WO2020057043A1 - 一种由锂磷铝石制备含锂化合物的方法 - Google Patents
一种由锂磷铝石制备含锂化合物的方法 Download PDFInfo
- Publication number
- WO2020057043A1 WO2020057043A1 PCT/CN2019/073872 CN2019073872W WO2020057043A1 WO 2020057043 A1 WO2020057043 A1 WO 2020057043A1 CN 2019073872 W CN2019073872 W CN 2019073872W WO 2020057043 A1 WO2020057043 A1 WO 2020057043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- acid
- solution
- optionally
- mixed solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/30—Alkali metal phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/50—Fluorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/50—Fluorides
- C01F7/54—Double compounds containing both aluminium and alkali metals or alkaline-earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present application belongs to the field of compound preparation, and relates to a method for preparing a lithium-containing compound, for example, to a method for preparing a lithium-containing compound from hectorite.
- Lithium is one of the lightest metals. Lithium metal and its alloys and compounds have been used in nuclear power generation, light high-strength alloys, metallurgy, aluminum smelting, high-energy batteries, medicine, glass, ceramics, greases, petroleum, chemicals, organic It is widely used in many fields such as synthesis, welding of light metals, surface modification of non-metallic minerals and production of daily necessities. In recent decades, the United States, Germany, France, Japan, Russia and other countries have invested a lot of capital and manpower and material resources to conduct research and development of aluminum-lithium alloys, magnesium-lithium alloys, and in-depth development and application of lithium resources. The remarkable achievements and success have promoted the development, application, production, consumption and trade of lithium resources in the world, and have played an important role in the development of the world lithium industry.
- Lithium resources are mainly distributed in South, North America, Asia, Australia and Africa. In Venezuela only Pooh salt basin of Li 2 O reserves, which amounts to 19.135 million tons; Nevada Silver Peak (Silver Peak) and both California Sylvan Lake Li 2 O reserves of over 10 million tons; the police of Qinghai The reserves of lithium resources in Erhan Salt Lake and Chaidan Salt Lake and in several brines in Sichuan province are estimated to be about 10 million tons. Lithium reserves of the brine brine deposits in Catabaca province, Argentina are also considerable, and its Li 2 O reserves are estimated to reach millions of tons.
- Li 2 O reserves in pegmatite lithium deposits are 6.348 million tons in the United States, 4.26 million tons in Chile, 6.6 million tons in Canada, and 6 million tons of Li 2 O reserves in the Greenbushes spodumene mine in western Australia.
- Lithium-phosphite Li 2 O reserves are also relatively large in clouds and Sun.
- Lithium mica reserves in deposits such as Cocotohai, Xinjiang, Spodumene in northwestern Sichuan, and Yichun tantalum-niobium-lithium-cesium polymetallic deposits in Jiangxi are also very large rich.
- CN107188205A discloses a process for extracting lithium sulfate from lithium apatite by an acidification method.
- the process includes the following steps: (1) grinding of raw materials: grinding of raw materials in lithium apatite; (2) ingredients: Step (1) mixing the ground lithium phospatite and concentrated sulfuric acid; (3) roasting: roasting the mixed material in step (2); (4) slurry leaching: placing the clinker in step (3) Add water to the reactor for heating and stirring; (5) Purify and remove impurities: remove impurities such as aluminum or calcium from the solution leached in step (4); (6) evaporate the solution after the reaction is completed in step (5) concentrate.
- CN107162024A discloses a process for extracting lithium carbonate from lithium apatite by an acidification method.
- the process includes the following steps: raw material grinding-dosing-milled lithium apatite and concentrated sulfuric acid are mixed-roasted-pulped-out leaching -Purification and removal of impurities-Removal of impurities such as aluminum or calcium-Evaporation and concentration-Lithium precipitation-Single stirring-Second stirring-drying to obtain lithium carbonate products.
- CN107200338A discloses a process for extracting lithium hydroxide from lithium apatite by an acidification method.
- the process route is as follows: the lithium apatite is ground and mixed with concentrated sulfuric acid ⁇ roasting ⁇ clinker grinding and leaching ⁇ purification and removal Miscellaneous ⁇ Evaporation and concentration ⁇ Causticization ⁇ Freezing sodium precipitation ⁇ Evaporation and crystallization ⁇ Recrystallization ⁇ Drying and packaging.
- CN107188204A discloses a process for extracting lithium hydroxide from lithium apatite by the lime method, which includes the following steps: S1 raw material is ground and ground to 100-200 mesh; S2 ingredients are uniformly mixed into a raw material; S3 roasting and high temperature roasting S4 is leached and filtered to obtain a lithium hydroxide solution; S5 is evaporated and concentrated to obtain a lithium hydroxide clear solution; and S6 is crystallized to obtain lithium hydroxide crystals.
- the present application provides a method for preparing a lithium-containing compound from lithium apatite.
- the method has a simple process flow and simple operation, and can fully extract the lithium element in the lithium apatite.
- the prepared lithium-containing compound has high purity.
- the present application provides a method for preparing a lithium-containing compound from hepatite, the method comprising the following steps:
- the pH of the lithium-containing solution is adjusted, and lithium phosphate is obtained by solid-liquid separation, or an iron source is added to the lithium-containing solution, and lithium iron phosphate precursor is obtained by solid-liquid separation, and the lithium iron phosphate precursor is sintered to obtain lithium iron phosphate.
- the method uses hydrofluoric acid to dissolve the aluminum element to generate hexafluoroaluminate acid, and then adjusts the pH with a pH adjuster to generate sodium hexafluoroaluminate or potassium hexafluoroaluminate to precipitate, or generates water-soluble hexafluoro Ammonium aluminate generates aluminum fluoride precipitation, ammonia gas and hydrogen fluoride through thermal decomposition to achieve the purpose of separating aluminum elements.
- the "lithium-containing compound” in the subject matter of the present application refers to a compound containing a lithium element, and includes lithium phosphate, lithium iron phosphate, a lithium-containing solution, and the like.
- the mass ratio of the lithium apatite to hydrogen fluoride is 1: (0.8 to 2.0), such as 1: 0.8, 1: 0.9, 1: 1.0, 1: 1.1, 1: 1.2, 1: 1.3, 1: 1.4, 1: 1.5, 1: 1.6, 1: 1.7, 1: 1.8, 1: 1.9 or 1: 2.0, etc., but it is not limited to the listed values.
- the value is also applicable, and can be selected from 1: (1.0 to 1.5).
- the mass ratio of the lithium apatite to hydrogen fluoride when the mass ratio of the lithium apatite to hydrogen fluoride is greater than 1: 0.8, the aluminum element will partially generate tetrafluoroaluminate acid, which cannot be separated from the solution by precipitation; and when the mass ratio of the lithium apatite to hydrogen fluoride is When it is less than 1: 2.0, the fluoride ion will combine with other impurity elements in the lithium apatite, reducing the product purity.
- the mass ratio of the acid to hydrogen fluoride is (0.1 to 1.0): 1, and the acid does not include hydrofluoric acid, such as 0.1: 1, 0.2: 1, 0.3: 1, 0.4: 1. 0.5: 1, 0.6: 1, 0.7: 1, 0.8: 1, 0.9: 1, or 1.0: 1, etc., but it is not limited to the listed values, and other unlisted values in this value range are also applicable.
- the purpose of adding acid is to promote the dissolution of lithium element, aluminum element and phosphate.
- the mass ratio of acid to hydrofluoric acid is less than 0.1: 1, which will cause the amount of lithium element to be reduced.
- the mass ratio is greater than 1.0: 1, it will interact with fluoride ions to promote the dissolution of a large number of impurity elements. Therefore, while controlling the amount of hydrogen fluoride added, the application needs to control the amount of acid added.
- the acid includes an organic acid and / or an inorganic acid.
- the acid is a pure acid or an acid solution.
- the mass ratio of hydrogen fluoride to the acid is the ratio of the total mass of the lithium apatite to the acid contained in the acid solution.
- the inorganic acid includes any one or a combination of at least two kinds of sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid.
- Typical but non-limiting examples of the combination are: a combination of sulfuric acid and hydrochloric acid, a combination of nitric acid and sulfuric acid , A combination of nitric acid and hydrochloric acid, a combination of hydrochloric acid and phosphoric acid, or a combination of sulfuric acid, nitric acid and hydrochloric acid, and the like.
- the acid described in the present application is an inorganic acid, it is mainly mixed with hectorite in the form of an acid solution.
- the organic acid includes any one or a combination of at least two of formic acid, acetic acid, oxalic acid, or trifluoroacetic acid.
- Typical but non-limiting examples of the combination are: a combination of formic acid and acetic acid, acetic acid and oxalic acid A combination of oxalic acid and trifluoroacetic acid, a combination of trifluoroacetic acid and addition, or a combination of acid, acetic acid and oxalic acid, and the like.
- the pH adjustment agent is added to adjust the pH of the mixed solution to 4 to 6, such as 4, 4.2, 4.5, 4.8, 5, 5.2, 5.5, 5.8, or 6, etc., but it is not limited to The listed values are also applicable to other unlisted values within the range.
- the pH adjusting agent includes any one or a combination of at least two of liquid ammonia, sodium hydroxide solid or potassium hydroxide solid, or any one of ammonia, sodium hydroxide solution, or potassium hydroxide solution.
- a combination of at least two kinds the typical but non-limiting examples of which are: a combination of liquid ammonia and sodium hydroxide solids, a combination of sodium hydroxide solids and potassium hydroxide solids, a combination of potassium hydroxide solids and liquid ammonia , Combination of ammonia water and sodium hydroxide solution, combination of sodium hydroxide solution and potassium hydroxide solution, combination of potassium hydroxide solution and ammonia water, and the like.
- the pH adjusting agent is non-liquid ammonia or ammonia water
- hexafluoroaluminate alumina which is slightly soluble in water is formed in the solution, and the aluminum element can be separated by solid-liquid separation, although the solution still contains a small amount of hexafluoroaluminate.
- Fluoroaluminate but during the subsequent precipitation adjustment of the pH to precipitate lithium phosphate, the solubility of hexafluoroaluminate is poor in response to pH, and it will not precipitate when the pH increases, so it will not affect the purity of the product.
- a buffer is added to the eluate.
- the buffering agent includes any one of sodium dihydrogen phosphate-disodium hydrogen phosphate, citric acid-sodium citrate, potassium hydrogen phthalate-sodium hydroxide, or hexamethylenetetramine-hydrochloric acid. .
- the eluate in order to fully precipitate the aluminum phosphate, the eluate needs to stand for a period of time after adjusting the pH.
- a small amount of a buffer is added to the mixed solution after the pH of the eluate is adjusted.
- the buffering agent is not limited to the buffering pairs listed above. All buffering agents that can be used in the pH range of 4 to 6 are suitable for the present application.
- the buffer can be added as a solid or a buffer.
- the temperature for heating the mixed solution is 300 to 500 ° C, such as 300 ° C, 320 ° C, 350 ° C, 380 ° C, 400 ° C, 420 ° C, 450 ° C, 480 ° C, or 500 ° C. ° C, etc., but it is not limited to the listed values, and other unlisted values within this range are also applicable.
- the above reaction temperature exceeds the boiling point of water in the solution.
- the above reaction needs to be performed in a closed reactor capable of withstanding high pressure, such as a high pressure reactor.
- the mixed liquid is heated.
- the temperature of the mixed solution is maintained at 80 to 100 ° C, such as 80 ° C, 82 ° C, 85 ° C, 88 ° C, 90 ° C, 92 ° C, 95 ° C, 98 ° C, or 100 ° C, etc. , But it is not limited to the listed values, and other unlisted values in this value range also apply.
- ammonium hexafluoroaluminate will generate ammonia gas and hydrogen fluoride upon heating decomposition.
- the temperature of the solution needs to be controlled to 80-100 ° C.
- the pH of the lithium-containing solution is adjusted to 8 to 14, such as 8, 9, 10, 11, 12, 13, or 14, etc., but it is not limited to the listed values, and the value ranges Other unlisted values are also applicable, and can be selected from 10 to 12.
- the impurity content of the precipitated lithium phosphate will be too high, so the pre-control of the solution temperature has an important impact on the lithium precipitation step.
- a lithium-containing compound is added to the lithium-containing solution.
- the lithium-containing compound includes any one or a combination of at least two of lithium sulfate, lithium chloride, lithium nitrate, or lithium hydroxide, and typical but non-limiting examples of the combination are: lithium sulfate and chlorine A combination of lithium chloride, a combination of lithium chloride and lithium nitrate, a combination of lithium nitrate and lithium hydroxide, or a combination of lithium sulfate, lithium chloride and lithium nitrate, and the like.
- sulfuric acid and an organic solvent are added to the lithium-containing solution, and the filter residue is filtered to obtain lithium sulfate.
- the organic solvent is at least one of acetone and absolute ethanol.
- the lithium sulfate is dissolved in water, an acid salt or a base is added, and the lithium salt is obtained by evaporation and concentration.
- the acid salt is sodium carbonate, potassium carbonate, sodium chloride, potassium chloride, sodium oxalate, oxalic acid, sodium nitrate and the like.
- the alkali is sodium hydroxide, potassium hydroxide, ammonia, and the like.
- the lithium salt includes lithium sulfate, lithium nitrate, lithium carbonate, lithium oxalate, lithium hydroxide, and the like.
- the lithium salt can be used to synthesize lithium iron phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium manganese iron phosphate and other positive electrode materials.
- the method for synthesizing lithium iron phosphate with the lithium salt includes a solid phase method, a hydrothermal method, a liquid phase method, a sol-gel method, a microwave method, and the like.
- carbon coating is performed on the lithium iron phosphate to obtain lithium iron phosphate containing a carbon coating layer.
- the lithium iron phosphate is doped to obtain a doped lithium iron phosphate.
- a pH adjuster is added to the solution during said adjusting the pH of the lithium-containing solution.
- the pH adjusting agent includes any one or a combination of at least two of liquid ammonia, sodium hydroxide solid or potassium hydroxide solid, or any one of ammonia, sodium hydroxide solution, or potassium hydroxide solution.
- a combination of at least two kinds the typical but non-limiting examples of which are: a combination of liquid ammonia and sodium hydroxide solids, a combination of sodium hydroxide solids and potassium hydroxide solids, a combination of potassium hydroxide solids and liquid ammonia , Combination of ammonia water and sodium hydroxide solution, combination of sodium hydroxide solution and potassium hydroxide solution, combination of potassium hydroxide solution and ammonia water, and the like.
- a buffer is added to the eluate;
- the buffering agent includes any one of boric acid-potassium chloride-sodium hydroxide, ammonium chloride-ammonia water, disodium hydrogen phosphate-sodium hydroxide, sodium bicarbonate-sodium hydroxide, or Tris-HCl .
- the eluate in order to fully precipitate lithium phosphate, the eluate needs to stand for a period of time after adjusting the pH.
- a small amount of buffer is added to the eluate.
- the buffering agent is not limited to the buffering pairs listed above, and buffering agents that can be used in the range of pH 8 to 14 are suitable for the present application.
- the buffer can be added as a solid or a buffer.
- the lithium phosphate can be used to synthesize lithium iron phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium manganese iron phosphate and other positive electrode materials.
- the lithium phosphate synthesized by the lithium phosphate may be a solid phase method, a hydrothermal method, a liquid phase method, a microwave method, a sol-gel method, or the like.
- carbon coating is performed on the lithium iron phosphate to obtain lithium iron phosphate containing a carbon coating layer.
- the lithium iron phosphate is doped to obtain a doped lithium iron phosphate.
- the iron source includes any one or a combination of at least one of ferrous sulfate, ferrous chloride, ferrous nitrate, ferric sulfate, ferric chloride, or ferric nitrate.
- Typical but non-limiting examples of combinations are: combinations of ferrous sulfate and ferrous chloride, combinations of ferrous chloride and ferrous nitrate, combinations of ferrous nitrate and ferrous sulfate, combinations of ferric sulfate and ferric chloride, A combination of iron chloride and iron nitrate, a combination of iron nitrate and iron sulfate, and the like.
- a reducing agent is added at the same time.
- the reducing agent includes any one or a combination of at least two of iron powder, potassium borohydride, sodium borohydride, hypophosphite, or sodium hypophosphite, and typical but non-limiting examples of the combination are: iron A combination of powder and potassium borohydride, a combination of potassium borohydride and sodium borohydride, a combination of sodium borohydride and hypophosphorous acid, a combination of hypophosphorous acid and sodium hypophosphite, or a combination of iron powder, potassium borohydride and sodium borohydride, and the like.
- ferrous ions can be obtained by reduction of iron ions, in principle, a form in which a ferric ion salt and a reducing agent are co-added can be used to replace the ferrous ion salt, but in order to improve the production efficiency, the reducing agent and the ferric ion salt are previously prepared.
- the method of obtaining the corresponding ferrous ion salt by the reaction is more applicable.
- the sintering is performed under a protective atmosphere.
- the protective atmosphere includes any one or a combination of at least two of nitrogen, helium, neon, or argon.
- Typical but non-limiting examples of the combination are: a combination of nitrogen and helium, helium A combination of gas and neon, a combination of neon and argon, a combination of argon and nitrogen, or a combination of nitrogen, helium and argon, and the like.
- the sintering temperature is 500 to 900 ° C, such as 500 ° C, 550 ° C, 600 ° C, 650 ° C, 700 ° C, 750 ° C, 800 ° C, 850 ° C, or 900 ° C, etc., but it is not limited to the enumeration The same applies to other unlisted values in this value range.
- the sintering time is 10 to 30 hours, such as 10h, 12h, 15h, 18h, 20h, 22h, 25h, 28h, or 30h, etc., but it is not limited to the listed values. Other values in this range are not listed. The same applies.
- carbon coating is performed on the lithium iron phosphate to obtain lithium iron phosphate containing a carbon coating layer.
- a dopant may be added in the process of adding the iron source to obtain a doped lithium iron phosphate.
- the carbon coating on the lithium iron phosphate can be performed by a ball milling method, a vapor deposition method, or an organic carbon source sintering method.
- the above methods are all conventional operations in the art, and therefore are not described in detail in the description.
- the method for preparing a lithium-containing compound from hectorite includes the following steps:
- Blend lithium apatite with an acid and hydrogen fluoride the acid does not include hydrofluoric acid, the mass ratio of the lithium apatite to hydrogen fluoride is 1: (0.8 to 2), and the mass ratio of the acid to hydrogen fluoride is ( 0.1 to 1): 1 to obtain a mixed solution;
- a pH adjuster to the mixed solution to adjust the pH of the mixed solution to 4 to 6, when the pH adjuster is liquid ammonia or ammonia water, heating the mixed solution to 300 to 500 ° C, and after the heating is completed Maintaining the temperature of the mixed solution at 80-100 ° C., and solid-liquid separation to obtain a lithium-containing solution;
- the solid-liquid separation is independently selected from any one or a combination of at least two methods of filtration, centrifugation, evaporation, or sedimentation. And the corresponding operation method is well known in the art, so it will not be repeated here.
- a pH test paper or a pH meter when adjusting the pH, a pH test paper or a pH meter can be used for real-time measurement.
- the addition of the pH adjuster can be stopped.
- the amount of the regulator added is specifically limited.
- the obtained product needs to be subjected to purification treatment such as pulverization, recrystallization, or water washing to remove a small amount of impurities in the product.
- purification treatment such as pulverization, recrystallization, or water washing to remove a small amount of impurities in the product.
- the present application provides a method for preparing a lithium-containing compound from lithium apatite.
- the method adopts a dissolution method of lithium apatite with an acid and hydrofluoric acid to improve the dissolution of lithium in the lithium apatite. Rate, while facilitating the subsequent separation of lithium elements;
- the present application provides a method for preparing a lithium-containing compound from hepatite.
- the present application uses a method of adjusting pH to separate hexafluoroaluminate from a hydrofluoric acid and an aluminum element to separate the mixed solution.
- Aluminum element which reduces the loss of lithium element in the separation process and improves the separation rate of aluminum element;
- the present application provides a method for preparing a lithium-containing compound from hepatite.
- This application can also use liquid ammonia and ammonia water to adjust the pH of the mixed solution, and generate aluminum fluoride by heating to remove the mixed solution.
- Aluminum element which reduces the loss of lithium element in the separation process and improves the separation rate of aluminum element;
- the present application provides a method for preparing a lithium-containing compound from hectorite.
- the method separates the aluminum element so that the lithium element is fully separated from the aluminum element and improves the purity of the lithium-containing compound in the product;
- the present application provides a method for preparing a lithium-containing compound from lithium apatite.
- the method has a simple process flow and simple operation.
- the lithium element in the lithium apatite can be fully extracted, and the prepared lithium salt has high purity.
- the lithium extraction rate of lithium phosphate products can reach more than 95%, and the product purity can reach more than 99%; the lithium extraction rate of lithium iron phosphate products can reach more than 95%, and the product purity can reach more than 99%.
- FIG. 1 is a flow chart of a method for preparing a lithium-containing compound from aluminite according to the present application.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- the pH of the lithium-containing solution was adjusted to 8 using sodium hydroxide solids, and lithium chloride was added to the solution to prevent precipitation, and the filter residue was washed 3 times with deionized water to obtain lithium phosphate.
- the extraction rate of the lithium element in the method is 95.2%, and the purity of the lithium phosphate obtained is 99.1%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- the extraction rate of the lithium element in the method is 95.9%, and the purity of the lithium phosphate obtained is 99.3%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- a 1 mol / L sodium hydroxide solution was used to adjust the pH of the lithium-containing solution to 10, and lithium chloride was added until no solution was formed in the solution, and the filter residue was washed with deionized water 3 times to obtain lithium phosphate.
- the extraction rate of the lithium element in the method is 96.1%, and the purity of the lithium phosphate obtained is 99.0%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- a 1 mol / L potassium hydroxide solution was added to the mixed solution, the pH of the mixed solution was adjusted to 6, and a lithium-containing solution and a potassium hexafluoroaluminate solid were obtained by solid-liquid separation;
- the extraction rate of the lithium element in the method is 95.7%, and the purity of the lithium phosphate obtained is 99.2%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- a 1 mol / L sodium hydroxide solution was used to adjust the pH of the lithium-containing solution to 10, and lithium chloride was added until no solution was formed in the solution, and the filter residue was washed with deionized water 3 times to obtain lithium phosphate.
- the extraction rate of the lithium element in the method is 96.5%, and the purity of the lithium phosphate obtained is 99.1%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- Lithium phosphate was obtained.
- the extraction rate of the lithium element in the method is 96.1%, and the purity of the lithium phosphate obtained is 99.3%.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- the extraction rate of the lithium element in the method is 96.6%, and the purity of the lithium iron phosphate obtained is 99.5%.
- the lithium iron phosphate was assembled into a half-cell test, and the first discharge capacity under the condition of 0.2C was 159 mAh / g.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- a 1 mol / L potassium hydroxide solution was added to the mixed solution, the pH of the mixed solution was adjusted to 6, and a lithium-containing solution and a potassium hexafluoroaluminate solid were obtained by solid-liquid separation;
- the extraction rate of the lithium element in the method is 96.9%, and the purity of the lithium iron phosphate obtained is 99.6%.
- the lithium iron phosphate material was assembled into a half-cell, and the first discharge capacity under the condition of 0.2C was 157 mAh / g.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- the extraction rate of the lithium element in the method is 96.2%, and the purity of the lithium iron phosphate obtained is 99.3%.
- the first discharge capacity of the obtained lithium iron phosphate 0.2C was 159 mAh / g.
- This embodiment provides a method for preparing a lithium-containing compound from hectorite, including the following steps:
- the extraction rate of lithium element in the method is 96.6%, and the purity of the lithium iron phosphate obtained is 99.5%.
- the first discharge capacity of the obtained lithium iron phosphate 0.2C was 158 mAh / g.
- the precipitate was dissolved in water, added with sodium carbonate solution, concentrated by evaporation, and washed to obtain a lithium carbonate solid.
- the extraction rate of the lithium element in the method is 94.7%, and the purity of the lithium carbonate obtained is 98%.
- the precipitate was dissolved in water, and sodium hydroxide solution was added. The solution was concentrated by evaporation, and washed to obtain a lithium hydroxide solid.
- the extraction rate of the lithium element in the method is 95.4%, and the purity of the lithium hydroxide obtained is 98.7%.
- Example 6 After the lithium phosphate prepared in Example 6 was mixed with iron oxide, ammonium dihydrogen phosphate, and a carbon source by ball milling, it was sintered at 750 ° C for 18 h in a nitrogen atmosphere to obtain lithium iron phosphate.
- the prepared lithium iron phosphate has a first discharge capacity of 156 mAh / g under the condition of 0.2C.
- the lithium carbonate prepared in Example 11 was added to the solvent with lithium nitrate, phosphoric acid, citric acid, and cobalt nitrate, and the reaction was heated at 120 ° C. until the solvent was evaporated, vacuum dried, and the particle size was refined to obtain a lithium iron phosphate precursor.
- the precursor was sintered at 720 ° C for 18 h in a nitrogen atmosphere to obtain lithium iron phosphate.
- the first discharge capacity of the obtained lithium iron phosphate was 0.2 mAh / g under the condition of 0.2C.
- the lithium carbonate prepared in Example 11 was added to the solvent with lithium nitrate, phosphoric acid, citric acid, and ammonium fluoride, and the reaction was heated at 120 ° C. until the solvent was evaporated, vacuum dried, and the particle size was refined to obtain a lithium iron phosphate precursor.
- the precursor was mixed with a carbon source and sintered at 720 ° C. for 18 h in a nitrogen atmosphere to obtain lithium iron phosphate.
- the first discharge capacity of the prepared lithium iron phosphate under the condition of 0.2C was 159 mAh / g.
- the lithium phosphate prepared in Example 6 was reacted by adding iron nitrate, ammonium dihydrogen phosphate, citric acid, and nickel nitrate to the solvent, and the particle size was dried to obtain a lithium iron phosphate precursor.
- the precursor was mixed with a carbon source and sintered at 730 ° C for 15 hours in a nitrogen atmosphere. During the sintering process, oxygen-containing organic matter and water vapor deposition were passed into the carbon-coated lithium iron phosphate.
- the first discharge capacity of lithium iron phosphate obtained under the condition of 0.2C was 161 mAh / g.
- the lithium hydroxide prepared in Example 12 was mixed with a nickel nickel cobalt aluminate precursor, and then sintered at 720 ° C for 15 h in an oxygen atmosphere to obtain a lithium nickel cobalt aluminate ternary material.
- the nickel-cobalt-aluminum-aluminum ternary material obtained has a first discharge capacity of 198 mAh / g under the condition of 0.2C.
- the lithium carbonate prepared in Example 11 was mixed with a lithium nickel cobalt manganate (523) precursor, and then sintered at 830 ° C. for 20 h in an oxygen atmosphere to obtain a lithium nickel cobalt manganate ternary material.
- the nickel-cobalt manganate (523) ternary material was prepared for the first time under the condition of 0.2C with a discharge capacity of 169mAh / g.
- the lithium phosphate prepared in Example 5 was mixed with iron nitrate, manganese nitrate, ammonium dihydrogen phosphate, and citric acid to prepare a lithium manganese iron phosphate precursor.
- the lithium manganese iron phosphate was sintered at 700 ° C for 18 h under a protective atmosphere to obtain a lithium manganese iron phosphate material.
- the first discharge capacity of the prepared lithium manganese iron phosphate material under the condition of 0.2C was 146 mAh / g.
- Example 6 the conditions are the same as those of Example 6 except that the mass ratio of lithium apatite to hydrogen fluoride is 1: 0.5.
- the extraction rate of the lithium element in the method is 75.2%, and the purity of the lithium phosphate obtained is 81.3%.
- Example 6 the conditions are the same as those of Example 6 except that the mass ratio of lithium apatite to hydrogen fluoride is 1: 3.
- the extraction rate of the lithium element in the method is 72.3%, and the purity of the lithium phosphate obtained is 79.6%.
- Example 6 the conditions are the same as in Example 6 except that concentrated hydrochloric acid is not added.
- the extraction rate of the lithium element in the method is 39.5%, and the purity of the lithium phosphate obtained is 91.2%.
- Example 6 the conditions are the same as in Example 6 except that the mass ratio of hydrogen chloride to hydrogen fluoride in concentrated hydrochloric acid is 2: 1.
- the extraction rate of the lithium element in the method is 89.6%, and the purity of the lithium phosphate obtained is 51.2%.
- Example 6 the conditions were the same as in Example 6 except that a pH adjuster was added to adjust the pH of the mixed solution to 2.
- the extraction rate of the lithium element in the method is 77.7%, and the purity of the lithium phosphate obtained is 84.6%.
- Example 6 the conditions were the same as in Example 6 except that the pH of the mixed solution was adjusted to 8 by adding a pH adjuster.
- the extraction rate of lithium element in the method is 82.8%, and the purity of the lithium phosphate obtained is 71.5%.
- Example 6 the conditions were the same as in Example 6 except that the heating temperature of the mixed solution was 150 ° C.
- the extraction rate of the lithium element in the method is 81.6%, and the purity of the lithium phosphate obtained is 54.6%.
- Example 6 the conditions were the same as in Example 6 except that the heating temperature of the mixed solution was 700 ° C.
- the extraction rate of the lithium element in the method is 85.2%, and the purity of the lithium phosphate obtained is 66.3%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
提供一种由锂磷铝石制备含锂化合物的方法,包括:将锂磷铝石与酸以及氟化氢混合,酸不包括氢氟酸,得到混合液;向混合液中加入pH调节剂,调节混合液pH,固液分离得到含锂溶液;或向混合液中加入pH调节剂,调节混合液pH,加热混合液,固液分离得到含锂溶液;调节含锂溶液pH,固液分离得到磷酸锂,或向含锂溶液中加入铁源,固液分离得到磷酸铁锂前驱体,磷酸铁锂前驱体烧结得到磷酸铁锂。
Description
本申请属于化合物制备领域,涉及一种含锂化合物的制备方法,例如涉及一种由锂磷铝石制备含锂化合物的方法。
锂是一种最轻的金属,锂金属及其合金和化合物已在核能发电、轻质高比强合金、冶金、炼铝、高能电池、医药、玻璃、陶瓷、润滑脂、石油、化工、有机合成、轻金属焊接、非金属矿物表面改性和日用品生产等众多领域中获得广泛的应用。近几十年来,美、英、德、法、日和俄罗斯等国先后投入大量资金和人力、物力,进行铝锂合金、镁锂合金研制和锂资源的深层次开发应用研究,并相继取得世人瞩目的成绩和成功,促进了世界锂资源的开发应用、生产和消费与贸易,对世界锂工业发展产生了重要的作用。
世界上锂资源比较丰富,锂资源主要分布在南、北美洲、亚洲、澳洲和非洲。在玻利维亚仅维尼盐盆的Li
2O储量即达1913.5万吨;美国内华达州的银峰(Silver Peak)和加利福尼亚州的西尔湖两者的Li
2O储量超过1000万吨;我国青海的察尔汉盐湖和柴旦盐湖以及在四川省的多处卤水中,锂资源储量估计达1000万吨左右。阿根廷卡塔巴卡省的盐卤矿床锂资源储量也相当可观,估计其Li
2O储量可达数百万吨。伟晶岩锂矿床中按Li
2O计算的储量,美国634.8万吨,智利426万吨,加拿大660万吨,澳大利亚西部的格林普什(Greenbushes)锂辉石矿Li
2O储量达600万吨,津巴布韦和纳米比亚的锂磷铝石Li
2O储量也比较大,我国新疆可可托海、四川西北部地区的锂辉石和江西宜春钽铌锂铷铯多金属矿等矿床中的锂云母储量也很丰富。
锂辉石、透锂长石、锂云母的提锂方法已经有诸多报道,但是对于锂磷铝石的提锂,人们进行的研究很少。
CN107188205A公开了一种酸化法从锂磷铝石中提取硫酸锂的工艺,该工艺包括以下步骤:(1)原料磨细:对锂磷铝石中的原料进行磨细;(2)配料:将步骤(1)磨细后的锂磷铝石以及浓硫酸进行混合;(3)焙烧:对步骤(2)混合后的物料进行焙烧;(4)调浆浸出:对步骤(3)熟料置于反应釜中加入水进行加热搅拌;(5)净化除杂:对步骤(4)中浸出的溶液中除去铝或钙等杂质;(6)在步骤(5)中反应完成后的溶液进行蒸发浓缩。
CN107162024A公开了一种酸化法从锂磷铝石中提取碳酸锂的工艺,该工艺包括以下步骤:原料磨细-配料-磨细后的锂磷铝石以及浓硫酸进行混合-焙烧-调浆浸出-净化除杂-除去铝或钙等杂质-蒸发浓缩-一次沉锂-一次搅洗-二次搅洗-烘干得到碳酸锂产品。
CN107200338A公开了一种酸化法从锂磷铝石中提取氢氧化锂的工艺,其工艺路线为:锂磷铝石经过磨细并与浓硫酸一起配料→焙烧→熟料磨细并浸出→净化除杂→蒸发浓缩→苛化→冷冻析钠→蒸发结晶→重结晶→烘干包装。应用本发明的工艺技术,可以从锂磷铝石中将锂提取出来,变成符合标准的单水氢氧化锂产品,锂的收率可以达到86%以上。
CN107188204A公开了一种石灰法从锂磷铝石中提取氢氧化锂的工艺,包括如下步骤:S1原料研磨,磨细至100~200目;S2配料,均匀混合成生料;S3焙烧,高温焙烧,形成熟料;S4浸出过滤,获得氢氧化锂溶液;S5蒸发浓缩,获得氢氧化锂清液;S6结晶,得到氢氧化锂结晶。
上述方法虽然都能够实现从锂磷铝石中提锂,但是其工艺路线比较长,同时提锂提取率有待提高,含锂产品的纯度也需要进一步改善,此外锂磷铝石中 的铁和磷没有得到充分的利用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
为解决现有技术中存在的技术问题,本申请提供一种由锂磷铝石制备含锂化合物的方法,所述方法工艺流程简单,操作简便,可充分提取锂磷铝石中的锂元素,制备得到的含锂化合物纯度高。
为达到上述目的,本申请采用以下技术方案:
本申请提供一种锂磷铝石制备含锂化合物的方法,所述方法包括以下步骤:
将锂磷铝石与酸以及氟化氢混合,所述酸不包括氢氟酸,得到混合液;
向所述混合液中加入pH调节剂,调节所述混合液pH,固液分离得到含锂溶液;
或向所述混合液中加入pH调节剂,调节所述混合液pH,加热所述混合液,固液分离得到含锂溶液;
调节所述含锂溶液pH,固液分离得到磷酸锂,或向所述含锂溶液中加入铁源,固液分离得到磷酸铁锂前驱体,所述磷酸铁锂前驱体烧结得到磷酸铁锂。
本申请中,所述方法通过氢氟酸溶解铝元素生成六氟铝酸,再通过pH调节剂调节pH生成六氟铝酸钠或六氟铝酸钾沉淀,或生成易溶于水的六氟铝酸铵,通过加热分解的方式生成氟化铝沉淀,以及氨气和氟化氢,达到分离铝元素的目的。本申请主题中“含锂化合物”是指含锂元素的化合物,包括磷酸锂、磷酸铁锂、含锂溶液等。
作为本申请可选的技术方案,所述锂磷铝石与氟化氢的质量比为1∶(0.8~2.0),如1∶0.8、1∶0.9、1∶1.0、1∶1.1、1∶1.2、1∶1.3、1∶1.4、1∶1.5、1∶1.6、 1∶1.7、1∶1.8、1∶1.9或1∶2.0等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为1∶(1.0~1.5)。
其中,当所述锂磷铝石与氟化氢的质量比大于1∶0.8时,铝元素会有部分生成四氟铝酸,无法从溶液中通过沉淀分离;而当锂磷铝石与氟化氢的质量比小于1∶2.0时,氟离子会与锂磷铝石中的其他杂质元素结合,降低产品纯度。
作为本申请可选的技术方案,所述酸与氟化氢的质量比为(0.1~1.0)∶1,所述酸不包括氢氟酸,如0.1∶1、0.2∶1、0.3∶1、0.4∶1、0.5∶1、0.6∶1、0.7∶1、0.8∶1、0.9∶1或1.0∶1等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,加入酸的目的是为了促进锂元素、铝元素和磷酸根的溶出,酸与氢氟酸的质量比小于0.1∶1,会造成锂元素的溶出量减少,而当酸与氟化氢的质量比大于1.0∶1时,会与氟离子共同作用,促进大量杂质元素的溶出,因此本申请在控制氟化氢的加入量的同时,需要进行酸加入量的控制。
作为本申请可选的技术方案,所述酸包括有机酸和/或无机酸。
可选地,所述酸为纯酸或酸溶液。
其中,当本申请中所述锂磷铝石与酸溶液混合时,氟化氢与酸的质量比为锂磷铝石与酸溶液中所含酸的总质量的比值。
可选地,所述无机酸包括硫酸、硝酸、盐酸或磷酸中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:硫酸和盐酸的组合、硝酸和硫酸的组合、硝酸和盐酸的组合、盐酸和磷酸的组合或硫酸、硝酸和盐酸的组合等。
其中,当本申请中所述酸为无机酸时,主要以酸溶液的形式与锂磷铝石混合。
可选地,所述有机酸包括甲酸、乙酸、草酸或三氟乙酸中的任意一种或至 少两种的组合,所述组合典型但非限制性实例有:甲酸和乙酸的组合、乙酸和草酸的组合、草酸和三氟乙酸的组合、三氟乙酸和加算的组合或酸、乙酸和草酸的组合等。
作为本申请可选的技术方案,所述加入pH调节剂,调节混合液pH至4~6,如4、4.2、4.5、4.8、5、5.2、5.5、5.8或6等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述pH调节剂包括液氨、氢氧化钠固体或氢氧化钾固体中的任意一种或至少两种的组合,或氨水、氢氧化钠溶液或氢氧化钾溶液中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:液氨和氢氧化钠固体的组合、氢氧化钠固体和氢氧化钾固体的组合、氢氧化钾固体和液氨的组合、氨水和氢氧化钠溶液的组合、氢氧化钠溶液和氢氧化钾溶液的组合、氢氧化钾溶液和氨水的组合等。
本申请中,所述pH调节剂为非液氨或氨水时,溶液中会生成微溶于水的六氟铝酸盐,通过固液分离即可分离铝元素,虽然溶液中仍含有少量的六氟铝酸盐,但是由于后续沉淀调节pH沉淀磷酸锂的过程中,六氟铝酸盐的溶解性对pH的响应性较差,pH升高也不会析出,因此不会影响产品的纯度。
可选地,在调节所述混合液pH后,向所述溶出液中加入缓冲剂。
可选地,所述缓冲剂包括磷酸二氢钠-磷酸氢二钠、柠檬酸-柠檬酸钠、邻苯二甲酸氢钾-氢氧化钠或六亚甲基四胺-盐酸中的任意一种。
本申请中,为了使磷酸铝充分沉淀,因此调节pH后溶出液需要静置一段时间,为了保证混合液pH值稳定,在调节所述溶出液pH后,向混合液中加入少量缓冲剂,所述缓冲剂不限于上述所列举的缓冲对,可在pH为4~6范围内使用的缓冲剂均适用于本申请。所述缓冲剂可以固体或缓冲液形式加入。
作为本申请可选的技术方案,所述加热所述混合液的温度为300~500℃,如300℃、320℃、350℃、380℃、400℃、420℃、450℃、480℃或500℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
其中,上述反应温度超过了溶液中水的沸点,为了保证反应物质量比的稳定,上述反应需在可以承受高压的密闭反应器中进行,如高压反应釜等。
本申请中,所述加热温度在小于300℃时,六氟铝酸铵无法完全分解,当加热温度大于500℃时,体系中会发生不可控的副反应,影响产品纯度。值得注意的是,当pH调节的范围不在4~6的范围中时,无论如何控制反应温度,溶液中均有大量的铝元素残留,因此溶液pH和反应温度共同决定了铝的分离程度。
可选地,当所述pH调节剂为液氨或氨水时对所述混合液进行加热。
可选地,所述加热结束后保持所述混合液的温度为80~100℃,如80℃、82℃、85℃、88℃、90℃、92℃、95℃、98℃或100℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,六氟铝酸铵加热分解会产生氨气和氟化氢,为了减少氨气与氟化氢过量溶解进入溶液中对后续锂元素的沉淀步骤带来过量杂质,需控制溶液温度为80~100℃,
作为本申请可选的技术方案,所述调节含锂溶液pH至8~14,如8、9、10、11、12、13或14等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为10~12。
本申请中,如果在过冷条件下进行,会导致沉淀出的磷酸锂的杂质含量过高,因此前序控制溶液温度,对沉锂步骤具有重要影响。
可选地,在所述调节含锂溶液pH前,向含锂溶液中补加含锂化合物。
可选地,所述含锂化合物包括硫酸锂、氯化锂、硝酸锂或氢氧化锂中的任 意一种或至少两种的组合,所述组合典型但非限制性实例有:硫酸锂和氯化锂的组合、氯化锂和硝酸锂的组合、硝酸锂和氢氧化锂的组合或硫酸锂、氯化锂和硝酸锂的组合等。
可选地,往所述的含锂溶液加入硫酸和有机溶剂,过滤取滤渣得硫酸锂。所述的有机溶剂为丙酮和无水乙醇中的至少一种。
可选地,将所述硫酸锂溶于水,加入酸式盐或碱,蒸发浓缩,过滤得锂盐。所述的酸式盐为碳酸钠、碳酸钾、氯化钠、氯化钾、草酸钠、草酸、硝酸钠等。所述碱为氢氧化钠、氢氧化钾、氨水等。
可选地,所述锂盐包括硫酸锂、硝酸锂、碳酸锂、草酸锂、氢氧化锂等。
可选地,所述的锂盐可用于合成磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、磷酸锰铁锂等正极材料。
可选地,所述的锂盐用于合成磷酸铁锂的方法包括固相法、水热法、液相法、溶胶凝胶法、微波法等。
可选地,对所述的磷酸铁锂进行碳包覆,得到含有碳包覆层的磷酸铁锂。
可选地,对所述的磷酸铁锂进行掺杂,得到掺杂的磷酸铁锂。
可选地,在所述调节含锂溶液pH时向溶液中加入pH调节剂。
可选地,所述pH调节剂包括液氨、氢氧化钠固体或氢氧化钾固体中的任意一种或至少两种的组合,或氨水、氢氧化钠溶液或氢氧化钾溶液中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:液氨和氢氧化钠固体的组合、氢氧化钠固体和氢氧化钾固体的组合、氢氧化钾固体和液氨的组合、氨水和氢氧化钠溶液的组合、氢氧化钠溶液和氢氧化钾溶液的组合、氢氧化钾溶液和氨水的组合等。
可选地,在调节所述含锂溶液pH后,向所述溶出液中加入缓冲剂;
可选地,所述缓冲剂包括硼酸-氯化钾-氢氧化钠、氯化铵-氨水、磷酸氢二钠-氢氧化钠、碳酸氢钠-氢氧化钠或Tris-HCl中的任意一种。
本申请中,为了使磷酸锂充分沉淀,因此调节pH后溶出液需要静置一段时间,为了保证溶出液pH值稳定,在调节所述溶出液pH后,向溶出液中加入少量缓冲剂,所述缓冲剂不限于上述所列举的缓冲对,可在pH8~14范围内使用的缓冲剂均适用于本申请。所述缓冲剂可以固体或缓冲液形式加入。
可选地,所述的磷酸锂可用于合成磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、磷酸锰铁锂等正极材料。
可选地,所述的磷酸锂合成磷酸铁锂可用固相法、水热法、液相法、微波法、溶胶凝胶法等。
可选地,对所述磷酸铁锂进行碳包覆,得到含有碳包覆层的磷酸铁锂。
可选地,对所述的磷酸铁锂进行掺杂,得掺杂的磷酸铁锂。
作为本申请可选的技术方案,所述铁源包括硫酸亚铁、氯化亚铁、硝酸亚铁、硫酸铁、氯化铁或硝酸铁中的任意一种或至少连中的组合,所述组合典型但非限制性实例有:硫酸亚铁和氯化亚铁的组合、氯化亚铁和硝酸亚铁的组合、硝酸亚铁和硫酸亚铁的组合、硫酸铁和氯化铁的组合、氯化铁和硝酸铁的组合、硝酸铁和硫酸铁的组合等。
可选地,所述铁源中的铁元素为正三价时,同时加入还原剂。
可选地,所述还原剂包括铁粉、硼氢化钾、硼氢化钠、次磷酸或次磷酸钠中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:铁粉和硼氢化钾的组合、硼氢化钾和硼氢化钠的组合、硼氢化钠和次磷酸的组合、次磷酸和次磷酸钠的组合或铁粉、硼氢化钾和硼氢化钠的组合等。
本申请中,由于亚铁离子可由铁离子还原得到,因此原理上可以使用铁离 子盐与还原剂共添加的形式来取代亚铁离子盐,但是为了提高生产效率,事先将还原剂与铁离子盐反应得到对应的亚铁离子盐的方法更为适用。
可选地,所述烧结在保护气氛下进行。
可选地,所述保护气氛包括氮气、氦气、氖气或氩气中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:氮气和氦气的组合、氦气和氖气的组合、氖气和氩气的组合、氩气和氮气的组合或氮气、氦气和氩气的组合等。
可选地,所述烧结的温度为500~900℃,如500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃或900℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述烧结的时间为10~30h,如10h、12h、15h、18h、20h、22h、25h、28h或30h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,对所述磷酸铁锂进行碳包覆,得到含有碳包覆层的磷酸铁锂。
可选地,在加入铁源过程中可加入掺杂剂,得到掺杂的磷酸铁锂。
其中,对所述磷酸铁锂进行碳包覆可以采用球磨法、气相沉积法或有机碳源烧结法等,上述方法均为本领域的常规操作,因此说明书中不再赘述。
作为本申请可选的技术方案,所述一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与酸以及氟化氢混合,所述酸不包括氢氟酸,所述锂磷铝石与氟化氢的质量比为1∶(0.8~2),所述酸与氟化氢的质量比为(0.1~1)∶1,得到混合液;
向所述混合液中加入pH调节剂,调节所述混合溶液pH至4~6,固液分离得到含锂溶液;
或向所述混合液中加入pH调节剂,调节所述混合溶液pH至4~6,当所述pH调节剂为液氨或氨水时,加热所述混合液至300~500℃,加热结束后保持所述混合液的温度为80~100℃,固液分离得到含锂溶液;
调节所述含锂溶液pH8~14,固液分离得到磷酸锂,或向所述含锂溶液中加入铁源,固液分离得到磷酸铁锂前驱体,所述磷酸铁锂前驱体烧结得到磷酸铁锂。
本申请中,所述固液分离均独立地选自过滤、离心、蒸发或沉降等方法中的任意一种或至少两种的组合。且相应操作方法为本领域所公知,因此不再赘述。
本申请中,所述调节pH时,可采用pH试纸进行测试或pH仪进行实时测定,当所述pH达到本申请限定的相应范围时即可停止pH调节剂的添加,因此本申请没有对pH调节剂的添加量做具体限定。
本申请中,需对得到的产品进行粉碎、重结晶或水洗等的提纯处理,以去除产品中的少量杂质,上述方法均为本领域的常规操作,具体方法不再赘述。
与现有技术相比,本申请至少具有以下有益效果:
(1)本申请提供了一种由锂磷铝石制备含锂化合物的方法,所述方法采用锂磷铝石与酸以及氢氟酸的溶出方式,提高了锂磷铝石中锂元素的溶出率,同时有利于后续锂元素的分离;
(2)本申请提供了一种由锂磷铝石制备含锂化合物的方法,本申请采用调节pH的方式,借由氢氟酸与铝元素生成的六氟铝酸盐来分离混合液中的铝元素,减少了锂元素在分离过程中的损失,提高了铝元素的分离率;
(3)本申请提供了一种由锂磷铝石制备含锂化合物的方法,本申请还可采用液氨和氨水来调节混合液pH,借由加热的方式生成氟化铝,去除混合液中的 铝元素,减少了锂元素在分离过程中的损失,提高了铝元素的分离率;
(4)本申请提供了一种由锂磷铝石制备含锂化合物的方法,所述方法分离铝元素的步骤,使得锂元素与铝元素充分分离,提高了产品中含锂化合物的纯度;
(5)本申请提供了一种由锂磷铝石制备含锂化合物的方法,所述方法工艺流程简单,操作简便,可充分提取锂磷铝石中的锂元素,制备得到的锂盐纯度高。磷酸锂产品的锂的提取率可达95%以上,产品纯度可达99%以上;磷酸铁锂产品的锂的提取率可达95%以上,产品纯度可达99%以上。
在阅读并理解了详细描述和附图后,可以明白其他方面。
图1是本申请提供的一种由锂磷铝石制备含锂化合物的方法的流程图。
下面对本申请进一步详细说明。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶0.8,所述浓盐酸中的氯化氢与氟化氢的质量比为0.1∶1,得到混合液;
向所述混合液中加入氢氧化钠固体,调节所述混合溶液pH至4,过滤得到含锂溶液以及六氟铝酸钠固体;
使用氢氧化钠固体调节所述含锂溶液pH至8,加入氯化锂至溶液中无沉淀生成,过滤,使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为95.2%,制备得到的磷酸锂的纯度为99.1%。
实施例2
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓硝酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶2,所述浓硝酸中的硝酸与氟化氢的质量比为1∶1,得到混合液;
向所述混合液中加入氢氧化钾固体,调节所述混合溶液pH至6,过滤得到含锂溶液以及六氟铝酸钾固体;
使用氢氧化钾固体调节所述含锂溶液pH至14,加入氯化锂至溶液中无沉淀生成,过滤,使用磷酸溶液洗涤滤渣3次,在再使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为95.9%,制备得到的磷酸锂的纯度为99.3%。
实施例3
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1,所述浓盐酸中的氯化氢与氟化氢的质量比为0.5∶1,得到混合液;
向所述混合液中加入1mol/L氢氧化钠溶液,调节所述混合溶液pH至5,过滤得到含锂溶液以及六氟铝酸钠固体;
使用1mol/L氢氧化钠溶液调节所述含锂溶液pH至10,加入氯化锂至溶液中无沉淀生成,过滤,使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为96.1%,制备得到的磷酸锂的纯度为99.0%。
实施例4
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓硝酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1.5,所述浓硝酸中的硝酸与氟化氢的质量比为1∶0.8,得到混合液;
向所述混合液中加入1mol/L氢氧化钾溶液,调节所述混合溶液pH至6,固液分离得到含锂溶液以及六氟铝酸钾固体;
使用1mol/L氢氧化钾溶液调节所述含锂溶液pH至12,加入氯化锂至溶液中无沉淀生成,过滤,使用磷酸溶液洗涤滤渣3次,在再使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为95.7%,制备得到的磷酸锂的纯度为99.2%。
实施例5
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1,所述浓盐酸中的氯化氢与氟化氢的质量比为0.5∶1,得到混合液;
向所述混合液中加入氨水,调节所述混合溶液pH至5,将所述溶液置于高压反应釜中,加热所述溶液至300℃,反应结束后保持所述溶液至80℃,过滤得到含锂溶液以及氟化铝固体;
使用1mol/L氢氧化钠溶液调节所述含锂溶液pH至10,加入氯化锂至溶液中无沉淀生成,过滤,使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为96.5%,制备得到的磷酸锂的纯度为 99.1%。
实施例6
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1.5,所述浓盐酸中的氯化氢与氟化氢的质量比为0.8∶1,得到混合液;
向所述混合液中加入氨水,调节所述混合溶液pH至5,将所述溶液置于高压反应釜中,加热所述溶液至500℃,反应结束后保持所述溶液至100℃,过滤得到含锂溶液以及氟化铝固体;
使用1mol/L氢氧化钠溶液调节所述含锂溶液pH至12,加入氯化锂至溶液中无沉淀生成,过滤,使用磷酸溶液洗涤滤渣3次,在再使用去离子水洗涤滤渣3次,得到磷酸锂。
其中,所述方法锂元素的提取率为96.1%,制备得到的磷酸锂的纯度为99.3%。
实施例7
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1,所述浓盐酸中的氯化氢与氟化氢的质量比为0.5∶1,得到混合液;
向所述混合液中加入1mol/L氢氧化钠溶液,调节所述混合溶液pH至5,过滤得到含锂溶液以及六氟铝酸钠固体;
向含锂溶液中加入氯化亚铁至无沉淀生成,过滤,使用去离子水洗涤过滤得到的固体3次,得到磷酸铁锂前驱体,所述磷酸铁锂前驱体在氮气保护下500℃下烧结30h烧结得到磷酸铁锂。
其中,所述方法锂元素的提取率为96.6%,制备得到的磷酸铁锂的纯度为 99.5%。
制得磷酸铁锂组装成半电池测试,在0.2C条件下首次放电容量为159mAh/g。
实施例8
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓硝酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1.5,所述浓硝酸中的硝酸与氟化氢的质量比为1∶0.8,得到混合液;
向所述混合液中加入1mol/L氢氧化钾溶液,调节所述混合溶液pH至6,固液分离得到含锂溶液以及六氟铝酸钾固体;
向含锂溶液中加入硫酸亚铁至无沉淀生成,过滤,使用去离子水洗涤过滤得到的固体3次,得到磷酸铁锂前驱体,所述磷酸铁锂前驱体在氮气保护下900℃下烧结10h烧结得到磷酸铁锂。
其中,所述方法锂元素的提取率为96.9%,制备得到的磷酸铁锂的纯度为99.6%。
将磷酸铁锂材料组装成半电池,在0.2C条件下首次放电容量为157mAh/g。
实施例9
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1,所述浓盐酸中的氯化氢与氟化氢的质量比为0.5∶1,得到混合液;
向所述混合液中加入氨水,调节所述混合溶液pH至5,将所述溶液置于高压反应釜中,加热所述溶液至300℃,反应结束后保持所述溶液至80℃,过滤得到含锂溶液以及氟化铝固体;
向含锂溶液中加入氯化铁以及铁粉(摩尔比1.1∶1)至无沉淀生成,过滤, 使用去离子水洗涤过滤得到的固体3次,得到磷酸铁锂前驱体,所述磷酸铁锂前驱体在氮气保护下600℃下烧结24h烧结得到磷酸铁锂。
其中,所述方法锂元素的提取率为96.2%,制备得到的磷酸铁锂的纯度为99.3%。
所得磷酸铁锂0.2C首次放电容量为159mAh/g。
实施例10
本实施例提供一种由锂磷铝石制备含锂化合物的方法包括以下步骤:
将锂磷铝石与浓盐酸以及氟化氢混合,所述锂磷铝石与氟化氢的质量比为1∶1.5,所述浓盐酸中的氯化氢与氟化氢的质量比为0.8∶1,得到混合液;
向所述混合液中加入氨水,调节所述混合溶液pH至5,将所述溶液置于高压反应釜中,加热所述溶液至500℃,反应结束后保持所述溶液至100℃,过滤得到含锂溶液以及氟化铝固体;
向含锂溶液中加入硝酸铁以及次磷酸钠(摩尔比4.1∶1)至无沉淀生成,过滤,使用去离子水洗涤过滤得到的固体3次,得到磷酸铁锂前驱体,所述磷酸铁锂前驱体在氮气保护下800℃下烧结12h烧结得到磷酸铁锂。
其中,所述方法锂元素的提取率为96.6%,制备得到的磷酸铁锂的纯度为99.5%。
所得磷酸铁锂0.2C首次放电容量为158mAh/g。
实施例11
将实施例1中制得的磷酸锂中加入硫酸和无水乙醇,析出固体后,过滤并用无水乙醇清洗沉淀。
将沉淀溶于水,并加入碳酸钠溶液,蒸发浓缩,过滤洗涤得碳酸锂固体。
其中,所述方法锂元素的提取率为94.7%,制备得到的碳酸锂纯度为98%。
实施例12
将实施例6中制得的磷酸锂中加入硫酸和丙酮,析出固体后,过滤并用丙酮洗涤沉淀。
将沉淀溶于水,并加入氢氧化钠溶液,蒸发浓缩,过滤洗涤得氢氧化锂固体。
其中,所述方法锂元素的提取率为95.4%,制备得到的氢氧化锂的纯度为98.7%。
实施例13
将实施例6制备的磷酸锂与氧化铁、磷酸二氢铵、碳源混合球磨后,在氮气气氛下750℃烧结18h得磷酸铁锂。
其中,制得的磷酸铁锂在0.2C条件下首次放电容量为156mAh/g。
实施例14
将实施例11制备的碳酸锂与硝酸锂、磷酸、柠檬酸、硝酸钴加入到溶剂中,加热120℃反应至溶剂蒸发完,真空干燥、粒径细化得磷酸铁锂前驱体。
将前驱体在氮气气氛720℃下烧结18h,得磷酸铁锂。
制得磷酸铁锂在0.2C条件下首次放电容量为160mAh/g。
实施例15
将实施例11制备的碳酸锂与硝酸锂、磷酸、柠檬酸、氟化铵加入到溶剂中,加热120℃反应至溶剂蒸发完,真空干燥、粒径细化得磷酸铁锂前驱体。
将前驱体与碳源混合后在氮气气氛720℃下烧结18h,得磷酸铁锂。
制得磷酸铁锂在0.2C条件下首次放电容量为159mAh/g。
实施例16
将实施例6制备的磷酸锂与硝酸铁、磷酸二氢铵、柠檬酸、硝酸镍加入到 溶剂中反应,干燥粒径细化得磷酸铁锂前驱体。
将前驱体与碳源混合后在氮气气氛下730℃烧结15h,烧结过程中通入含氧有机物和水汽沉积制备碳包覆磷酸铁锂。
制得磷酸铁锂在0.2C条件下首次放电容量为161mAh/g。
实施例17
将实施例12制得氢氧化锂与镍钴铝酸锂前驱体混合后在氧气气氛下720℃烧结15h得镍钴铝酸锂三元材料。
制得镍钴铝酸锂三元材料在0.2C条件下首次放电容量为198mAh/g。
实施例18
将实施例11制得的碳酸锂与镍钴锰酸锂(523)前驱体混合后,在氧气气氛下830℃烧结20h得镍钴锰酸锂三元材料。
制得镍钴锰酸锂(523)三元材料在0.2C条件下首次放电容量为169mAh/g。
实施例19
将实施例5制得磷酸锂与硝酸铁、硝酸锰、磷酸二氢铵、柠檬酸混合后反应制得磷酸锰铁锂前驱体。
将磷酸锰铁锂置于保护气氛下700℃烧结18h得磷酸锰铁锂材料。
制得的磷酸锰铁锂材料在0.2C条件下首次放电容量为146mAh/g。
对比例1
本对比例中,除了锂磷铝石与氟化氢的质量比为1∶0.5外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为75.2%,制备得到的磷酸锂的纯度为81.3%。
对比例2
本对比例中,除了锂磷铝石与氟化氢的质量比为1∶3外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为72.3%,制备得到的磷酸锂的纯度为79.6%。
对比例3
本对比例中,除了不加入浓盐酸外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为39.5%,制备得到的磷酸锂的纯度为91.2%。
对比例4
本对比例中,除了浓盐酸中氯化氢与氟化氢的质量比为2∶1外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为89.6%,制备得到的磷酸锂的纯度为51.2%。
对比例5
本对比例中,除了加入pH调节剂,调节混合液pH至2外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为77.7%,制备得到的磷酸锂的纯度为84.6%。
对比例6
本对比例中,除了加入pH调节剂,调节混合液pH至8外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为82.8%,制备得到的磷酸锂的纯度为71.5%。
对比例7
本对比例中,除了混合液的加热温度为150℃外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为81.6%,制备得到的磷酸锂的纯度为54.6%。
对比例8
本对比例中,除了混合液的加热温度为700℃外,其他条件均与实施例6相同。
其中,所述方法锂元素的提取率为85.2%,制备得到的磷酸锂的纯度为66.3%。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。
以上详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
Claims (10)
- 一种由锂磷铝石制备含锂化合物的方法,其中,所述方法包括以下步骤:将锂磷铝石与酸以及氟化氢混合,所述酸不包括氢氟酸,得到混合液;向所述混合液中加入pH调节剂,调节所述混合液pH,固液分离得到含锂溶液;或,向所述混合液中加入pH调节剂,调节所述混合液pH,加热所述混合液,固液分离得到含锂溶液;和调节所述含锂溶液pH,固液分离得到磷酸锂,或向所述含锂溶液中加入铁源,固液分离得到磷酸铁锂前驱体,所述磷酸铁锂前驱体烧结得到磷酸铁锂。
- 根据权利要求1所述的方法,其中,所述锂磷铝石与氟化氢的质量比为1∶(0.8~2),可选为1∶(1~1.5)。
- 根据权利要求1或2所述的方法,其中,所述酸与氟化氢的质量比为(0.1~1)∶1,所述酸不包括氢氟酸。
- 根据权利要求1-3任一项所述的方法,其中,所述酸包括有机酸和/或无机酸;可选地,所述酸为纯酸或酸溶液;可选地,所述无机酸包括硫酸、硝酸、盐酸或磷酸中的任意一种或至少两种的组合;可选地,所述有机酸包括甲酸、乙酸、草酸或三氟乙酸中的任意一种或至少两种的组合。
- 根据权利要求1-4任一项所述的方法,其中,所述加入pH调节剂的量为调节所述混合液pH至4~6的量;可选地,所述pH调节剂包括液氨、氢氧化钠固体或氢氧化钾固体中的任意一种或至少两种的组合,或氨水、氢氧化钠溶液或氢氧化钾溶液中的任意一种或至少两种的组合;可选地,在调节所述混合液pH后,还向所述溶出液中加入缓冲剂;可选地,所述缓冲剂包括磷酸二氢钠-磷酸氢二钠、柠檬酸-柠檬酸钠、邻苯二甲酸氢钾-氢氧化钠或六亚甲基四胺-盐酸中的任意一种。
- 根据权利要求1-5任一项所述的方法,其中,所述加热所述混合液的温度为300~500℃;可选地,当所述pH调节剂为液氨或氨水时对所述混合液进行加热;可选地,所述加热结束后保持所述混合液的温度为80~100℃。
- 根据权利要求1-6任一项所述的方法,其中,所述调节含锂溶液pH至8~14,可选为10~12;可选地,在所述调节含锂溶液pH前,还向含锂溶液中补加含锂化合物;可选地,所述含锂化合物包括硫酸锂、氯化锂、硝酸锂或氢氧化锂中的任意一种或至少两种的组合;可选地,在调节所述含锂溶液pH后,还向所述溶出液中加入缓冲剂;可选地,所述缓冲剂包括硼酸-氯化钾-氢氧化钠、氯化铵-氨水、磷酸氢二钠-氢氧化钠、碳酸氢钠-氢氧化钠或Tris-HCl中的任意一种。
- 根据权利要求7所述的方法,其中,在所述调节含锂溶液pH时向溶液中加入pH调节剂;可选地,所述pH调节剂包括液氨、氢氧化钠固体或氢氧化钾固体中的任意一种或至少两种的组合,或氨水、氢氧化钠溶液或氢氧化钾溶液中的任意一种或至少两种的组合。
- 根据权利要求1-8任一项所述的方法,其中,所述铁源包括硫酸亚铁、氯化亚铁、硝酸亚铁、硫酸铁、氯化铁或硝酸铁中的任意一种或至少两种的组合;可选地,所述铁源中的铁元素为正三价时,同时还加入还原剂;可选地,所述还原剂包括铁粉、硼氢化钾、硼氢化钠、次磷酸或次磷酸钠中的任意一种或至少两种的组合;可选地,所述烧结在保护气氛下进行;可选地,所述保护气氛包括氮气、氦气、氖气或氩气中的任意一种或至少两种的组合;可选地,所述烧结的温度为500~900℃;可选地,所述烧结的时间为10~30h;可选地,还对所述磷酸铁锂进行碳包覆,得到含有碳包覆层的磷酸铁锂。
- 根据权利要求1-9任一项所述的方法,其中,所述方法包括以下步骤:将锂磷铝石与酸以及氟化氢混合,所述酸不包括氢氟酸,所述锂磷铝石与氟化氢的质量比为1∶(0.8~2),所述酸与氟化氢的质量比为(0.1~1)∶1,得到混合液;向所述混合液中加入pH调节剂,调节所述混合液pH至4~6,固液分离得到含锂溶液;或向所述混合液中加入pH调节剂,调节所述混合液pH至4~6,当所述pH调节剂为液氨或氨水时,加热所述混合液至300~500℃,加热结束后保持所述混合液的温度为80~100℃,固液分离得到含锂溶液;调节所述含锂溶液pH至8~14,固液分离得到磷酸锂,或向所述第二含锂溶液中加入铁源,固液分离得到磷酸铁锂前驱体,所述磷酸铁锂前驱体烧结得到磷酸铁锂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811109579.X | 2018-09-21 | ||
CN201811109579.XA CN108910851B (zh) | 2018-09-21 | 2018-09-21 | 一种由锂磷铝石制备含锂化合物的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020057043A1 true WO2020057043A1 (zh) | 2020-03-26 |
Family
ID=64408562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/073872 WO2020057043A1 (zh) | 2018-09-21 | 2019-01-30 | 一种由锂磷铝石制备含锂化合物的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108910851B (zh) |
WO (1) | WO2020057043A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112626357A (zh) * | 2020-12-14 | 2021-04-09 | 赣州有色冶金研究所 | 一种提取废旧磷酸铁锂粉中锂的方法 |
CN114455569A (zh) * | 2022-02-11 | 2022-05-10 | 齐鲁工业大学 | 一种磷掺杂的富氮多孔碳纳米片及其制备方法与应用 |
WO2023197747A1 (zh) * | 2022-04-12 | 2023-10-19 | 宜昌邦普时代新能源有限公司 | 高性能磷酸铁锂的制备方法及其应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108910851B (zh) * | 2018-09-21 | 2021-12-31 | 深圳市德方纳米科技股份有限公司 | 一种由锂磷铝石制备含锂化合物的方法 |
CN111204726B (zh) * | 2020-01-21 | 2022-11-08 | 曲靖市德方纳米科技有限公司 | 由锂磷铝石制备磷酸锂的方法 |
CN111252749B (zh) * | 2020-01-21 | 2022-11-22 | 曲靖市德方纳米科技有限公司 | 由锂磷铝石制备磷酸铁和氢氧化铝的方法 |
CN111137868A (zh) * | 2020-01-21 | 2020-05-12 | 曲靖市德方纳米科技有限公司 | 磷酸锂的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162021A (zh) * | 1997-01-29 | 1997-10-15 | 河南省地质矿产厅第二地质队 | 铝钠复合型锂盐及其应用 |
CN101885496A (zh) * | 2010-07-23 | 2010-11-17 | 福州大学 | 锂云母氟化学提锂工艺 |
CN107162024A (zh) * | 2017-07-15 | 2017-09-15 | 汕头市泛世矿产资源股份有限公司 | 一种酸化法从锂磷铝石中提取碳酸锂的工艺 |
CN107265485A (zh) * | 2017-07-05 | 2017-10-20 | 武汉理工大学 | 氟化焙烧处理锂辉石提锂制备碳酸锂的方法 |
CN108910851A (zh) * | 2018-09-21 | 2018-11-30 | 深圳市德方纳米科技股份有限公司 | 一种由锂磷铝石制备含锂化合物的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1183484B (de) * | 1963-03-02 | 1964-12-17 | Metallgesellschaft Ag | Verfahren zur Herstellung von Lithiumfluorid |
US7524529B2 (en) * | 2005-09-09 | 2009-04-28 | Aquire Energy Co., Ltd. | Method for making a lithium mixed metal compound having an olivine structure |
CN102020296A (zh) * | 2009-09-09 | 2011-04-20 | 黄明 | 煤矸石复合酸铵提取氢氧化铝 |
CN102586628A (zh) * | 2012-02-22 | 2012-07-18 | 深圳市新星轻合金材料股份有限公司 | 以氟钛酸钠为中间原料生产海绵钛并同步产出钠冰晶石的循环制备方法 |
CN106745138A (zh) * | 2017-02-27 | 2017-05-31 | 中南大学 | 一种用HCl‑HF混合气体生产六氟铝酸钠并回收HCl的方法 |
CN107188205A (zh) * | 2017-07-15 | 2017-09-22 | 汕头市泛世矿产资源股份有限公司 | 一种酸化法从锂磷铝石中提取硫酸锂的工艺 |
CN108193054B (zh) * | 2018-03-12 | 2020-01-14 | 中国科学院过程工程研究所 | 一种从含锂废水中提取锂的方法 |
-
2018
- 2018-09-21 CN CN201811109579.XA patent/CN108910851B/zh active Active
-
2019
- 2019-01-30 WO PCT/CN2019/073872 patent/WO2020057043A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162021A (zh) * | 1997-01-29 | 1997-10-15 | 河南省地质矿产厅第二地质队 | 铝钠复合型锂盐及其应用 |
CN101885496A (zh) * | 2010-07-23 | 2010-11-17 | 福州大学 | 锂云母氟化学提锂工艺 |
CN107265485A (zh) * | 2017-07-05 | 2017-10-20 | 武汉理工大学 | 氟化焙烧处理锂辉石提锂制备碳酸锂的方法 |
CN107162024A (zh) * | 2017-07-15 | 2017-09-15 | 汕头市泛世矿产资源股份有限公司 | 一种酸化法从锂磷铝石中提取碳酸锂的工艺 |
CN108910851A (zh) * | 2018-09-21 | 2018-11-30 | 深圳市德方纳米科技股份有限公司 | 一种由锂磷铝石制备含锂化合物的方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112626357A (zh) * | 2020-12-14 | 2021-04-09 | 赣州有色冶金研究所 | 一种提取废旧磷酸铁锂粉中锂的方法 |
CN112626357B (zh) * | 2020-12-14 | 2022-09-27 | 赣州有色冶金研究所有限公司 | 一种提取废旧磷酸铁锂粉中锂的方法 |
CN114455569A (zh) * | 2022-02-11 | 2022-05-10 | 齐鲁工业大学 | 一种磷掺杂的富氮多孔碳纳米片及其制备方法与应用 |
CN114455569B (zh) * | 2022-02-11 | 2023-05-02 | 齐鲁工业大学 | 一种磷掺杂的富氮多孔碳纳米片及其制备方法与应用 |
WO2023197747A1 (zh) * | 2022-04-12 | 2023-10-19 | 宜昌邦普时代新能源有限公司 | 高性能磷酸铁锂的制备方法及其应用 |
GB2622158A (en) * | 2022-04-12 | 2024-03-06 | Yichang Brunp Contemporary Amperex Co Ltd | Preparation method for and use of high-performance lithium iron phosphate |
Also Published As
Publication number | Publication date |
---|---|
CN108910851B (zh) | 2021-12-31 |
CN108910851A (zh) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020057043A1 (zh) | 一种由锂磷铝石制备含锂化合物的方法 | |
WO2020057042A1 (zh) | 一种从锂磷铝石中提取锂并制备含铁的磷酸盐的方法 | |
CN109052436B (zh) | 一种由锂磷铝石制备含锂化合物的方法 | |
CN110240182B (zh) | 富锂铝电解质的资源化处理方法 | |
CN110627095B (zh) | 一种从氧化铝生产过程提取锂并制备电池级碳酸锂的方法 | |
CN108963371B (zh) | 一种从废旧锂离子电池中回收有价金属的方法 | |
CN102560100B (zh) | 一种利用铜钴铁合金制备高纯超细钴粉的工艺方法 | |
CA2996277C (en) | Method for producing nickel powder | |
CN108330298B (zh) | 一种从多金属云母矿石中提取铷、铯、锂、钾的方法 | |
CN112624076A (zh) | 一种磷酸铁的制备方法及其应用 | |
CN109437255B (zh) | 一种从锂矿石中提取碳酸锂的方法 | |
CN103950984B (zh) | 利用含钨废磨削料生产钨酸钠溶液的方法及钨酸钠 | |
WO2012083583A1 (zh) | 一种从白钨矿中提取钨的方法 | |
CN102285673A (zh) | 一种从电动汽车磷酸铁锂动力电池中回收锂和铁的方法 | |
CN115140777B (zh) | 一种利用大洋锰结核生产软磁用锰铁复合料的方法 | |
WO2024045514A1 (zh) | 一种磷酸铁锂电池黑粉的回收方法 | |
CN112624161B (zh) | 一种机械活化锂云母提锂制备碳酸锂的方法 | |
CN104003428B (zh) | 一种锂辉石管道反应器溶出生产氢氧化锂的方法 | |
CN112374512A (zh) | 一种锂云母熟料除杂制备电池级碳酸锂的方法 | |
US11791078B1 (en) | Method for synchronous production of manganese tetraoxide and ferric oxide for soft magnetic material by using marine polymetallic nodules | |
CN111471856A (zh) | 红土镍矿一步酸浸并联产磷酸铁锂正极活性材料的方法 | |
CN109809440B (zh) | 制备高纯度氯化锂、高纯度甲酸锂及高纯度碳酸锂的方法 | |
JP6816755B2 (ja) | ニッケル粉の製造方法 | |
CN115216630A (zh) | 废旧含锂铝电解质的资源化处理方法 | |
CN109824064B (zh) | 从钨酸钠浸出液中回收碳酸钠的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19863622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19863622 Country of ref document: EP Kind code of ref document: A1 |