光 发射器5高度与心脏在同一水平,光束起到辅助对准作用,对准更加简单。压力感受芯片1设计为与激光发射器5同一水平高度,这样就保证压力感受芯片1与心脏在同一水平高度,可精确测量主动脉压力。
如图6所示,本申请的一个实施例中,参数测量单元140包括:CFR测量模块141,CFR测量模块141用于测量冠状动脉血流储备CFR,CFR=T 1/T 2;和/或
计算微循环指标的装置还包括:与参数测量单元140连接的微循环阻力指数测量装置200,微循环阻力指数测量装置200用于测量微循环阻力指数IMR,IMR=(P a-ΔP i)×T 2;和/或
计算微循环指标的装置还包括:与参数测量单元140连接的冠状动脉血流储备分数测量装置300,冠状动脉血流储备分数测量装置300用于测量冠状动脉血流储备分数FFR,FFR=(P a-ΔP i)/P a
如图7所示,本申请的一个实施例中,三维建模单元130包括图像读取模块131、分割模块132、血管长度测量模块133和三维建模模块134,分割模块132与图像读取模块131、血管长度测量模块133、三维建模模块134连接;图像读取模块131用于读取造影图像;分割模块132用于选取冠状动脉造影图像的一个心跳周期区域;血管长度测量模块133用于测量心跳周期区域内的血管的长度L,并将血管的长度L传递给分割模块132;三维建模模块134用于根据分割模块132选取的冠脉造影图像进行三维建模,获得冠状动脉三维血管模型。
如图8所示,本申请的一个实施例中,三维建模单元130还包括:图像处理模块135、冠脉中心线提取模块136和血管直径测量模块137,图像处理模块135与冠脉中心线提取模块136连接,三维建模模块134与冠脉中心线提取模块136、血管直径测量模块137连接。图像处理模块135用于接收分割模块132传递的至少两个体位的冠脉造影图像,并去除冠脉造影图像的干扰血管,得到如图17所示的结果图像;冠脉中心线提取模块136用于沿着冠状动脉的延伸方向,提取每幅如图17所示的结果图像的冠脉中心线;血管直径测量模块137用于测量血管直径D;三维建模模块134用于将每根冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维血管模型。本申请实现了根据冠脉造影图像合成冠状动脉三维血管模型,弥补了行业内的空白,对于医学技术领域具有积极的作用。
本申请的一个实施例中,图像处理模块135内部设置图像去噪模块1350,用于对冠脉造影图像去噪,包括:静态噪声和动态噪声。通过去噪模块1350去除冠脉造影图像中的干扰因素,提高图像处理的质量。
如图9所示,本申请的一个实施例中,图像处理模块135内部设置均与冠脉中心线提取模块136连接的导管特征点提取模块1351和冠状动脉提取模块1352,导管特征点提取模块1351与冠状动脉提取模块1352、图像去噪模块1350连接;导管特征点提取模块1351用于将有导管出现的第一帧分割图像定义为如图10所示的参考图像,将有完整冠状动脉出现的第k帧分割图像定义为如图11和如图12所示的目标图像,k为大于1的正整数,对如图11和12所示的目标图像进行增强,得到如图13和15所示的增强后的图像;将如图10 所示的参考图像减去如图11和如图12所示的目标图像,提取如图14所示的导管的特征点O;冠状动脉提取模块1352用于将如图11和如图12所示的目标图像减去如图10所示的参考图像,根据如图15所示的增强后的目标图像中各区域与导管特征点的位置关系,确定并提取冠状动脉的区域,即为如图16所示的冠状动脉所处位置的区域图像;如图16所示的区域图像以如图14所示的导管的特征点作为种子点进行动态生长,获得如图17所示的结果图像。
图像处理模块135内部还设置二值化处理模块,用于对图像进行二值化处理,以获得冠状动脉三维血管模型。
下面结合具体实施例对本申请进行具体说明:
实施例1:
如图18所示,为一位患者拍摄的两个体位的冠脉造影图像;左图为体位角度为右前斜RAO:25°和头位CRA:23°的造影图像;右图为扩张状态下,且体位角度为右前斜RAO:3°和头位CRA:30°的造影图像;
冠状动脉三维血管模型的血管长度L值=120mm;生成的冠状动脉三维血管模型如图19所示;
血管直径D值=2~4mm,Pa=104mmHg;T 2=N 2/fps 2=9/15=0.6s;T 1=N 1/fps 1=20/15=1.3s;
CFR=T 1/T 2=1.3/0.6=2.17;
ΔP=2;因此IMR=(104-2)×0.6=61.2;
对比例1:
与实施例1的患者相同,对比例1和实施例1均为同一位患者拍摄的同一张冠脉造影图像;
把压力导丝传感器放到患者的冠脉远端(离导引导管开口>5cm),通过导管向血管中注入3ml生理盐水,如果检测到血液温度回复到正常值,则再次通过导管向血管中注入3ml生理盐水,重复上述过程3次,然后记录T 1,T 1为1.28s;向血管通入扩张药物,使血管达到并保持扩张状态(保证通入扩张药物前后的压力导丝传感器处于相同位置),通过导管向血管中注入3ml生理盐水,如果检测到血液温度回复到正常值,则再次通过导管向血管中注入3ml生理盐水,重复上述过程3次,然后记录T 2,T 2为0.58s,测得冠脉远端的压力P d=103.5mmHg;
CFR=1.28/0.58=2.21;
IMR=P d×T 2=103.5×0.6=60.03;
通过实施例1和对比例1的比较,可知IMR测量结果基本相同,因此实施例1的测量结果准确,且本申请的实施例无需压力导丝,只需测量冠脉入口压力,无需穿过冠状动脉血管狭窄远端,降低了手术难度和风险;且通过造影图像实现了IMR的测量,弥补了行业内的空白,操作更加简单。
本申请提供了一种冠状动脉分析系统,包括:上述的基于影像和压力传感器获取微循环指标的装置。
本申请提供了一种计算机存储介质,计算机程序被处理器执行时实现上述的基于影像和压力传感器计算微循环指标的方法。
所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、驻留软件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。本发明的实施例的方法和/或系统的实施方式可以涉及到手动地、自动地或以其组合的方式执行或完成所选任务。
例如,可以将用于执行根据本发明的实施例的所选任务的硬件实现为芯片或电路。作为软件,可以将根据本发明的实施例的所选任务实现为由计算机使用任何适当操作系统执行的多个软件指令。在本发明的示例性实施例中,由数据处理器来执行如本文的根据方法和/或系统的示例性实施例的一个或多个任务,诸如用于执行多个指令的计算平台。可选地,该数据处理器包括用于存储指令和/或数据的易失性储存器和/或用于存储指令和/或数据的非易失性储存器,例如,磁硬盘和/或可移动介质。可选地,也提供了一种网络连接。可选地也提供显示器和/或用户输入设备,诸如键盘或鼠标。
可利用一个或多个计算机可读的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举列表)将包括以下各项:
具有一个或多个导线的电连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括(但不限于)无线、有线、光缆、RF等等,或者上述的任意合适的组合。
例如,可用一个或多个编程语言的任何组合来编写用于执行用于本发明的各方面的操作的计算机程序代码,包括诸如Java、Smalltalk、C++等面向对象编程语言和常规过程编程语言,诸如"C"编程语言或类似编程语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程 计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络--包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序指令实现。这些计算机程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些计算机程序指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。
也可以把这些计算机程序指令存储在计算机可读介质中,这些指令使得计算机、其它可编程数据处理装置、或其它设备以特定方式工作,从而,存储在计算机可读介质中的指令就产生出包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的指令的制造品(article of manufacture)。
还可将计算机程序指令加载到计算机(例如,冠状动脉分析系统)或其它可编程数据处理设备上以促使在计算机、其它可编程数据处理设备或其它设备上执行一系列操作步骤以产生计算机实现过程,使得在计算机、其它可编程装置或其它设备上执行的指令提供用于实现在流程图和/或一个或多个框图方框中指定的功能/动作的过程。
本发明的以上的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基于影像和压力传感器计算微循环指标的方法,其特征在于,包括:
    常规造影;
    注射扩张药物,对测量血管进行冠脉造影;
    选取测量所述血管静息态下的至少一幅第一体位造影图像和扩张状态下的第二体位造影图像;
    选取从冠脉近端到远端的一段血管进行分割,根据所述第一体位造影图像和所述第二体位造影图像三维建模获得冠状动脉三维血管模型;
    注射造影剂,根据所述冠状动脉三维血管模型和流体力学公式,根据所述造影剂在所述冠状动脉三维血管模型内的流动,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2
    根据T 1、T 2获得微循环指标。
  2. 根据权利要求1所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述微循环指标包括冠状动脉血流储备CFR,所述CFR=T 1/T 2
  3. 根据权利要求1所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述时间T 1和T 2根据心跳周期区域被分成的局部区域图像的帧数与每秒传输帧数的比值计算。
  4. 根据权利要求1~3任一项所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述第一体位与所述第二体位的夹角大于30°。
  5. 根据权利要求1~3任一项所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述根据所述第一体位造影图像和所述第二体位造影图像三维建模获得冠状动脉三维血管模型包括:
    去除所述第一体位造影图像和所述第二体位造影图像的干扰血管,得到结果图像;
    沿着所述冠状动脉的延伸方向,提取每幅所述结果图像的冠脉中心线和直径;
    将每根所述冠脉中心线和直径均投射于三维空间上进行三维建模,获得冠状动脉三维血管模型。
  6. 根据权利要求1~3任一项所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,微循环指标包括:冠状动脉微循环阻力指数IMR;
    通过压力传感器测量冠脉入口压力P a,获得扩张状态下,冠脉入口到冠脉狭窄远端的压力降ΔP i;根据冠脉入口压力P a、压力降ΔP i、T 2,获得冠状动脉微循环阻力指数IMR。
  7. 根据权利要求6所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述IMR=(P a-ΔP i)×T 2
  8. 根据权利要求7所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,所述测量冠脉入口到冠脉狭窄远端的压力降ΔP i包括:
    对冠状动脉三维血管模型进行网格划分,以冠脉中心线作为纵轴,网格沿所述冠脉中 心线划分为m个点,所述冠脉中心线每个点对应的横截面被划分为n个节点,ΔP i表示所述冠脉中心线上第i个点的横截面上所有节点的压力的平均值;
    所述压力降ΔP i采用如下公式计算:
    Figure PCTCN2019115072-appb-100001
    P 1表示三维血管模型网格中第i个点的横截面上的第一个节点的压力值,P 2表示三维血管模型网格中第i个点的横截面上的第二个节点的压力值,P n表示第i个点的横截面上的第n个节点的压力值,m、n均为正整数;
    每个所述节点的压力值采用纳维-斯托克斯方程计算得出。
  9. 一种基于影像和压力传感器获取微循环指标的装置,用于权利要求1~8任一项所述的基于影像和压力传感器计算微循环指标的方法,其特征在于,包括:压力传感器、提取冠脉造影单元、三维建模单元和参数测量单元,所述提取冠脉造影单元与三维建模单元连接,所述参数测量单元与所述压力传感器、所述三维建模单元连接;
    所述压力传感器用于测量冠脉入口压力Pa;
    所述提取冠脉造影单元,用于选取所述测量血管的第一体位造影图像和第二体位造影图像;
    所述三维建模单元,用于接收所述提取冠脉造影单元传递的第一体位造影图像和所述第二体位造影图像,三维建模获得冠状动脉三维血管模型;
    所述参数测量单元,用于接收所述三维建模单元传递的冠状动脉三维血管模型,获得第一体位造影图像内的造影剂从血管段入口到出口所经过的时间T 1,获得第二体位造影图像内的造影剂从血管段入口到出口所经过的时间T 2;根据T 1、T 2获得微循环指标。
  10. 根据权利要求9所述的基于影像和压力传感器获取微循环指标的装置,其特征在于,所述参数测量单元包括:CFR测量模块,所述CFR测量模块,用于测量冠状动脉血流储备CFR,所述CFR=T 1/T 2;和/或
    所述计算微循环指标的装置还包括:与所述参数测量单元连接的微循环阻力指数测量装置,所述微循环阻力指数测量装置用于测量微循环阻力指数IMR,IMR=(P a-ΔP i)×T 2;和/或
    所述计算微循环指标的装置还包括:与所述参数测量单元连接的冠状动脉血流储备分数测量装置,所述冠状动脉血流储备分数测量装置,用于测量冠状动脉血流储备分数FFR,FFR=(P a-ΔP i)/P a
  11. 一种冠状动脉分析系统,其特征在于,包括:权利要求9或10所述的基于影像和压力传感器获取微循环指标的装置。
  12. 一种计算机存储介质,其特征在于,计算机程序被处理器执行时实现权利要求1~8任一项所述的基于影像和压力传感器计算微循环指标的方法。
PCT/CN2019/115072 2018-09-19 2019-11-01 基于影像和压力传感器计算微循环指标的方法装置及系统 WO2021046990A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020573149A JP7093584B2 (ja) 2018-09-19 2019-11-01 イメージ及び圧力センサに基づき微小循環指標を計算する方法、装置及びシステム
EP19938107.0A EP4029438A4 (en) 2018-09-19 2019-11-01 METHOD AND APPARATUS FOR CALCULATION OF MICROCIRCULATORY INDEX USING IMAGE AND PRESSURE SENSOR, AND SYSTEM
US17/158,355 US11779294B2 (en) 2018-09-19 2021-01-26 Method, device and system for calculating microcirculation indicator based on image and pressure sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811093192.XA CN109363651A (zh) 2018-09-19 2018-09-19 一种用于测量血流储备分数时获取主动脉压的装置
CN201910206541.2A CN109770888A (zh) 2019-03-19 2019-03-19 基于压力传感器和造影图像计算瞬时无波形比率的方法
CN201910846497.1 2019-09-09
CN201910846497.1A CN110393516A (zh) 2018-09-19 2019-09-09 基于影像和压力传感器计算微循环指标的方法装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,355 Continuation US11779294B2 (en) 2018-09-19 2021-01-26 Method, device and system for calculating microcirculation indicator based on image and pressure sensor

Publications (1)

Publication Number Publication Date
WO2021046990A1 true WO2021046990A1 (zh) 2021-03-18

Family

ID=68261494

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2019/102251 WO2020057323A2 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的方法
PCT/CN2019/102259 WO2020057324A1 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的系统以及冠脉分析系统
PCT/CN2019/115027 WO2021042477A1 (zh) 2018-09-19 2019-11-01 测量冠状动脉血管评定参数的简化方法、装置及系统
PCT/CN2019/115043 WO2021042479A1 (zh) 2018-09-19 2019-11-01 便捷测量冠状动脉血管评定参数的方法、装置及系统
PCT/CN2019/115072 WO2021046990A1 (zh) 2018-09-19 2019-11-01 基于影像和压力传感器计算微循环指标的方法装置及系统

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/102251 WO2020057323A2 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的方法
PCT/CN2019/102259 WO2020057324A1 (zh) 2018-09-19 2019-08-23 测量微循环阻力指数的系统以及冠脉分析系统
PCT/CN2019/115027 WO2021042477A1 (zh) 2018-09-19 2019-11-01 测量冠状动脉血管评定参数的简化方法、装置及系统
PCT/CN2019/115043 WO2021042479A1 (zh) 2018-09-19 2019-11-01 便捷测量冠状动脉血管评定参数的方法、装置及系统

Country Status (5)

Country Link
US (3) US11779294B2 (zh)
EP (3) EP4026492A4 (zh)
JP (2) JP7457105B2 (zh)
CN (5) CN110384493A (zh)
WO (5) WO2020057323A2 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统
CN112155580B (zh) * 2019-11-20 2021-07-13 苏州润迈德医疗科技有限公司 基于造影图像修正血流速度和微循环参数的方法及装置
CN110786840B (zh) * 2019-11-04 2021-06-08 苏州润迈德医疗科技有限公司 基于生理参数获取血管评定参数的方法、装置及存储介质
CN110786842B (zh) * 2019-11-04 2022-10-04 苏州润迈德医疗科技有限公司 测量舒张期血流速度的方法、装置、系统及存储介质
CN110786841B (zh) * 2019-11-04 2021-05-25 苏州润迈德医疗科技有限公司 基于微循环阻力指数调节最大充血状态流速的方法及装置
CN110929604B (zh) * 2019-11-11 2023-08-18 苏州润迈德医疗科技有限公司 基于造影图像的流速的筛选方法、装置、系统和存储介质
CN110889896B (zh) * 2019-11-11 2024-03-22 苏州润迈德医疗科技有限公司 获取血管狭窄病变区间及三维合成方法、装置和系统
CN112132882A (zh) * 2019-11-19 2020-12-25 苏州润迈德医疗科技有限公司 从冠状动脉二维造影图像中提取血管中心线的方法和装置
CN112116711B (zh) * 2019-12-05 2024-01-23 苏州润迈德医疗科技有限公司 用于流体力学分析的圆台血管数学模型的合成方法和装置
CN112151180B (zh) * 2019-12-05 2024-03-08 苏州润迈德医疗科技有限公司 具有狭窄病变的血管数学模型的合成方法和装置
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
CN111067495A (zh) * 2019-12-27 2020-04-28 西北工业大学 基于血流储备分数和造影图像的微循环阻力计算方法
CN112426142B (zh) * 2019-12-31 2021-09-21 深圳北芯生命科技股份有限公司 血管内压力测量系统
US11950893B2 (en) * 2020-01-17 2024-04-09 The Research Foundation For The State University Of New York Apparatus and method of determining dynamic vascular parameters of blood flow
CN111312374B (zh) * 2020-01-21 2024-03-22 上海联影智能医疗科技有限公司 医学图像处理方法、装置、存储介质及计算机设备
CN111340794B (zh) * 2020-03-09 2023-07-04 中山大学 冠状动脉狭窄的量化方法及装置
CN111449750A (zh) * 2020-04-02 2020-07-28 刘强 一种心内科防止大量出血的介入控制系统及控制方法
CN112089433B (zh) * 2020-09-24 2022-04-08 杭州阿特瑞科技有限公司 一种基于cta和dsa的冠状动脉血流储备分数测量方法
CN112690814B (zh) * 2020-11-06 2022-10-14 杭州阿特瑞科技有限公司 一种低误差的冠状动脉血流储备分数测量方法
CN112419484B (zh) * 2020-11-25 2024-03-22 苏州润迈德医疗科技有限公司 三维血管合成方法、系统及冠状动脉分析系统和存储介质
CN112419280A (zh) * 2020-11-25 2021-02-26 苏州润迈德医疗科技有限公司 精确获取狭窄病变区间的方法及存储介质
CN112686991B (zh) * 2021-01-08 2022-04-05 上海博动医疗科技股份有限公司 一种采用混合方式重建血管正常管腔形态的方法及系统
CN112971818B (zh) * 2021-01-28 2022-10-04 杭州脉流科技有限公司 微循环阻力指数的获取方法、装置、计算机设备和存储介质
CN113180614B (zh) * 2021-06-02 2023-08-04 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN112890843A (zh) * 2021-03-24 2021-06-04 苏州润迈德医疗科技有限公司 一种冠状动脉分析系统及操作方法
CN113706559A (zh) * 2021-09-13 2021-11-26 复旦大学附属中山医院 基于医学图像的血管分段提取方法和装置
CN115690309B (zh) * 2022-09-29 2023-07-18 中国人民解放军总医院第一医学中心 一种冠脉cta自动三维后处理方法和装置
CN116035549A (zh) * 2022-11-23 2023-05-02 杭州脉流科技有限公司 获得冠脉血流储备分数的方法和计算机设备
CN115869003A (zh) * 2022-12-30 2023-03-31 杭州脉流科技有限公司 基于ct图像的冠状动脉微循环阻力指数计算方法和装置
CN116664564B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525443A (zh) * 2010-09-16 2012-07-04 西门子公司 非侵入性冠状动脉病评估的方法和系统
US20140024932A1 (en) * 2012-07-09 2014-01-23 Siemens Aktiengesellschaft Computation of Hemodynamic Quantities From Angiographic Data
US9087147B1 (en) * 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
CN107730540A (zh) * 2017-10-09 2018-02-23 全景恒升(北京)科学技术有限公司 基于高精度匹配模型的冠脉参数的计算方法
CN108550388A (zh) * 2018-01-12 2018-09-18 深圳科亚医疗科技有限公司 基于血管造影的计算血管血流参数的装置和系统
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672172B2 (en) 2000-01-31 2004-01-06 Radi Medical Systems Ab Triggered flow measurement
US8315812B2 (en) * 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
JP5309109B2 (ja) * 2010-10-18 2013-10-09 富士フイルム株式会社 医用画像処理装置および方法、並びにプログラム
US10373700B2 (en) * 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
CN103300820A (zh) * 2012-03-13 2013-09-18 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和系统
JP2015509820A (ja) * 2012-03-15 2015-04-02 シーメンス アクティエンゲゼルシャフト 安静および充血時における冠血流のパーソナライゼーション用フレームワーク
CA2875346A1 (en) * 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
EP3903672B1 (en) 2012-08-03 2023-11-01 Philips Image Guided Therapy Corporation Devices, systems, and methods for assessing a vessel
JP6381875B2 (ja) * 2012-08-16 2018-08-29 キヤノンメディカルシステムズ株式会社 画像処理装置、医用画像診断装置及び血圧モニタ
US9814433B2 (en) * 2012-10-24 2017-11-14 Cathworks Ltd. Creating a vascular tree model
US10327695B2 (en) 2012-12-21 2019-06-25 Volcano Corporation Functional gain measurement technique and representation
US10799209B2 (en) * 2012-12-26 2020-10-13 Philips Image Guided Therapy Corporation Measurement navigation in a multi-modality medical imaging system
WO2014125497A1 (en) * 2013-02-18 2014-08-21 Ramot At Tel-Aviv University Ltd. Intravascular pressure drop derived arterial stiffness and reduction of common mode pressure effect
US9700219B2 (en) * 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
JP6262027B2 (ja) * 2014-03-10 2018-01-17 東芝メディカルシステムズ株式会社 医用画像処理装置
EP4342366A2 (en) * 2014-04-04 2024-03-27 St. Jude Medical Systems AB Intravascular pressure and flow data diagnostic system
WO2015171276A1 (en) * 2014-05-05 2015-11-12 Siemens Aktiengesellschaft Method and system for non-invasive functional assessment of coronary artery stenosis using flow computations in diseased and hypothetical normal anatomical models
US9595089B2 (en) * 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
US9754082B2 (en) * 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
EP3160335B1 (en) * 2014-06-30 2023-09-20 Koninklijke Philips N.V. Apparatus for determining a fractional flow reserve value
EP3166480A4 (en) * 2014-07-08 2018-02-14 Scinovia, Corp. Fluid flow rate determinations using velocity vector maps
US9349178B1 (en) * 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
EP3087921A1 (en) 2015-04-27 2016-11-02 Coronary Technologies SARL Computer-implemented method for identifying zones of stasis and stenosis in blood vessels
US10872698B2 (en) 2015-07-27 2020-12-22 Siemens Healthcare Gmbh Method and system for enhancing medical image-based blood flow computations using physiological measurements
CN105326486B (zh) * 2015-12-08 2017-08-25 博动医学影像科技(上海)有限公司 血管压力差与血流储备分数的计算方法及系统
CN105559810B (zh) * 2015-12-10 2017-08-08 博动医学影像科技(上海)有限公司 血管单位时间血流量与血流速度的计算方法
US10758125B2 (en) * 2016-04-29 2020-09-01 Siemens Healthcare Gmbh Enhanced personalized evaluation of coronary artery disease using an integration of multiple medical imaging techniques
US10674986B2 (en) * 2016-05-13 2020-06-09 General Electric Company Methods for personalizing blood flow models
CN106023202B (zh) * 2016-05-20 2017-06-09 苏州润心医疗科技有限公司 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN106073894B (zh) * 2016-05-31 2017-08-08 博动医学影像科技(上海)有限公司 基于植入虚拟支架的血管压力降数值及血流储备分数的评估方法和系统
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106264514B (zh) * 2016-09-27 2023-05-05 上海爱声生物医疗科技有限公司 一种无线血流储备分数测量系统
CN106214140A (zh) * 2016-10-17 2016-12-14 苏州亘科医疗科技有限公司 血管内血压测量导丝
CN106419890B (zh) * 2016-11-14 2024-04-30 佛山科学技术学院 一种基于时空调制的血流速度测量装置及方法
CN106650267B (zh) * 2016-12-28 2020-03-17 北京昆仑医云科技有限公司 计算血流储备分数的系统和设置边界条件的方法
US20180192916A1 (en) * 2017-01-10 2018-07-12 General Electric Company Imaging system for diagnosing patient condition
WO2018133118A1 (zh) * 2017-01-23 2018-07-26 上海联影医疗科技有限公司 血流状态分析系统及方法
US11219741B2 (en) * 2017-08-09 2022-01-11 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
CN107978371B (zh) * 2017-11-30 2021-04-02 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
CN108245178A (zh) * 2018-01-11 2018-07-06 苏州润迈德医疗科技有限公司 一种基于x射线冠脉造影图像的血液流动速度计算方法
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
CN108992057B (zh) * 2018-06-05 2021-08-10 杭州晟视科技有限公司 一种确定冠状动脉血流储备分数ffr的方法和装置
CN108742587B (zh) * 2018-06-20 2021-04-27 博动医学影像科技(上海)有限公司 基于病史信息获取血流特征值的方法及装置
CN109770888A (zh) 2019-03-19 2019-05-21 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算瞬时无波形比率的方法
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统
CN109523515A (zh) * 2018-10-18 2019-03-26 深圳市孙逸仙心血管医院(深圳市心血管病研究所) 血流储备分数的计算方法
CN109770930B (zh) * 2019-01-29 2021-03-09 浙江大学 一种冠状动脉微循环阻力的确定方法和装置
CN110120031B (zh) * 2019-04-02 2022-05-31 四川锦江电子科技有限公司 一种得到血管血流储备分数的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102525443A (zh) * 2010-09-16 2012-07-04 西门子公司 非侵入性冠状动脉病评估的方法和系统
US20140024932A1 (en) * 2012-07-09 2014-01-23 Siemens Aktiengesellschaft Computation of Hemodynamic Quantities From Angiographic Data
US9087147B1 (en) * 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
CN107730540A (zh) * 2017-10-09 2018-02-23 全景恒升(北京)科学技术有限公司 基于高精度匹配模型的冠脉参数的计算方法
CN108550388A (zh) * 2018-01-12 2018-09-18 深圳科亚医疗科技有限公司 基于血管造影的计算血管血流参数的装置和系统
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029438A4 *

Also Published As

Publication number Publication date
CN110367965A (zh) 2019-10-25
JP2022542189A (ja) 2022-09-29
JP2022511211A (ja) 2022-01-31
WO2021042479A1 (zh) 2021-03-11
CN110522439A (zh) 2019-12-03
JP7093584B2 (ja) 2022-06-30
EP4029438A1 (en) 2022-07-20
JP7457105B2 (ja) 2024-03-27
EP4026492A4 (en) 2023-10-11
US11779294B2 (en) 2023-10-10
WO2020057324A1 (zh) 2020-03-26
WO2021042477A1 (zh) 2021-03-11
US20220183644A1 (en) 2022-06-16
EP4026491A1 (en) 2022-07-13
CN110384494A (zh) 2019-10-29
CN110384493A (zh) 2019-10-29
EP4026492A1 (en) 2022-07-13
US20210145390A1 (en) 2021-05-20
US20220183643A1 (en) 2022-06-16
EP4026491A4 (en) 2023-09-06
EP4029438A4 (en) 2023-10-04
WO2020057323A2 (zh) 2020-03-26
CN110367965B (zh) 2022-03-08
CN110393516A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2021046990A1 (zh) 基于影像和压力传感器计算微循环指标的方法装置及系统
JP7324547B2 (ja) 冠状動脈血管評定パラメータを簡単に測定する測定装置及び該測定装置を含む冠状動脈分析システム
US10258303B2 (en) Apparatus for determining a fractional flow reserve value
JP6181180B2 (ja) 脈管を評価するためのシステム
CN108742587B (zh) 基于病史信息获取血流特征值的方法及装置
JP7118464B2 (ja) 血管圧差を取得する方法及び装置
US20210236000A1 (en) Method, device and system for acquiring blood vessel evaluation parameters based on angiographic image
CN108717874B (zh) 基于特定的生理参数获取血管压力值的方法及装置
WO2021087961A1 (zh) 测量舒张期血流速度的方法、装置、系统及存储介质
US20220151579A1 (en) Method and apparatus for correcting blood flow velocity on the basis of interval time between angiogram images
CN112690814A (zh) 一种低误差的冠状动脉血流储备分数测量方法
Liu et al. Vessel Diameter: A Key Factor Influencing Fractional Flow Reserve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020573149

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938107

Country of ref document: EP

Effective date: 20220411