WO2020057069A1 - 加氢控制装置及方法 - Google Patents

加氢控制装置及方法 Download PDF

Info

Publication number
WO2020057069A1
WO2020057069A1 PCT/CN2019/078146 CN2019078146W WO2020057069A1 WO 2020057069 A1 WO2020057069 A1 WO 2020057069A1 CN 2019078146 W CN2019078146 W CN 2019078146W WO 2020057069 A1 WO2020057069 A1 WO 2020057069A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
hydrogen
initial
hydrogen storage
vehicle
Prior art date
Application number
PCT/CN2019/078146
Other languages
English (en)
French (fr)
Inventor
何广利
杨康
郭强
范玉建
许壮
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究所 filed Critical 国家能源投资集团有限责任公司
Priority to KR1020217011856A priority Critical patent/KR20210061415A/ko
Priority to US17/278,060 priority patent/US20210348722A1/en
Priority to JP2021515486A priority patent/JP2022500606A/ja
Priority to KR1020237043854A priority patent/KR20240001276A/ko
Priority to EP19862883.6A priority patent/EP3855062A4/en
Publication of WO2020057069A1 publication Critical patent/WO2020057069A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • F17C13/003Means for coding or identifying them and/or their contents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/028Special adaptations of indicating, measuring, or monitoring equipment having the volume as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/05Vessel or content identifications, e.g. labels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0426Volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/07Actions triggered by measured parameters
    • F17C2250/072Action when predefined value is reached
    • F17C2250/075Action when predefined value is reached when full
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/023Avoiding overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/061Fluid distribution for supply of supplying vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0139Fuel stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to the technical field of hydrogenation, and in particular to a hydrogenation control device and method.
  • Hydrogen energy is considered to be one of the most promising secondary energy sources due to its outstanding advantages such as diverse sources, clean environmental protection, and large-scale storage and transportation.
  • Hydrogen fuel cell vehicles are one of the important application terminals of hydrogen energy. Many auto giants around the world launched mass-produced hydrogen fuel cell vehicles around 2015. At present, the research on hydrogen fuel cell vehicles is multi-faceted, but the refueling control strategy (hereinafter referred to as hydrogenation control strategy) for refueling hydrogen on-board hydrogen storage in hydrogen refueling stations is undoubtedly one of the focuses of domestic and foreign research.
  • One of the main technical problems that the existing hydrogenation control strategies want to solve is how to control the hydrogen temperature of the vehicle hydrogen storage tank under the requirements of international standards (usually below 85 ° C) during the filling process to prevent hydrogen explosion and ensure Hydrogen is safe to use.
  • Various methods for controlling the temperature of hydrogen are disclosed in the prior art. The most important method is to control the hydrogenation rate to adjust the hydrogen temperature according to the real-time feedback temperature or pressure of the on-board hydrogen storage.
  • this method depends on the communication relationship between the vehicle and the hydrogen refueling station, and the hydrogen refueling station needs to judge the hydrogenation strategy according to the temperature signal or pressure signal of the hydrogen storage tank sent by the vehicle.
  • An object of the embodiments of the present invention is to provide a hydrogenation control device and method, which are used to at least partially solve the foregoing technical problems.
  • an embodiment of the present invention provides a hydrogenation control method.
  • the hydrogenation control method includes: obtaining initial parameters of a vehicle-mounted hydrogen storage device, and the initial parameters include a volume of the vehicle-mounted hydrogen storage device, an initial hydrogen gas, and the like. Pressure and initial ambient temperature; calculating the hydrogenation filling rate and target pressure according to the initial parameters, wherein the calculated filling rate and target pressure make the hydrogen temperature in the hydrogenation process within a preset safe range; And controlling the hydrogenation station to add hydrogen to the on-board hydrogen storage tank to the calculated target pressure at the calculated filling rate.
  • obtaining the hydrogenation initial parameters of the vehicle-mounted hydrogen storage device includes: scanning a label on the vehicle-mounted hydrogen storage device to read volume information of the vehicle-mounted hydrogen storage device stored in the label; and / or Acquire the initial hydrogen pressure and the initial ambient temperature detected by a pressure sensor and a temperature sensor, respectively.
  • the initial parameter further includes a hydrogen temperature of the vehicle-mounted hydrogen storage.
  • the initial parameters further include material, wall thickness, and size information of the vehicle-mounted hydrogen storage device.
  • the calculating the hydrogenation filling rate and the target pressure includes using any one of the following table lookup method, formula calculation method, and differential pressure calculation method to calculate the filling rate and target pressure:
  • the table lookup method includes: constructing a corresponding physical model of the vehicle-mounted hydrogen storage device through the initial parameters; and querying a pre-configured hydrogenation strategy table for an optimal hydrogenation policy corresponding to the current vehicle-mounted hydrogen storage physical model,
  • the hydrogenation strategy table is configured according to historical hydrogenation data of various hydrogenation stations, and shows the mapping relationship between the physical models of various vehicle-mounted hydrogen storage units and their corresponding optimal hydrogenation strategies.
  • the optimal hydrogenation strategy includes determining the filling rate and the target pressure;
  • a formula calculation method includes: analyzing the initial parameter and the historical hydrogenation data to fit a control parameter calculation formula for calculating an optimal hydrogenation control parameter based on the initial parameter, wherein the optimal hydrogenation control parameter Including the filling rate and the target pressure; and for the initial parameters of the current hydrogenation process, calculating a corresponding optimal hydrogenation control parameter through the control parameter calculation formula;
  • Differential pressure calculation method including: determining the required filling rate according to the parameters of the vehicle's hydrogen storage volume and the ambient temperature; calculating the pressure difference to maintain the required filling rate; and performing hydrogen according to the calculated pressure difference Raise.
  • An embodiment of the present invention further provides a hydrogenation control device.
  • the hydrogenation control device includes an initial parameter acquisition module for acquiring initial parameters of a vehicle-mounted hydrogen storage device, and the initial parameters include the parameters of the vehicle-mounted hydrogen storage device. Volume, initial hydrogen pressure, and initial ambient temperature; a target parameter calculation module for calculating a hydrogenation filling rate and a target pressure according to the initial parameters, wherein the calculated filling rate and the target pressure make the hydrogenation process The temperature of the hydrogen gas is within a preset safety range; and a control module that controls the hydrogenation station to add hydrogen to the on-board hydrogen storage tank to the calculated target pressure at the calculated filling rate.
  • the initial parameter acquisition module includes: a scanning sub-module configured to scan a tag on the vehicle-mounted hydrogen storage device to read volume information of the vehicle-mounted hydrogen storage device stored in the label; or A module for acquiring the initial hydrogen pressure and the initial ambient temperature detected by a pressure sensor and a temperature sensor, respectively.
  • the initial parameter further includes a hydrogen temperature of the vehicle-mounted hydrogen storage.
  • the initial parameters further include material, wall thickness, and size information of the vehicle-mounted hydrogen storage device.
  • calculation module includes any one of the following sub-modules:
  • the table lookup sub-module is configured to: construct a corresponding physical model of the on-board hydrogen storage device through the initial parameters; and query a pre-configured hydrogenation strategy table for an optimal addition corresponding to the current on-board hydrogen storage physical model.
  • Hydrogen strategy wherein the hydrogenation strategy table is configured according to historical hydrogenation data of various hydrogenation stations, and shows mapping relationships between physical models of various vehicle-mounted hydrogen storages and their corresponding optimal hydrogenation strategies,
  • the optimal hydrogenation strategy includes determining the filling rate and the target pressure;
  • the formula calculation sub-module is configured to analyze the initial parameter and the historical hydrogenation data to fit a control parameter calculation formula for calculating an optimal hydrogenation control parameter based on the initial parameter, wherein the optimal hydrogenation
  • the hydrogen control parameters include the filling rate and the target pressure; and for the initial parameters of the current hydrogenation process, a corresponding optimal hydrogenation control parameter is calculated through the control parameter calculation formula;
  • the pressure difference calculation sub-module is configured to: determine the required filling rate according to parameters such as the volume of the on-board hydrogen storage and the ambient temperature; calculate the pressure difference to maintain the required filling rate; and according to the calculated pressure Poor hydrogen filling.
  • the hydrogenation control device further includes a database module for storing historical hydrogenation data, the hydrogenation strategy table, and the control parameter calculation formula.
  • An embodiment of the present invention further provides a machine-readable storage medium, where the machine-readable storage medium stores instructions, and the instructions are used to cause a machine to execute the foregoing hydrogenation control method.
  • An embodiment of the present invention further provides a processor for running a program, wherein the program is used to execute the hydrogenation control method according to the foregoing when the program is run.
  • An embodiment of the present invention further provides a computer device.
  • the computer device includes: one or more processors; a memory configured to store one or more programs, and when the one or more programs are processed by the one or more programs The processor executes so that the one or more processors implement the above-mentioned hydrogenation control method.
  • the embodiment of the present invention does not require a hydrogen refueling station to communicate with the vehicle in real time, and uses the initial parameters of the vehicle-mounted hydrogen storage measured at the hydrogen refueling station to obtain the filling rate and target pressure to control the filling process.
  • the process is simple, and It is easy to implement and guarantees the reliability of the hydrogenation process.
  • FIG. 1 is a schematic flowchart of a hydrogenation control method according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a table lookup method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a formula calculation method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a pressure difference calculation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a hydrogenation control device according to an embodiment of the present invention.
  • FIG. 6 is an effect diagram of an example of hydrogen filling using a look-up table method according to an embodiment of the present invention.
  • control module scanning sub-module 110 scanning sub-module
  • FIG. 1 is a schematic flowchart of a hydrogenation control method according to the first embodiment of the present invention. As shown in FIG. 1, the hydrogenation control method may include the following steps:
  • Step S100 Obtain initial parameters of the vehicle-mounted hydrogen storage device.
  • the initial parameters include the volume of the vehicle-mounted hydrogen storage device, the initial hydrogen pressure, and the initial ambient temperature. These three parameters will be specifically described below.
  • the volume of on-board hydrogen storage there are currently various types of hydrogen storage bottles on the market, such as 100L and 200L.
  • the volume of the hydrogen storage bottle is usually not considered.
  • hydrogenation is set for 10 minutes, for example.
  • the embodiment of the present invention is different from the existing hydrogenation process, and considers the volume of the vehicle-mounted hydrogenator as an important parameter that affects the hydrogenation process. Its application will be described in detail below, and will not be repeated here.
  • the volume information of the vehicle-mounted hydrogen storage device stored in the label can be read by scanning a label on the vehicle-mounted hydrogen storage device.
  • the label is, for example, a two-dimensional code, which can store device information of a vehicle's on-board hydrogen storage device, such as a model, volume, material, size, and the like.
  • the volume of the vehicle-mounted hydrogen storage device can also be obtained artificially, for example, by reading the product description of the vehicle-mounted hydrogen storage device or manually observing the scale display on the vehicle-mounted hydrogen storage device.
  • the initial hydrogen pressure refers to a pressure generated by hydrogen that may be present in the vehicle-mounted hydrogen storage device before hydrogenation starts. For example, before the hydrogenation starts, 2 Mpa of hydrogen remains in the vehicle-mounted hydrogen storage device. .
  • the initial hydrogen pressure will affect the temperature rise. For example, when the average hydrogen flow is equal, for each 1Mpa increase in the initial hydrogen pressure, the hydrogen temperature of the on-board hydrogen storage device (which can be expressed as the inner wall temperature of the on-board hydrogen storage device) is reduced by about 1.5K. . Therefore, the embodiment of the present invention also considers the initial hydrogen pressure of the on-board hydrogenator as an important parameter affecting the hydrogenation process, and its application will be described in detail below, and will not be repeated here.
  • the initial hydrogen pressure of the on-board hydrogen storage can be detected by a pressure sensor, and then the value of the initial hydrogen pressure detected by the pressure sensor can be obtained.
  • the initial ambient temperature refers to an ambient temperature around the on-board hydrogen storage device before hydrogenation starts. Among them, the ambient temperature will directly affect the hydrogen temperature in the vehicle-mounted hydrogen storage. For example, each time the initial ambient temperature increases by 1K, the hydrogen temperature of the vehicle-mounted hydrogen storage also increases by about 1K. Therefore, the embodiment of the present invention also considers the initial ambient temperature of the vehicle-mounted hydrogenator as an important parameter that affects the hydrogenation process, and its application will be described in detail below, and will not be repeated here.
  • a temperature sensor (such as a thermometer) may be used to detect the initial ambient temperature of the on-board hydrogen storage device, and then the value of the initial hydrogen pressure detected by the temperature sensor may be obtained.
  • step S200 the hydrogenation filling rate and the target pressure are calculated according to the initial parameters.
  • the calculated filling rate and the target pressure make the hydrogen temperature in the hydrogenation process within a preset safe range.
  • making the hydrogen temperature in the hydrogenation process within a preset safety range is equivalent to controlling the temperature rise of the on-board hydrogen storage end in the hydrogenation process to prevent the temperature from rising too quickly and causing the hydrogen to explode.
  • the temperature of the hydrogen gas in the vehicle-mounted hydrogen storage tank is controlled below 85 ° C. during the hydrogenation process.
  • the filling rate is an important factor for achieving fast hydrogen charging
  • the target pressure is an important factor determining the speed of temperature rise.
  • Combining the two to determine the hydrogenation strategy can not only make the hydrogen temperature within a preset safe range, but also Can achieve fast hydrogen charging.
  • the embodiment of the present invention considers the influence of the above initial parameters on the hydrogenation process, and calculates the filling rate and the target pressure through the initial parameters to achieve the purpose of controlling the temperature rise and rate of the hydrogenation process.
  • FIG. 2 is a schematic flowchart of a table lookup method according to an embodiment of the present invention. As shown in FIG. 2, the table lookup method may include the following steps:
  • step S211 a physical model of the corresponding on-board hydrogen storage device is constructed by using the initial parameters.
  • the physical model herein refers to a model that reflects the parameter characteristics of the vehicle-mounted hydrogen storage device constructed by physical parameters. As described above, when the initial parameters include the volume, initial hydrogen pressure, and initial ambient temperature of the vehicle-mounted hydrogen storage, the corresponding physical model reflects the parameter characteristics of the vehicle-mounted hydrogen storage through these three parameters.
  • the volume, initial hydrogen pressure, and initial ambient temperature of the vehicle-mounted hydrogen storage are selected. This is because, based on the solution of the embodiment of the present invention, these three parameters can be used to determine the requirements of most types of vehicle-mounted hydrogen storage.
  • Filling rate and target pressure such as a conventional 35Mpa hydrogen storage bottle.
  • target pressure such as a conventional 35Mpa hydrogen storage bottle.
  • the initial parameters may include the volume of the on-board hydrogen storage, the initial hydrogen pressure, the initial ambient temperature, and the initial hydrogen temperature.
  • the material, wall thickness and size information of the on-board hydrogen storage should also be considered (in most scenarios, these factors can be ignored).
  • the material is mainly that its heat transfer coefficient will affect the temperature rise of the vehicle-mounted hydrogen storage
  • the wall thickness is mainly that its compressive strength will affect the pressure of the vehicle-mounted hydrogen storage
  • dimensional information (such as diameter, length, etc. ) Determines the shape of the vehicle-mounted hydrogen storage, and the shape of the vehicle-mounted hydrogen storage will affect its temperature distribution. Therefore, in other embodiments, in addition to the volume, initial hydrogen pressure, initial ambient temperature, and initial hydrogen temperature of the on-board hydrogen storage, the initial parameters may also include the material, wall thickness, and thickness of the on-board hydrogen storage. Size Information.
  • the corresponding physical models are also different. Those skilled in the art can determine the physical model according to the actual situation on site.
  • Step S212 Query an optimal hydrogenation strategy corresponding to the current physical model of the on-board hydrogen storage device in a pre-configured hydrogenation strategy table.
  • the hydrogenation strategy table is configured according to historical hydrogenation data of various hydrogenation stations, and shows a mapping relationship between physical models of various vehicle-mounted hydrogen storage units and their corresponding optimal hydrogenation strategies.
  • the optimal hydrogenation strategy includes determining the filling rate and the target pressure.
  • hydrogenation data for various vehicle-mounted hydrogen storage can be obtained through experiments. These hydrogenation data include different or the same initial parameters for different or the same type of hydrogen storage.
  • the parameters shown in Table 1 are discontinuous. For example, for the ambient temperature, only the hydrogenation strategies corresponding to -30 ° C and -10 ° C are shown, and -30 ° C to- The strategy parameters corresponding to other parameters in the middle of 10 °C should be selected. For this, in the embodiment of the present invention, for other parameters (for example, -20 ° C) of the physical model of the vehicle-mounted hydrogen storage not shown in the table, the corresponding filling rate and target pressure can be calculated according to the interpolation method.
  • Step S300 Control the hydrogenation station to add hydrogen to the on-board hydrogen storage tank to the calculated target pressure at the calculated filling rate.
  • the filling rate is intelligently controlled here, so that hydrogen can be added without deliberately reducing the speed. Injection to the target pressure guarantees hydrogenation efficiency.
  • the embodiment of the present invention does not require the hydrogen refueling station to communicate with the vehicle in real time.
  • the initial rate of the on-board hydrogen storage measured by the hydrogen refueling station is used to obtain the filling rate and target pressure to control the filling process.
  • the process is simple, and It is easy to implement and guarantees the reliability of the hydrogenation process.
  • the embodiment of the present invention uses a look-up table method to calculate the filling rate and the target pressure, the implementation method is simple, and the determined filling rate and the target pressure conform to the optimal hydrogenation strategy in historical experience, and the control accuracy is very high.
  • FIG. 3 is a schematic flowchart of a formula calculation method according to an embodiment of the present invention. As shown in Figure 3, the formula calculation method can include the following steps:
  • Step S221 Analyze the initial parameter and the historical hydrogenation data to fit a control parameter calculation formula for calculating an optimal hydrogenation control parameter based on the initial parameter.
  • the optimal hydrogenation control parameters include the filling rate and the target pressure.
  • the historical hydrogenation data can still be obtained experimentally.
  • Data processing is performed on each set of initial parameters and the corresponding filling rate and target pressure in the obtained historical hydrogenation data, for example, each set of initial parameters and corresponding Filling rate and target pressure are used as variables in Matlab software to analyze the relationship between the variables using Matlab software for plotting analysis, and then use grommet, stepwise, nlinfit, regression and other formula fitting functions in Matlab software to fit Calculate the required control parameter calculation formula.
  • Matlab software is exemplary, and other software with formula fitting function can also be used.
  • Step S222 For the initial parameters of the current hydrogenation process, a corresponding optimal hydrogenation control parameter is calculated through the control parameter calculation formula.
  • Target pressure Ptarget f (P0, P, V, T, ⁇ m,)
  • P is the gas pressure measured near the valve of the hydrogenation machine
  • P0 is the initial pressure of the on-board hydrogen storage device measured by the hydrogenation machine
  • V is the volume of the on-board hydrogen storage device
  • T is the ambient temperature
  • T H2 is Filled hydrogen temperature
  • ⁇ m is the hydrogen mass measured by the mass flow meter in the hydrogenator within a unit time interval.
  • the filling rate and the target pressure determined by the look-up table method in the first embodiment are fixed. Although the control accuracy is high, the flexibility is insufficient, and the data involved in the search process is numerous, which affects the control speed.
  • the embodiment of the present invention uses a formula calculation method to calculate the filling rate and target pressure. Although the control accuracy may not be as good as the table lookup method, its calculation speed is fast, which is conducive to improving the overall control speed, and can be adjusted by the results of the formula
  • the filling rate realizes the dynamic control of the state of the on-board hydrogen storage.
  • the main difference between the above two embodiments is the solution of calculating the filling rate and the target pressure according to the initial parameters in step S200.
  • An embodiment of the present invention provides a pressure difference calculation method to calculate the filling rate and the target pressure according to the initial parameters.
  • 4 is a schematic flowchart of a pressure difference calculation method according to an embodiment of the present invention. As shown in FIG. 4, the pressure difference calculation method may include the following steps:
  • step S231 the required filling rate is determined according to parameters such as the volume of the vehicle-mounted hydrogen storage and the ambient temperature.
  • the value of parameters such as the volume of the vehicle-mounted hydrogen storage device and the ambient temperature, which can be obtained by measuring at the end of the hydrogenation machine.
  • step S232 the pressure difference for maintaining the required filling rate is calculated.
  • the hydrogenation machine can calculate the pressure difference to maintain the filling rate based on the required filling rate, so that the filling process can be performed smoothly.
  • step S233 hydrogen filling is performed according to the calculated pressure difference.
  • the pressure difference is the pressure difference between the hydrogen storage source pressure in front of the pressure regulator valve of the hydrogenation station and the pressure sensor at the outlet of the hydrogenation machine.
  • the hydrogenation machine stops filling.
  • the embodiment of the present invention uses the differential pressure calculation method to calculate the filling rate and the target pressure.
  • the calculation speed is faster and the dynamic control of the state of the on-board hydrogen storage can also be realized, but the accuracy is slightly difference.
  • FIG. 5 is a schematic structural diagram of a hydrogenation control device according to an embodiment of the present invention.
  • the hydrogenation control device may include: an initial parameter acquisition module 100 configured to acquire initial parameters of a vehicle-mounted hydrogen storage device, and the initial parameters include a volume of the vehicle-mounted hydrogen storage device, an initial hydrogen pressure, and Initial ambient temperature; a target parameter calculation module 200, configured to calculate a hydrogenation filling rate and a target pressure according to the initial parameters, wherein the calculated filling rate and the target pressure make the hydrogen temperature in the hydrogenation process at a pre- And a control module 300 to control the hydrogenation station to add hydrogen to the vehicle-mounted hydrogen storage tank to the calculated target pressure at the calculated filling rate.
  • an initial parameter acquisition module 100 configured to acquire initial parameters of a vehicle-mounted hydrogen storage device, and the initial parameters include a volume of the vehicle-mounted hydrogen storage device, an initial hydrogen pressure, and Initial ambient temperature
  • a target parameter calculation module 200 configured to calculate a hydrogenation filling rate and a target pressure according to the initial parameters, wherein the
  • the initial parameter acquisition module 100 may include: a scanning sub-module 110 configured to scan a tag on the vehicle-mounted hydrogen storage device to read a tag of the vehicle-mounted hydrogen storage device stored in the label. Volume information; or an acquisition sub-module 120 for acquiring the initial hydrogen pressure and the initial ambient temperature detected by a pressure sensor and a temperature sensor, respectively.
  • the scanning sub-module 110 may be, for example, a code scanning function module applied to a mobile phone or a computer; the acquisition sub-module 120 may It is a conventional input function module or a receiving function module, wherein the input function module can artificially input the initial hydrogen pressure and the initial ambient temperature detected by a sensor to a controller at a hydrogenation station end, and the receiving function module can, for example, pass Bluetooth and other methods receive the initial hydrogen pressure and the initial ambient temperature detected by the sensor from the sensor.
  • the initial parameter may further include a hydrogen temperature of the on-board hydrogen storage.
  • the initial parameters may further include material, wall thickness, and size information of the vehicle-mounted hydrogen storage device.
  • the hydrogen temperature can be obtained by configuring a temperature sensor, and the material, wall thickness, and size information of the vehicle-mounted hydrogen storage device can be stored as the device information of the vehicle-mounted hydrogen storage device together with the volume of the vehicle-mounted hydrogen storage device. Tag.
  • the calculation module 200 may include any one of the following sub-modules:
  • the table lookup sub-module 210 is configured to: construct a corresponding physical model of the vehicle-mounted hydrogen storage device through the initial parameters; and query a pre-configured hydrogenation strategy table for an optimal corresponding to the physical model of the current vehicle-mounted hydrogen storage device.
  • Hydrogenation strategy wherein the hydrogenation strategy table is configured according to historical hydrogenation data of various hydrogenation stations, and shows mapping relationships between physical models of various vehicle-mounted hydrogen storage units and their corresponding optimal hydrogenation strategies , Wherein the optimal hydrogenation strategy includes determining the filling rate and the target pressure;
  • the formula calculation sub-module 220 is configured to analyze the initial parameter and the historical hydrogenation data to fit a control parameter calculation formula for calculating an optimal hydrogenation control parameter based on the initial parameter, wherein the optimal The hydrogenation control parameters include the filling rate and the target pressure; and for the initial parameters of the current hydrogenation process, a corresponding optimal hydrogenation control parameter is calculated through the control parameter calculation formula; and
  • the pressure difference calculation sub-module 230 is configured to: determine a required filling rate according to parameters such as the volume of the vehicle-mounted hydrogen storage and the ambient temperature; calculate a pressure difference to maintain the required filling rate; and according to the calculated Pressure difference for hydrogen filling.
  • the hydrogenation control device may further include a database module 300 for storing historical hydrogenation data, the hydrogenation strategy table, and the control parameter calculation. formula.
  • An embodiment of the present invention provides a machine-readable storage medium, and the machine-readable storage medium stores instructions for causing a machine to execute the hydrogenation control method of any one of the first embodiment to the third embodiment.
  • the machine is, for example, a controller, which is set at a hydrogenation station end, and may be a PLC (Programmable Logic Controller), but in other embodiments, the controller may also use a single-chip microcomputer, a DSP (Digital Program controllers such as Signal Processor (Digital Signal Processor) and SOC (System On Chip).
  • a controller which is set at a hydrogenation station end, and may be a PLC (Programmable Logic Controller), but in other embodiments, the controller may also use a single-chip microcomputer, a DSP (Digital Program controllers such as Signal Processor (Digital Signal Processor) and SOC (System On Chip).
  • DSP Digital Program controllers such as Signal Processor (Digital Signal Processor) and SOC (System On Chip).
  • an embodiment of the present invention further provides a computer device for running a program, wherein the program is used to execute the hydrogenation control method according to the first embodiment to the third embodiment when the program is executed.
  • an embodiment of the present invention further provides a computer device, the computer device includes: one or more processors; a memory for storing one or more programs, and when the one or more programs are The multiple processors execute, so that the one or more processors implement the hydrogenation control method described in the first embodiment to the third embodiment.
  • a processor such as a CPU
  • the memory may include non-persistent memory, random access memory (RAM), and / or non-volatile memory in a computer-readable medium, such as read-only memory (ROM) or flash memory (flash RAM).
  • ROM read-only memory
  • flash RAM flash memory
  • FIG. 6 is an effect diagram of an example of hydrogen filling using a look-up table method according to an embodiment of the present invention.
  • S1 is the corresponding relationship between temperature, pressure, and time during the filling process obtained by looking up the table
  • S2 is the measured temperature curve
  • S3 is the measured pressure curve.
  • the target temperature difference of the measured temperature (S2 curve) by using the look-up table method (S1 curve) is 3K, and the 3K temperature difference is within a normal error range.
  • the measured temperature is usually low.
  • the temperature determined by the look-up table method that is, the actual measured temperature is not controlled to be too high, which is conducive to ensuring the safety of hydrogenation.
  • comparing S1 and S3 it can be seen that when filling to the same pressure value (for example, 30Mpa), the time taken by the table lookup method is shorter, which helps to improve the hydrogenation efficiency.
  • the formula calculation method and the differential pressure method involved in the above embodiments can also achieve a good filling effect.
  • the program is stored in a storage medium and includes several instructions to enable a single chip microcomputer, a chip, or a processor. (processor) executes all or part of the steps of the method described in each embodiment of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

一种加氢控制装置及方法,所述加氢控制方法包括:步骤S100获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;步骤S200根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;步骤S300以及控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。该控制方法无需加氢站与车辆实时通讯,通过加氢站测得的车载储氢器的初始参数,得到加注速率和目标压力来控制加注过程,流程简单,且易于实现,并保证了加氢过程的可靠性。

Description

加氢控制装置及方法 技术领域
本发明涉及加氢技术领域,具体地涉及一种加氢控制装置及方法。
背景技术
氢能因具有来源多样、洁净环保、可规模储输等突出优点而被认为是最具应用前景的二次能源之一。氢能燃料电池汽车是氢能的重要应用终端之一,世界许多汽车巨头在2015年前后纷纷推出了量产化的氢能燃料电池汽车。目前对氢能燃料电池汽车的研究是多方面的,但加氢站向车载储氢器加氢的加注控制策略(以下简称为加氢控制策略)无疑是国内外研究的重点之一。
现有加氢控制策略主要想解决的技术问题之一如何在加注过程中将车辆储氢器的氢气温度控制在国际标准的要求下(通常是85℃以下),以防止发生氢气爆炸,保证氢气使用安全。现有技术中公开了各种控制氢气温度的方法,其中最主要的方法是根据车载储氢器实时反馈的温度或压力来控制加氢速率以调节氢气温度。但是,这种方法依赖于车辆与加氢站的通讯关系,加氢站需要根据车辆发送的储氢器的温度信号或压力信号来进而判断加氢策略。但在实际中,因为同一车辆会在不同类型加氢站加氢,且同一加氢站也会向不同类型的车辆提供加氢服务,而不同类型的车辆或加氢站又往往具有不同的通讯标准,从而使得车辆与加氢站之前的通讯难以实现。据此,对于车辆和加氢站无法通讯的情况,现有技术中根据车载储氢器实时反馈的温度或压力来控制加氢速率以调节氢气温度的方案同样难以实现。
发明内容
本发明实施例的目的是提供一种加氢控制装置及方法,用于至少部分地解决上述技术问题。
为了实现上述目的,本发明实施例提供一种加氢控制方法,所述加氢控制方法包括:获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;以及控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
可选地,所述获取车载储氢器的加氢初始参数包括:扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息;和/或获取通过压力传感器和温度传感器分别检测到的所述初始氢气压力和所述初始环境温度。
可选地,所述初始参数还包括所述车载储氢器的氢气温度。可选地,所述初始参数还包括所述车载储氢器的材料、壁厚及尺寸信息。
可选地,所述计算加氢的加注速率和目标压力包括采用以下查表法、公式计算法及压差计算法中的任意一者计算所述加注速率和目标压力:
查表法,包括:通过所述初始参数构建对应的车载储氢器的物理模型;以及在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略,其中所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力;
公式计算法,包括:分析所述初始参数和所述历史加氢数据,以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式,其中所述最优加氢控制参数包括所述加注速率和所述目标压力;以及对于当前加 氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数;
压差计算法,包括:根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率;计算出维持所需要的加注速率的压差;以及根据所计算的压差进行氢气加注。
本发明实施例还提供了一种加氢控制装置,所述加氢控制装置包括:初始参数获取模块,用于获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;目标参数计算模块,用于根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;以及控制模块,控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
可选地,所述初始参数获取模块包括:扫描子模块,用于扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息;或者获取子模块,用于获取通过压力传感器和温度传感器分别检测到的所述初始氢气压力和所述初始环境温度。
可选地,所述初始参数还包括所述车载储氢器的氢气温度。可选地,所述初始参数还包括所述车载储氢器的材料、壁厚及尺寸信息。
可选地,所述计算模块包括以下子模块中的任意一者:
查表子模块,被配置为:通过所述初始参数构建对应的车载储氢器的物理模型;以及在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略,其中所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力;
公式计算子模块,被配置为:分析所述初始参数和所述历史加氢数据, 以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式,其中所述最优加氢控制参数包括所述加注速率和所述目标压力;以及对于当前加氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数;
压差计算子模块,被配置为:根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率;计算出维持所需要的加注速率的压差;以及根据所计算的压差进行氢气加注。
可选地,所述加氢控制装置还包括:数据库模块,用于存储历史加氢数据、所述加氢策略表及所述控制参数计算公式。
本发明实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述的加氢控制方法。
本发明实施例还提供一种处理器,用于运行程序,其中,所述程序被运行时用于执行根据上述的加氢控制方法。
本发明实施例还提供一种计算机设备,该计算机设备包括:一个或多个处理器;存储器,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的加氢控制方法。
通过上述技术方案,本发明实施例无需加氢站与车辆实时通讯,通过加氢站测得的车载储氢器的初始参数,得到加注速率和目标压力来控制加注过程,流程简单,且易于实现,并保证了加氢过程的可靠性。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对 本发明实施例的限制。在附图中:
图1是本发明实施例一的加氢控制方法的流程示意图;
图2是本发明实施例的查表法的流程示意图;
图3是本发明实施例的公式计算法的流程示意图;
图4是本发明实施例的压差计算法的流程示意图;
图5是本发明实施例的加氢控制装置的结构示意图;以及
图6是采用本发明实施例的查表法进行氢气加注的实例效果图。
附图标记说明
100    初始参数获取模块            200   目标参数计算模块
300    控制模块                    110   扫描子模块
120    获取子模块                  210   查表子模块
220    公式计算子模块              230   压差计算子模块
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
实施例一
图1是本发明实施例一的加氢控制方法的流程示意图。如图1所示,所述加氢控制方法可以包括以下步骤:
步骤S100,获取车载储氢器的初始参数。
本实施例中,所述初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度,下面将具体介绍这三种参数。
对于车载储氢器的体积,目前市面上有各种体积的储氢瓶,例如100L 和200L。但是,现有加氢过程中通常不会考虑储氢瓶体积,其为保证氢气温升不会过快,无论对于100L的储氢瓶还是200L的储氢瓶,都例如设置加氢10分钟。但事实上,对于50L的储氢瓶,很可能只需要2分钟就能注满氢气且温升在正常范围。因此,本发明实施例不同于现有加氢过程,将车载加氢器的体积作为影响加氢过程的重要参数来考虑,其应用将在下文详细描述,在此则不再赘述。
在优选的实施例中,可以通过扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息。其中,所述标签例如是二维码,其可存储车辆车载储氢器的设备信息,例如型号、体积、材料、尺寸等。在其他实施例中,也可人为地获得车载储氢器的体积,例如通过阅读车载储氢器的产品说明书或者人为观察车载储氢器上的刻度显示。
对于所述初始氢气压力,是指加氢开始前,所述车载储氢器中可能具有的氢气所产生的压力,例如在加氢开始前,所述车载储氢器中还剩余有2Mpa的氢气。初始氢气压力会对温升产生影响,例如在平均氢气流量相等时,初始氢气压力每升高1Mpa,车载储氢器的氢气温度(可表现为车载储氢器的内壁温度)约降低1.5K左右。因此,本发明实施例也将车载加氢器的初始氢气压力作为影响加氢过程的重要参数来考虑,其应用将在下文详细描述,在此则不再赘述。
在优选的实施例中,可通过压力传感器来检测车载储氢器的初始氢气压力,再获取通过所述压力传感器检测到的所述初始氢气压力的值。
对于所述初始环境温度,是指在加氢开始前,所述车载储氢器周围的环境温度。其中,环境温度会直接影响车载储氢器中的氢气温度,例如初始环境温度每升高1K,车载储氢器的氢气温度也相应上升1K左右。因此,本发明实施例也将车载加氢器的初始环境温度作为影响加氢过程的重要参数来考虑,其应用将在下文详细描述,在此则不再赘述。
在优选的实施例中,可通过温度传感器(例如温度计)来检测车载储 氢器的初始环境温度,再获取通过所述温度传感器检测到的所述初始氢气压力的值。
步骤S200,根据所述初始参数,计算加氢的加注速率和目标压力。
其中,所计算出的加注速率及目标压力(也称目标加注压力)使得加氢过程中的氢气温度处于预设的安全范围内。在此,使得加氢过程中的氢气温度处于预设的安全范围内相当于控制加氢过程中的车载储氢器端的温升,以防止温度上升过快而引起氢气爆炸。本发明实施例中,按照国际标准的要求,在加氢过程中将车载储氢器中的氢气温度控制在85℃以下。
其中,加注速率是实现氢气快充的重要因子,而目标压力是决定温升快慢的重要因子,将两者相结合以确定加氢策略可以既使得氢气温度处于预设的安全范围内,又能实现氢气快充。如此,本发明实施例考虑了上述初始参数对加氢过程的影响,通过初始参数来计算所述加注速率和所述目标压力,以达到控制加氢过程的温升和速率的目的。
本发明实施例中,提供了一种查表法来根据所述初始参数计算所述加注速率和所述目标压力。其中,图2是本发明实施例的查表法的流程示意图。如图2所示,该查表法可以包括以下步骤:
步骤S211,通过所述初始参数构建对应的车载储氢器的物理模型。
其中,在此的物理模型是指通过物理参数构建的反映车载储氢器的参数特性的模型。如上所述,在所述初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度时,对应的物理模型通过这三个参数来反映车载储氢器的参数特性。
本发明实施例中选取车载储氢器的体积、初始氢气压力和初始环境温度,这是因为基于本发明实施例的方案,通过这三个参数就能确定大部分型号的车载储氢器所需要的加注速率和目标压力,例如常规的35Mpa的储氢瓶。但是,对于储氢压力较大的储氢瓶,例如70Mpa及以上的储氢瓶,在确定其加注速率及目标压力时,还需要考虑氢气温度。因此,在其他实 施例中,所述初始参数可以包括车载储氢器的体积、初始氢气压力、初始环境温度和初始氢气温度四者。进一步地,在一些对加注精度要求特别高的场景下,在确定注氢策略时,还应该要考虑车载储氢器的材料、壁厚及尺寸信息等(多数场景中,这些因素可忽略不计),其中所述材料主要是其传热系数会对车载储氢器的温升产生影响,壁厚主要是其抗压强度会对车载储氢的压力产生影响,尺寸信息(例如直径、长度等)决定了车载储氢器的形状,而车载储氢器的形状会对其温度分布产生影响。因此,在其他实施例中,除车载储氢器的体积、初始氢气压力、初始环境温度和初始氢气温度四者之外,所述初始参数也还可以包括车载储氢器的材料、壁厚及尺寸信息。
对应地,随着初始参数的不同,所对应构建的物理模型也不相同,本领域技术人员可根据现场的实际情况来确定物理模型。
步骤S212,在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略。
其中,所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力。
举例而言,对于一个加氢站,可通过实验得到针对各种车载储氢器进行加氢的加氢数据,这些加氢数据中包括采用不同或相同的初始参数对不同或相同类型的储氢瓶进行加氢时对应的多组加氢速率及目标压力,从而可选择出其中最优的一组加氢速率及目标压力形成对应的最优加氢策略,再通过配置加氢策略表来反映各种车载储氢器的物理模型与其对应的最优加氢策略之间的映射关系,例如表1示出的加氢策略表,针对10-15kg的车载储氢器,在知道环境温度和初始压力的情况下,可查询出最优的目标压力及加注速率以进行氢气加注。如此,加氢站端可基于得到的初始参数(物理模型)来匹配出需要的加注速率及目标压力。
表1
Figure PCTCN2019078146-appb-000001
需说明的是,表1中的示出的参数是非连续性的,例如对于环境温度,只示出了-30℃和-10℃所对应的加氢策略,而未给出-30℃至-10℃中间的其他参数所对应应选取的策略参数。对此,在本发明实施例中,对于表中未示出的车载储氢器物理模型的其他参数(例如-20℃),可根据插值法来计算出相应的加注速率和目标压力。
步骤S300,控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
相比于目前国内通过限流阀或减压阀等来降低加注速率以直接加注至目标压力的方案,在此对加注速率进行了智能控制,从而无需刻意降速就能将氢气加注至目标压力,保证了加氢效率。综上所述,本发明实施例无需加氢站与车辆实时通讯,通过加氢站测得的车载储氢器的初始参数,得到加注速率和目标压力来控制加注过程,流程简单,且易于实现,并保证了加氢过程的可靠性。进一步地,本发明实施例采用查表法来计算加注速率和目标压力,实现方式简单,且所确定的加注速率和目标压力符合历史经验中的最优加氢策略,控制精度非常高。
实施例二
本发明实施例二相对于上述实施例一,主要的区别在于步骤S200中根据所述初始参数计算所述加注速率和所述目标压力的方案。本发明实施例提供了一种公式计算法来根据所述初始参数计算所述加注速率和所述目标压力。其中,图3是本发明实施例的公式计算法的流程示意图。如图3所示,该公式计算法可以包括以下步骤:
步骤S221,分析所述初始参数和所述历史加氢数据,以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式。
其中,所述最优加氢控制参数包括所述加注速率和所述目标压力。
举例而言,所述历史加氢数据仍可由实验得到,对得到的历史加氢数据中的各组初始参数与对应的加注速率和目标压力进行数据处理,例如将各组初始参数与对应的加注速率和目标压力作为Matlab软件的变量,以利用Matlab软件进行绘图分析来分析出各变量之间的关系,再利用Matlab软件中的reglm、stepwise、nlinfit、regress等公式拟合函数来拟合出所需的控制参数计算公式。其中,Matlab软件是示例性的,也可采用具有公式拟合功能的其他软件。
步骤S222,对于当前加氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数。
其中,例如公式如下:
加注速率Prr=f(P,T,V,T H2)
目标压力Ptarget=f(P0,P,V,T,δm,)
其中,P为加氢机拉断阀附近测得的气体压力,P0为加氢机测得的车载储氢器的初始压力,V为车载储氢器的体积,T为环境温度,T H2为加注的氢气温度,δm为单位时间间隔内加氢机中质量流量计测得的氢气质量。
通过此公式,可计算出最优的加注速率和目标压力。
可知实施例一中通过查表法确定的加注速率和所述目标压力是固定的,虽然控制精度高,但灵活性不足,且查找过程涉及的数据众多,影响控制速度。对此,本发明实施例采用公式计算法来计算加注速率和目标压力,控制精度虽然可能不及查表法,但其计算速度快,有利于提高整个控制速度,且可通过公式计算的结果调整加注速率,实现了对车载储氢器状态的动态控制。
实施例三
本实施例三相对于上述两个实施例,主要的区别在于步骤S200中根据所述初始参数计算所述加注速率和所述目标压力的方案。本发明实施例提供了一种压差计算法来根据所述初始参数计算所述加注速率和所述目标压力。其中,图4是本发明实施例的压差计算法的流程示意图。如图4所示,该压差计算法可以包括以下步骤:
步骤S231,根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率。
其中,可在加氢机端测量获得的车载储氢器的容积以及环境温度等参数的值。
步骤S232,计算出维持所需要的加注速率的压差。
其中,而加氢机可基于所需要的加注速率计算出维持该加注速率的压差,以使加注过程顺利进行。
步骤S233,根据所计算的压差进行氢气加注。
其中,该压差即加氢站调压阀前端的储氢气源压力和加氢机出口处压力传感器的压力差值,当质量流量计读数达到目标压差时,加氢机则停止加注。
相比于前两个实施例,本发明实施例采用压差计算法来计算加注速率和目标压力,其计算速度更快,且也能实现对车载储氢器状态的动态控制, 但精度稍差。
实施例四
基于与前三个实施例相同的发明思路,本发明实施例四提供了一种加氢控制装置。图5是本发明实施例的加氢控制装置的结构示意图。如图5所示,所述加氢控制装置可以包括:初始参数获取模块100,用于获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;目标参数计算模块200,用于根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;以及控制模块300,控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
在优选的实施例中,所述初始参数获取模块100可以包括:扫描子模块110,用于扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息;或者获取子模块120,用于获取通过压力传感器和温度传感器分别检测到的所述初始氢气压力和所述初始环境温度。
举例而言,在车载储氢器上贴有二维码形式的所述标签时,所述扫描子模块110可例如为应用在手机或电脑上的扫码功能模块;所述获取子模块120可以是常规的输入功能模块或接收功能模块,其中输入功能模块可实现人为地将传感器检测出的所述初始氢气压力和所述初始环境温度输入至加氢站端的控制器,接收功能模块可例如通过蓝牙等方式从传感器处接收传感器检测出的所述初始氢气压力和所述初始环境温度。
在优选的实施例中,所述初始参数还可以包括所述车载储氢器的氢气温度。在更为优选的实施例中,所述初始参数还可以包括所述车载储氢器的材料、壁厚及尺寸信息。其中,所述氢气温度可通过配置温度传感器得到,所述车载储氢器的材料、壁厚及尺寸信息等可作为车载储氢器的设备 信息与上述的车载储氢器的体积一同存储至上述标签中。
在优选的实施例中,所述计算模块200可以包括以下子模块中的任意一者:
查表子模块210,被配置为:通过所述初始参数构建对应的车载储氢器的物理模型;以及在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略,其中所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力;
公式计算子模块220,被配置为:分析所述初始参数和所述历史加氢数据,以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式,其中所述最优加氢控制参数包括所述加注速率和所述目标压力;以及对于当前加氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数;以及
压差计算子模块230,被配置为:根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率;计算出维持所需要的加注速率的压差;以及根据所计算的压差进行氢气加注。
其中,对应于查表子模块210及公式计算子模块220,所述加氢控制装置还可以包括:数据库模块300,用于存储历史加氢数据、所述加氢策略表及所述控制参数计算公式。
该实施例四的其他实施细节及效果可参考前述的实施例一至实施例三,在此则不进行赘述。
实施例五
本发明实施例提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述实施例一至实施例三中任意一者 的加氢控制方法。
其中,所述机器例如为控制器,其设置在加氢站端,可以为PLC(Programmable Logic Controller,可编程逻辑控制器),但在其他实施例中,控制器也可以采用单片机、DSP(Digital Signal Processor,数字信号处理器)、SOC(System on a Chip,片上系统)等程序控制器。
进一步地,本发明实施例还提供一种计算机设备,用于运行程序,其中,所述程序被运行时用于执行上述实施例一至实施例三所述的加氢控制方法。
进一步地,本发明实施例还提供一种计算机设备,该计算机设备包括:一个或多个处理器;存储器,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述实施例一至实施例三所述的加氢控制方法。其中,处理器例如CPU,存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
该实施例五的其他实施细节及效果可参考前述任意实施例,在此则不进行赘述。
应用例
图6是采用本发明实施例的查表法进行氢气加注的实例效果图。其中S1为通过查表法得到的反映加注过程中温度和压力及时间之间的对应关系,S2为实测温度曲线,S3为实测压力曲线。从图6可知,实测温度(S2曲线)利用查表法(S1曲线)的目标温度差值为3K,该3K的温差在正常的误差范围内,且在加氢过程中,实测温度通常是低于查表法确定的温度的,即控制了实测温度不会太高,有利于保证加氢安全。另外,比较S1和S3可知,在加注到相同压力值(例如30Mpa时),查表法所用的时间更短, 从而有助于提高加氢效率。
进一步地,采用类似于图6的曲线对比,上述实施例所涉及的公式计算法及压差法也可以取得良好的加注效果。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (14)

  1. 一种加氢控制方法,其特征在于,所述加氢控制方法包括:
    获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;
    根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;以及
    控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
  2. 根据权利要求1所述的加氢控制方法,其特征在于,所述获取车载储氢器的加氢初始参数包括:
    扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息;和/或
    获取通过压力传感器和温度传感器分别检测到的所述初始氢气压力和所述初始环境温度。
  3. 根据权利要求1所述的加氢控制方法,其特征在于,所述初始参数还包括所述车载储氢器的氢气温度。
  4. 根据权利要求3所述的加氢控制方法,其特征在于,所述初始参数还包括所述车载储氢器的材料、壁厚及尺寸信息。
  5. 根据权利要求1所述的加氢控制方法,其特征在于,所述计算加氢的加注速率和目标压力包括:
    采用以下查表法、公式计算法及压差计算法中的任意一者计算所述加注速率和目标压力:
    查表法,包括:通过所述初始参数构建对应的车载储氢器的物理模型;以及在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略,其中所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力;
    公式计算法,包括:分析所述初始参数和所述历史加氢数据,以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式,其中所述最优加氢控制参数包括所述加注速率和所述目标压力;以及对于当前加氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数;以及
    压差计算法,包括:根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率;计算出维持所需要的加注速率的压差;以及根据所计算的压差进行氢气加注。
  6. 一种加氢控制装置,其特征在于,所述加氢控制装置包括:
    初始参数获取模块,用于获取车载储氢器的初始参数,且该初始参数包括所述车载储氢器的体积、初始氢气压力和初始环境温度;
    目标参数计算模块,用于根据所述初始参数,计算加氢的加注速率和目标压力,其中所计算出的加注速率及目标压力使得加氢过程中的氢气温度处于预设的安全范围内;以及
    控制模块,控制加氢站以所计算出的加注速率向所述车载储氢器加氢至所计算出的目标压力。
  7. 根据权利要求6所述的加氢控制装置,其特征在于,所述初始参数获取模块包括:
    扫描子模块,用于扫描所述车载储氢器上的标签以读取所述标签中存储的所述车载储氢器的体积信息;或者
    获取子模块,用于获取通过压力传感器和温度传感器分别检测到的所述初始氢气压力和所述初始环境温度。
  8. 根据权利要求6所述的加氢控制装置,其特征在于,所述初始参数还包括所述车载储氢器的氢气温度。
  9. 根据权利要求8所述的加氢控制装置,其特征在于,所述初始参数还包括所述车载储氢器的材料、壁厚及尺寸信息。
  10. 根据权利要求11所述的加氢控制装置,其特征在于,所述计算模块包括以下子模块中的任意一者:
    查表子模块,被配置为:通过所述初始参数构建对应的车载储氢器的物理模型;以及在预先配置的加氢策略表中查询与当前车载储氢器的物理模型对应的最优加氢策略,其中所述加氢策略表根据各种加氢站的历史加氢数据来进行配置,并示出各种车载储氢器的物理模型与其对应的最优加氢策略之间映射关系,其中所述最优加氢策略中包括确定所述加注速率和所述目标压力;
    公式计算子模块,被配置为:分析所述初始参数和所述历史加氢数据,以拟合出基于所述初始参数计算最优加氢控制参数的控制参数计算公式,其中所述最优加氢控制参数包括所述加注速率和所述目标压力;以及对于当前加氢过程的所述初始参数,通过所述控制参数计算公式计算出对应的最优加氢控制参数;以及
    压差计算子模块,被配置为:根据车载储氢器的容积以及环境温度等参数,确定所需要的加注速率;计算出维持所需要的加注速率的压差;以及根据所计算的压差进行氢气加注。
  11. 根据权利要求10所述的加氢控制装置,其特征在于,所述加氢控制装置还包括:
    数据库模块,用于存储历史加氢数据、所述加氢策略表及所述控制参数计算公式。
  12. 一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求1-5中任意一项所述的加氢控制方法。
  13. 一种处理器,其特征在于,用于运行程序,其中,所述程序被运行时用于执行根据权利要求1-5中任一项权利要求所述的加氢控制方法。
  14. 一种计算机设备,其特征在于,该计算机设备包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-5中任意一项所述的加氢控制方法。
PCT/CN2019/078146 2018-09-21 2019-03-14 加氢控制装置及方法 WO2020057069A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217011856A KR20210061415A (ko) 2018-09-21 2019-03-14 수소 충전 제어 장치 및 방법
US17/278,060 US20210348722A1 (en) 2018-09-21 2019-03-14 Hydrogen fueling control device and method
JP2021515486A JP2022500606A (ja) 2018-09-21 2019-03-14 水素供給制御装置及び方法
KR1020237043854A KR20240001276A (ko) 2018-09-21 2019-03-14 수소 충전 제어 장치 및 방법
EP19862883.6A EP3855062A4 (en) 2018-09-21 2019-03-14 DEVICE AND METHOD FOR CONTROLLING HYDROGEN REFUELING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811108937.5 2018-09-21
CN201811108937.5A CN110939859A (zh) 2018-09-21 2018-09-21 加氢控制装置及方法

Publications (1)

Publication Number Publication Date
WO2020057069A1 true WO2020057069A1 (zh) 2020-03-26

Family

ID=69888245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078146 WO2020057069A1 (zh) 2018-09-21 2019-03-14 加氢控制装置及方法

Country Status (6)

Country Link
US (1) US20210348722A1 (zh)
EP (1) EP3855062A4 (zh)
JP (1) JP2022500606A (zh)
KR (2) KR20240001276A (zh)
CN (1) CN110939859A (zh)
WO (1) WO2020057069A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524479A (zh) * 2020-11-27 2021-03-19 广州特种承压设备检测研究院 储氢气瓶气体置换系统、方法、装置和存储介质
CN114462863A (zh) * 2022-02-11 2022-05-10 内蒙古中科装备有限公司 加氢站氢能充装管控方法、装置、计算机设备及存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111981314B (zh) * 2020-08-26 2022-02-11 重庆大学 一种基于多因素目标优化算法的快速加氢控制方法
CN112765907B (zh) * 2021-01-12 2022-08-23 同济大学 一种车载储氢瓶快速加注方案的优化方法和系统
CN114838284A (zh) * 2021-02-01 2022-08-02 国家能源投资集团有限责任公司 车辆加氢方法和车辆加氢装置
CN112902013B (zh) * 2021-04-07 2022-11-18 阳光新能源开发股份有限公司 一种加氢站的气体加注流速控制方法及其应用装置
CN113606488B (zh) * 2021-07-22 2022-10-25 上海氢枫能源技术有限公司 燃料电池车辆的加注时间计算系统及方法
CN113606489B (zh) * 2021-08-13 2022-07-15 上海氢枫能源技术有限公司 加氢站氢气综合管理方法及系统
CN114352931A (zh) * 2021-09-26 2022-04-15 浙江浙能航天氢能技术有限公司 加氢机的加氢速率控制方法
WO2023080689A1 (ko) * 2021-11-03 2023-05-11 현대자동차주식회사 모델 예측 제어 기반 수소 충전 시스템, 방법 및 장치
CN114811416B (zh) * 2022-04-21 2022-12-27 西安交通大学 一种加氢站氢气充注过程的动态仿真方法
CN114542958B (zh) * 2022-04-27 2022-07-29 浙江浙能航天氢能技术有限公司 一种加氢机融合控制方法及系统
CN115370958B (zh) * 2022-05-05 2023-08-29 成都秦川物联网科技股份有限公司 一种lng分布式能源物联网智能供气管理方法及供气装置
CN114955987B (zh) * 2022-05-16 2023-08-22 宜兴氢枫能源技术有限公司 一种固态储氢系统自判断最高效率吸氢放氢控制方法
CN114923116B (zh) * 2022-06-27 2023-09-19 液空厚普氢能源装备有限公司 一种基于加氢机大流量加注控制系统及控制方法
CN115076597B (zh) * 2022-06-29 2024-03-12 厚普清洁能源(集团)股份有限公司 一种加注机的加注压力、质量确定方法及加注系统
WO2024043702A1 (ko) * 2022-08-23 2024-02-29 현대자동차주식회사 차량 측 현장 데이터를 이용하는 수소 충전 테스트 방법 및 시스템
WO2024072011A1 (ko) * 2022-09-26 2024-04-04 현대자동차주식회사 차량과 충전소 측 현장 데이터를 이용하는 수소 충전 테스트 방법 및 시스템
CN115408948B (zh) * 2022-10-18 2023-01-10 北京理工大学 一种氢气加注的最优策略确定方法、系统及电子设备
CN115751171A (zh) * 2022-10-25 2023-03-07 重庆长安新能源汽车科技有限公司 燃料电池汽车的加氢方法及装置
WO2024123079A1 (ko) * 2022-12-06 2024-06-13 현대자동차주식회사 사용자 주도 설정 기반 수소 충전 방법 및 장치
CN116357884B (zh) * 2023-02-13 2023-12-29 苏州新锐低温设备有限公司 一种液氢安全气化器的控制系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070262A1 (en) * 1999-05-12 2000-11-23 Stuart Energy Systems Corporation Hydrogen fuel replenishment process and system
CN201495193U (zh) * 2009-08-05 2010-06-02 成都金石达高新技术有限公司 氢气加料自动控制装置
CN205616848U (zh) * 2016-05-03 2016-10-05 神华集团有限责任公司 加氢实验装置
US20170074707A1 (en) * 2015-09-14 2017-03-16 Honda Motor Co., Ltd. Hydrogen fueling with integrity checks
CN207298363U (zh) * 2017-08-09 2018-05-01 中国华能集团清洁能源技术研究院有限公司 一种增压移动式加氢车

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474436B2 (ja) * 2009-07-30 2014-04-16 トヨタ自動車株式会社 ガス充填システム
US9605804B2 (en) * 2010-04-21 2017-03-28 Honda Motor Co., Ltd. Method and system for tank refilling using active fueling speed control
US8783303B2 (en) * 2010-04-21 2014-07-22 Ryan HARTY Method and system for tank refilling
JP5707727B2 (ja) * 2010-04-23 2015-04-30 トヨタ自動車株式会社 ガス充填方法、ガス充填システム、ガスステーション及び移動体
CN101832467B (zh) * 2010-06-03 2011-09-14 浙江大学 基于温升与能耗控制的加氢站氢气优化加注方法及其系统
DK2703709T3 (da) * 2011-04-26 2019-05-06 Kobe Steel Ltd Hydrogen station.
FR2978233B1 (fr) * 2011-07-22 2016-05-06 Air Liquide Procede de remplissage d'un reservoir avec du gaz sous pression
FR2989147B1 (fr) * 2012-04-06 2014-05-09 Air Liquide Procede et dispositif de remplissage d'un reservoir de gaz sous pression
US9279541B2 (en) * 2013-04-22 2016-03-08 Air Products And Chemicals, Inc. Method and system for temperature-controlled gas dispensing
US20140338393A1 (en) * 2013-05-13 2014-11-20 Rustam H. Sethna Methods for blending liquefied natural gas
CN103438349A (zh) * 2013-08-18 2013-12-11 浙江大学 能够控制高压氢气快充温升的储氢气瓶及方法
FR3033867B1 (fr) * 2015-03-17 2018-06-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de remplissage de reservoirs avec du gaz sous pression
EP3329174A1 (en) * 2015-07-31 2018-06-06 Shell International Research Maatschappij B.V. Method and system for processing a liquid natural gas stream at a lng import terminal
JP6268499B2 (ja) * 2015-10-21 2018-01-31 株式会社タツノ ガス充填装置
CN205810848U (zh) * 2016-06-27 2016-12-14 元茂光电科技(武汉)有限公司 一种led晶片氧化反应装置
KR102571719B1 (ko) * 2017-01-17 2023-08-29 아이비스 인크. 수소 가스 분배 시스템 및 방법
CN107202243A (zh) * 2017-07-07 2017-09-26 山东特联信息科技有限公司 气瓶充装控制方法及系统
CN108332046B (zh) * 2017-12-27 2023-06-16 上海氢枫能源技术有限公司 气驱泵撬装加氢设备中的加氢系统及其加氢方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070262A1 (en) * 1999-05-12 2000-11-23 Stuart Energy Systems Corporation Hydrogen fuel replenishment process and system
CN201495193U (zh) * 2009-08-05 2010-06-02 成都金石达高新技术有限公司 氢气加料自动控制装置
US20170074707A1 (en) * 2015-09-14 2017-03-16 Honda Motor Co., Ltd. Hydrogen fueling with integrity checks
CN205616848U (zh) * 2016-05-03 2016-10-05 神华集团有限责任公司 加氢实验装置
CN207298363U (zh) * 2017-08-09 2018-05-01 中国华能集团清洁能源技术研究院有限公司 一种增压移动式加氢车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855062A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524479A (zh) * 2020-11-27 2021-03-19 广州特种承压设备检测研究院 储氢气瓶气体置换系统、方法、装置和存储介质
CN114462863A (zh) * 2022-02-11 2022-05-10 内蒙古中科装备有限公司 加氢站氢能充装管控方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
KR20210061415A (ko) 2021-05-27
KR20240001276A (ko) 2024-01-03
EP3855062A4 (en) 2022-05-25
CN110939859A (zh) 2020-03-31
JP2022500606A (ja) 2022-01-04
EP3855062A1 (en) 2021-07-28
US20210348722A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2020057069A1 (zh) 加氢控制装置及方法
CN108087717B (zh) 一种液氢及高压氢联合加氢系统及加注方法
US11348042B2 (en) Systems and methods for determining predicted distribution of future transportation service time point
US20190153985A1 (en) Gas fueling method
US20190370251A1 (en) Systems and methods for data updating
JP2021162148A (ja) 燃料電池用chssのリアルタイム通信情報に基づく水素安全充填システム及び充填方法
CN114509951A (zh) 一种基于神经网络的加氢自适应控制方法及装置
WO2019019198A1 (en) SYSTEMS AND METHODS FOR DETERMINING SERVICE REQUEST FEES
TWI602682B (zh) 一種射出機工藝參數調試方法及系統
JP2023550394A (ja) 実時間対応水素充填プロセスを実行する方法及びその装置
CN113158589B (zh) 一种电池管理系统的仿真模型校准方法以及装置
US20170021726A1 (en) Hydrogen fuel charging display system and charging display method thereof
US20210049224A1 (en) Systems and methods for on-demand services
JP2020031512A (ja) 燃料電池車
CN114977953A (zh) 基于神经网络的电机输出扭矩修正方法、设备及介质
US20240068621A1 (en) Method for Refuelling a Motor Vehicle, Motor Vehicle, Filling Station and Computer-Readable Storage Medium
CN112785023B (zh) 物品重量测量方法及装置、电子设备、存储介质
CN116877918A (zh) 一种储氢系统容量计算方法、装置、设备、车机及车辆
CN114912677A (zh) 基于数字孪生的液化天然气接收站实时优化方法及系统
CN116908704B (zh) 动力电池soh估算修正方法、设备和介质
CN116051172B (zh) 一种基于区块链的数据要素辅助定价方法、装置和系统
CN110555746B (zh) 车险报价方法
CN110609835B (zh) 一种车型位置信息存储的控制方法、系统和存储介质
WO2023246647A1 (zh) 发动机冷却系统温度预测方法、装置、设备、介质和车辆
US11549840B2 (en) Vehicle fuel volume estimation systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011856

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019862883

Country of ref document: EP

Effective date: 20210421