CN112690814B - 一种低误差的冠状动脉血流储备分数测量方法 - Google Patents

一种低误差的冠状动脉血流储备分数测量方法 Download PDF

Info

Publication number
CN112690814B
CN112690814B CN202011233059.7A CN202011233059A CN112690814B CN 112690814 B CN112690814 B CN 112690814B CN 202011233059 A CN202011233059 A CN 202011233059A CN 112690814 B CN112690814 B CN 112690814B
Authority
CN
China
Prior art keywords
blood pressure
blood
section
outlet
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011233059.7A
Other languages
English (en)
Other versions
CN112690814A (zh
Inventor
黄进宇
高贝贝
陈荣民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Aterui Technology Co ltd
Hangzhou First Peoples Hospital
Original Assignee
Hangzhou Aterui Technology Co ltd
Hangzhou First Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Aterui Technology Co ltd, Hangzhou First Peoples Hospital filed Critical Hangzhou Aterui Technology Co ltd
Priority to CN202011233059.7A priority Critical patent/CN112690814B/zh
Publication of CN112690814A publication Critical patent/CN112690814A/zh
Application granted granted Critical
Publication of CN112690814B publication Critical patent/CN112690814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT

Abstract

本发明公开了一种低误差的冠状动脉血流储备分数测量方法,包括:利用CTA冠脉造影并进行三维重建,分段记录目标血管的各段长度;利用DSA造影得到造影剂流经目标血管各个分段的血流时间;根据各分段的长度和血流时间计算各分段的局部血流速度;获取指定冠脉入口的近端血压,结合第一段局部血流速度计算第一段的出口血压,再以第一段出口血压和第二段局部血流速度计算第二段的出口血压,以此类推,直至得到目标血管出口处的远端血压;结合远端血压和近端血压计算FFR值。本发明结合了DSA和CTA各自的优势,并对目标血管进行分段计算,再通过前后衔接的梯度计算方式进行远端血压的计算,进一步提高精确度,最后再进行FFR值的计算,更能反应其实际情况。

Description

一种低误差的冠状动脉血流储备分数测量方法
技术领域
本发明涉及生物医学工程领域,具体涉及一种低误差的冠状动脉血流储备分数测量方法。
背景技术
冠状动脉是包裹在人体心脏表面的一系列血管,主要为心脏运输血液和传送能量,因其形状呈冠状,因此叫做冠状动脉,简称冠脉。冠脉内的血液能否正常通行将直接影响整个心脏的血液循环,同时也是冠心病的重要判断标准之一。
血流储备分数,简称FFR,是判断冠脉内血液通行流畅程度的重要指标,指在冠状动脉存在狭窄病变的情况下,该血管所供心肌区域能获得的最大血流与同一区域理论上正常情况下所能获得的最大血流之比,即心肌最大充血状态下的狭窄远端冠状动脉内平均压(Pd)与冠状动脉入口处平均压(Pa)的比值。目前FFR值主要通过临床医生用压力导丝介入人体冠脉测量获得,目前掌握这一方法的医生并不多,而且该测量方法费用较高,同时还存在一定的风险。
近些年来发展出几种无创的FFR测量方法,例如核素显像法,磁共振灌注法,CT无创血流储备分数测量法(即FFR-CT),基于DSA的FFR测量法(即QFR)。这几种方法中,前两种还是属于传统方法,对设备的依赖性很强,例如核素显像法需要SPECT设备,磁共振灌注法需要磁共振设备,检测费用都很高。后面两种方法是最近才发展起来的,特别是QFR是去年才在中国首次被批准使用。另外还包括如公开号CN108992057A的发明公开的一种确定冠状动脉FFR的方法等其他技术。
FFR-CT最早是美国heartflow公司于2014年在美国获得FDA证书,它是基于CT冠状动脉血管造影(简称CTA)的影像,仿真冠状动脉血管血流,模拟出人体心血管主要指标,如血压、血流速度、冠状动脉血流储备分数等,用于临床定量分析的后期处理。它的流程方法是首先在CT室内获得CTA图像,然后对CTA图像进行处理,重建出冠脉的三维结构,再对该三维结构进行网格和数学建模,最后将一些边界条件提交到超级计算机上进行计算,获得每支冠脉的FFR值。FFR-CT由于基于CTA的影像,获得冠脉的三维结构,但是存在一些缺点,例如不能准确获得边界条件,比如出口的血液压力或者血流速度等。
而基于DSA的FFR测量法(即QFR)是通过DSA影像,首先在DSA设备下获得冠脉两个角度的DSA平面影像,然后根据影像测出血管直径,再根据这个直径认为重建一根三维血管,然后根据造影剂在血管里流动情况确定血流速度,以及事先准备在造影剂导管处设计的血压感应器获得冠脉入口处的血压,这样就可以计算出这一支冠脉的FFR值,而且计算量很少,单台计算机几分钟就可以计算完成一个病例。QFR计算速度快,但也存在一个较大的缺点,就是DSA图像是平面图像,不能准确获得血管三维结构,特别是对狭窄处的三维结构不能准确获取,而恰恰就是狭窄处的三维结构对结算结果起到决定性作用。
上述现有技术所得到的血流速度和血压等参数都比较粗略,导致FFR值的计算结果不准确,影响后续的医疗诊断。
发明内容
针对现有技术FFR值的计算不准确的问题,本发明提供了一种低误差的冠状动脉血流储备分数测量方法,通过结合CTA和DSA的优势,利用各自可以获得的较精确的参数,并对目标血管进行分段计算,得到精细化的参数结果,再进行FFR值的计算,以提高准确性。
以下是本发明的技术方案。
一种低误差的冠状动脉血流储备分数测量方法,包括以下步骤:利用CTA冠脉造影并进行三维重建,分段记录目标血管的各段长度;利用DSA造影得到造影剂流经目标血管各个分段的血流时间;根据各分段的长度和血流时间计算各分段的局部血流速度;获取指定冠脉入口的近端血压,结合第一段局部血流速度计算第一段的出口血压,再以第一段出口血压和第二段局部血流速度计算第二段的出口血压,以此类推,直至得到目标血管出口处的远端血压;结合远端血压和近端血压计算FFR值。
传统方式通常利用可直接测得的近端血压和计算得到的平均血流速度来计算远端血压,从而计算FFR值,但由于目标血管通常本身结构复杂且带有支流血管,因此这种计算方式误差较大,有一定的估算成分,而本发明以血流速度的获取方式作为切入点,将目标血管进行分段,单独计算血流速度,并以阶梯的形式从近端到远端逐一计算各分段的出口血压,最终得到的远端血压准确度大幅提高,以此计算得到的FFR值也更为准确。
作为优选,所述目标血管的分段过程包括:从三维重建得到的模型中找到目标血管模型,以目标血管入口至出口的分段长度逐渐变长为原则进行分段。由于目标血管血液流量的减少因素主要为支流血管,因此从入口到出口的过程中流量会逐步减少,导致其中的流速变化率也会逐步变缓,由此采用这种分段方式,可以在适当计算量的情况下尽可能提高分段的有效性,保证后续计算的精准度。
作为优选,所述血流时间的获取过程包括:所述DSA造影得到影像数据,将每一帧图像按顺序排列,顺序排列的图像序列中,造影剂流到分段起始位置的图像作为第一帧图像,造影剂流到指定分段末尾位置的图像作为第二帧图像,再根据DSA图像的帧率,计算出造影剂从起始位置到末尾位置的时间,即是血流时间t,并以此类推得到每个分段的血流时间。
作为优选,所述指定冠脉入口的近端血压的获取过程包括:在DSA造影时通过指引导管上的血压监测器获取冠脉入口处的近端血压。
作为优选,所述远端血压的获取过程包括:根据近端血压Pa和计算得到的目标血管第一段的局部血流速度V1,利用纳维-斯托克斯方程计算出该分段的出口血压Pd1,再在纳维-斯托克斯方程中以出口血压Pd1替代近端血压Pa,第二段的局部血流速度V2替代V1计算出该分段的出口血压Pd2,根据分段的数量依次进行计算,直至得到最后一个分段的出口血压,作为远端血压Pd。以前后衔接的梯度计算方式逐步将远端血压计算出来,相比直接使用平均值,这种方式的精确度更高。
作为优选,所述FFR值的计算方式为:远端血压除以近端血压。
本发明的实质性效果包括:结合了DSA和CTA各自的优势,利用各自可以获得的较精确的参数,并对目标血管进行分段计算,得到精细化的参数结果,再通过前后衔接的梯度计算方式进行远端血压的计算,进一步提高精确度,最后再进行FFR值的计算,保证了数据从获取到计算整个过程的严谨性,相比较直接采用平均值,这种方式更贴近目标血管真实的FFR值,更能反应其实际情况。
具体实施方式
下面将结合实施例,对本申请的技术方案进行描述。另外,为了更好的说明本发明,在下文中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未做详细描述,以便于凸显本发明的主旨。
实施例:
一种低误差的冠状动脉血流储备分数测量方法,包括以下步骤:利用CTA冠脉造影并进行三维重建,分段记录目标血管的各段长度;利用DSA造影得到造影剂流经目标血管各个分段的血流时间;根据各分段的长度和血流时间计算各分段的局部血流速度;获取指定冠脉入口的近端血压,结合第一段局部血流速度计算第一段的出口血压,再以第一段出口血压和第二段局部血流速度计算第二段的出口血压,以此类推,直至得到目标血管出口处的远端血压;结合远端血压和近端血压计算FFR值,计算方式为:远端血压除以近端血压。
本实施例以血流速度的获取方式作为切入点,将目标血管进行分段,单独计算血流速度,并以阶梯的形式从近端到远端逐一计算各分段的出口血压,最终得到的远端血压准确度大幅提高,以此计算得到的FFR值也更为准确。
其中目标血管的分段过程包括:从三维重建得到的模型中找到目标血管模型,以目标血管入口至出口的分段长度逐渐变长为原则进行分段。由于目标血管血液流量的减少因素主要为支流血管,因此从入口到出口的过程中流量会逐步减少,导致其中的流速变化率也会逐步变缓,由此采用这种分段方式,可以在适当计算量的情况下尽可能提高分段的有效性,保证后续计算的精准度。
本实施例的血流时间的获取过程包括:DSA造影得到影像数据,将每一帧图像按顺序排列,顺序排列的图像序列中,造影剂流到分段起始位置的图像作为第一帧图像,造影剂流到指定分段末尾位置的图像作为第二帧图像,再根据DSA图像的帧率,计算出造影剂从起始位置到末尾位置的时间,即是血流时间t,并以此类推得到每个分段的血流时间。
本实施例的指定冠脉入口的近端血压的获取过程包括:在DSA造影时通过指引导管上的血压监测器获取冠脉入口处的近端血压。
远端血压的获取过程包括:根据近端血压Pa和计算得到的目标血管第一段的局部血流速度V1,利用纳维-斯托克斯方程计算出该分段的出口血压Pd1,再在纳维-斯托克斯方程中以出口血压Pd1替代近端血压Pa,第二段的局部血流速度V2替代V1计算出该分段的出口血压Pd2,根据分段的数量依次进行计算,直至得到最后一个分段的出口血压,作为远端血压Pd。以前后衔接的梯度计算方式逐步将远端血压计算出来,相比直接使用平均值,这种方式的精确度更高。
其中本实施例所使用的纳维-斯托克斯方程如下:
Figure BDA0002765835760000041
in Ωf
Figure BDA0002765835760000042
in Ωf
pf=Pdi on
Figure BDA0002765835760000043
u=Vi on
Figure BDA0002765835760000044
其中,
Figure BDA0002765835760000045
为流场的应力张量,
Figure BDA0002765835760000046
为梯度算子,t为时间变量,I为单位矩阵,
Figure BDA0002765835760000047
表示
Figure BDA0002765835760000048
的转置,ff为源项,这里为重力,u表示局部血流速度,pf为血流压力,ρf为血液密度,μ为血液的粘性系数,Ωf为流体计算区域,
Figure BDA0002765835760000049
为流体计算域的入流边界和出流边界。由于pf是定义在整个流体计算区域中的,所以上述公式得到的pf包括了分段血管的出口血压Pdi,其中Pdi和Vi中的i均表示血管对应分段的序号,最后一段血管的出口血压即为远端血压Pd。
本实施例的实质性效果包括:结合了DSA和CTA各自的优势,利用各自可以获得的较精确的参数,并对目标血管进行分段计算,得到精细化的参数结果,再通过前后衔接的梯度计算方式进行远端血压的计算,进一步提高精确度,最后再进行FFR值的计算,保证了数据从获取到计算整个过程的严谨性,相比较直接采用平均值,这种方式更贴近目标血管真实的FFR值,更能反应其实际情况。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各步骤的划分进行举例说明,实际应用中可以根据需要而将上述步骤进行调整,即将具体顺序和实施细节进行适应性改动,以完成以上描述的全部或者部分功能。
另外,本申请实施例如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (4)

1.一种低误差的冠状动脉血流储备分数测量方法,其特征在于,包括以下步骤:
利用CTA冠脉造影并进行三维重建,分段记录目标血管的各段长度;
利用DSA造影得到造影剂流经目标血管各个分段的血流时间;
根据各分段的长度和血流时间计算各分段的局部血流速度;
获取指定冠脉入口的近端血压,结合第一段局部血流速度计算第一段的出口血压,再以第一段出口血压和第二段局部血流速度计算第二段的出口血压,以此类推,直至得到目标血管出口处的远端血压;
结合远端血压和近端血压计算FFR值;
所述目标血管的分段过程包括:从三维重建得到的模型中找到目标血管模型,以目标血管入口至出口的分段长度逐渐变长为原则进行分段;
所述远端血压的获取过程包括:根据近端血压Pa和计算得到的目标血管第一段的局部血流速度V1,利用纳维-斯托克斯方程计算出该分段的出口血压Pd1,再在纳维-斯托克斯方程中以出口血压Pd1替代近端血压Pa,第二段的局部血流速度V2替代V1计算出该分段的出口血压Pd2,根据分段的数量依次进行计算,直至得到最后一个分段的出口血压,作为远端血压Pd;
所使用的纳维-斯托克斯方程如下:
Figure FDA0003674446480000011
Figure FDA0003674446480000012
Figure FDA0003674446480000013
Figure FDA0003674446480000014
其中,
Figure FDA0003674446480000015
为流场的应力张量,
Figure FDA0003674446480000016
为梯度算子,t为时间变量,I为单位矩阵,
Figure FDA0003674446480000017
表示
Figure FDA0003674446480000018
的转置,ff为源项,这里为重力,u表示局部血流速度,pf为血流压力,ρf为血液密度,μ为血液的粘性系数,Ωf为流体计算区域,
Figure FDA0003674446480000019
为流体计算域的入流边界和出流边界。
2.根据权利要求1所述的一种低误差的冠状动脉血流储备分数测量方法,其特征在于,所述血流时间的获取过程包括:所述DSA造影得到影像数据,将每一帧图像按顺序排列,顺序排列的图像序列中,造影剂流到分段起始位置的图像作为第一帧图像,造影剂流到指定分段末尾位置的图像作为第二帧图像,再根据DSA图像的帧率,计算出造影剂从起始位置到末尾位置的时间,即是血流时间t,并以此类推得到每个分段的血流时间。
3.根据权利要求1所述的一种低误差的冠状动脉血流储备分数测量方法,其特征在于,所述指定冠脉入口的近端血压的获取过程包括:在DSA造影时通过指引导管上的血压监测器获取冠脉入口处的近端血压。
4.根据权利要求1所述的一种低误差的冠状动脉血流储备分数测量方法,其特征在于,所述FFR值的计算方式为:远端血压除以近端血压。
CN202011233059.7A 2020-11-06 2020-11-06 一种低误差的冠状动脉血流储备分数测量方法 Active CN112690814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011233059.7A CN112690814B (zh) 2020-11-06 2020-11-06 一种低误差的冠状动脉血流储备分数测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011233059.7A CN112690814B (zh) 2020-11-06 2020-11-06 一种低误差的冠状动脉血流储备分数测量方法

Publications (2)

Publication Number Publication Date
CN112690814A CN112690814A (zh) 2021-04-23
CN112690814B true CN112690814B (zh) 2022-10-14

Family

ID=75505928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011233059.7A Active CN112690814B (zh) 2020-11-06 2020-11-06 一种低误差的冠状动脉血流储备分数测量方法

Country Status (1)

Country Link
CN (1) CN112690814B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116051458A (zh) * 2022-11-23 2023-05-02 杭州脉流科技有限公司 基于术前冠脉造影影像评估术后冠脉血流储备分数的方法和计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125881A (ja) * 2006-11-22 2008-06-05 Toshiba Corp 医用画像診断装置、医用画像処理装置、及び医用画像処理プログラム
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
CN111145313A (zh) * 2019-12-30 2020-05-12 北京东方逸腾数码医疗设备技术有限公司 血管矢量图模型中添加单点定位图例的方法及装置
CN111312375A (zh) * 2020-03-12 2020-06-19 上海杏脉信息科技有限公司 虚拟冠脉手术的搭桥分析方法、系统、介质及设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514997A (ja) * 2001-12-28 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 体器官内の流動の定量的な算出を実行するための超音波画像シーケンスを処理する手段を有する観察システム
US8233681B2 (en) * 2004-09-24 2012-07-31 The University Of North Carolina At Chapel Hill Methods, systems, and computer program products for hierarchical registration between a blood vessel and tissue surface model for a subject and a blood vessel and tissue surface image for the subject
JP6453883B2 (ja) * 2013-08-21 2019-01-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血管造影画像データにおいて血管をインタラクティブにセグメント化するためのセグメンテーション装置
CN104715485A (zh) * 2015-03-23 2015-06-17 上海交通大学 一种分段动态模拟肺部形变的快速融合方法
CN105894445B (zh) * 2016-03-31 2019-06-11 北京思创贯宇科技开发有限公司 一种冠脉图像处理方法和装置
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
JP6653673B2 (ja) * 2017-02-28 2020-02-26 富士フイルム株式会社 血流解析装置および方法並びにプログラム
CN110226923B (zh) * 2018-03-05 2021-12-14 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法
CN108511075B (zh) * 2018-03-29 2022-10-25 杭州脉流科技有限公司 一种非侵入式获取血流储备分数的方法和系统
CN108564574B (zh) * 2018-04-11 2021-04-20 上海联影医疗科技股份有限公司 确定血流储备分数的方法、计算机设备及计算机可读存储介质
CN108922580A (zh) * 2018-05-25 2018-11-30 杭州脉流科技有限公司 一种获取血流储备分数的方法、装置、系统和计算机存储介质
CN108735270A (zh) * 2018-05-25 2018-11-02 杭州脉流科技有限公司 基于降维模型的血流储备分数获取方法、装置、系统和计算机存储介质
CN108992057B (zh) * 2018-06-05 2021-08-10 杭州晟视科技有限公司 一种确定冠状动脉血流储备分数ffr的方法和装置
CN110384494A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的方法
CN111166316B (zh) * 2018-11-13 2023-03-21 苏州润迈德医疗科技有限公司 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法
CN111166317B (zh) * 2018-11-13 2023-09-05 苏州润迈德医疗科技有限公司 基于造影图像计算造影血流储备分数和静息态压力比值的方法
CN110215233A (zh) * 2019-04-30 2019-09-10 深圳大学 一种基于超声平面波扫描的分段式脉搏波成像方法
CN110786841B (zh) * 2019-11-04 2021-05-25 苏州润迈德医疗科技有限公司 基于微循环阻力指数调节最大充血状态流速的方法及装置
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
CN111241759B (zh) * 2020-01-13 2024-03-26 北京工业大学 一种基于零维血流动力学模型的ffr快速计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125881A (ja) * 2006-11-22 2008-06-05 Toshiba Corp 医用画像診断装置、医用画像処理装置、及び医用画像処理プログラム
CN109805949A (zh) * 2019-03-19 2019-05-28 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
CN111145313A (zh) * 2019-12-30 2020-05-12 北京东方逸腾数码医疗设备技术有限公司 血管矢量图模型中添加单点定位图例的方法及装置
CN111312375A (zh) * 2020-03-12 2020-06-19 上海杏脉信息科技有限公司 虚拟冠脉手术的搭桥分析方法、系统、介质及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FFR As A Gold Standard For CT-FFR Validation. Does The FFR Measurement Device Alter The Flow?;Michael F.Wilson等;《Journal of Cardiovascular Computed Tomography》;20190105;第13卷(第1期);全文 *

Also Published As

Publication number Publication date
CN112690814A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
CN110367965B (zh) 便捷测量冠状动脉血管评定参数的方法、装置及系统
CN107730540B (zh) 基于高精度匹配模型的冠脉参数的计算方法
JP6792768B2 (ja) 血流予備量比の計算方法およびシステム
CN111227822B (zh) 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法
US10872698B2 (en) Method and system for enhancing medical image-based blood flow computations using physiological measurements
JP5953438B2 (ja) 冠状動脈を通る血流量を決定する方法
WO2019210553A1 (zh) 基于造影图像和流体力学模型的微循环阻力指数计算方法
US10803995B2 (en) Method and system for non-invasive functional assessment of coronary artery stenosis using flow computations in diseased and hypothetical normal anatomical models
US10134129B2 (en) Method and system for hemodynamic computation in coronary arteries
CN111227821B (zh) 基于心肌血流量和ct图像的微循环阻力指数计算方法
EP2690598A2 (en) Method and apparatus for determining blood flow required, method and apparatus for producing blood flow image, and method and apparatus for processing myocardial perfusion image
JP2017518844A (ja) 血流予備量比値を算出するための機器
JP7303260B2 (ja) 動脈網における流量および圧力勾配を患者特定コンピュータ断層撮影アルゴリズムに基づくコントラスト分布から判断するための方法
CN112089433B (zh) 一种基于cta和dsa的冠状动脉血流储备分数测量方法
Vijayan et al. Assessing coronary blood flow physiology in the cardiac catheterisation laboratory
Kakouros et al. Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses
CN112384136A (zh) 基于造影图像获取血管评定参数的方法、装置及系统
CN112155580B (zh) 基于造影图像修正血流速度和微循环参数的方法及装置
CN112690814B (zh) 一种低误差的冠状动脉血流储备分数测量方法
CN112704505B (zh) 一种利用cta和dsa测量冠状动脉血流储备分数的方法
JP6449675B2 (ja) 部分冠動脈血流予備能を予測する指標を算出する核医学検査方法
Zhang et al. Branch flow distribution approach and its application in the calculation of fractional flow reserve in stenotic coronary artery
CN113907720B (zh) 测量血管功能学指标的方法、装置与处理器
Mynard Diagnostic Performance of Virtual Fractional Flow Reserve derived from routine Coronary Angiography using Segmentation Free Reduced order (1-Dimensional) Flow Modelling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant