CN116035549A - 获得冠脉血流储备分数的方法和计算机设备 - Google Patents

获得冠脉血流储备分数的方法和计算机设备 Download PDF

Info

Publication number
CN116035549A
CN116035549A CN202211476660.8A CN202211476660A CN116035549A CN 116035549 A CN116035549 A CN 116035549A CN 202211476660 A CN202211476660 A CN 202211476660A CN 116035549 A CN116035549 A CN 116035549A
Authority
CN
China
Prior art keywords
dimensional
obtaining
blood vessel
diameter
central line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211476660.8A
Other languages
English (en)
Inventor
向建平
刘达
何京松
陆徐洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arteryflow Technology Co ltd
Original Assignee
Arteryflow Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arteryflow Technology Co ltd filed Critical Arteryflow Technology Co ltd
Priority to CN202211476660.8A priority Critical patent/CN116035549A/zh
Publication of CN116035549A publication Critical patent/CN116035549A/zh
Priority to CN202311308882.3A priority patent/CN117058327B/zh
Priority to PCT/CN2023/133374 priority patent/WO2024109822A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

本申请涉及一种获得冠脉血流储备分数的方法和计算机设备,方法包括:获得DSA影像序列,筛选、分类和语义分割,获得目标血管第一造影角度图和第二造影角度图;重建获得目标血管的三维中心线和三维轮廓,获得等效三维直径;对等效三维直径进行拟合获得参照直径;获得造影剂在第一造影角度图中从参与重建三维中心线的起点到终点的第一时间差,获得造影剂在第二造影角度图中从参与重建三维中心线的起点到终点的第二时间差,结合第一时间差、第二时间差的均值和三维中心线的长度获得血流速度;结合三维中心线、等效三维直径、参照直径和血流速度,获得血液经过目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。

Description

获得冠脉血流储备分数的方法和计算机设备
技术领域
本申请涉及医疗图像处理领域,特别是涉及一种获得冠脉血流储备分数的方法和计算机设备。
背景技术
缺血性心脏病,即冠心病,是全球致死人数最多的疾病。冠状动脉向心脏提供氧气和营养物质,当冠状动脉发生粥样硬化性病变,心脏供血就会受到影响,当血流量不能满足心肌代谢的需要,心肌就会缺血缺氧,随着缺氧程度的提高,可能引起心绞痛、心肌梗死甚至猝死。
血管造影是一种介入检测方法,在X光照射下,将X光无法穿透的显影剂注入血管,可以得到血管影像。而数字减影血管造影(Digital Subtraction Angiography,DSA)则是使用显影剂注入后影像和注入前的影像相减,消除骨骼和软组织影像,使血管显影清晰,曾被认为是冠状动脉血管狭窄诊断的金标准,但传统的诊断方法仅考虑血管狭窄程度,无法定量评价狭窄病变对冠状动脉生理功能的影响,因此不能正确地评价病变的严重程度,可能导致治疗不足或过度治疗。1993年NicoPijls提出了通过压力测定推算冠脉血流的新指标,即血流储备分数(Fractional Flow Reserve,FFR)。经过长期的研究,血流储备分数已成为冠状动脉狭窄功能性评价的公认指标。冠状动脉血流储备分数是指该血管所供心肌区域能获得的最大血流量与同一区域理论上正常情况下所能获得的最大血流量之比,其等效的压强比定义为冠状动脉狭窄段远端的压强与冠脉口的压强比值。
传统的血流储备分数获取方法是通过压力导丝测量血液压力计算得到,但这种方法操作复杂,耗材昂贵,且导丝易对病人血管造成损伤。在此基础上,已经有技术实现了通过非手术方式的、简单准确获得冠状动脉血流储备分数的方式,即直接使用冠脉DSA影像计算血流储备分数。
根据输入影像文件数量的不同,现有的针对DSA影像获取血流储备分数的方法可以分为两种,第一种是单角度二维血流储备分数计算方法,第二种是多角度(双角度及以上)三维血流储备分数计算方法。
第一种方法中,使用单角度的一个DSA影像进行目标血管重建并根据二维血管数据计算血流储备分数,计算流程简单,计算时间少,但不能消除投影缩减和偏心狭窄带来的影响,计算准确性较差。
第二种方法中,以双角度三维血流储备分数计算方法为例,如使用双角度的两个DSA影像进行目标血管重建并根据三维血管数据计算血流储备分数,为了保证计算的准确性,需要进行以下的人工操作步骤(1)~(5):(1)挑选双角度下相同目标血管的影像文件;(2)关键帧选取(舒张末期清晰帧选取);(3)选定目标血管起止点;(4)数帧(造影剂从目标血管起点到达目标血管终点的帧数;(5)调节血管轮廓。这种方法计算准确度高,但计算速度慢,需要人工操作的步骤过多。
发明内容
基于此,有必要针对上述技术问题,提供一种获得冠脉血流储备分数的方法。
本申请获得冠脉血流储备分数的方法,包括:
获得冠脉血管的、包括多个造影角度的DSA影像序列,依次对所述DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,分别为第一造影角度图和第二造影角度图,二者均包括所述目标血管的起点;
根据所述第一造影角度图和所述第二造影角度图,重建获得所述目标血管的三维中心线和三维轮廓,进而获得所述三维轮廓的等效三维直径;
对所述等效三维直径进行拟合,获得参照直径;
沿所述DSA影像序列的时序,获得造影剂在所述第一造影角度图中从参与重建所述三维中心线的起点到终点的第一时间差,获得造影剂在所述第二造影角度图中从参与重建所述三维中心线的起点到终点的第二时间差,利用所述三维中心线的长度、以及所述第一时间差和所述第二时间差的均值,获得血流速度;
结合所述三维中心线、所述等效三维直径、所述参照直径和所述血流速度,获得血液经过所述目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。
可选的,所述第一造影角度和所述第二造影角度的角度差大于等于二十五度;
所述目标血管包括左前降支LAD、左回旋支LCX、右冠脉RCA三者中的一种。
可选的,依次对所述DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,具体包括:
利用训练完成的第一深度模型,对所述DSA影像序列筛选,获得关键帧;
利用训练完成的第二深度模型,基于所述关键帧对所述DSA影像序列进行分类,获得目标血管的第一造影角度和第二造影角度的DSA影像;
利用训练完成的、与所述目标血管相匹配的语义分割模型,针对所述目标血管的第一造影角度和第二造影角度的DSA影像进行分割,获得第一造影角度和第二造影角度的目标血管二值图。
可选的,所述第二深度模型为四分类模型,用于将所述关键帧分类为:左前降支LAD、左回旋支LCX、右冠脉RCA、以及不属于目标血管的其他类别图像;
训练完成的所述第二深度模型获得输入的所述关键帧,输出各个分类的概率值。
可选的,根据所述第一造影角度图和所述第二造影角度图,重建获得所述目标血管的三维中心线和三维轮廓,进而获得所述三维轮廓的等效三维直径,具体包括:
根据所述第一造影角度图获得第一中心线和第一轮廓线,根据所述第二造影角度图获得第二中心线和第二轮廓线;
根据所述第一中心线和所述第二中心线反投影获得所述目标血管的三维中心线,所述三维中心线包括所述目标血管的起点和终点;
对于所述三维中心线上的任意一点,将所述第一中心线和所述第二中心线分别与其匹配后,获得该点在所述第一轮廓线和所述第二轮廓线上对应的四个轮廓点,生成截面轮廓,结合所述三维中心线和所述截面轮廓,获得所述目标血管的三维轮廓,基于所述三维中心线以及三维轮廓,获得所述三维轮廓的等效三维直径。
可选的,所述三维中心线的起点为所述目标血管的起点,所述三维中心线的终点对应所述第一中心线和/或所述第二中心线的终点。
可选的,对所述等效三维直径进行拟合,获得参照直径,具体包括:
对所述等效三维直径进行第一次拟合,获得第一拟合直径,根据所述第一拟合直径排除所述等效三维直径的狭窄段,对排除所述狭窄段的等效三维直径进行第二次拟合,获得第二拟合直径,所述第二拟合直径即为所述参照直径。
可选的,获得造影剂在所述第一造影角度图中从参与重建所述三维中心线的起点到终点的第一时间差,具体包括:
利用与所述目标血管相匹配的语义分割模型,对第一造影角度的DSA影像序列逐帧分割,基于分割结果得到所述第一造影角度的血管长度-时间曲线;
在所述第一造影角度的血管长度-时间曲线上,从所述第一造影角度图的所在帧位置沿时序向前寻找,直至血管长度达到所述目标血管的起点,获得起始帧n1,由起始帧n1向后寻找,直至血管长度达到第一中心线参与重建长度的终止帧n2,所述第一时间差为起始帧n1和终止帧n2的时间差。
可选的,获得冠脉远端血流储备分数包括:
获得冠脉血流储备分数沿所述三维中心线的分布;
通过公式(1-ΔP/Pa)获得冠脉远端血流储备分数,式中ΔP为血液经过所述目标血管的压强下降值,Pa为冠脉口压强。
本申请还提供一种计算机设备,包括存储器、处理器及存储在存储器上的计算机程序,所述处理器执行所述计算机程序以实现本申请所述的获得冠脉血流储备分数的步骤。
本申请获得冠脉血流储备分数的方法至少具有以下效果:
本申请根据对DSA影像序列自动筛选、分类和语义分割得到的第一造影角度图和第二造影角度图进行反投影重建,能够获得准确的目标血管的三维中心线、三维轮廓、等效三维直径,并对等效三维直径拟合得到参照直径;本申请根据第一造影角度图和第二造影角度图与参与三维中心线重建的对应关系,分别通过第一造影角度图和第二造影角度图和DSA影像时序获得第一时间差和第二时间差,使用二者的均值以及三维中心线长度获得血流速度,获得的血液速度的数值更可靠。本申请能够准确地自动获得目标血管的三维中心线、等效三维直径、参照直径以及血流速度,进而能够准确获得冠脉血流储备分数。
附图说明
图1为本申请一实施例中获得冠脉血流储备分数方法的流程示意图;
图2为本申请一实施例中获得冠脉血流储备分数方法的流程框图;
图3为本申请一实施例中获得冠脉血流储备分数方法中步骤S100的子步骤流程示意图;
图4为本申请一实施例中利用第二深度模型分类的DSA影像序列示意图;
图5为本申请一实施例中接收用户指定目标血管的示意图;
图6为本申请一实施例中第一造影角度的关键帧;
图7为本申请一实施例中第二造影角度的关键帧;
图8为本申请一实施例中第一造影角度图(二值图);
图9为本申请一实施例中第二造影角度图(二值图);
图10为本申请一实施例中获得冠脉血流储备分数方法中步骤S200的子步骤流程示意图;
图11为本申请一实施例中根据第一中心线和第二中心线反投影生成三维中心线的示意图;
图12为本申请一实施例中通过第一造影角度图和第二造影角度图的截面获得截面轮廓的示意图;
图13为本申请一实施例中第一造影角度图的第一轮廓线的结构示意图;
图14为本申请一实施例中第二造影角度图的第二轮廓线的结构示意图;
图15为本申请一实施例中目标血管三维中心线的结构示意图;
图16为本申请一实施例中目标血管三维轮廓的结构示意图;
图17~图18为标注有匹配点的两个不同造影角度的关键帧示意图;
图19为本申请一实施例中获得的冠脉血流储备分数沿三维中心线的分布示意图;
图20为本申请一实施例中计算机设备的内部结构图。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、次序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅用以解释本申请,并不用于限定本申请。
参见图1,本申请一实施例中提供一种获得冠脉血流储备分数的方法,包括步骤S100~步骤S500。其中:
步骤S100,获得冠脉血管的、包括多个造影角度的DSA影像序列,依次对DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,分别为第一造影角度图和第二造影角度图,二者均包括目标血管的起点。
步骤S200,根据第一造影角度图和第二造影角度图,重建获得目标血管的三维中心线和三维轮廓,进而获得三维轮廓的等效三维直径。
步骤S300,对等效三维直径进行拟合,获得参照直径。
步骤S400,沿DSA影像序列的时序,获得造影剂在第一造影角度图中从参与重建三维中心线的起点到终点的第一时间差,获得造影剂在第二造影角度图中从参与重建三维中心线的起点到终点的第二时间差,利用三维中心线的长度、以及第一时间差和第二时间差的均值,获得血流速度。
步骤S500,结合三维中心线、等效三维直径、参照直径和血流速度,获得血液经过目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。
本实施例提供的获得冠脉血流储备分数的方法兼顾了自动化和计算准确性。本实施例中在现有技术中针对DSA影像处理进行改进,相对于现有技术中单角度二维血流储备分数的计算方法,提高了获得血流储备分数的准确性,相对于现有技术中双角度三维血流储备分数计算方法,提高了效率。
本实施例采用第一造影角度图和第二造影角度图进行反投影重建,能够获得准确的目标血管的三维中心线、三维轮廓和等效三维直径。本申请根据第一造影角度图和第二造影角度图与参与三维中心线重建的对应关系,分别通过第一造影角度图和第二造影角度图和DSA影像时序获得第一时间差和第二时间差,使用二者的均值以及三维中心线长度获得血流速度,获得的血液速度的数值更可靠。在其他实施方式中,各实施例还可以包括第三造影角度图,第三造影角度图同样参与三维中心线的重建、以及时间差的计算,以进一步增强获得三维参数的可靠性。
可以理解,各实施例中的“双角度是指”第一造影角度和第二造影角度。第一造影角度和第二造影角度的角度差大于等于二十五度,以充分获得目标血管的空间信息。目标血管包括左前降支LAD、左回旋支LCX、右冠脉RCA三者中的一种。
参见图1和图2,获得冠脉DSA影像文件,筛选获得舒张末期清晰帧作为关键帧,对DSA影像文件分类获得目标血管类别,获取相同目标血管的双角度影像文件,对双角度影像文件关键帧进行分割得到双角度清晰帧分割图即第一角度图和第二角度图(对应步骤S100)。
根据第一角度图和第二角度图,提取二维轮廓线和二维中心线,反投影重建得到目标血管的三维参数,三维参数包括三维中心线、三维轮廓和等效三维直径(对应步骤S200),对等效三维直径进行拟合获得参照直径(对应步骤S300)。
对双角度影像文件逐帧图像进行分割,结合影像时序得到血管长度-时间曲线,得到两角度血管长度达到目标血管起点和终点的时间差均值t,利用三维中心线长度和时间t,计算血液流速(对应步骤S400),进而计算目标血管压降ΔP,结合心脏冠口压强Pa,计算血流储备分数1-ΔP/Pa(对应步骤S500)。
在步骤S100中,依次对DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图。实际操作的流程包括基于同一个病人的所有冠状动脉血管DSA影像序列,使用深度学习的方法依次完成筛选(寻找属于舒张末期清晰帧的关键帧)、影像分类(属于目标血管的分类)和语义分割(图像分割)。DSA影像序列可以包含不同的目标血管文件,但应至少包含目标血管类型的两个不同造影角度的影像文件才可以进行三维重建,即至少包括下文使用的第一造影角度和第二造影角度。
本申请各实施例中的冠脉即冠状动脉,二值图例如可以是将目标血管区域标记为白色,将非目标血管区域标记为黑色。DSA影像序列即数字减影血管造影,包括整个造影过程的影像记录。
参见图3~图9,步骤S100具体包括步骤S110~步骤S130。其中:
步骤S110,利用训练完成的第一深度模型,对DSA影像序列筛选,获得关键帧。
具体地,利用第一深度模型,使用深度学习的方法找到DSA影像序列的每个影像中目标血管舒张末期最清晰的一帧图像。基于深度学习的找关键帧算法,首先需要训练一个基于关键帧图像和非关键帧图像数据的第一深度模型(二分类模型),然后再利用训练好的模型进行推理,输出二分类概率中关键帧位置概率最高的值所对应的帧作为影像的关键帧。
步骤S120,利用训练完成的第二深度模型,基于关键帧对DSA影像序列进行分类,获得目标血管的第一造影角度和第二造影角度的DSA影像。
在步骤S120中,第二深度模型为四分类模型,用于将关键帧分类为:左前降支LAD、左回旋支LCX、右冠脉RCA、以及不属于目标血管的其他类别图像;训练完成的第二深度模型获得输入的关键帧,输出各个分类的概率值。
具体地,将关键帧图像输入第二深度模型,使用深度学习的方法对影像文件进行分类,得到影像序列中目标血管的类型。基于深度学习的血管分类算法,首先需要训练一个基于LAD(左前降支)、LCX(左回旋支)、RCA(右冠状动脉)以及不属于目标血管的其他类别图像的四分类模型,其中LAD、LCX、RCA均取自于上一步(步骤S110获得的关键帧)影像关键帧所对应的图像,其他类别图像包含影像质量不佳以及非冠脉的其他影像中的任意一种,然后再利用训练好的第二深度模型进行推理,输出四分类中各类别所对应的概率值,其中概率最高的类别即为所述影像对应的目标血管类型。
步骤S130,利用训练完成的、与目标血管相匹配的语义分割模型,针对目标血管的第一造影角度和第二造影角度的DSA影像关键帧进行分割,获得第一造影角度和第二造影角度的目标血管二值图。
由于目标血管有三种,语义分割模型相应训练三种,训练这三种分割模型的数据来源于对原始影像中各帧图像血管对轮廓的标注,然后再利用训练好的语义分割模型进行推理,对关键帧分割后进行分割。在以下的步骤S400中,需要利用与目标血管相匹配的语义分割模型对第一造影角度和第二造影角度的DSA影像进行逐帧分割,详见下文记载。
上述步骤S110~步骤S130实现了自动处理DSA影像序列以获得获得第一造影角度和第二造影角度的目标血管二值图的流程。
参见图10~图18,在步骤S200中,根据第一造影角度图和第二造影角度图,重建获得目标血管的三维中心线和三维轮廓,进而获得三维轮廓的等效三维直径,具体包括:
步骤S210,根据第一造影角度图获得第一中心线和第一轮廓线,根据第二造影角度图获得第二中心线和第二轮廓线。
步骤S220,根据第一中心线和第二中心线反投影获得目标血管的三维中心线,三维中心线包括目标血管的起点和终点。
在步骤S220中,三维中心线的起点为目标血管的起点,三维中心线的终点对应第一中心线和/或第二中心线的终点。
步骤S230,对于三维中心线上的任意一点,将第一中心线和第二中心线分别与其匹配后,获得该点在第一轮廓线和第二轮廓线上对应的四个轮廓点,生成截面轮廓,结合三维中心线和截面轮廓,获得目标血管的三维轮廓,基于三维中心线以及三维轮廓,获得三维轮廓的等效三维直径。
参见图11,步骤S210中,使用双角度的目标血管关键帧的二值图(第一造影角度图和第二造影角度图),提取目标血管中心线和轮廓线。步骤S220中,使用双角度的关键帧的目标血管中心线和轮廓线,根据双角度投影关系,根据双角度投影关系,依次进行中心线匹配和边界匹配。
参见图12~图16,步骤S230中,首先根据双角度中心线反投影重建得到三维中心线点云坐标。依据三维中心线点和双角度的轮廓点在三维中心线的法平面生成血管每个横截面的点云(截面轮廓),三维轮廓为截面轮廓沿三维中心线的集合。如图12所示,对于三维中心线上的任意一点,匹配获得第一造影角度(角度1)下第一中心线上的中心线点10、匹配获得第二造影角度(角度2)下第二中心线上的中心线点20。获得中心线点10在第一轮廓线上的左轮廓点11、右轮廓点12;获得中心线点20在第二轮廓线上的左轮廓点21、右轮廓点22,共计为四个轮廓点。进而三维血管横截面拟合轮廓,即截面轮廓。图13~图16则通过第一造影角度图和第二造影角度图展示了上述过程。
参见图17~图18,在其他实施方式中,也可以采用人工选取至少一对匹配点的方式对投影关系进行修正,即分别在第一造影角度的关键帧和第二造影角度的关键帧中选择至少一对匹配点,以修正三维中心线的匹配关系。
在步骤S300中,对等效三维直径进行拟合,获得参照直径,具体包括:对等效三维直径进行第一次拟合,获得第一拟合直径,根据第一拟合直径排除等效三维直径的狭窄段,对排除狭窄段的等效三维直径进行第二次拟合,获得第二拟合直径,第二拟合直径即为参照直径。通过第一次拟合排除掉狭窄段,能够使得参照直径更加接近于正常血管真实直径。
步骤S300中,基于等效三维直径沿三维中心线的分布曲线进行两次线性拟合得到参照直径沿三维中心线的分布。具体的拟合方法是:对等效三维直径先进行第一次线性拟合得到第一拟合直径,此时认为等效三维直径中处于第一拟合直径下方的点处于血管较狭窄的位置,不应参与拟合,所以取处于第一拟合直径上方的点(即舍弃排除狭窄段),进行第二次线性拟合得到最终的拟合线,即参照直径沿三维中心线的分布。
在步骤S400中,获得造影剂在第一造影角度图中从参与重建三维中心线的起点到终点的第一时间差,具体包括:
利用与目标血管相匹配的语义分割模型,对第一造影角度的DSA影像逐帧分割,基于分割结果得到第一造影角度的血管长度-时间曲线;
选用第一个造影角度下的关键帧和之前所有帧的目标血管二值图,计算所有选用帧目标血管对应的中心线长度,即第一造影角度的血管长度-时间曲线上。在该血管长度-时间曲线上,从第一造影角度图的所在帧位置沿时序向前寻找,直至血管长度达到目标血管的起点,获得起始帧n1,找到第一帧的血管长度为零的影像作为起始帧n1(即造影剂初次到达目标血管起点位置时),由起始帧n1向后寻找,直至血管长度达到第一中心线参与重建长度的终止帧n2,找到的第一帧血管长度达到关键帧长度的影像作为终止帧n2(即造影剂初次到达目标血管终点位置时)。由于造影剂在n1时首次进入目标血管,在n2时首次到达关键帧血管尾部,第一时间差为起始帧n1和终止帧n2的时间差。
起始帧n1和终止帧n2两帧之差除以影像文件每秒钟的帧数c,则可得到造影剂流经目标血管起点和终点的时间差为:t1=(n2-n1)/c。获得造影剂在第二造影角度图中从参与重建三维中心线的起点到终点的第二时间差的方案与之相同,得到第二时间差t2。平均时间差为t=(t1+t2)/2。结合三维中心线长度L,可以得到造影剂流经目标血管起止点的平均速度:v=L/t。血液平均流速则和造影剂平均流速近似相等。
在步骤S500中,结合三维中心线(步骤S200获得)、等效三维直径(步骤S200获得)、参照直径(步骤S300获得)和血流速度(步骤S400获得),获得血液经过目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。
具体地,结合冠脉口压强获得冠脉血流储备分数沿三维中心线的分布,进而通过公式(1-ΔP/Pa)获得冠脉远端血流储备分数,式中ΔP为血液经过目标血管的压强下降值,Pa为冠脉口压强。
参见图19,在步骤S500中,使用目标血管的三维模型参数、参照直径和血流速度,依据血流动力学计算血液经过目标血管的压强下降值ΔP,此压强下降值至少应考虑扩张压降、粘性压降和伯努利变化项,再根据冠脉口压强Pa可以通过1-ΔP/Pa得到冠脉血流储备分数沿中心线的分布和远端的冠脉血流储备分数的值。
各实施例提供的获得冠脉血流储备分数的方法在步骤S100~步骤S500中,能够自动化地完成双角度三维血流储备分数计算,使用同一个病人的所有冠状动脉DSA影像作为输入,根据所需目标血管类型,使用深度学习方法,自动完成影像文件选择、关键帧选取、目标血管二值图获取。不必人工进行:选择目标血管的起止点、调节血管轮廓、数帧、三维模型重建和血流储备分数计算。能够辅助介入医生判断冠脉狭窄是否会引起心肌缺血,并且根据重建得到准确的血管三维尺寸信息,帮助介入医生选择合适的支架尺寸,使针对冠脉狭窄的治疗更加简单高效。
本申请各实施例提供的获得冠脉血流储备分数的方法步骤S100~步骤S500中。具有以下技术优点:
(1)基于深度学习方法,针对DSA影像序列自动筛选得到关键帧(舒张末期清晰帧),根据关键帧对影像进行分类得到目标血管双角度影像,对影像关键帧进行分割得到目标血管二值图,大大缩短了整个计算流程所用时间,不需要用户手动选择目标血管影像、关键帧以及目标血管起点终点,减少了繁琐的手动或半自动人工修改的操作。各实施例提供的获得冠脉血流储备分数的方法直接针对深度学习方法得到的目标血管二值图提取轮廓线,相比于其他传统算法使用DSA影像原图图像信息寻找轮廓线的方式,效果更好。
(2)使用两次拟合的方法计算血管的参照直径(第二参考直径),消除了血管狭窄段对拟合的影响,参照直径更为准确。
(3)本申请各实施例使用关键帧之前深度学习得到的目标血管二值图,计算目标血管的中心线长度,依据中心线长度变化得到血液经过目标血管的时间,再根据关键帧的目标血管三维中心线长度可以计算得到目标血管的血流速度,不需要用户手动选取血液流经目标血管起始点和终止点的帧数,完全自动化。另外,相对于使用固定血液流速的方法,计算结果也更为准确。
(4)采用双角度重构三维模型来计算血流储备分数计算方法,在减少人工操作和缩短计算时间的基础上,保证了血流储备分数计算的准确性。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图20所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储DSA影像序列数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种获得冠脉血流储备分数的方法。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
步骤S100,获得冠脉血管的、包括多个造影角度的DSA影像序列,依次对DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,分别为第一造影角度图和第二造影角度图,二者均包括目标血管的起点。
步骤S200,根据第一造影角度图和第二造影角度图,重建获得目标血管的三维中心线和三维轮廓,进而获得三维轮廓的等效三维直径。
步骤S300,对等效三维直径进行拟合,获得参照直径。
步骤S400,沿DSA影像序列的时序,获得造影剂在第一造影角度图中从参与重建三维中心线的起点到终点的第一时间差,获得造影剂在第二造影角度图中从参与重建三维中心线的起点到终点的第二时间差,利用三维中心线的长度、以及第一时间差和第二时间差的均值,获得血流速度。
步骤S500,结合三维中心线、等效三维直径、参照直径和血流速度,获得血液经过目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机设备的可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。不同实施例中的技术特征体现在同一附图中时,可视为该附图也同时披露了所涉及的各个实施例的组合例。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.获得冠脉血流储备分数的方法,其特征在于,包括:
获得冠脉血管的、包括多个造影角度的DSA影像序列,依次对所述DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,分别为第一造影角度图和第二造影角度图,二者均包括所述目标血管的起点;
根据所述第一造影角度图和所述第二造影角度图,重建获得所述目标血管的三维中心线和三维轮廓,进而获得所述三维轮廓的等效三维直径;
对所述等效三维直径进行拟合,获得参照直径;
沿所述DSA影像序列的时序,获得造影剂在所述第一造影角度图中从参与重建所述三维中心线的起点到终点的第一时间差,获得造影剂在所述第二造影角度图中从参与重建所述三维中心线的起点到终点的第二时间差,利用所述三维中心线的长度、以及所述第一时间差和所述第二时间差的均值,获得血流速度;
结合所述三维中心线、所述等效三维直径、所述参照直径和所述血流速度,获得血液经过所述目标血管的压强下降值,结合冠脉口压强获得冠脉远端血流储备分数。
2.根据权利要求1所述的方法,其特征在于,所述第一造影角度和所述第二造影角度的角度差大于等于二十五度;
所述目标血管包括左前降支LAD、左回旋支LCX、右冠脉RCA三者中的一种。
3.根据权利要求1所述的方法,其特征在于,依次对所述DSA影像序列自动进行筛选、分类和语义分割,获得目标血管的第一造影角度和第二造影角度的二值图,具体包括:
利用训练完成的第一深度模型,对所述DSA影像序列筛选,获得关键帧;
利用训练完成的第二深度模型,基于所述关键帧对所述DSA影像序列进行分类,获得目标血管的第一造影角度和第二造影角度的DSA影像;
利用训练完成的、与所述目标血管相匹配的语义分割模型,针对所述目标血管的第一造影角度和第二造影角度的DSA影像进行分割,获得第一造影角度和第二造影角度的目标血管二值图。
4.根据权利要求3所述的方法,其特征在于,所述第二深度模型为四分类模型,用于将所述关键帧分类为:左前降支LAD、左回旋支LCX、右冠脉RCA、以及不属于目标血管的其他类别图像;
训练完成的所述第二深度模型获得输入的所述关键帧,输出各个分类的概率值。
5.根据权利要求1所述的方法,其特征在于,根据所述第一造影角度图和所述第二造影角度图,重建获得所述目标血管的三维中心线和三维轮廓,进而获得所述三维轮廓的等效三维直径,具体包括:
根据所述第一造影角度图获得第一中心线和第一轮廓线,根据所述第二造影角度图获得第二中心线和第二轮廓线;
根据所述第一中心线和所述第二中心线反投影获得所述目标血管的三维中心线,所述三维中心线包括所述目标血管的起点和终点;
对于所述三维中心线上的任意一点,将所述第一中心线和所述第二中心线分别与其匹配后,获得该点在所述第一轮廓线和所述第二轮廓线上对应的四个轮廓点,生成截面轮廓,结合所述三维中心线和所述截面轮廓,获得所述目标血管的三维轮廓,基于所述三维中心线以及三维轮廓,获得所述三维轮廓的等效三维直径。
6.根据权利要求5所述的方法,其特征在于,所述三维中心线的起点为所述目标血管的起点,所述三维中心线的终点对应所述第一中心线和/或所述第二中心线的终点。
7.根据权利要求1所述的方法,其特征在于,对所述等效三维直径进行拟合,获得参照直径,具体包括:
对所述等效三维直径进行第一次拟合,获得第一拟合直径,根据所述第一拟合直径排除所述等效三维直径的狭窄段,对排除所述狭窄段的等效三维直径进行第二次拟合,获得第二拟合直径,所述第二拟合直径即为所述参照直径。
8.根据权利要求1所述的方法,其特征在于,获得造影剂在所述第一造影角度图中从参与重建所述三维中心线的起点到终点的第一时间差,具体包括:
利用与所述目标血管相匹配的语义分割模型,对第一造影角度的DSA影像序列逐帧分割,基于分割结果得到所述第一造影角度的血管长度-时间曲线;
在所述第一造影角度的血管长度-时间曲线上,从所述第一造影角度图的所在帧位置沿时序向前寻找,直至血管长度达到所述目标血管的起点,获得起始帧n1,由起始帧n1向后寻找,直至血管长度达到第一中心线参与重建长度的终止帧n2,所述第一时间差为起始帧n1和终止帧n2的时间差。
9.根据权利要求1所述的方法,其特征在于,获得冠脉远端血流储备分数包括:
获得冠脉血流储备分数沿所述三维中心线的分布;
通过公式(1-ΔP/Pa)获得冠脉远端血流储备分数,式中ΔP为血液经过所述目标血管的压强下降值,Pa为冠脉口压强。
10.计算机设备,包括存储器、处理器及存储在存储器上的计算机程序,其特征在于,所述处理器执行所述计算机程序以实现权利要求1~9任一项所述的获得冠脉血流储备分数的方法的步骤。
CN202211476660.8A 2022-11-23 2022-11-23 获得冠脉血流储备分数的方法和计算机设备 Pending CN116035549A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211476660.8A CN116035549A (zh) 2022-11-23 2022-11-23 获得冠脉血流储备分数的方法和计算机设备
CN202311308882.3A CN117058327B (zh) 2022-11-23 2023-10-11 获得冠脉血流储备分数的方法和计算机设备
PCT/CN2023/133374 WO2024109822A1 (zh) 2022-11-23 2023-11-22 获得冠脉血流储备分数的方法和计算机设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211476660.8A CN116035549A (zh) 2022-11-23 2022-11-23 获得冠脉血流储备分数的方法和计算机设备

Publications (1)

Publication Number Publication Date
CN116035549A true CN116035549A (zh) 2023-05-02

Family

ID=86117095

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211476660.8A Pending CN116035549A (zh) 2022-11-23 2022-11-23 获得冠脉血流储备分数的方法和计算机设备
CN202311308882.3A Active CN117058327B (zh) 2022-11-23 2023-10-11 获得冠脉血流储备分数的方法和计算机设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311308882.3A Active CN117058327B (zh) 2022-11-23 2023-10-11 获得冠脉血流储备分数的方法和计算机设备

Country Status (2)

Country Link
CN (2) CN116035549A (zh)
WO (1) WO2024109822A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116664564A (zh) * 2023-07-28 2023-08-29 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置
CN116649995A (zh) * 2023-07-25 2023-08-29 杭州脉流科技有限公司 基于颅内医学影像的血流动力学参数获取方法和装置
CN116704149A (zh) * 2023-08-03 2023-09-05 杭州脉流科技有限公司 获得颅内动脉狭窄参数的方法和装置
CN117976155A (zh) * 2024-04-01 2024-05-03 杭州脉流科技有限公司 基于造影剂示踪曲线获得冠脉功能学参数的方法、计算机设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN110393516A (zh) * 2018-09-19 2019-11-01 苏州润迈德医疗科技有限公司 基于影像和压力传感器计算微循环指标的方法装置及系统
CN110786842B (zh) * 2019-11-04 2022-10-04 苏州润迈德医疗科技有限公司 测量舒张期血流速度的方法、装置、系统及存储介质
CN111161342B (zh) * 2019-12-09 2023-08-29 杭州脉流科技有限公司 基于冠脉造影图像获取血流储备分数的方法、装置、设备、系统及可读存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116649995A (zh) * 2023-07-25 2023-08-29 杭州脉流科技有限公司 基于颅内医学影像的血流动力学参数获取方法和装置
CN116649995B (zh) * 2023-07-25 2023-10-27 杭州脉流科技有限公司 基于颅内医学影像的血流动力学参数获取方法和装置
CN116664564A (zh) * 2023-07-28 2023-08-29 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置
CN116664564B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置
CN116704149A (zh) * 2023-08-03 2023-09-05 杭州脉流科技有限公司 获得颅内动脉狭窄参数的方法和装置
CN116704149B (zh) * 2023-08-03 2023-11-14 杭州脉流科技有限公司 获得颅内动脉狭窄参数的方法和装置
CN117976155A (zh) * 2024-04-01 2024-05-03 杭州脉流科技有限公司 基于造影剂示踪曲线获得冠脉功能学参数的方法、计算机设备

Also Published As

Publication number Publication date
WO2024109822A1 (zh) 2024-05-30
CN117058327B (zh) 2024-01-09
CN117058327A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
CN117058327B (zh) 获得冠脉血流储备分数的方法和计算机设备
CN117058136B (zh) 基于术前冠脉造影影像评估术后冠脉血流储备分数的计算机设备
US11207045B2 (en) Systems and methods for estimating healthy lumen diameter and stenosis quantification in coronary arteries
US11389130B2 (en) System and methods for fast computation of computed tomography based fractional flow reserve
US11495357B2 (en) Method and device for automatically predicting FFR based on images of vessel
CN111667456B (zh) 一种冠状动脉x光序列造影中血管狭窄检测方法及装置
CN105184086A (zh) 用于冠状动脉中改进的血液动力学计算的方法及系统
US11847547B2 (en) Method and system for generating a centerline for an object, and computer readable medium
EP3564963A1 (en) System and methods for fast computation of computed tomography based fractional flow reserve
CN112967220A (zh) 评估与血管周围组织有关的ct数据集的计算机实现的方法
JP2021516106A (ja) 高リスクプラーク面積率評価のためのインタラクティブな自己改善アノテーションシステム
US20230329659A1 (en) System and Methods of Prediction of Ischemic Brain Tissue Fate from Multi-Phase CT-Angiography in Patients with Acute Ischemic Stroke using Machine Learning
US20060211940A1 (en) Blood vessel structure segmentation system and method
CN116051826A (zh) 基于dsa影像连续帧序列的冠脉血管分割方法、计算机设备和可读存储介质
US11877880B2 (en) Method and apparatus for calculating coronary artery calcium score
Zreik et al. Automatic detection and characterization of coronary artery plaque and stenosis using a recurrent convolutional neural network in coronary CT angiography
CN115761132A (zh) 自动重构冠脉三维模型的方法及装置
CN116616804B (zh) 颅内动脉狭窄评估参数获取方法、装置、设备和存储介质
CN117036530B (zh) 基于跨模态数据的冠状动脉血流储备分数预测方法及装置
KR102000615B1 (ko) 관상동맥의 시작점을 자동으로 추출하기 위한 방법 및 그 장치
CN116704149B (zh) 获得颅内动脉狭窄参数的方法和装置
Hampe et al. Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery
CN114708259B (zh) 基于cta的头颈血管狭窄检测方法、装置、设备及介质
CN116649996B (zh) 获得颅内动脉狭窄血流动力学参数的方法和装置
EP4369290A1 (en) Determining estimates of hemodynamic properties based on an angiographic x-ray examination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230502

WD01 Invention patent application deemed withdrawn after publication