WO2020056605A1 - 集成车载充电机电路及制造方法、集成车载充电机 - Google Patents

集成车载充电机电路及制造方法、集成车载充电机 Download PDF

Info

Publication number
WO2020056605A1
WO2020056605A1 PCT/CN2018/106322 CN2018106322W WO2020056605A1 WO 2020056605 A1 WO2020056605 A1 WO 2020056605A1 CN 2018106322 W CN2018106322 W CN 2018106322W WO 2020056605 A1 WO2020056605 A1 WO 2020056605A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
diode
processing circuit
winding
secondary winding
Prior art date
Application number
PCT/CN2018/106322
Other languages
English (en)
French (fr)
Inventor
赵德琦
莫光铖
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN201880006909.4A priority Critical patent/CN110198862A/zh
Priority to PCT/CN2018/106322 priority patent/WO2020056605A1/zh
Publication of WO2020056605A1 publication Critical patent/WO2020056605A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of electric vehicle charging, and in particular, to an integrated vehicle charger circuit and manufacturing method, and an integrated vehicle charger.
  • Electric vehicles are the main force of new energy vehicles. Electric vehicles are divided into pure electric vehicles, hybrid vehicles and fuel cell vehicles. As new energy vehicles gradually become an important development direction of the future automotive industry, vehicle electronics (such as DC / DC converters and integrated vehicle chargers) are trending toward miniaturization, integration, and high power density. At present, the integrated car charger circuit has realized the function of charging the power battery pack through mains power, but this function is relatively simple, and it is difficult to meet the diversified use needs of the integrated car charger in future scenarios.
  • the embodiments of the present application provide an integrated vehicle charger circuit, a manufacturing method, and an integrated vehicle charger, which are used to control the leakage inductance by controlling the length L of the distance L between the first secondary winding and the second secondary winding.
  • the coupling effect is controlled to replace the role of the primary inductor, so that the low-voltage battery is charged by the high-voltage power battery, and thus the integrated vehicle charger has various charging methods.
  • a first aspect of the embodiments of the present application provides an integrated vehicle charger circuit, including a primary-side processing circuit, a transformer, a first secondary-side processing circuit, and a second secondary-side processing circuit;
  • the transformer includes a primary winding, an iron core, a first secondary winding, and a second secondary winding.
  • the primary winding, the first secondary winding, and the second secondary winding are disposed on the iron core.
  • the primary side processing circuit is connected to mains power; the first secondary side processing circuit is connected to a power battery; the second secondary side processing circuit is connected to a low voltage battery; the primary side processing circuit, the transformer, and the A secondary processing circuit forms a first processing circuit, and the first processing circuit is configured to transmit electric energy of the mains to the power battery; the first secondary processing circuit, the transformer, and the second The secondary circuit forms a second processing circuit, and the second processing circuit is configured to transmit the power of the power battery to the low-voltage battery; the primary winding, the first secondary winding, and the second secondary
  • the total leakage inductance of the side winding is inversely proportional to the total width of the primary winding, the first secondary winding, and the second secondary winding.
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the primary winding, the first secondary winding, and the second The relationship of the total width w of the secondary winding is:
  • L is the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding
  • N P is the number of turns of the primary winding
  • MLT is the average turn length of a single turn
  • B is the difference between the inner and outer diameters of the primary winding and winding i
  • the winding i is the first secondary winding or the second secondary winding
  • w is the primary winding, the first The total width of the secondary winding and the second secondary winding.
  • a distance L between the first secondary winding and the second secondary winding ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding and the first secondary winding is a sandwich winding structure.
  • the primary-side processing circuit includes a transistor Q 1 , a transistor Q 2 , a transistor Q 3 , a transistor Q 4 , a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4 , and a first capacitor C 1 and a first inductor L 1, wherein: the drain of the transistor Q 1 'connected to the drain of the transistor Q 3, a source of the transistor Q 3 is connected to a drain of the transistor Q 4, and the transistor Q 4 A source of the transistor Q 2 is connected to a source of the transistor Q 2, and a drain of the transistor Q 2 is connected to a source of the transistor Q 1 ;
  • the anode of the diode D 1 is connected to the drain of the transistor Q 1 , the anode of the diode D 1 is connected to the source of the transistor Q 1 , and the anode of the diode D 2 is connected to the drain of the transistor Q 2 .
  • the anode of the diode D 2 is connected to the source of the transistor Q 2
  • the anode of the diode D 3 is connected to the drain of the transistor Q 3
  • the anode of the diode D 3 is connected to the source of the transistor Q 3 .
  • the anode of the diode D 4 is connected to the drain of the transistor Q 4 , and the anode of the diode D 4 is connected to the source of the transistor Q 4 ; the first ends of the first inductor L 1 are respectively connected to A source of the transistor Q 1, an anode of the diode D 1 , a drain of the transistor Q 2 , and a cathode of the diode D 2 , and a second end of the first inductor L 1 is connected to the primary winding a first end, a second end of said primary winding connected to said first end of the first capacitor C 1, the second terminal of the first capacitor C 1 is connected to the source of the transistor Q 3 of the electrode, the said cathode of the diode D 3, the drain of the transistor Q 4 and the negative electrode of the diode D 4.
  • the first secondary processing circuit includes a transistor Q 5 , a transistor Q 6 , a transistor Q 7 , a transistor Q 8 , a diode D 5 , a diode D 6 , a diode D 7 , a diode D 8 , and a second capacitor.
  • the drain of the transistor Q 5 is connected to the drain of the transistor Q 7, the source of the transistor Q 7 is connected to a drain of the transistor Q 8, said transistor Q 8 is connected to the source of the transistor Q 6 is a source electrode, a drain of the transistor Q 6 is connected to the source of the transistor Q 5 of the electrode; cathode of the diode D 5 is connected to the drain of the transistor Q 5, The anode of the diode D 5 is connected to the source of the transistor Q 5 , the anode of the diode D 7 is connected to the drain of the transistor Q 7 , and the anode of the diode D 7 is connected to the source of the transistor Q 7 .
  • the anode of the diode D 8 is connected to the drain of the transistor Q 8 , the anode of the diode D 8 is connected to the source of the transistor Q 8 , and the anode of the diode D 6 is connected to the drain of the transistor Q 6 .
  • the anode of the diode D 6 is connected to the source electrode of the transistor Q 6; the first A first end of the secondary winding are respectively connected to the source of the transistor Q 5 of the electrode, the anode of the diode D 5, the anode of the diode and the drain of the transistor Q 6 D 6, the first secondary winding
  • the second terminal of the second capacitor C 2 is connected to the first terminal of the second capacitor C 2 , and the second terminal of the second capacitor C 2 is connected to the source of the transistor Q 7 , the anode of the diode D 7 , and the transistor, respectively.
  • the drain of Q 8 and the negative electrode of the diode D 8 , and the positive electrode of the third capacitor C 3 are respectively connected to the drain of the transistor Q 5 , the negative electrode of the diode D 5 , and the drain of the transistor Q 7 .
  • the negative electrode of the diode D 7 and the negative electrode of the third capacitor C 3 are respectively connected to the source of the transistor Q 6 , the positive electrode of the diode D 6 , the source of the transistor Q 8 and the diode D, respectively. 8 anode.
  • the transistor Q 8 is an N-type primary-side MOSFET.
  • the second secondary processing circuit includes a diode D 9 , a diode D 10, and a fourth capacitor C 4 , wherein a first end of the second secondary winding is connected to a positive electrode of the diode D 9 .
  • a negative terminal of the diode D 9 is connected to a first terminal of the fourth capacitor C 4 and a negative terminal of the diode D 10
  • a second terminal of the fourth capacitor C 4 is connected to the second secondary winding a second end, said second secondary winding second terminal, the third terminal of the second secondary winding connected to the anode of the diode D 10, and the cathode of the diode D 10 is connected between the diode A connection line between D 9 and the fourth capacitor C 4 .
  • a second aspect of the embodiments of the present application provides an integrated vehicle charger, including the integrated vehicle charger circuit described in the first aspect.
  • a third aspect of the embodiments of the present application provides a method for manufacturing an integrated vehicle charger circuit, which is applied to include a primary processing circuit, a transformer, a first secondary processing circuit, and a second secondary processing circuit.
  • the method includes:
  • the transformer includes a primary winding, an iron core, a first secondary winding, and a second secondary winding.
  • the primary winding, the first secondary winding, and the second secondary winding are disposed on the iron core. on;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding is the same as that of the primary winding, the first secondary winding, and the second secondary winding.
  • the total width is inversely proportional.
  • the integrated vehicle charger includes a primary processing circuit, a transformer, a first secondary processing circuit, and a second secondary processing circuit;
  • the transformer includes a primary winding, an iron core, a first secondary winding, and a first secondary processing circuit. Two secondary windings, the primary winding, the first secondary winding, and the second secondary winding are disposed on the iron core;
  • the primary processing circuit is connected to mains power;
  • the first secondary winding The processing circuit is connected to a power battery;
  • the second secondary-side processing circuit is connected to a low-voltage battery.
  • the primary-side processing circuit, the transformer, and the first secondary-side processing circuit form a first processing circuit, and the first The processing circuit is configured to transmit the power of the mains to the power battery.
  • the first secondary processing circuit, the transformer, and the second secondary circuit form a second processing circuit.
  • the second processing circuit is configured to transmit the electric energy of the power battery to the low-voltage battery, wherein the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding is the same as the total leakage inductance of the primary winding.
  • Primary winding, said first The total width of the secondary winding and the second secondary winding is in inverse proportion.
  • FIG. 1 is a prior art vehicle OBC + DC / DC physical integration method
  • FIG. 2A is a schematic structural diagram of an integrated vehicle-mounted charger provided in an embodiment of the present application.
  • FIG. 2B is a schematic structural diagram of a transformer shown in FIG. 2A;
  • FIG. 2C is a schematic structural diagram of a primary-side processing circuit shown in FIG. 2A;
  • FIG. 2D is a schematic structural diagram of a first secondary-side processing circuit shown in FIG. 2A;
  • FIG. 2E is a schematic structural diagram of a second secondary-side processing circuit shown in FIG. 2A;
  • 2F is a schematic circuit diagram of an integrated vehicle-mounted charger provided in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • OBC In the conventional design, in the commonly used vehicle OBC solution, OBC is generally set independently of the DC / DC converter. As shown in Figure 1, the mains power enters the OBC main transformer through the OBC output side circuit, and then transmits energy through the OBC output circuit. To the power battery pack, the power battery pack transfers energy to the DC / DC circuit, and the DC / DC circuit transfers energy to the battery and the load.
  • the existing separated electrical solution has a higher cost and a larger footprint, which cannot meet the diversity of reality. Sexual needs.
  • an embodiment of the present application proposes an integrated vehicle-mounted charger.
  • the integrated vehicle-mounted charger includes a primary-side processing circuit, a transformer, a first secondary-side processing circuit, and a second secondary-side processing circuit.
  • the transformer includes a primary winding. , An iron core, a first secondary winding and a second secondary winding, the primary winding, the first secondary winding, and the second secondary winding are disposed on the core; the primary processing The circuit is connected to the mains; the first secondary processing circuit is connected to a power battery; the second secondary processing circuit is connected to a low voltage battery.
  • the primary processing circuit, the transformer, and the first secondary processing The circuit forms a first processing circuit, and the first processing circuit is configured to transmit the power of the mains to the power battery.
  • the first secondary processing circuit, the transformer, and the second The secondary circuit forms a second processing circuit for transmitting the power of the power battery to the low-voltage battery, wherein the primary winding, the first secondary winding, and the first Second Officer The total leakage inductance of the primary winding of the winding, the total width inversely proportional to the first secondary winding and the second secondary winding.
  • the leakage inductance can be controlled, thereby controlling the coupling effect to replace the role of the primary inductance, thereby realizing the charging of the low voltage battery by the high voltage power battery.
  • FIG. 2A is a schematic structural diagram of an integrated vehicle charger circuit 100 provided in an embodiment of the present application, including a primary processing circuit 201, a transformer 202, a first secondary processing circuit 203, and a second secondary processing circuit. 204;
  • the transformer 202 includes a primary winding 208, an iron core, a first secondary winding 209, and a second secondary winding 210.
  • the primary winding 208, the first secondary winding 209, and the second secondary winding. 210 is disposed on the iron core;
  • the primary side processing circuit 201 is connected to the mains 205;
  • the first secondary side processing circuit 203 is connected to the power battery 206;
  • the second secondary side processing circuit 204 is connected to the low-voltage battery 207;
  • the primary-side processing circuit 201, the transformer 202, and the first secondary-side processing circuit 203 form a first processing circuit, and the first processing circuit is configured to transmit the power of the mains 205 to the power battery 206;
  • the first secondary processing circuit 203, the transformer 202, and the second secondary circuit 204 form a second processing circuit, and the second processing circuit is configured to transmit the power of the power battery 206 to the low voltage Battery 207;
  • the total leakage inductance of the primary winding 208, the first secondary winding 209, and the second secondary winding 210 and the primary winding 208, the first secondary winding 209, and the second secondary The total width of the side winding 210 is inversely proportional.
  • the primary-side processing circuit 201, the transformer 202, and the second secondary-side processing circuit 204 form a third processing circuit, and the third processing circuit is configured to transmit the power of the mains 205 to the The low-voltage battery 207.
  • the primary-side processing circuit 201 simultaneously charges the power battery 206 and the low-voltage battery 207 through the transformer 202, the first secondary-side processing circuit 203, and the second secondary-side processing circuit 204. .
  • the total leakage inductance of the primary winding 208, the first secondary winding 209, and the second secondary winding 210, and the primary winding 208, the first secondary winding The relationship between 209 and the total width w of the second secondary winding 210 is:
  • L is the total leakage inductance of the primary winding 208, the first secondary winding 209, and the second secondary winding 210
  • N P is the number of turns of the primary winding 208
  • MLT is a single turn
  • b is the difference between the inner and outer diameters of the primary winding 208 and winding i
  • the winding i is the first secondary winding 209 or the second secondary winding 210
  • w is the primary The total width of the side winding 208, the first secondary winding 209, and the second secondary winding 210.
  • a distance L between the first secondary winding 209 and the second secondary winding 210 ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding 208 and the first secondary winding 209 is a sandwich winding structure.
  • the primary-side processing circuit 201 includes a transistor Q 1 , a transistor Q 2 , a transistor Q 3 , a transistor Q 4 , a diode D 1 , a diode D 2 , a diode D 3 , and a diode.
  • the drain of the transistor Q 1 'connected to the drain of the transistor Q 3 and the transistor Q 3 is connected to the source of the transistor Q 4 of a drain
  • the source of the transistor Q 4 is connected to the source of the transistor Q 2
  • the drain of the transistor Q 2 is connected to the source of the transistor Q 1 of the electrode
  • cathode of the diode D 1 is connected to the transistor the drain of Q 1
  • the cathode of the diode D 1 is connected to the source of the transistor Q 1 electrode
  • the cathode of the diode D 2 is connected to the drain of the transistor Q 2
  • the cathode of the diode D 2 connected to the a source electrode of the transistor Q 2
  • the diode cathode connected to the drain D of the transistor Q 3 is 3, the diode D is connected to the positive electrode of the transistor Q 3 of the source electrode 3, the negative connection of the diode D 4 said drain of the transistor Q 4, the anode of the diode D 4
  • the transistor and the diode are combined to form a switching tube.
  • the diode D 1 , the diode D 2 , the diode D 3, and the diode D 4 are all rectifier diodes.
  • the first sub-side processing circuit 203 includes a transistor Q 5, the transistor Q 6, the transistor Q 7, the transistor Q 8, a diode D 5, the diode D 6, the diode D 7 , diode D 8, the second capacitor C 2 and the third capacitor C 3, wherein: the drain of the transistor Q 5 is connected to the drain of the transistor Q 7, the transistor Q 7 is connected to the source of the transistor Q 8, a drain, a source of the transistor Q 8 is connected to the source electrode of the transistor Q 6, Q of the transistor connected to the drain of the transistor Q 6 of the source electrode 5; cathode of the diode D 5 is connected to the The drain of the transistor Q 5 , the anode of the diode D 5 is connected to the source of the transistor Q 5 , the anode of the diode D 7 is connected to the drain of the transistor Q 7 , and the anode of the diode D 7 is connected The source of the transistor Q 7 , the negative electrode of the diode D 8 is
  • a drain of the transistor Q 7 and a negative electrode of the diode D 7 is connected to the source of the transistor Q 6 , the positive electrode of the diode D 6 , and The source of the transistor Q 8 and the anode of the diode D 8 are described.
  • the elements of the circuit of the first secondary processing circuit 203 can remove the second capacitor C 2 and only include the third capacitor C 3 , that is, including the transistor Q 5 , the transistor Q 6 , the transistor Q 7 , and the transistor Q 8 , Diode D 5 , diode D 6 , diode D 7 , diode D 8 and third capacitor C 3 .
  • the first terminal of the third capacitor C 3 is respectively connected to the source of the transistor Q 3 and the anode of the diode D 3
  • the second terminal of the third capacitor C 3 is respectively connected to the transistor Q 4.
  • the negative electrode of the diode D 4 and the connection modes of the remaining transistors Q 5 , Q 6 , Q 7 , Q 8 , diode D 5 , diode D 6 , diode D 7 , and diode D 8 are the same as those described above. .
  • the diode D 5 , the diode D 6 , the diode D 7, and the diode D 8 are all rectifier diodes.
  • the transistor Q 1 , the transistor Q 2 , the transistor Q 3 , the transistor Q 4 , the transistor Q 5 , the transistor Q 6 , the transistor Q 7 , all The transistors Q 8 are all N-type primary-side MOSFETs.
  • the second secondary processing circuit 204 includes a diode D 9 , a diode D 10, and a fourth capacitor C 4 , where: the first of the second secondary winding 210 a positive electrode terminal connected to the diode D 9, the negative electrode of the diode D 9 is connected to the first terminal of the fourth capacitor C 4 and the diode D 10, and the fourth capacitor C 4 is connected to the second terminal on the second end of the second secondary winding 210 of the second secondary winding 210 of the second terminal of the second secondary winding 210 is connected to the third terminal of the diode D 10 of the positive electrode, A negative electrode of the diode D 10 is connected to a connection line between the diode D 9 and the fourth capacitor C 4 .
  • the diode D 9 and the diode D 10 are both rectifier diodes.
  • the leakage inductance can be controlled, and the coupling effect can be controlled to replace the role of the primary inductance, thereby achieving high voltage
  • the power battery charges the low-voltage battery.
  • FIG. 2F is a schematic circuit diagram of an integrated vehicle charger 100.
  • FIG. 3 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit provided by an embodiment of the present application.
  • the method is applied to include a primary processing circuit, a transformer, a first secondary processing circuit, and a second secondary processing.
  • Circuit the method includes: the transformer includes a primary winding, an iron core, a first secondary winding, and a second secondary winding, the primary winding, the first secondary winding, and the second secondary winding A winding is disposed on the iron core;
  • Step 301 Connect the primary processing circuit to a mains power supply.
  • Step 302 Connect the first secondary processing circuit to a power battery.
  • Step 303 Connect the second secondary processing circuit to a low-voltage battery.
  • Step 304 Form the primary processing circuit, the transformer, and the first secondary processing circuit to form a first processing circuit, where the first processing circuit is configured to transmit the power of the mains power to the power battery. ;
  • Step 305 Form the first secondary processing circuit, the transformer, and the second secondary circuit to form a second processing circuit.
  • the second processing circuit is configured to transmit the power of the power battery to the low voltage. battery;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding is the same as that of the primary winding, the first secondary winding, and the second secondary winding.
  • the total width is inversely proportional.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the above units is only a logical function division.
  • multiple units or components may be combined or integrated.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.

Abstract

本申请公开了一种集成车载充电机电路及制造方法、集成车载充电机,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路;所述原边处理电路连接市电;所述第一副边处理电路连接动力电池;所述第二副边处理电路连接低压电池,所述原边处理电路、所述变压器和所述第一副边处理电路形成的第一处理电路,用于将所述市电的电能传输到所述动力电池;所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,用于将所述动力电池的电能传输到所述低压电池,更好的实现由高压动力电池为低压蓄电池充电。

Description

集成车载充电机电路及制造方法、集成车载充电机 技术领域
本申请涉及电动汽车充电技术领域,尤其涉及一种集成车载充电机电路及制造方法、集成车载充电机。
背景技术
近年来,为了保护环境和减少不可再生资源的使用,在汽车制造和应用领域逐渐引入新能源。电动汽车是新能源汽车的主力军,电动汽车又分为纯电动汽车、混合动力汽车和燃料电池汽车。随着新能源汽车逐渐成为未来汽车行业的重要发展方向,车载电子设备(比如DC/DC变换器和集成车载充电机)呈小型化、集成化和高功率密集化的趋势。目前,集成车载充电机电路已实现通过市电为动力电池组充电的功能,但该功能较为单一,难以满足集成车载充电机在未来场景中的多样化使用需求。
发明内容
本申请实施例提供一种集成车载充电机电路及制造方法、集成车载充电机,用于通过控制第一副边绕组和第二副边绕组之间的距离L的长短,能控制漏感,进而控制耦合作用,以替代原边电感的作用,从而实现由高压动力电池为低压蓄电池充电,进而使得集成车载充电机具有多样的充电方式。
本申请实施例第一方面提供一种集成车载充电机电路,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路;
所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;所述原边处理电路连接市电;所述第一副边处理电路连接动力电池;所述第二副边处理电路连接低压电池;所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池;所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理 电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池;所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
在一个实施例中,所述原边绕组、所述第一副边绕组与所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组和所述第二副边绕组的总宽度w的关系式为:
Figure PCTCN2018106322-appb-000001
其中,L为所述原边绕组、所述第一副边绕组和所述第二副边绕组的总漏感,N P为所述原边绕组的匝数,MLT为单匝的平均匝长,b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,w为所述原边绕组、所述第一副边绕组和所述第二副边绕组的总宽度。
在一个实施例中,所述第一副边绕组和所述第二副边绕组之间的距离L的范围为5mm-50mm。
在一个实施例中,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
在一个实施例中,所述原边处理电路包括晶体管Q 1、晶体管Q 2、晶体管Q 3、晶体管Q 4、二极管D 1、二极管D 2、二极管D 3、二极管D 4、第一电容C 1和第一电感L 1,其中:所述晶体管Q 1的漏极连接所述晶体管Q 3的漏极,所述晶体管Q 3的源极连接所述晶体管Q 4的漏极,所述晶体管Q 4的源极连接所述晶体管Q 2的源极,所述晶体管Q 2的漏极连接所述晶体管Q 1的源极;
所述二极管D 1的负极连接所述晶体管Q 1的漏极,所述二极管D 1的正极连接所述晶体管Q 1的源极,所述二极管D 2的负极连接所述晶体管Q 2的漏极,所述二极管D 2的正极连接所述晶体管Q 2的源极,所述二极管D 3的负极连接所述晶体管Q 3的漏极,所述二极管D 3的正极连接所述晶体管Q 3的源极,所述二极管D 4的负极连接所述晶体管Q 4的漏极,所述二极管D 4的正极连接所述晶体管Q 4的源极;所述第一电感L 1的第一端分别连接所述晶体管Q 1的源极、所述二极管D 1的正极、所述晶体管Q 2的漏极和所述二极管D 2的负极, 所述第一电感L 1的第二端连接所述原边绕组的第一端,所述原边绕组的第二端连接所述第一电容C 1的第一端,所述第一电容C 1的第二端分别连接所述晶体管Q 3的源极、所述二极管D 3的正极、所述晶体管Q 4的漏极和所述二极管D 4的负极。
在一个实施例中,所述第一副边处理电路包括晶体管Q 5、晶体管Q 6、晶体管Q 7、晶体管Q 8、二极管D 5、二极管D 6、二极管D 7、二极管D 8、第二电容C 2和第三电容C 3,其中:所述晶体管Q 5的漏极连接所述晶体管Q 7的漏极,所述晶体管Q 7的源极连接所述晶体管Q 8的漏极,所述晶体管Q 8的源极连接所述晶体管Q 6的源极,所述晶体管Q 6的漏极连接所述晶体管Q 5的源极;所述二极管D 5的负极连接所述晶体管Q 5的漏极,所述二极管D 5的正极连接所述晶体管Q 5的源极,所述二极管D 7的负极连接所述晶体管Q 7的漏极,所述二极管D 7的正极连接所述晶体管Q 7的源极,所述二极管D 8的负极连接所述晶体管Q 8的漏极,所述二极管D 8的正极连接所述晶体管Q 8的源极,所述二极管D 6的负极连接所述晶体管Q 6的漏极,所述二极管D 6的正极连接所述晶体管Q 6的源极;所述第一副边绕组的第一端分别连接所述晶体管Q 5的源极、所述二极管D 5的正极、所述晶体管Q 6的漏极和所述二极管D 6的负极,所述第一副边绕组的第二端连接所述第二电容C 2的第一端,所述第二电容C 2的第二端分别连接所述晶体管Q 7的源极、所述二极管D 7的正极、所述晶体管Q 8的漏极和所述二极管D 8的负极,所述第三电容C 3的正极分别连接所述晶体管Q 5的漏极、所述二极管D 5的负极、所述晶体管Q 7的漏极和所述二极管D 7的负极,所述第三电容C 3的负极分别连接所述晶体管Q 6的源极、所述二极管D 6的正极、所述晶体管Q 8的源极和所述二极管D 8的正极。
在一个实施例中,所述晶体管Q 1、所述晶体管Q 2、所述晶体管Q 3、所述晶体管Q 4、所述晶体管Q 5、所述晶体管Q 6、所述晶体管Q 7、所述晶体管Q 8均为N型原边MOSFET管。
在一个实施例中,所述第二副边处理电路包括二极管D 9、二极管D 10和第四电容C 4,其中:所述第二副边绕组的第一端连接所述二极管D 9的正极,所述二极管D 9的负极连接所述第四电容C 4的第一端及所述二极管D 10的负极, 所述第四电容C 4的第二端连接在所述第二副边绕组的第二端上,所述第二副边绕组的第二端接地,所述第二副边绕组的第三端连接所述二极管D 10的正极,所述二极管D 10的负极连接在所述二极管D 9与所述第四电容C 4的连接线上。
本申请实施例第二方面提供一种集成车载充电机,包括第一方面所述的集成车载充电机电路。
本申请实施例第三方面提供一种集成车载充电机电路的制造方法,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路,所述方法包括:
所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;
将所述原边处理电路连接市电;
将所述第一副边处理电路连接动力电池;
将所述第二副边处理电路连接低压电池;
将所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池;
将所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池;
其中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
实施本申请实施例,具有如下有益效果:
在本申请中,本集成车载充电机包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路;所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;所述原边处理电路连接市电;所述第一副边处理电路连接动力电池;所述第二副边处理电路连接低压电池,一方面,所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池,另一方面,所述第一副边处理电路、 所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池,其中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。由于通过控制第一副边绕组和第二副边绕组之间的距离L的长短,能控制漏感,进而控制耦合作用,以替代原边电感的作用,从而实现由高压动力电池为低压蓄电池充电。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
下面将对本申请实施例所涉及到的附图作简单地介绍。
图1是现有技术的车载OBC+DC/DC物理集成方式;
图2A是在本申请实施例提供的一种集成车载充电机的结构示意图;
图2B是在图2A中所示的变压器结构示意图;
图2C是在图2A中所示的原边处理电路结构示意图;
图2D是在图2A中所示的第一副边处理电路结构示意图;
图2E是在图2A中所示的第二副边处理电路结构示意图;
图2F是在本申请实施例提供的一种集成车载充电机的电路示意图;
图3是一种集成车载充电机电路的制造方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
常规设计中,在常用的车载OBC解决方案中,OBC一般独立于DC/DC变换器设置,如图1所示,市电通过OBC输出侧电路进入OBC主变压器,再通过OBC输出电路将能量传递给动力电池组,动力电池组将能量传递给DC/DC电路,DC/DC电路将能量传递给蓄电池及负载,现有的分离式电气方案成本较高、占用空间较大,不能满足现实的多样性需求。
针对上述问题,本申请实施例提出一种集成车载充电机,本集成车载充电机包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路;所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;所述原边处理电路连接市电;所述第一副边处理电路连接动力电池;所述第二副边处理电路连接低压电池,一方面,所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池,另一方面,所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池,其中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。由于通过控制第一副边绕组和第二副边绕组之间的距离L的长短, 能控制漏感,进而控制耦合作用,以替代原边电感的作用,从而实现由高压动力电池为低压蓄电池充电。
下面结合附图对本申请实施例进行介绍。
请参阅图2A,图2A是本申请实施例提供的一种集成车载充电机电路100的结构示意图,包括原边处理电路201、变压器202、第一副边处理电路203、第二副边处理电路204;
所述变压器202包括原边绕组208、铁芯、第一副边绕组209和第二副边绕组210,所述原边绕组208、所述第一副边绕组209和所述第二副边绕组210设置于所述铁芯上;所述原边处理电路201连接市电205;所述第一副边处理电路203连接动力电池206;所述第二副边处理电路204连接低压电池207;
所述原边处理电路201、所述变压器202和所述第一副边处理电路203形成第一处理电路,所述第一处理电路用于将所述市电205的电能传输到所述动力电池206;
所述第一副边处理电路203、所述变压器202和所述第二副边电路204形成第二处理电路,所述第二处理电路用于将所述动力电池206的电能传输到所述低压电池207;
所述原边绕组208、所述第一副边绕组209以及所述第二副边绕组210的总漏感与所述原边绕组208、所述第一副边绕组209以及所述第二副边绕组210的总宽度成反比例关系。
可选的,所述原边处理电路201、所述变压器202和所述第二副边处理电路204形成第三处理电路,所述第三处理电路用于将所述市电205的电能传输到所述低压电池207。
可选的,所述原边处理电路201通过所述变压器202、所述第一副边处理电路203、所述第二副边处理电路204同时向所述动力电池206和所述低压电池207充电。
在一个可能的示例中,所述原边绕组208、所述第一副边绕组209与所述第二副边绕组210的总漏感与所述原边绕组208、所述第一副边绕组209和所述第二副边绕组210的总宽度w的关系式为:
Figure PCTCN2018106322-appb-000002
其中,L为所述原边绕组208、所述第一副边绕组209和所述第二副边绕组210的总漏感,N P为所述原边绕组208的匝数,MLT为单匝的平均匝长,b为所述原边绕组208与绕组i的内外径之差,所述绕组i为所述第一副边绕组209或所述第二副边绕组210,w为所述原边绕组208、所述第一副边绕组209和所述第二副边绕组210的总宽度。
可见,本示例中,通过控制第一副边绕组和第二副边绕组的距离L,增大漏感,降低耦合。
在一个可能的示例中,所述第一副边绕组209和所述第二副边绕组210之间的距离L的范围为5mm-50mm。
在一个可能的示例中,如图2B所示,所述原边绕组208与所述第一副边绕组209的线圈结构为三明治绕法结构。
在一个可能的示例中,如图2C所示,所述原边处理电路201包括晶体管Q 1、晶体管Q 2、晶体管Q 3、晶体管Q 4、二极管D 1、二极管D 2、二极管D 3、二极管D 4、第一电容C 1和第一电感L 1,其中:所述晶体管Q 1的漏极连接所述晶体管Q 3的漏极,所述晶体管Q 3的源极连接所述晶体管Q 4的漏极,所述晶体管Q 4的源极连接所述晶体管Q 2的源极,所述晶体管Q 2的漏极连接所述晶体管Q 1的源极;所述二极管D 1的负极连接所述晶体管Q 1的漏极,所述二极管D 1的正极连接所述晶体管Q 1的源极,所述二极管D 2的负极连接所述晶体管Q 2的漏极,所述二极管D 2的正极连接所述晶体管Q 2的源极,所述二极管D 3的负极连接所述晶体管Q 3的漏极,所述二极管D 3的正极连接所述晶体管Q 3的源极,所述二极管D 4的负极连接所述晶体管Q 4的漏极,所述二极管D 4的正极连接所述晶体管Q 4的源极;所述第一电感L 1的第一端分别连接所述晶体管Q 1的源极、所述二极管D 1的正极、所述晶体管Q 2的漏极和所述二极管D 2的负极,所述第一电感L 1的第二端连接所述原边绕组208的第一端,所述原边绕组208的第二端连接所述第一电容C 1的第一端,所述第一电容C 1的第二端分别连接所述晶体管Q 3的源极、所述二极管D 3的正极、所述晶体管 Q 4的漏极和所述二极管D 4的负极。
其中,晶体管与二极管组合形成开关管。
其中,二极管D 1、二极管D 2、二极管D 3以及二极管D 4均为整流二极管。
在一个可能的示例中,如图2D所示,所述第一副边处理电路203包括晶体管Q 5、晶体管Q 6、晶体管Q 7、晶体管Q 8、二极管D 5、二极管D 6、二极管D 7、二极管D 8、第二电容C 2和第三电容C 3,其中:所述晶体管Q 5的漏极连接所述晶体管Q 7的漏极,所述晶体管Q 7的源极连接所述晶体管Q 8的漏极,所述晶体管Q 8的源极连接所述晶体管Q 6的源极,所述晶体管Q 6的漏极连接所述晶体管Q 5的源极;所述二极管D 5的负极连接所述晶体管Q 5的漏极,所述二极管D 5的正极连接所述晶体管Q 5的源极,所述二极管D 7的负极连接所述晶体管Q 7的漏极,所述二极管D 7的正极连接所述晶体管Q 7的源极,所述二极管D 8的负极连接所述晶体管Q 8的漏极,所述二极管D 8的正极连接所述晶体管Q 8的源极,所述二极管D 6的负极连接所述晶体管Q 6的漏极,所述二极管D 6的正极连接所述晶体管Q 6的源极;所述第一副边绕组209的第一端分别连接所述晶体管Q 5的源极、所述二极管D 5的正极、所述晶体管Q 6的漏极和所述二极管D 6的负极,所述第一副边绕组209的第二端连接所述第二电容C 2的第一端,所述第二电容C 2的第二端分别连接所述晶体管Q 7的源极、所述二极管D 7的正极、所述晶体管Q 8的漏极和所述二极管D 8的负极,所述第三电容C 3的正极分别连接所述晶体管Q 5的漏极、所述二极管D 5的负极、所述晶体管Q 7的漏极和所述二极管D 7的负极,所述第三电容C 3的负极分别连接所述晶体管Q 6的源极、所述二极管D 6的正极、所述晶体管Q 8的源极和所述二极管D 8的正极。
可选的,所述第一副边处理电路203的电路的元件可去除第二电容C 2,只含有第三电容C 3,即包括晶体管Q 5、晶体管Q 6、晶体管Q 7、晶体管Q 8、二极管D 5、二极管D 6、二极管D 7、二极管D 8和第三电容C 3
其中,所述第三电容C 3的第一端分别连接所述晶体管Q 3的源极、所述二极管D 3的正极,所述第三电容C 3的第二端分别连接所述晶体管Q 4的漏极和所述二极管D 4的负极,其余晶体管Q 5、晶体管Q 6、晶体管Q 7、晶体管Q 8、 二极管D 5、二极管D 6、二极管D 7、二极管D 8的连接模式与上述一致。
其中,二极管D 5、二极管D 6、二极管D 7以及二极管D 8均为整流二极管。
在一个可能的示例中,所述晶体管Q 1、所述晶体管Q 2、所述晶体管Q 3、所述晶体管Q 4、所述晶体管Q 5、所述晶体管Q 6、所述晶体管Q 7、所述晶体管Q 8均为N型原边MOSFET管。
在一个可能的示例中,如图2E所示,所述第二副边处理电路204包括二极管D 9、二极管D 10和第四电容C 4,其中:所述第二副边绕组210的第一端连接所述二极管D 9的正极,所述二极管D 9的负极连接所述第四电容C 4的第一端及所述二极管D 10的负极,所述第四电容C 4的第二端连接在所述第二副边绕组210的第二端上,所述第二副边绕组210的第二端接地,所述第二副边绕组210的第三端连接所述二极管D 10的正极,所述二极管D 10的负极连接在所述二极管D 9与所述第四电容C 4的连接线上。
其中,二极管D 9和二极管D 10均为整流二极管。
可见,本示例中,由于通过控制第一副边绕组和第二副边绕组之间的距离L的长短,能控制漏感,进而控制耦合作用,以替代原边电感的作用,从而实现由高压动力电池为低压蓄电池充电。
如图2F所示,图2F为一种集成车载充电机100的电路示意图。
请参阅图3,图3是本申请实施例提供的一种集成车载充电机电路的制造方法的流程示意图,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路,所述方法包括:所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;
步骤301,将所述原边处理电路连接市电;
步骤302,将所述第一副边处理电路连接动力电池;
步骤303,将所述第二副边处理电路连接低压电池;
步骤304,将所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池;
步骤305,将所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池;
其中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
需要说明的是,对于前述的各申请实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实现方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种集成车载充电机电路,其特征在于,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路;
    所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;所述原边处理电路连接市电;所述第一副边处理电路连接动力电池;所述第二副边处理电路连接低压电池;
    所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池;
    所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池;
    所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
  2. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述原边绕组、所述第一副边绕组与所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组和所述第二副边绕组的总宽度w的关系式为:
    Figure PCTCN2018106322-appb-100001
    其中,L为所述原边绕组、所述第一副边绕组和所述第二副边绕组的总漏感,N P为所述原边绕组的匝数,MLT为单匝的平均匝长,b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,w为所述原边绕组、所述第一副边绕组和所述第二副边绕组的总宽度。
  3. 根据权利要求1或2所述的集成车载充电机电路,其特征在于,所述第一副边绕组和所述第二副边绕组之间的距离L的范围为5mm-50mm。
  4. 根据权利要求3所述的集成车载充电机电路,其特征在于,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
  5. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述原边处理电路包括晶体管Q 1、晶体管Q 2、晶体管Q 3、晶体管Q 4、二极管D 1、二 极管D 2、二极管D 3、二极管D 4、第一电容C 1和第一电感L 1,其中:
    所述晶体管Q 1的漏极连接所述晶体管Q 3的漏极,所述晶体管Q 3的源极连接所述晶体管Q 4的漏极,所述晶体管Q 4的源极连接所述晶体管Q 2的源极,所述晶体管Q 2的漏极连接所述晶体管Q 1的源极;
    所述二极管D 1的负极连接所述晶体管Q 1的漏极,所述二极管D 1的正极连接所述晶体管Q 1的源极,所述二极管D 2的负极连接所述晶体管Q 2的漏极,所述二极管D 2的正极连接所述晶体管Q 2的源极,所述二极管D 3的负极连接所述晶体管Q 3的漏极,所述二极管D 3的正极连接所述晶体管Q 3的源极,所述二极管D 4的负极连接所述晶体管Q 4的漏极,所述二极管D 4的正极连接所述晶体管Q 4的源极;
    所述第一电感L 1的第一端分别连接所述晶体管Q 1的源极、所述二极管D 1的正极、所述晶体管Q 2的漏极和所述二极管D 2的负极,所述第一电感L 1的第二端连接所述原边绕组的第一端,所述原边绕组的第二端连接所述第一电容C 1的第一端,所述第一电容C 1的第二端分别连接所述晶体管Q 3的源极、所述二极管D 3的正极、所述晶体管Q 4的漏极和所述二极管D 4的负极。
  6. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述第一副边处理电路包括晶体管Q 5、晶体管Q 6、晶体管Q 7、晶体管Q 8、二极管D 5、二极管D 6、二极管D 7、二极管D 8、第二电容C 2和第三电容C 3,其中:
    所述晶体管Q 5的漏极连接所述晶体管Q 7的漏极,所述晶体管Q 7的源极连接所述晶体管Q 8的漏极,所述晶体管Q 8的源极连接所述晶体管Q 6的源极,所述晶体管Q 6的漏极连接所述晶体管Q 5的源极;
    所述二极管D 5的负极连接所述晶体管Q 5的漏极,所述二极管D 5的正极连接所述晶体管Q 5的源极,所述二极管D 7的负极连接所述晶体管Q 7的漏极,所述二极管D 7的正极连接所述晶体管Q 7的源极,所述二极管D 8的负极连接所述晶体管Q 8的漏极,所述二极管D 8的正极连接所述晶体管Q 8的源极,所述二极管D 6的负极连接所述晶体管Q 6的漏极,所述二极管D 6的正极连接所述晶体管Q 6的源极;
    所述第一副边绕组的第一端分别连接所述晶体管Q 5的源极、所述二极管 D 5的正极、所述晶体管Q 6的漏极和所述二极管D 6的负极,所述第一副边绕组的第二端连接所述第二电容C 2的第一端,所述第二电容C 2的第二端分别连接所述晶体管Q 7的源极、所述二极管D 7的正极、所述晶体管Q 8的漏极和所述二极管D 8的负极,所述第三电容C 3的正极分别连接所述晶体管Q 5的漏极、所述二极管D 5的负极、所述晶体管Q 7的漏极和所述二极管D 7的负极,所述第三电容C 3的负极分别连接所述晶体管Q 6的源极、所述二极管D 6的正极、所述晶体管Q 8的源极和所述二极管D 8的正极。
  7. 根据权利要求5或6任一项所述的集成车载充电机电路,其特征在于,所述晶体管Q 1、所述晶体管Q 2、所述晶体管Q 3、所述晶体管Q 4、所述晶体管Q 5、所述晶体管Q 6、所述晶体管Q 7、所述晶体管Q 8均为N型原边MOSFET管。
  8. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述第二副边处理电路包括二极管D 9、二极管D 10和第四电容C 4,其中:
    所述第二副边绕组的第一端连接所述二极管D 9的正极,所述二极管D 9的负极连接所述第四电容C 4的第一端及所述二极管D 10的负极,所述第四电容C 4的第二端连接在所述第二副边绕组的第二端上,所述第二副边绕组的第二端接地,所述第二副边绕组的第三端连接所述二极管D 10的正极,所述二极管D 10的负极连接在所述二极管D 9与所述第四电容C 4的连接线上。
  9. 一种集成车载充电机,其特征在于,包括如权利要求1-8任一项所述的集成车载充电机电路。
  10. 一种集成车载充电机电路的制造方法,其特征在于,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路,所述方法包括:
    所述变压器包括原边绕组、铁芯、第一副边绕组和第二副边绕组,所述原边绕组、所述第一副边绕组和所述第二副边绕组设置于所述铁芯上;
    将所述原边处理电路连接市电;
    将所述第一副边处理电路连接动力电池;
    将所述第二副边处理电路连接低压电池;
    将所述原边处理电路、所述变压器和所述第一副边处理电路形成第一处理 电路,所述第一处理电路用于将所述市电的电能传输到所述动力电池;
    将所述第一副边处理电路、所述变压器和所述第二副边电路形成第二处理电路,所述第二处理电路用于将所述动力电池的电能传输到所述低压电池;
    其中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
PCT/CN2018/106322 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机 WO2020056605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880006909.4A CN110198862A (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机
PCT/CN2018/106322 WO2020056605A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106322 WO2020056605A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Publications (1)

Publication Number Publication Date
WO2020056605A1 true WO2020056605A1 (zh) 2020-03-26

Family

ID=67751194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106322 WO2020056605A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Country Status (2)

Country Link
CN (1) CN110198862A (zh)
WO (1) WO2020056605A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112470241B (zh) * 2020-05-06 2024-02-13 深圳欣锐科技股份有限公司 变压器以及变压器的制造方法
CN111490577A (zh) * 2020-05-27 2020-08-04 深圳威迈斯新能源股份有限公司 一种双端输出充电电路及其辅路开关控制方法
WO2022133793A1 (zh) * 2020-12-23 2022-06-30 深圳欣锐科技股份有限公司 一种充电系统和汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875572A2 (fr) * 2012-07-20 2015-05-27 Intelligent Electronic Systems Convertisseur multi-directionel avec trois ports et un transformateur unique pour les voitures électriques
CN206155207U (zh) * 2016-10-25 2017-05-10 深圳欣锐科技股份有限公司 一种车载充电机和直流变换器集成控制器电路
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
CN207360118U (zh) * 2017-10-31 2018-05-15 北京新能源汽车股份有限公司 一种车载充电机系统及汽车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203552894U (zh) * 2013-08-27 2014-04-16 崧顺电子(深圳)有限公司 一种llc高频变压器
CN103997221B (zh) * 2014-04-22 2017-12-12 深圳三星通信技术研究有限公司 一种多路输出直流‑直流变换器以及相应的无线射频单元
CN205428676U (zh) * 2016-03-04 2016-08-03 青岛杰瑞康达电子有限公司 一种llc谐振变压器
CN207782658U (zh) * 2017-09-05 2018-08-28 上海欣锐电控技术有限公司 一种多功能集成式控制器电路
CN117154907A (zh) * 2017-09-30 2023-12-01 深圳威迈斯新能源股份有限公司 一种带逆变功能的三端口充电机
CN207853765U (zh) * 2017-12-27 2018-09-11 深圳市匠能智造信息技术有限公司 一种隔离式双向dc-dc电路结构
CN209046285U (zh) * 2018-09-18 2019-06-28 深圳欣锐科技股份有限公司 一种集成式车载充电机及电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875572A2 (fr) * 2012-07-20 2015-05-27 Intelligent Electronic Systems Convertisseur multi-directionel avec trois ports et un transformateur unique pour les voitures électriques
CN206155207U (zh) * 2016-10-25 2017-05-10 深圳欣锐科技股份有限公司 一种车载充电机和直流变换器集成控制器电路
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN107359682A (zh) * 2017-07-29 2017-11-17 深圳市国电赛思科技有限公司 一种双向充电与直流转换二合一的电源系统及其控制方法
CN207360118U (zh) * 2017-10-31 2018-05-15 北京新能源汽车股份有限公司 一种车载充电机系统及汽车

Also Published As

Publication number Publication date
CN110198862A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
US10144301B2 (en) Optimized compensation coils for wireless power transfer system
US10847991B2 (en) Multiple bidirectional converters for charging and discharging of energy storage units
US20200212817A1 (en) On-board charging/discharging system
WO2020056605A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
WO2020056604A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN209046338U (zh) 一种集成车载充电机及电路
CN111301187B (zh) 一种无线充电耦合装置及无人机
CN106379186B (zh) 一种充电机及汽车
CN110402473A (zh) 集成变压器及应用该集成变压器的集成开关电源应用电路
WO2020056603A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN209776190U (zh) 两发射对四接收线圈结构电动汽车动态无线供电装置
US11780342B2 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
CN209046285U (zh) 一种集成式车载充电机及电路
CN106347158B (zh) 一种充电机及汽车
CN110190656A (zh) 串联电池组均衡充放电系统
WO2020056602A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN208904734U (zh) 集成车载充电机电路及集成车载充电机
CN211830276U (zh) 变压器及变压装置
CN209683468U (zh) 集成车载充电机电路及集成车载充电机
CN210927460U (zh) 适用于开关电源的单绕组双电压输出模块
CN112470241B (zh) 变压器以及变压器的制造方法
WO2021207893A1 (zh) 变压器、变压装置及变压方法
WO2021003651A1 (zh) 集成车载充电机的开关电源电路及转换器
CN112821530B (zh) 车载充电电路、方法及车载电源
KR102336554B1 (ko) 차량용 무선 충전 시스템 및 그것의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934116

Country of ref document: EP

Kind code of ref document: A1