WO2020056603A1 - 集成车载充电机电路及制造方法、集成车载充电机 - Google Patents

集成车载充电机电路及制造方法、集成车载充电机 Download PDF

Info

Publication number
WO2020056603A1
WO2020056603A1 PCT/CN2018/106320 CN2018106320W WO2020056603A1 WO 2020056603 A1 WO2020056603 A1 WO 2020056603A1 CN 2018106320 W CN2018106320 W CN 2018106320W WO 2020056603 A1 WO2020056603 A1 WO 2020056603A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
processing circuit
secondary winding
primary
winding
Prior art date
Application number
PCT/CN2018/106320
Other languages
English (en)
French (fr)
Inventor
赵德琦
莫光铖
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN201880006685.7A priority Critical patent/CN110268595B/zh
Priority to PCT/CN2018/106320 priority patent/WO2020056603A1/zh
Publication of WO2020056603A1 publication Critical patent/WO2020056603A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • H02J7/045
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of electric vehicle charging, and in particular, to an integrated vehicle charger circuit and manufacturing method, and an integrated vehicle charger.
  • Electric vehicles are the main force of new energy vehicles. Electric vehicles are divided into pure electric vehicles, hybrid vehicles and fuel cell vehicles. As new energy vehicles gradually become an important development direction of the future automotive industry, vehicle electronics (such as DC / DC converters and integrated vehicle chargers) are trending toward miniaturization, integration, and high power density. At present, the integrated vehicle charger circuit has realized the function of charging the power battery pack or the battery through the commercial power, but this function is relatively single, and it is difficult to meet the diversified use needs of the integrated vehicle charger in future scenarios.
  • the embodiments of the present application provide an integrated vehicle-mounted charger circuit and manufacturing method, and an integrated vehicle-mounted charger, which are used to transmit the energy of the city power to the power battery and the low-voltage battery through different processing circuits, and to pass the energy of the power battery through different The processing circuit is fed back to the power battery and transmitted to the low voltage battery.
  • the first aspect of the embodiments of the present application provides an integrated vehicle charger circuit, including a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , a power battery, a low voltage battery, and a control unit.
  • a primary processing circuit including a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , a power battery, a low voltage battery, and a control unit.
  • rectifier circuits including a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , a power battery, a low voltage battery, and a control unit.
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding.
  • the control unit includes a fixed terminal, a first selection terminal, and a second selection terminal.
  • the first secondary processing circuit and the power battery are sequentially connected;
  • the second secondary winding, the second secondary processing circuit, and the low-voltage battery are sequentially connected;
  • one end of the primary processing circuit Connected to the primary winding, the other end of the primary processing circuit is connected to the fixed end;
  • one end of the rectifier circuit is connected to the first selection end, and the other end of the rectifier circuit is connected to mains power
  • the second selection end is connected to the power battery;
  • the control unit is configured to control the fixed terminal to be connected to the first selection terminal or the second selection terminal.
  • the rectifier circuit, the original A first processing circuit formed by the side processing circuit, the transformer, and the first secondary side processing circuit is used to transmit a first portion of the mains energy to the power battery;
  • the rectification circuit, the primary side processing A second processing circuit formed by the circuit, the transformer, and the second secondary-side processing circuit is used to transmit a second part of the mains power to the low-voltage battery;
  • a third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is configured to use the first part of the power battery. Energy is fed back to the power battery; a fourth processing circuit formed by the primary-side processing circuit, the transformer, and the second secondary-side processing circuit is used to transfer a second portion of the power battery energy to the low voltage battery;
  • the switch K 1 processing circuit for controlling the first and the third processing circuit is turned on or off;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the total width of the primary winding, the first secondary winding, and the second secondary winding Inversely proportional.
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the primary winding, the first secondary winding, and the second The relationship of the total width of the secondary winding is:
  • L is the leakage inductance of the primary winding and the first secondary winding, the leakage inductance of the primary winding and the second secondary winding, and the first secondary winding and the The total leakage inductance of the leakage inductance of the second secondary winding, where N p is the number of turns of the primary winding, the MLT is the average turn length of a single turn, and b is the primary winding and the winding i The difference between the inside and outside diameters of the winding i is the first secondary winding or the second secondary winding, and w is the primary winding, the first secondary winding, and the second secondary winding. The total width of the side windings.
  • a distance between the first secondary winding and the second secondary winding ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding and the first secondary winding is a sandwich winding structure.
  • the primary-side processing circuit includes a switch T 1 , a switch T 2 , a switch T 3 , a switch T 4 , a capacitor C 1, and an inductor L 1 , wherein:
  • a first end of the switching tube T 1 is respectively connected to a first end of the switching tube T 2 and one end of the inductance coil L 1 ;
  • the second end of the switching transistor T 2 T pipe 4 is connected to a first end of the switch
  • a second end of the switching tube T 4 is connected to a first end of the switching tube T 3 and one end of the capacitor C 1 respectively;
  • the other end of the inductance coil L 1 is connected to the first end of the primary winding, and the second end of the primary winding is connected to the other end of the capacitor C 1 .
  • the switch T 1 includes a transistor Q 1 and a diode D 1
  • the switch T 2 includes a transistor Q 2 and a diode D 2
  • the switch T 3 includes a transistor Q 3 and a diode D 3
  • the switching transistor T 4 includes a transistor Q 4 and a diode D 4 , wherein:
  • the negative electrode of the diode D 1 is connected to the drain of the transistor Q 1 to form a second end of the switching tube T 1 , and the positive electrode of the diode D 1 is connected to the source of the transistor Q 1 to form the switch.
  • the cathode of the diode D 2 is connected to the drain of the transistor Q 2 to form a first end of the switching tube T 2 , and the anode of the diode D 2 is connected to the source of the transistor Q 2 to form the switch.
  • the negative electrode of the diode D 3 is connected to the drain of the transistor Q 3 to form a second end of the switching tube T 3 , and the positive electrode of the diode D 3 is connected to the source of the transistor Q 3 to form the switch.
  • the cathode of the diode D 4 is connected to the drain of the transistor Q 4 to form a second end of the switching tube T 4 , and the anode of the diode D 4 is connected to the source of the transistor Q 1 to form the switch.
  • the first end of the tube T 4 .
  • the first secondary processing circuit includes a diode D 5 , a diode D 6 , a diode D 7 , a diode D 8, and a capacitor C 2 , wherein:
  • An anode of the diode D 5 is connected to a cathode of the diode D 6 and a first end of the first secondary winding;
  • the anode of the diode D 6 is connected to the anode of the diode D 8 and the cathode of the capacitor C 2 respectively;
  • the anode of the diode D 8 is connected to the anode of the diode D 7 and one end of the switch K 1 , and the other end of the switch K 1 is connected to the second end of the first secondary winding;
  • the anode of the diode D 7 is connected to the anode of the diode D 5 and the anode of the capacitor C 2 respectively.
  • the second secondary processing circuit includes a diode D 9 , a diode D 10, and a capacitor C 3 , wherein:
  • a negative electrode of the diode D 9 is connected to a negative electrode of the diode D 10 and a positive electrode of the capacitor C 3 ;
  • the anode of the diode D 10 is connected to the first end of the second secondary winding, and the second end of the second secondary winding is connected to the anode of the diode D 9 ;
  • a negative electrode of the capacitor C 3 is connected to a third end of the second secondary winding.
  • the rectifier circuit includes a diode D 11 , a diode D 12 , a diode D 13 and a diode D 14 , wherein:
  • a negative electrode of the diode D 11 is connected to a negative electrode of the diode D 13 ;
  • the anode of the diode D 13 is connected with the cathode of the diode D 14;
  • the anode of the diode D 14 is connected to the anode of the diode D 12 ;
  • the cathode of the diode D and the cathode of the diode 12 is connected to D 11.
  • a second aspect of the embodiments of the present application provides an integrated vehicle charger, including the integrated vehicle charger circuit described in the first aspect.
  • a third aspect of the embodiments of the present application provides a method for manufacturing an integrated vehicle charger circuit, which is applied to include a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , a power battery, Integrated car charger circuit for low voltage battery, control unit and rectifier circuit, where:
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding, and the control unit includes a fixed end, a first selection end, and a second selection end;
  • the first secondary winding, the switch K 1 , the first secondary processing circuit, and the power battery are connected in order; the second secondary winding, the second secondary processing circuit, and the power battery are sequentially connected.
  • the low-voltage battery is connected in sequence; one end of the primary processing circuit is connected to the primary winding, the other end of the primary processing circuit is connected to the fixed end; one end of the rectification circuit is connected to the A first selection end is connected, the other end of the rectifier circuit is connected to a mains power; a second selection end is connected to the power battery;
  • the control unit is configured to control the fixed terminal to be connected to the first selection terminal or the second selection terminal, to connect the fixed terminal to the first selection terminal, the rectifier circuit, and the primary side.
  • a first processing circuit formed by a processing circuit, the transformer, and the first secondary-side processing circuit is used to transmit a first portion of the energy of the mains to the power battery; the rectifier circuit, the primary-side processing circuit
  • a second processing circuit formed by the transformer and the second secondary side processing circuit for transmitting a second part of the mains power to the low-voltage battery;
  • the fixed end is connected to the second selection end, and a third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is configured to use a first part of the power of the power battery Feedback to the power battery; a fourth processing circuit formed by the primary-side processing circuit, the transformer, and the second secondary-side processing circuit is used to transmit a second part of the power battery energy to the low-voltage battery ;
  • the switch K 1 processing circuit for controlling the first and the third processing circuit is turned on or off;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the total width of the primary winding, the first secondary winding, and the second secondary winding Inversely proportional.
  • the first processing circuit formed by the rectifier circuit, the primary-side processing circuit, the transformer, and the first secondary-side processing circuit is used to use the first part of the mains energy. Transmission to the power battery; the second processing circuit formed by the rectifier circuit, the primary processing circuit, the transformer, and the second secondary processing circuit is used to transfer the second part of the mains energy to the low voltage battery; when the fixed end of the control unit and the first When the two selection ends are connected, the third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is used to feed back the first part of the energy of the power battery to the power battery.
  • the fourth processing circuit formed by the processing circuit is used to transmit the second part of the power battery energy to the low-voltage battery; by controlling the distance between the first secondary winding and the second secondary winding of the transformer, the leakage inductance and the coupling are controlled , So that the energy of the city power is transmitted to the power battery and the low-voltage battery through different processing circuits, and the power battery ’s The energy is fed back to the power battery and transmitted to the low-voltage battery through different processing circuits. It solves the problem that the traditional integrated car charger has a single function and is difficult to meet the diversified use needs of the integrated car charger in future scenarios.
  • FIG. 1 is a schematic diagram of a first integrated vehicle-mounted charger circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a primary-side processing circuit shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a first secondary-side processing circuit shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a second secondary-side processing circuit shown in FIG. 1;
  • FIG. 5 is a schematic diagram of a rectifier circuit shown in FIG. 1;
  • FIG. 6 is a schematic diagram of a second integrated vehicle-mounted charger circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit according to an embodiment of the present application.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • OBC In the commonly used vehicle OBC solution, OBC is generally set independently of the DC / DC converter. Although this solution saves some structural parts and port wiring, it still requires a large number of electrical components, which is costly, bulky, and integrated. Lower.
  • the mains input enters the OBC main transformer through the EMC filter circuit, single-phase rectifier circuit, PFC power correction circuit, and OBC input-side switch circuit, and then transmits energy to the power battery pack through the OBC output-side rectifier circuit and OBC output-side filter circuit
  • the battery pack transmits energy to the DC / DC main transformer through the DC / DC output side EMC filter circuit and the DC / DC input side switch circuit, and the DC / DC main transformer passes the energy through the DC / DC output side rectifier circuit, DC /
  • the DC output side filter circuit is transmitted to the battery.
  • Existing electrical integration solutions can only achieve a single function of battery charging, and cannot meet the diverse needs of reality.
  • the integrated vehicle charger circuit includes a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, Switch K 1 , power battery, low voltage battery, control unit and rectifier circuit, of which:
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding.
  • the control unit includes a fixed end, a first selection end, and a second selection end.
  • the power battery are connected in sequence;
  • the second secondary winding, the second secondary processing circuit, and the low-voltage battery are connected in sequence; one end of the primary processing circuit is connected to the primary winding, and the other end of the primary processing circuit is connected to the fixed terminal;
  • One end is connected to the first selection end, and the other end of the rectifier circuit is connected to the mains; the second selection end is connected to the power battery;
  • the control unit is used for controlling the fixed end to be connected to the first selection end or the second selection end.
  • the first formed by the rectifier circuit, the primary processing circuit, the transformer, and the first secondary processing circuit is formed.
  • the processing circuit is used to transmit the first part of the mains energy to the power battery;
  • the second processing circuit formed by the rectifier circuit, the primary side processing circuit, the transformer, and the second secondary side processing circuit is used to transmit the second part of the city power to Low voltage battery;
  • the third processing circuit formed by the primary processing circuit, the transformer and the first secondary processing circuit is used to feed back the first part of the energy of the power battery to the power battery;
  • the primary processing A fourth processing circuit formed by a circuit, a transformer, and a second secondary side processing circuit is used to transmit the second part of the power of the power battery to the low-voltage battery; by controlling the distance between the first secondary winding and the second secondary winding of the transformer , And then control the leakage inductance and control
  • FIG. 1 is a schematic diagram of a first integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit 100 includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, The second sub-side processing circuit 500, the switch K 1, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a fixed end 801, a first selection end 802, and a second selection end 803.
  • the first secondary winding w 2 , switch K 1 , first secondary processing circuit 400 and power battery 600 are connected in sequence;
  • second secondary winding w 3 , second secondary processing circuit 500 and low voltage battery 700 are connected in sequence; one end of the primary processing circuit 200 1 is connected to the primary winding w, the other end of the primary processing circuit 200 is connected to the fixed end 801; end of the rectifying circuit 900 and the first selection terminal 802 is connected to the other terminal of the rectifier circuit 900 connected to the mains;
  • second selection terminal 803 is connected to the power battery 600;
  • the control unit 800 is used to control the fixed terminal 801 to be connected to the first selection terminal 802 or the second selection terminal 803; when the fixed terminal 801 is connected to the first selection terminal 802, the rectifier circuit 900, the primary processing circuit 200, the transformer 300, and the first A first processing circuit formed by a secondary processing circuit 400 is used to transmit a first part of the mains power to the power battery 600; a rectifier circuit 900, a primary processing circuit 200, a transformer 300, and a second processing circuit formed by the second secondary processing circuit 500.
  • the second processing circuit is used for transmitting the second part of the energy of the city power to the low-voltage battery 700;
  • the third processing circuit formed by the primary processing circuit 200, the transformer 300, and the first secondary processing circuit 400 is used to feed back the first part of the energy of the power battery 600 to the power battery 600
  • a fourth processing circuit formed by the primary-side processing circuit 200, the transformer 300, and the second secondary-side processing circuit 500 is used to transfer the second part of the energy of the power battery 600 to the low-voltage battery 700;
  • K 1 for controlling the switch is turned on the first processing circuit and the third processing circuit or disconnection
  • the first processing circuit is turned on and the second processing circuit is turned on.
  • the integrated vehicle charger circuit 100 can supply the mains power. Energy is transmitted to the power battery 600 and the low-voltage battery 700 at the same time;
  • the third processing circuit is turned on and the fourth processing circuit is turned on.
  • the integrated vehicle charger circuit 100 can power the battery. A part of the energy of 600 is fed back to the power battery 600, and another part of the energy of the power battery 600 is transmitted to the low-voltage battery 700;
  • the third processing circuit is turned off and the fourth processing circuit is turned on.
  • the integrated vehicle charger circuit 100 only transfers the energy of the power battery 600 to the low-voltage battery 700.
  • the primary windings w of the total leakage inductance 1, w 2 of the first secondary winding and a second secondary winding 3 w L of the primary winding w 1, w 2 of the first secondary winding and a second The relationship between the total width w of the two secondary windings w 3 is:
  • L is the leakage inductance of the primary winding w 1 and the first secondary winding w 2 , the leakage inductance of the primary winding w 1 and the second secondary winding w 2 , and the first secondary winding w 2 and the second secondary winding.
  • N p is the number of turns of the primary winding w 1
  • MLT is the average turn length of a single turn
  • b is the difference between the inner and outer diameters of the primary winding w 1 and the winding i
  • the winding i Is the first secondary winding w 2 or the second secondary winding w 3
  • w is the total width of the primary winding w 1 , the first secondary winding w 2, and the second secondary winding w 3 .
  • a distance between the first secondary winding w 2 and the second secondary winding w 3 ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding w 1 and the first secondary winding w 2 is a sandwich winding structure.
  • FIG. 2 is a schematic diagram of a primary-side processing circuit of an integrated vehicle charger circuit provided in an embodiment of the present application.
  • the primary-side processing circuit 200 includes a switching tube T 1 , a switching tube T 2 , a switching tube T 3 , and a switch.
  • Tube T 4 , capacitor C 1 and inductor coil L 1 where:
  • the first end of the switching tube T 1 is respectively connected to the first end of the switching tube T 2 and one end of the inductance coil L 1 ;
  • a second terminal of the switch a first end of the switch transistor T 4 T 2 is connected;
  • the second end of the switching tube T 4 is respectively connected to the first end of the switching tube T 3 and one end of the capacitor C 1 ;
  • Switch transistor T 3 is connected to a second end of the switch transistor T 1 as the second end;
  • the other end of the inductance coil L 1 is connected to the first end of the primary winding, and the second end of the primary winding is connected to the other end of the capacitor C 1 .
  • the switching tube T 1 includes a transistor Q 1 and a diode D 1
  • the switching tube T 2 includes a transistor Q 2 and a diode D 2
  • the switching tube T 3 includes a transistor Q 3 and a diode D 3
  • the switching tube T 4 includes a transistor Q 4 and Diode D 4 , where:
  • the negative electrode of the diode D 1 is connected to the drain of the transistor Q 1 to form a second end of the switching tube T 1 , and the positive electrode of the diode D 1 is connected to the source of the transistor Q 1 to form a first end of the switching tube T 1 ;
  • the anode of the diode D 2 is connected to the drain of the transistor Q 2 to form a first end of the switching tube T 2 , and the anode of the diode D 2 is connected to the source of the transistor Q 2 to form a second end of the switching tube T 2 ;
  • the anode of the diode D 3 is connected to the drain of the transistor Q 3 to form a second end of the switching tube T 3 , and the anode of the diode D 3 is connected to the source of the transistor Q 3 to form a first end of the switching tube T 3 ;
  • the anode of the diode D 4 is connected to the drain of the transistor Q 4 to form a second end of the switching tube T 4 , and the anode of the diode D 4 is connected to the source of the transistor Q 1 to form a first end of the switching tube T 4 .
  • the transistors Q 1 , Q 2 , Q 3, and Q 4 are field-effect transistors, and the diodes D 1 , D 2 , D 3, and D 4 are rectifier diodes.
  • FIG. 3 is a schematic diagram of a first secondary-side processing circuit of an integrated vehicle charger circuit according to an embodiment of the present application.
  • the first secondary-side processing circuit 400 includes a diode D 5 , a diode D 6 , and a diode D 7 .
  • Diode D 8 and capacitor C 2 where:
  • the anode of the diode D 5 is connected to the anode of the diode D 6 and the first end of the first secondary winding w 2 respectively;
  • the anode of the diode D 6 is connected to the anode of the diode D 8 and the anode of the capacitor C 2 respectively;
  • the diode D are connected to the negative electrode 8 and the anode of the diode D 7 of an end of the switch K 1, and the other terminal of the switch K 1 is a first secondary winding and the second end 2 of w;
  • the anode of the diode D 7 is connected to the anode of the diode D 5 and the anode of the capacitor C 2 , respectively.
  • the diode D 5 , the diode D 6 , the diode D 7, and the diode D 8 are all rectifier diodes.
  • one end of the power battery 600 is connected to the anode of the capacitor C 2 , the anode of the diode D 6 and the anode of the diode D 8 , and the other end of the power battery 600 is connected to the anode of the capacitor C 2 , the anode of the diode D 5 , and The negative terminal of the diode D 7 is connected.
  • FIG. 4 is a schematic diagram of a second secondary-side processing circuit of an integrated vehicle charger circuit according to an embodiment of the present application.
  • the second secondary-side processing circuit 500 includes a diode D 9 , a diode D 10, and a capacitor C 3 . among them:
  • the anode of the diode D 9 is connected to the anode of the diode D 10 and the anode of the capacitor C 3 respectively;
  • Anode of the diode D 10 of the second secondary winding is connected to a first end of w 3, w the second secondary winding and the second end of the positive electrode 3 is connected to the diode D 9;
  • the negative terminal of the capacitor C 3 is connected to the third terminal of the second secondary winding w 3 .
  • the diode D 9 and the diode D 10 are rectifier diodes.
  • one end of the low-voltage battery 700 is connected to the anode of the capacitor C 3 , the anode of the diode D 9 and the anode of the diode D 10 , and the other end of the low-voltage battery 700 is connected to the anode of the capacitor C3 and the second secondary winding w 3, respectively.
  • the third end is connected.
  • FIG. 5 is a schematic diagram of a rectifier circuit integrated with a vehicle charger circuit provided in an embodiment of the present application.
  • the rectifier circuit 900 includes a diode D 11 , a diode D 12 , a diode D 13, and a diode D 14 , wherein:
  • the negative electrode of the diode D 11 is connected to the negative electrode of the diode D 13 ;
  • the diode D of the positive electrode and the negative electrode of the diode D 13 is connected to 14;
  • the anode of the diode D 14 is connected to the anode of the diode D 12 ;
  • Cathode of the diode D of the diode D 12 is connected to the positive electrode 11.
  • the diode D 11 , the diode D 12 , the diode D 13, and the diode D 14 are all rectifier diodes.
  • FIG. 6 is a schematic diagram of a second integrated vehicle charger circuit according to an embodiment of the present application.
  • the integrated vehicle charger circuit 100 includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, The second sub-side processing circuit 500, the switch K 1, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3 ;
  • the control unit 800 includes a switch K 2 , and the switch K 2 includes a fixed terminal 1, a fixed terminal 2, a selection terminal 3, and a selection. Terminal 4, selection terminal 5 and selection terminal 6; switch K 2 is a double-pole double-throw switch.
  • the selection terminal 3 of the switch K 2 is connected to the anode of the diode D 12 and the anode of the diode D 14 respectively, and the selection terminal 5 of the switch K 2 is connected to the anode of the diode D 11 and the anode of the diode D 13 respectively;
  • a fixed terminal 1 is connected to the selection terminal 3
  • fixed terminal 2 is connected to the selection terminal 5 synchronously, that is, when the fixed terminal 1 is connected to the selection terminal 3
  • the fixed terminal 2 is connected to the selection terminal 5, it is equivalent to the fixed end of the control unit and the first Select the end connection.
  • the selection terminal 4 of the switch K 2 is respectively connected to one end of the power battery, the negative electrode of the capacitor C 2 , the anode of the diode D 6 , and the anode of the diode D 8 , and the selection terminal 6 of the switch K 2 is respectively connected to another of the power battery.
  • Fixed terminal 1 is connected to selection terminal 4, and fixed terminal 2 is connected to selection terminal 6. 4 connection, when the fixed end 2 and the selection end 6 are connected, it is equivalent to the fixed end of the control unit being connected to the second selection end.
  • one end of the mains is connected to the anode of the diode D 11 and the negative of the diode D 12
  • the other end of the mains is connected to the anode of the diode D 13 and the negative of the diode D 14 .
  • the switches K 1 and K 2 each include at least one of the following: a relay KA, a metal half field effect transistor MOSFET, a thyristor SCR, and an insulated gate bipolar transistor IGBT.
  • the energy of the city electricity is passed through different processing circuits. It is transmitted to the power battery and the low-voltage battery, and the energy of the power battery is fed back to the power battery and transmitted to the low-voltage battery through different processing circuits. It solves the problem that the traditional integrated car charger has a single function and is difficult to meet the diversified use needs of the integrated car charger in future scenarios.
  • An embodiment of the present application provides an integrated vehicle charger, including the integrated vehicle charger circuit described above.
  • FIG. 7 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit provided by an embodiment of the present application.
  • the method is applied to include a primary processing circuit, a transformer, a first secondary processing circuit, and a second secondary processing.
  • the switch K 1, battery power, low-voltage battery
  • the control unit and vehicle charging rectifier circuit integrated circuitry
  • the transformer comprises a primary winding, a first secondary winding and a second secondary winding
  • the control unit includes a fixed end, A first selection end and a second selection end.
  • the method for manufacturing the integrated vehicle charger circuit includes:
  • Step 701 the first secondary winding, the switch K 1, a first processing circuit and the secondary battery are connected in sequence.
  • Step 702 Connect the second secondary winding, the second secondary processing circuit, and the low-voltage battery in sequence.
  • Step 703 Connect one end of the primary processing circuit to the primary winding, and connect the other end of the primary processing circuit to the fixed end.
  • Step 704 Connect one end of the rectifier circuit to the first selection end, and connect the other end of the rectifier circuit to mains power.
  • Step 705 Connect the second selection end to the power battery.
  • the control unit is configured to control the fixed end to be connected to the first selection end or the second selection end.
  • Step 706 Connect the fixed end to the first selection end.
  • the first processing circuit formed by the rectification circuit, the primary processing circuit, the transformer, and the first secondary processing circuit is used to transmit the first part of the mains energy to the power battery.
  • Rectification The second processing circuit formed by the circuit, the primary processing circuit, the transformer, and the second secondary processing circuit is used to transfer the second part of the mains energy to the low-voltage battery;
  • Step 707 Connect the fixed end to the second selection end, and the third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is used to feed back the first part of the power of the power battery to the power battery; the primary processing circuit A fourth processing circuit formed by the transformer, and the second secondary processing circuit is used to transmit the second part of the energy of the power battery to the low-voltage battery;
  • the switch K 1 is used to control the on or off of the first processing circuit and the third processing circuit;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding is inversely proportional to the total width of the primary winding, the first secondary winding, and the second secondary winding.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the above units is only a logical function division.
  • multiple units or components may be combined or integrated.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种集成车载充电机电路及制造方法、集成车载充电机,当控制单元的固定端与第一选择端连接时,第一处理电路用于将市电的第一部分能量传输到动力电池,第二处理电路用于将市电的第二部分能量传输到低压电池;当控制单元的固定端与第二选择端连接时,第三处理电路用于将动力电池的第一部分能量回馈到动力电池,第四处理电路用于将动力电池的第二部分能量传输到低压电池。本申请可实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。

Description

集成车载充电机电路及制造方法、集成车载充电机 技术领域
本申请涉及电动汽车充电技术领域,尤其涉及一种集成车载充电机电路及制造方法、集成车载充电机。
背景技术
近年来,为了保护环境和减少不可再生资源的使用,在汽车制造和应用领域逐渐引入新能源。电动汽车是新能源汽车的主力军,电动汽车又分为纯电动汽车、混合动力汽车和燃料电池汽车。随着新能源汽车逐渐成为未来汽车行业的重要发展方向,车载电子设备(比如DC/DC变换器和集成车载充电机)呈小型化、集成化和高功率密集化的趋势。目前,集成车载充电机电路已实现通过市电为动力电池组或者蓄电池充电的功能,但该功能较为单一,难以满足集成车载充电机在未来场景中的多样化使用需求。
发明内容
本申请实施例提供一种集成车载充电机电路及制造方法、集成车载充电机,用于将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。
本申请实施例第一方面提供一种集成车载充电机电路,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、动力电池、低压电池、控制单元和整流电路,其中:
所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;所述第一副边绕组、所述开关K 1、所述第一副边处理电路以及所述动力电池依次连接;所述第二副边绕组、所述第二副边处理电路以及所述低压电池依次连接;所述原边处理电路的一端与所述原边绕组连接,所述原边处理电路的另一端与所述固定端连接;所述整流电 路的一端与所述第一选择端连接,所述整流电路的另一端与市电连接;所述第二选择端与所述动力电池连接;
所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,当所述固定端与所述第一选择端连接时,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
当所述固定端与所述第二选择端连接时,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;
所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
在一个实施例中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度的关系式为:
Figure PCTCN2018106320-appb-000001
其中,所述L为所述原边绕组与所述第一副边绕组的漏感、所述原边绕组与所述第二副边绕组的漏感以及所述第一副边绕组与所述第二副边绕组的漏感的总漏感,所述N p为所述原边绕组的匝数,所述MLT为单匝的平均匝长,所述b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,所述w为所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度。
在一个实施例中,所述第一副边绕组与所述第二副边绕组之间的距离范围为5mm-50mm。
在一个实施例中,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
在一个实施例中,所述原边处理电路包括开关管T 1、开关管T 2、开关管T 3、开关管T 4、电容C 1和电感线圈L 1,其中:
所述开关管T 1的第一端分别与所述开关管T 2的第一端以及所述电感线圈L 1的一端连接;
所述开关管T 2的第二端与所述开关管T 4的第一端连接;
所述开关管T 4的第二端分别与所述开关管T 3的第一端以及所述电容C 1的一端连接;
所述开关管T 3的第二端与所述开关管T 1的第二端连接;
所述电感线圈L 1的另一端与所述原边绕组的第一端连接,所述原边绕组的第二端与所述电容C 1的另一端连接。
在一个实施例中,所述开关管T 1包括晶体管Q 1和二极管D 1,所述开关管T 2包括晶体管Q 2和二极管D 2,所述开关管T 3包括晶体管Q 3和二极管D 3,所述开关管T 4包括晶体管Q 4和二极管D 4,其中:
所述二极管D 1的负极与所述晶体管Q 1的漏极连接形成所述开关管T 1的第二端,所述二极管D 1的正极与所述晶体管Q 1的源极连接形成所述开关管T 1的第一端;
所述二极管D 2的负极与所述晶体管Q 2的漏极连接形成所述开关管T 2的第一端,所述二极管D 2的正极与所述晶体管Q 2的源极连接形成所述开关管T 2的第二端;
所述二极管D 3的负极与所述晶体管Q 3的漏极连接形成所述开关管T 3的第二端,所述二极管D 3的正极与所述晶体管Q 3的源极连接形成所述开关管T 3的第一端;
所述二极管D 4的负极与所述晶体管Q 4的漏极连接形成所述开关管T 4的第二端,所述二极管D 4的正极与所述晶体管Q 1的源极连接形成所述开关管 T 4的第一端。
在一个实施例中,所述第一副边处理电路包括二极管D 5、二极管D 6、二极管D 7、二极管D 8和电容C 2,其中:
所述二极管D 5的正极分别与所述二极管D 6的负极以及所述第一副边绕组的第一端连接;
所述二极管D 6的正极分别与所述二极管D 8的正极以及所述电容C 2的负极连接;
所述二极管D 8的负极分别与所述二极管D 7的正极以及所述开关K 1的一端连接,所述开关K 1的另一端与所述第一副边绕组的第二端连接;
所述二极管D 7的负极分别与所述二极管D 5的负极以及所述电容C 2的正极连接。
在一个实施例中,所述第二副边处理电路包括二极管D 9、二极管D 10和电容C 3,其中:
所述二极管D 9的负极分别与所述二极管D 10的负极以及所述电容C 3的正极连接;
所述二极管D 10的正极与所述第二副边绕组的第一端连接,所述第二副边绕组的第二端与所述二极管D 9的正极连接;
所述电容C 3的负极与所述第二副边绕组的第三端连接。
在一个实施例中,所述整流电路包括二极管D 11、二极管D 12、二极管D 13和二极管D 14,其中:
所述二极管D 11的负极与所述二极管D 13的负极连接;
所述二极管D 13的正极与所述二极管D 14的负极连接;
所述二极管D 14的正极与所述二极管D 12的正极连接;
所述二极管D 12的负极与所述二极管D 11的正极连接。
本申请实施例第二方面提供一种集成车载充电机,包括第一方面所述的集成车载充电机电路。
本申请实施例第三方面提供一种集成车载充电机电路的制造方法,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关 K 1、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中:
所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;
将所述第一副边绕组、所述开关K 1、所述第一副边处理电路以及所述动力电池依次连接;将所述第二副边绕组、所述第二副边处理电路以及所述低压电池依次连接;将所述原边处理电路的一端与所述原边绕组连接,将所述原边处理电路的另一端与所述固定端连接;将所述整流电路的一端与所述第一选择端连接,将所述整流电路的另一端与市电连接;将所述第二选择端与所述动力电池连接;
所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,将所述固定端与所述第一选择端连接,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
将所述固定端与所述第二选择端连接,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;
所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
在本申请中,当控制单元的固定端与第一选择端连接时,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边 处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;当控制单元的固定端与第二选择端连接时,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池,原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;通过控制变压器的第一副边绕组与第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
图1是本申请实施例提供的第一种集成车载充电机电路的示意图;
图2是图1中所示的原边处理电路的示意图;
图3是图1中所示的第一副边处理电路的示意图;
图4是图1中所示的第二副边处理电路的示意图;
图5是图1中所示的整流电路的示意图;
图6是本申请实施例提供的第二种集成车载充电机电路的示意图。
图7是本申请实施例提供的一种集成车载充电机电路的制造方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申 请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在常用的车载OBC解决方案中,OBC一般独立于DC/DC变换器设置,该方案虽然节省了部分结构件和端口配线,但仍需要大量的电气元件,成本高、体积大,集成化程度较低。市电输入通过EMC滤波电路、单相整流电路、PFC功率校正电路、OBC输入侧开关电路进入OBC主变压器,再通过OBC输出侧整流电路、OBC输出侧滤波电路将能量传递给动力电池组,动力电池组将能量通过DC/DC输出侧EMC滤波电路、DC/DC输入侧开关的电路传递给DC/DC主变压器,并通过DC/DC主变压器将能量通过DC/DC输出侧整流电路、DC/DC输出侧滤波电路传输给蓄电池。现有的电气集成方案只能实现电池充电的单一功能,并不能满足现实的多样性需求。
针对上述问题,本申请实施例提出一种集成车载充电机电路及集成车载充电机,该集成车载充电机电路包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、动力电池、低压电池、控制单元和整流电路,其中:
变压器包括原边绕组、第一副边绕组和第二副边绕组,控制单元包括固定 端、第一选择端和第二选择端;第一副边绕组、开关K 1、第一副边处理电路以及动力电池依次连接;第二副边绕组、第二副边处理电路以及低压电池依次连接;原边处理电路的一端与原边绕组连接,原边处理电路的另一端与固定端连接;整流电路的一端与第一选择端连接,整流电路的另一端与市电连接;第二选择端与动力电池连接;
控制单元用于控制固定端与第一选择端或第二选择端连接,当固定端与第一选择端连接时,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;当固定端与第二选择端连接时,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池;原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;通过控制变压器的第一副边绕组与第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
下面结合附图对本申请实施例进行介绍。
请参阅图1,图1是本申请实施例提供的第一种集成车载充电机电路的示意图,该集成车载充电机电路100包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包括固定端801、第一选择端802和第二选择端803;第一副边绕组w 2、开关K 1、第一副边处理电路400以及动力电池600依次连接;第二副边绕组w 3、第二副边处理电路500以及低压电池700依次连接;原边处理电路200的一端与原边绕组w 1连接,原边处理电路200的另一端与固定端801连 接;整流电路900的一端与第一选择端802连接,整流电路900的另一端与市电连接;第二选择端803与动力电池600连接;
控制单元800用于控制固定端801与第一选择端802或第二选择端803连接;当固定端801与第一选择端802连接时,整流电路900、原边处理电路200、变压器300以及第一副边处理电路400形成的第一处理电路用于将市电的第一部分能量传输到动力电池600;整流电路900、原边处理电路200、变压器300以及第二副边处理电路500形成的第二处理电路用于将市电的第二部分能量传输到低压电池700;
当固定端801与第二选择端803连接时,原边处理电路200、变压器300以及第一副边处理电路400形成的第三处理电路用于将动力电池600的第一部分能量回馈到动力电池600;原边处理电路200、变压器300以及第二副边处理电路500形成的第四处理电路用于将动力电池600的第二部分能量传输到低压电池700;
开关K 1用于控制第一处理电路及第三处理电路的导通或断开;
作为一种可能的实施方式,当固定端801与第一选择端802连接,开关K 1闭合时,第一处理电路导通,第二处理电路导通,集成车载充电机电路100可将市电的能量同时传输到动力电池600和低压电池700;
同理,当开关K 1断开时,第一处理电路断开,第二处理电路导通,集成车载充电机电路100仅将市电的能量传输到低压电池700;
作为一种可能的实施方式,当固定端801与第二选择端803连接,开关K 1闭合时,第三处理电路导通,第四处理电路导通,集成车载充电机电路100可将动力电池600的一部分能量回馈到动力电池600,将动力电池600的另一部分能量传输到低压电池700;
同理,当开关K 1断开时,第三处理电路断开,第四处理电路导通,集成车载充电机电路100仅将动力电池600的能量传输到低压电池700。
原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总漏感L与原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度w成反比例关系。
作为一种可能的实施方式,原边绕组w 1、第一副边绕组w 2以及第二副边 绕组w 3的总漏感L与原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度w的关系式为:
Figure PCTCN2018106320-appb-000002
其中,L为原边绕组w 1与第一副边绕组w 2的漏感、原边绕组w 1与第二副边绕组w 2的漏感以及第一副边绕组w 2与第二副边绕组w 3的漏感的总漏感,N p为原边绕组w 1的匝数,MLT为单匝的平均匝长,b为原边绕组w 1与绕组i的内外径之差,绕组i为第一副边绕组w 2或第二副边绕组w 3,w为原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度。
作为一种可能的实施方式,第一副边绕组w 2与第二副边绕组w 3之间的距离范围为5mm-50mm。
作为一种可能的实施方式,原边绕组w 1与第一副边绕组w 2的线圈结构为三明治绕法结构。
请参阅图2,图2是本申请实施例提供的集成车载充电机电路的原边处理电路的示意图,该原边处理电路200包括开关管T 1、开关管T 2、开关管T 3、开关管T 4、电容C 1和电感线圈L 1,其中:
开关管T 1的第一端分别与开关管T 2的第一端以及电感线圈L 1的一端连接;
开关管T 2的第二端与开关管T 4的第一端连接;
开关管T 4的第二端分别与开关管T 3的第一端以及电容C 1的一端连接;
开关管T 3的第二端与开关管T 1的第二端连接;
电感线圈L 1的另一端与原边绕组的第一端连接,原边绕组的第二端与电容C 1的另一端连接。
其中,开关管T 1包括晶体管Q 1和二极管D 1,开关管T 2包括晶体管Q 2和二极管D 2,开关管T 3包括晶体管Q 3和二极管D 3,开关管T 4包括晶体管Q 4和二极管D 4,其中:
二极管D 1的负极与晶体管Q 1的漏极连接形成开关管T 1的第二端,二极 管D 1的正极与晶体管Q 1的源极连接形成开关管T 1的第一端;
二极管D 2的负极与晶体管Q 2的漏极连接形成开关管T 2的第一端,二极管D 2的正极与晶体管Q 2的源极连接形成开关管T 2的第二端;
二极管D 3的负极与晶体管Q 3的漏极连接形成开关管T 3的第二端,二极管D 3的正极与晶体管Q 3的源极连接形成开关管T 3的第一端;
二极管D 4的负极与晶体管Q 4的漏极连接形成开关管T 4的第二端,二极管D 4的正极与晶体管Q 1的源极连接形成开关管T 4的第一端。
其中,晶体管Q 1、晶体管Q 2、晶体管Q 3以及晶体管Q 4均为场效应晶体管,二极管D 1、二极管D 2、二极管D 3以及二极管D 4均为整流二极管。
请参阅图3,图3是本申请实施例提供的集成车载充电机电路的第一副边处理电路的示意图,该第一副边处理电路400包括二极管D 5、二极管D 6、二极管D 7、二极管D 8和电容C 2,其中:
二极管D 5的正极分别与二极管D 6的负极以及第一副边绕组w 2的第一端连接;
二极管D 6的正极分别与二极管D 8的正极以及电容C 2的负极连接;
二极管D 8的负极分别与二极管D 7的正极以及开关K 1的一端连接,开关K 1的另一端与第一副边绕组w 2的第二端连接;
二极管D 7的负极分别与二极管D 5的负极以及电容C 2的正极连接。
其中,二极管D 5、二极管D 6、二极管D 7以及二极管D 8均为整流二极管。
可选地,动力电池600的一端分别与电容C 2的负极、二极管D 6的正极以及二极管D 8的正极连接,动力电池600的另一端分别与电容C 2的正极、二极管D 5的负极以及二极管D 7的负极连接。
请参阅图4,图4是本申请实施例提供的集成车载充电机电路的第二副边处理电路的示意图,该第二副边处理电路500包括二极管D 9、二极管D 10和电容C 3,其中:
二极管D 9的负极分别与二极管D 10的负极以及电容C 3的正极连接;
二极管D 10的正极与第二副边绕组w 3的第一端连接,第二副边绕组w 3的第二端与二极管D 9的正极连接;
电容C 3的负极与第二副边绕组w 3的第三端连接。
其中,二极管D 9及二极管D 10均为整流二极管。
可选地,低压电池700的一端分别与电容C 3的正极、二极管D 9的负极以及二极管D 10的负极连接,低压电池700的另一端分别与电容C3的负极以及第二副边绕组w 3的第三端连接。
请参阅图5,图5是本申请实施例提供的集成车载充电机电路的整流电路的示意图,该整流电路900包括二极管D 11、二极管D 12、二极管D 13和二极管D 14,其中:
二极管D 11的负极与二极管D 13的负极连接;
二极管D 13的正极与二极管D 14的负极连接;
二极管D 14的正极与二极管D 12的正极连接;
二极管D 12的负极与二极管D 11的正极连接。
其中,二极管D 11、二极管D 12、二极管D 13以及二极管D 14均为整流二极管。
请参阅图6,图6是本申请实施例提供的第二种集成车载充电机电路的示意图,该集成车载充电机电路100包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3;控制单元800包括开关K 2,开关K 2包括固定端1、固定端2、选择端3、选择端4、选择端5和选择端6;其中,开关K 2为双刀双掷开关。
可选地,开关K 2的选择端3分别与二极管D 12的正极以及二极管D 14的正极连接,开关K 2的选择端5分别与二极管D 11的负极以及二极管D 13的负极连接;固定端1与选择端3连接、固定端2与选择端5连接是同步的,即当固定 端1与选择端3连接、固定端2与选择端5连接时,相当于控制单元的固定端与第一选择端连接。
可选地,开关K 2的选择端4分别与动力电池的一端、电容C 2的负极、二极管D 6的正极以及二极管D 8的正极连接,开关K 2的选择端6分别与动力电池的另一端、电容C 2的正极、二极管D 5的负极以及二极管D 7的负极连接;固定端1与选择端4连接、固定端2与选择端6连接是同步的,即当固定端1与选择端4连接、固定端2与选择端6连接时,相当于控制单元的固定端与第二选择端连接。
可选地,市电的一端分别与二极管D 11的正极以及二极管D 12的负极连接,市电的另一端分别与二极管D 13的正极以及二极管D 14的负极连接。
作为一种可能的实施方式,开关K 1及开关K 2均包括以下至少一种:继电器KA、金属半场效晶体管MOSFET、可控硅SCR和绝缘栅双极型晶体管IGBT。
可以看出,在本申请示例中,通过控制变压器的第一副边绕组与第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
本申请实施例提供一种集成车载充电机,包括上述的集成车载充电机电路。
请参阅图7,图7是本申请实施例提供的一种集成车载充电机电路的制造方法的流程示意图,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中,变压器包括原边绕组、第一副边绕组和第二副边绕组,控制单元包括固定端、第一选择端和第二选择端,该集成车载充电机电路的制造方法包括:
步骤701:将第一副边绕组、开关K 1、第一副边处理电路以及动力电池依次连接。
步骤702:将第二副边绕组、第二副边处理电路以及低压电池依次连接。
步骤703:将原边处理电路的一端与原边绕组连接,将原边处理电路另一端与固定端连接。
步骤704:将整流电路的一端与第一选择端连接,将整流电路的另一端与市电连接。
步骤705:将第二选择端与动力电池连接。
其中,控制单元用于控制固定端与第一选择端或第二选择端连接。
步骤706:将固定端与第一选择端连接,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;
步骤707:将固定端与第二选择端连接,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池;原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;
其中,开关K 1用于控制第一处理电路及第三处理电路的导通或断开;
其中,原边绕组、第一副边绕组以及第二副边绕组的总漏感与原边绕组、第一副边绕组以及第二副边绕组的总宽度成反比例关系。
需要说明的是,对于前述的各申请实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例 如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实现方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种集成车载充电机电路,其特征在于,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、动力电池、低压电池、控制单元和整流电路,其中:
    所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;所述第一副边绕组、所述开关K 1、所述第一副边处理电路以及所述动力电池依次连接;所述第二副边绕组、所述第二副边处理电路以及所述低压电池依次连接;所述原边处理电路的一端与所述原边绕组连接,所述原边处理电路的另一端与所述固定端连接;所述整流电路的一端与所述第一选择端连接,所述整流电路的另一端与市电连接;所述第二选择端与所述动力电池连接;
    所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,当所述固定端与所述第一选择端连接时,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
    当所述固定端与所述第二选择端连接时,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池,所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
    所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;
    所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
  2. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所 述第一副边绕组以及所述第二副边绕组的总宽度的关系式为:
    Figure PCTCN2018106320-appb-100001
    其中,所述L为所述原边绕组与所述第一副边绕组的漏感、所述原边绕组与所述第二副边绕组的漏感以及所述第一副边绕组与所述第二副边绕组的漏感的总漏感,所述N p为所述原边绕组的匝数,所述MLT为单匝的平均匝长,所述b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,所述w为所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度。
  3. 根据权利要求1或2所述的集成车载充电机电路,其特征在于,所述第一副边绕组与所述第二副边绕组之间的距离范围为5mm-50mm。
  4. 根据权利要求3所述的集成车载充电机电路,其特征在于,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
  5. 根据权利要求4所述的集成车载充电机电路,其特征在于,所述原边处理电路包括开关管T 1、开关管T 2、开关管T 3、开关管T 4、电容C 1和电感线圈L 1,其中:
    所述开关管T 1的第一端分别与所述开关管T 2的第一端以及所述电感线圈L 1的一端连接;
    所述开关管T 2的第二端与所述开关管T 4的第一端连接;
    所述开关管T 4的第二端分别与所述开关管T 3的第一端以及所述电容C 1的一端连接;
    所述开关管T 3的第二端与所述开关管T 1的第二端连接;
    所述电感线圈L 1的另一端与所述原边绕组的第一端连接,所述原边绕组的第二端与所述电容C 1的另一端连接。
  6. 根据权利要求5所述的集成车载充电机电路,其特征在于,所述开关管T 1包括晶体管Q 1和二极管D 1,所述开关管T 2包括晶体管Q 2和二极管D 2,所述开关管T 3包括晶体管Q 3和二极管D 3,所述开关管T 4包括晶体管Q 4和二极管D 4,其中:
    所述二极管D 1的负极与所述晶体管Q 1的漏极连接形成所述开关管T 1的第二端,所述二极管D 1的正极与所述晶体管Q 1的源极连接形成所述开关管T 1的第一端;
    所述二极管D 2的负极与所述晶体管Q 2的漏极连接形成所述开关管T 2的第一端,所述二极管D 2的正极与所述晶体管Q 2的源极连接形成所述开关管T 2的第二端;
    所述二极管D 3的负极与所述晶体管Q 3的漏极连接形成所述开关管T 3的第二端,所述二极管D 3的正极与所述晶体管Q 3的源极连接形成所述开关管T 3的第一端;
    所述二极管D 4的负极与所述晶体管Q 4的漏极连接形成所述开关管T 4的第二端,所述二极管D 4的正极与所述晶体管Q 1的源极连接形成所述开关管T 4的第一端。
  7. 根据权利要求6所述的集成车载充电机电路,其特征在于,所述第一副边处理电路包括二极管D 5、二极管D 6、二极管D 7、二极管D 8和电容C 2,其中:
    所述二极管D 5的正极分别与所述二极管D 6的负极以及所述第一副边绕组的第一端连接;
    所述二极管D 6的正极分别与所述二极管D 8的正极以及所述电容C 2的负极连接;
    所述二极管D 8的负极分别与所述二极管D 7的正极以及所述开关K 1的一端连接,所述开关K 1的另一端与所述第一副边绕组的第二端连接;
    所述二极管D 7的负极分别与所述二极管D 5的负极以及所述电容C 2的正极连接。
  8. 根据权利要求7所述的集成车载充电机电路,其特征在于,所述第二副边处理电路包括二极管D 9、二极管D 10和电容C 3,其中:
    所述二极管D 9的负极分别与所述二极管D 10的负极以及所述电容C 3的正极连接;
    所述二极管D 10的正极与所述第二副边绕组的第一端连接,所述第二副边 绕组的第二端与所述二极管D 9的正极连接;
    所述电容C 3的负极与所述第二副边绕组的第三端连接。
  9. 根据权利要求8所述的集成车载充电机电路,其特征在于,所述整流电路包括二极管D 11、二极管D 12、二极管D 13和二极管D 14,其中:
    所述二极管D 11的负极与所述二极管D 13的负极连接;
    所述二极管D 13的正极与所述二极管D 14的负极连接;
    所述二极管D 14的正极与所述二极管D 12的正极连接;
    所述二极管D 12的负极与所述二极管D 11的正极连接。
  10. 一种集成车载充电机,其特征在于,包括如权利要求1-9任一项所述的集成车载充电机电路。
  11. 一种集成车载充电机电路的制造方法,其特征在于,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中:
    所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;
    将所述第一副边绕组、所述开关K 1、所述第一副边处理电路以及所述动力电池依次连接;将所述第二副边绕组、所述第二副边处理电路以及所述低压电池依次连接;将所述原边处理电路的一端与所述原边绕组连接,将所述原边处理电路的另一端与所述固定端连接;将所述整流电路的一端与所述第一选择端连接,将所述整流电路的另一端与市电连接;将所述第二选择端与所述动力电池连接;
    所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,将所述固定端与所述第一选择端连接,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
    将所述固定端与所述第二选择端连接,所述原边处理电路、所述变压器以 及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
    所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;
    所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
PCT/CN2018/106320 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机 WO2020056603A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880006685.7A CN110268595B (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机
PCT/CN2018/106320 WO2020056603A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106320 WO2020056603A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Publications (1)

Publication Number Publication Date
WO2020056603A1 true WO2020056603A1 (zh) 2020-03-26

Family

ID=67911386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106320 WO2020056603A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Country Status (2)

Country Link
CN (1) CN110268595B (zh)
WO (1) WO2020056603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478588A (zh) * 2020-05-11 2020-07-31 杭州富特科技股份有限公司 Dcdc变换器、车载充电装置、系统及交通工具
CN114337289A (zh) * 2020-11-30 2022-04-12 华为数字能源技术有限公司 一种转换电路、转换器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875572A2 (fr) * 2012-07-20 2015-05-27 Intelligent Electronic Systems Convertisseur multi-directionel avec trois ports et un transformateur unique pour les voitures électriques
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
CN207360118U (zh) * 2017-10-31 2018-05-15 北京新能源汽车股份有限公司 一种车载充电机系统及汽车
CN208904734U (zh) * 2018-09-18 2019-05-24 深圳欣锐科技股份有限公司 集成车载充电机电路及集成车载充电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018012A (ja) * 2012-07-11 2014-01-30 Toyota Industries Corp 車載用スイッチング電源装置
CN207782658U (zh) * 2017-09-05 2018-08-28 上海欣锐电控技术有限公司 一种多功能集成式控制器电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875572A2 (fr) * 2012-07-20 2015-05-27 Intelligent Electronic Systems Convertisseur multi-directionel avec trois ports et un transformateur unique pour les voitures électriques
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
CN207360118U (zh) * 2017-10-31 2018-05-15 北京新能源汽车股份有限公司 一种车载充电机系统及汽车
CN208904734U (zh) * 2018-09-18 2019-05-24 深圳欣锐科技股份有限公司 集成车载充电机电路及集成车载充电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478588A (zh) * 2020-05-11 2020-07-31 杭州富特科技股份有限公司 Dcdc变换器、车载充电装置、系统及交通工具
CN114337289A (zh) * 2020-11-30 2022-04-12 华为数字能源技术有限公司 一种转换电路、转换器和电子设备

Also Published As

Publication number Publication date
CN110268595B (zh) 2023-05-02
CN110268595A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US10847991B2 (en) Multiple bidirectional converters for charging and discharging of energy storage units
WO2020258939A1 (zh) 一种车载充放电装置和系统
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
CN109995098B (zh) 无线充电接收装置、无线充电方法及设备
CN107359682A (zh) 一种双向充电与直流转换二合一的电源系统及其控制方法
CN109039121A (zh) 一种高频隔离型交直流变换电路及其控制方法
WO2020056604A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN209046338U (zh) 一种集成车载充电机及电路
WO2020056605A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
WO2020056603A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN106379186B (zh) 一种充电机及汽车
CN106100374A (zh) 电源及电气设备
CN112776632A (zh) 用于电动和/或混合动力车辆的宽电压范围功率转换系统
US10978245B2 (en) Low voltage wireless power transfer pad
CN209313739U (zh) 一种高频隔离型交直流变换电路
WO2020056602A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN208904734U (zh) 集成车载充电机电路及集成车载充电机
CN106347158B (zh) 一种充电机及汽车
CN209683468U (zh) 集成车载充电机电路及集成车载充电机
CN107659196A (zh) 三端口电力电子变压器
CN112572189B (zh) 车载充放电系统及具有其的车辆
CN209046285U (zh) 一种集成式车载充电机及电路
CN209105058U (zh) 一种隔离型双向交直流变换电路
WO2020191682A1 (zh) 车载充电机及制造方法、车载充电机系统
WO2021207893A1 (zh) 变压器、变压装置及变压方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934078

Country of ref document: EP

Kind code of ref document: A1