WO2020056602A1 - 集成车载充电机电路及制造方法、集成车载充电机 - Google Patents

集成车载充电机电路及制造方法、集成车载充电机 Download PDF

Info

Publication number
WO2020056602A1
WO2020056602A1 PCT/CN2018/106319 CN2018106319W WO2020056602A1 WO 2020056602 A1 WO2020056602 A1 WO 2020056602A1 CN 2018106319 W CN2018106319 W CN 2018106319W WO 2020056602 A1 WO2020056602 A1 WO 2020056602A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
processing circuit
switch
secondary winding
capacitor
Prior art date
Application number
PCT/CN2018/106319
Other languages
English (en)
French (fr)
Inventor
赵德琦
莫光铖
刘佩甲
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2018/106319 priority Critical patent/WO2020056602A1/zh
Priority to CN201880006766.7A priority patent/CN110636953B/zh
Publication of WO2020056602A1 publication Critical patent/WO2020056602A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to the technical field of electric vehicle charging, and in particular, to an integrated vehicle charger circuit and manufacturing method, and an integrated vehicle charger.
  • Electric vehicles are the main force of new energy vehicles. Electric vehicles are divided into pure electric vehicles, hybrid vehicles and fuel cell vehicles. As new energy vehicles gradually become an important development direction of the future automotive industry, vehicle electronics (such as DC / DC converters and integrated vehicle chargers) are trending toward miniaturization, integration, and high power density. At present, the integrated vehicle charger circuit has realized the function of charging the power battery pack or the battery through the commercial power, but this function is relatively single, and it is difficult to meet the diversified use needs of the integrated vehicle charger in future scenarios.
  • the embodiments of the present application provide an integrated vehicle-mounted charger circuit and manufacturing method, and an integrated vehicle-mounted charger, which are used to transmit the energy of the city power to the power battery and the low-voltage battery through different processing circuits, and to pass the energy of the power battery through different The processing circuit is fed back to the power battery and transmitted to the low voltage battery.
  • the first aspect of the embodiments of the present application provides an integrated vehicle charger circuit, including a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , a switch K 2 , a power battery, and a low voltage.
  • Battery, control unit and rectifier circuit where:
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding.
  • the control unit includes a fixed end, a first selection end, and a second selection end.
  • the first secondary winding, the first secondary processing circuit, and the switch K 1 are sequentially connected to the battery;
  • the second secondary winding, said second secondary processing circuit, said switch and said K 2 are sequentially connected to the low voltage battery;
  • the One end of the primary processing circuit is connected to the primary winding, and the other end of the primary processing circuit is connected to the fixed terminal;
  • one end of the rectification circuit is connected to the first selection terminal, and the The other end is connected to the mains;
  • the second selection end is connected to the power battery;
  • the control unit is configured to control the fixed terminal to be connected to the first selection terminal or the second selection terminal.
  • the rectifier circuit, the original A first processing circuit formed by the side processing circuit, the transformer, and the first secondary side processing circuit is used to transmit a first portion of the mains energy to the power battery;
  • the rectification circuit, the primary side processing A second processing circuit formed by the circuit, the transformer, and the second secondary-side processing circuit is used to transmit a second part of the mains power to the low-voltage battery;
  • a third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is configured to use the first part of the power battery. Energy is fed back to the power battery; a fourth processing circuit formed by the primary-side processing circuit, the transformer, and the second secondary-side processing circuit is used to transfer a second portion of the power battery energy to the low voltage battery;
  • the switch K 1 processing circuit for controlling the first and the third processing circuit on or off; K 2 for controlling the switching of the second processing circuit and the fourth processing circuit On or off
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the total width of the primary winding, the first secondary winding, and the second secondary winding Inversely proportional.
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the primary winding, the first secondary winding, and the second The relationship of the total width of the secondary winding is:
  • L is the leakage inductance of the primary winding and the first secondary winding, the leakage inductance of the primary winding and the second secondary winding, and the first secondary winding and the The total leakage inductance of the leakage inductance of the second secondary winding, where N p is the number of turns of the primary winding, the MLT is the average turn length of a single turn, and b is the primary winding and the winding i The difference between the inside and outside diameters of the winding i is the first secondary winding or the second secondary winding, and w is the primary winding, the first secondary winding, and the second secondary winding. The total width of the side windings.
  • a distance between the first secondary winding and the second secondary winding ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding and the first secondary winding is a sandwich winding structure.
  • the first secondary processing circuit includes a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4, and a capacitor C 1 , wherein:
  • An anode of the diode D 1 is connected to a cathode of the diode D 2 and a first end of the first secondary winding;
  • the anode of the diode D 2 is connected to the anode of the diode D 4 and the anode of the capacitor C 1 respectively;
  • the negative electrode of the diode D 4 is connected to the positive electrode of the diode D 3 and the second end of the first secondary winding, respectively;
  • the negative electrode of the diode D 3 is connected to the negative electrode of the diode D 1 and the positive electrode of the capacitor C 1 respectively.
  • the first secondary processing circuit further includes a capacitor C 2 , where:
  • One end of the capacitor C 2 is connected to a second end of the first secondary winding, and the other end of the capacitor C 2 is connected to a positive electrode of the diode D 3 .
  • the second secondary processing circuit includes a diode D 5 , a diode D 6 , a diode D 7 , a capacitor C 3 , a capacitor C 4, and an inductor L 1 , wherein:
  • the negative electrode of the diode D 5 is respectively connected to the negative electrode of the diode D 6 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductance coil L 1 ;
  • the anode of the diode D 6 is connected to the first end of the second secondary winding, and the anode of the diode D 5 is connected to the second end of the second secondary winding;
  • a negative electrode of the capacitor C 3 is connected to a positive electrode of the diode D 7, a negative electrode of the capacitor C 4 , and a third end of the second secondary winding;
  • the other end of the inductance coil L 1 is connected to a positive electrode of the capacitor C 4 .
  • the second secondary processing circuit includes a diode D 7 , a diode D 8 , a diode D 9 , a diode D 10 , a diode D 11 , a capacitor C 3 , a capacitor C 4, and an inductance coil L 1 , wherein:
  • the anode of the diode D 8 is connected to the anode of the diode D 9 and the first end of the second secondary winding, respectively;
  • the anode of the diode D 9 is connected to the anode of the diode D 11 , the anode of the capacitor C 3 , the anode of the diode D 7 , and the anode of the capacitor C 4 , respectively;
  • the cathode of the diode D 11 is connected to the anode of the diode D 10 and the second end of the second secondary winding, respectively;
  • the negative electrode of the diode D 10 is connected to the negative electrode of the diode D 8 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductor L 1 ;
  • the other end of the inductance coil L 1 is connected to a positive electrode of the capacitor C 4 .
  • the primary processing circuit includes an inductor L 2 , an inductor L 3 , a capacitor C 5 , a capacitor C 6 , a switch S 1 , a switch S 2 , a switch S 3 , a switch S 4 , and a switch S 5 And diode D 12 , where:
  • One end of the inductance coil L 3 is connected to the anode of the diode D 12 and one end of the switch S 5 respectively;
  • the negative electrode of the diode D 12 is connected to the positive electrode of the capacitor C 6 , one end of the switch S 1 and one end of the switch S 3 , respectively;
  • the other end of the switch S 5 is connected to the negative electrode of the capacitor C 6 , one end of the switch S 2 and one end of the switch S 4 , respectively;
  • the other end of the switch S 1 is connected to the other end of the switch S 2 and one end of the inductance coil L 2 respectively;
  • the other end of the switch S 3 is connected to the other end of the switch S 4 and one end of the capacitor C 5 respectively;
  • the other end of the inductance coil L 2 is connected to the first end of the primary winding, and the other end of the capacitor C 5 is connected to the second end of the primary winding.
  • a second aspect of the embodiments of the present application provides an integrated vehicle charger, including the integrated vehicle charger circuit described in the first aspect.
  • a third aspect of the embodiments of the present application provides a method for manufacturing an integrated vehicle charger circuit, which is applied to a circuit including a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, a switch K 1 , and a switch K 2 , Power battery, low voltage battery, control unit and rectifier circuit integrated vehicle charger circuit, where:
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding, and the control unit includes a fixed end, a first selection end, and a second selection end;
  • the first secondary winding, the first secondary processing circuit, the switch K 1 and the power battery are connected in order; the second secondary winding, the second secondary processing circuit, The switch K 2 and the low-voltage battery are connected in sequence; one end of the primary processing circuit is connected to the primary winding, the other end of the primary processing circuit is connected to the fixed terminal; the rectifier is connected One end of the circuit is connected to the first selection end, and the other end of the rectification circuit is connected to mains power; the second selection end is connected to the power battery;
  • the control unit is configured to control the fixed terminal to be connected to the first selection terminal or the second selection terminal, to connect the fixed terminal to the first selection terminal, the rectifier circuit, and the primary side.
  • a first processing circuit formed by a processing circuit, the transformer, and the first secondary-side processing circuit is used to transmit a first portion of the energy of the mains to the power battery; the rectifier circuit, the primary-side processing circuit
  • a second processing circuit formed by the transformer and the second secondary side processing circuit for transmitting a second part of the mains power to the low-voltage battery;
  • the fixed end is connected to the second selection end, and a third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is configured to use a first part of the power of the power battery Feedback to the power battery; a fourth processing circuit formed by the primary-side processing circuit, the transformer, and the second secondary-side processing circuit is used to transmit a second part of the power battery energy to the low-voltage battery ;
  • the switch K 1 processing circuit for controlling the first and the third processing circuit on or off; K 2 for controlling the switching of the second processing circuit and the fourth processing circuit On or off
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding, and the total width of the primary winding, the first secondary winding, and the second secondary winding Inversely proportional.
  • the first processing circuit formed by the rectifier circuit, the primary-side processing circuit, the transformer, and the first secondary-side processing circuit is used to use the first part of the mains energy. Transmission to the power battery; the second processing circuit formed by the rectifier circuit, the primary processing circuit, the transformer, and the second secondary processing circuit is used to transfer the second part of the mains energy to the low voltage battery; when the fixed end of the control unit and the first When the two selection ends are connected, the third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is used to feed back the first part of the energy of the power battery to the power battery.
  • the fourth processing circuit formed by the processing circuit is used to transmit the second part of the power battery energy to the low-voltage battery; by controlling the distance between the first secondary winding and the second secondary winding of the transformer, the leakage inductance and the coupling are controlled , So that the energy of the city power is transmitted to the power battery and the low-voltage battery through different processing circuits, and the power battery ’s And the amount of feedback to the power transmitted to the low-voltage battery cell through different processing circuits. It solves the problem that the traditional integrated car charger has a single function and is difficult to meet the diversified use needs of the integrated car charger in future scenarios.
  • FIG. 1 is a schematic diagram of a first integrated vehicle-mounted charger circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a second integrated vehicle-mounted charger circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third integrated vehicle-mounted charger circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth integrated vehicle-mounted charger circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fifth integrated vehicle-mounted charger circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit according to an embodiment of the present application.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • OBC In the commonly used vehicle OBC solution, OBC is generally set independently of the DC / DC converter. Although this solution saves some structural parts and port wiring, it still requires a large number of electrical components, which is costly, bulky, and integrated. Lower.
  • the mains input enters the OBC main transformer through the EMC filter circuit, single-phase rectifier circuit, PFC power correction circuit, and OBC input-side switch circuit, and then transmits energy to the power battery pack through the OBC output-side rectifier circuit and OBC output-side filter circuit
  • the battery pack transmits energy to the DC / DC main transformer through the DC / DC output side EMC filter circuit and the DC / DC input side switch circuit, and the DC / DC main transformer passes the energy through the DC / DC output side rectifier circuit, DC /
  • the DC output side filter circuit is transmitted to the battery.
  • Existing electrical integration solutions can only achieve a single function of battery charging, and cannot meet the diverse needs of reality.
  • the integrated vehicle charger circuit includes a primary processing circuit, a transformer, a first secondary processing circuit, a second secondary processing circuit, Switch K 1 , switch K 2 , power battery, low voltage battery, control unit and rectifier circuit, of which:
  • the transformer includes a primary winding, a first secondary winding, and a second secondary winding.
  • the control unit includes a fixed end, a first selection end, and a second selection end.
  • the power battery are connected in sequence;
  • the second secondary winding, the second secondary processing circuit, the switch K 2 and the low-voltage battery are connected in sequence; one end of the primary processing circuit is connected to the primary winding, and the other end of the primary processing circuit is connected to the fixed end Connection; one end of the rectifier circuit is connected to the first selection end, and the other end of the rectification circuit is connected to the mains;
  • the second selection end is connected to the power battery;
  • the control unit is used for controlling the fixed end to be connected to the first selection end or the second selection end.
  • the first formed by the rectifier circuit, the primary processing circuit, the transformer, and the first secondary processing circuit is formed.
  • the processing circuit is used to transmit the first part of the mains energy to the power battery;
  • the second processing circuit formed by the rectifier circuit, the primary side processing circuit, the transformer, and the second secondary side processing circuit is used to transmit the second part of the city power to Low voltage battery;
  • the third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is used to feed back the first part of the power of the power battery to the power battery, and the primary processing
  • a fourth processing circuit formed by a circuit, a transformer, and a second secondary side processing circuit is used to transmit the second part of the power of the power battery to the low-voltage battery; by controlling the distance between the first secondary winding and the second secondary winding of the transformer , And then control the leakage inductance
  • FIG. 1 is a schematic diagram of a first integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, a first two side processing circuit 500, the switch K 1, the switch K 2, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a fixed end 801, a first selection end 802, and a second selection end 803.
  • the first secondary winding w 2 , the first secondary processing circuit 400, the switch K 1 and the power battery 600 are connected in sequence;
  • the second secondary winding w 3 , the second secondary processing circuit 500, the switch K 2 and the low-voltage battery 700 are connected in sequence;
  • the primary processing end of the circuit 200 is connected to the primary winding w 1, the other end of the primary processing circuit 200 is connected to the fixed end 801;
  • end of the rectifying circuit 900 and the first selection terminal 802 is connected to the other terminal of the rectifier circuit 900 connected to the mains;
  • the second selection terminal 803 is connected to the power battery 600;
  • the control unit 800 is configured to control the fixed terminal 801 to be connected to the first selection terminal 802 or the second selection terminal 803.
  • the rectifier circuit 900, the primary processing circuit 200, the transformer 300, and the first A first processing circuit formed by a secondary processing circuit 400 is used to transmit a first part of the mains power to the power battery 600; a rectifier circuit 900, a primary processing circuit 200, a transformer 300, and a second processing circuit formed by the second secondary processing circuit 500.
  • the second processing circuit is used for transmitting the second part of the energy of the city power to the low-voltage battery 700;
  • the third processing circuit formed by the primary processing circuit 200, the transformer 300, and the first secondary processing circuit 400 is used to feed back the first part of the energy of the power battery 600 to the power battery 600
  • a fourth processing circuit formed by the primary-side processing circuit 200, the transformer 300, and the second secondary-side processing circuit 500 is used to transfer the second part of the energy of the power battery 600 to the low-voltage battery 700;
  • K 1 for controlling the switch is turned on the first processing circuit and the third processing circuit or disconnection;
  • K 2 a switch for controlling conduction of the second processing circuit and the fourth processing circuit or disconnection;
  • the first processing circuit is turned on, the second processing circuit is turned on, and the vehicle charger circuit is integrated.
  • the energy of the city power can be transmitted to the power battery 600 and the low-voltage battery 700 at the same time;
  • the switch K 1 when the switch K 1 is closed and the switch K 2 is opened, the first processing circuit is turned on and the second processing circuit is turned off.
  • the integrated vehicle charger circuit only transfers the energy of the mains power to the power battery 600;
  • the switch K 1 when the switch K 1 is opened and the switch K 2 is closed, the first processing circuit is opened and the second processing circuit is turned on.
  • the integrated vehicle charger circuit only transfers the energy of the mains power to the low-voltage battery 700;
  • the third processing circuit is turned on, the fourth processing circuit is turned on, and the vehicle charger circuit is integrated
  • a part of the energy of the power battery 600 may be fed back to the power battery 600, and another part of the energy of the power battery 600 may be transmitted to the low-voltage battery 700;
  • the third processing circuit is turned on and the fourth processing circuit is turned off.
  • the integrated vehicle charger circuit only feeds back the energy of the power battery 600 to the power battery 600;
  • the third processing circuit is opened and the fourth processing circuit is turned on.
  • the integrated vehicle charger circuit only transfers the energy of the power battery 600 to the low-voltage battery 700;
  • the primary windings w of the total leakage inductance 1, w 2 of the first secondary winding and a second secondary winding 3 w L of the primary winding w 1, w 2 of the first secondary winding and a second The relationship between the total width w of the two secondary windings w 3 is:
  • L is the leakage inductance of the primary winding w 1 and the first secondary winding w 2 , the leakage inductance of the primary winding w 1 and the second secondary winding w 3 , and the first secondary winding w 2 and the second secondary winding.
  • N p is the number of turns of the primary winding w 1
  • MLT is the average turn length of a single turn
  • b is the difference between the inner and outer diameters of the primary winding w 1 and the winding i
  • the winding i Is the first secondary winding w 2 or the second secondary winding w 3
  • w is the total width of the primary winding w 1 , the first secondary winding w 2, and the second secondary winding w 3 .
  • a distance between the first secondary winding w 2 and the second secondary winding ranges from 5 mm to 50 mm.
  • the coil structure of the primary winding w 1 and the first secondary winding w 2 is a sandwich winding structure.
  • FIG. 2 is a schematic diagram of a second integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, a first two side processing circuit 500, the switch K 1, the switch K 2, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a switch K 3.
  • the switch K 3 includes a fixed terminal 1, a fixed terminal 2, a selection terminal 3, and a selection. Terminal 4, selection terminal 5 and selection terminal 6; among them, switch K 3 is a double-pole double-throw switch.
  • the primary-side processing circuit 200 includes an inductor L 2 , an inductor L 3 , a capacitor C 5 , a capacitor C 6 , a switch S 1 , a switch S 2 , a switch S 3 , a switch S 4 , a switch S 5, and a diode D 12 , wherein:
  • One end of the inductor L 3 is connected to the anode of the diode D 12 and one end of the switch S 5 respectively;
  • the negative electrode of the diode D 12 is respectively connected to the positive electrode of the capacitor C 6 , one end of the switch S 1 and one end of the switch S 3 ;
  • the other end of the switch S 5 is respectively connected to the negative electrode of the capacitor C 6 , one end of the switch S 2 and one end of the switch S 4 ;
  • the other end of the switch S 1 is connected to the other end of the switch S 2 and one end of the inductance coil L 2 respectively;
  • the other end of the switch S 3 is respectively connected to the other end of the switch S 4 and one end of the capacitor C 5 ;
  • the other end of the inductor L 2 is connected to the first end of the primary winding w 1 , and the other end of the capacitor C 5 is connected to the second end of the primary winding w 1 .
  • the other end of the inductance coil L 3 is connected to the fixed end 1, and the other end of the switch S 5 is connected to the fixed end 2.
  • the first secondary processing circuit 400 includes a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4, and a capacitor C 1 , where:
  • the anode of the diode D 1 is respectively connected to the anode of the diode D 2 and the first end of the first secondary winding w 2 ;
  • the anode of the diode D 2 is connected to the anode of the diode D 4 and the anode of the capacitor C 1 respectively;
  • the anode of the diode D 4 is connected to the anode of the diode D 3 and the second end of the first secondary winding w 2 respectively;
  • the anode of the diode D 3 is connected to the anode of the diode D 1 and the anode of the capacitor C 1 , respectively.
  • the second secondary-side processing circuit 500 includes a diode D 5 , a diode D 6 , a diode D 7 , a capacitor C 3 , a capacitor C 4, and an inductor L 1 , where:
  • the negative electrode of the diode D 5 is respectively connected to the negative electrode of the diode D 6 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductance coil L 1 ;
  • the anode of the diode D 6 is connected to the first end of the second secondary winding w 3 , and the anode of the diode D 5 is connected to the second end of the second secondary winding w 3 ;
  • the negative electrode of the capacitor C 3 is respectively connected to the positive electrode of the diode D 7 , the negative electrode of the capacitor C 4 and the third end of the second secondary winding w 3 ;
  • the other end of the inductance coil L 1 is connected to the positive electrode of the capacitor C4.
  • the rectifier circuit 900 includes a diode D 13 , a diode D 14 , a diode D 15 and a diode D 16 , wherein:
  • the negative electrode of the diode D 13 is connected to the negative electrode of the diode D 15 ;
  • Diode D the cathode of the diode D 15 is connected to the negative electrode 16;
  • a positive electrode and a diode of the diode D 14 D 16 is connected;
  • Cathode of the diode D 14 of the diode D 13 is connected to the positive electrode.
  • the diodes D 1 to D 7 and the diodes D 12 to D 16 are rectifier diodes.
  • the selection terminal 3 of the switch K 3 is connected to the anode of the diode D 13 and the anode of the diode D 15 respectively, and the selection terminal 5 of the switch K 3 is connected to the anode of the diode D 14 and the anode of the diode D 16 ; 1 is connected to the selection terminal 3, fixed terminal 2 is connected to the selection terminal 5 synchronously, that is, when the fixed terminal 1 is connected to the selection terminal 3, and the fixed terminal 2 is connected to the selection terminal 5, it is equivalent to the fixed end of the control unit and the first Select the end connection.
  • the switch selects the terminal K 3 and 4 are connected to one end of an end of the switch K 1 is the power of the battery 600, the switch K 6 selects the terminal 3 and the battery 600 respectively, the other end of the capacitor C 1 is negative, diode D
  • the positive terminal of 4 and the positive terminal of diode D 2 are connected; fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 synchronously, that is, when fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 When connected, it is equivalent to the fixed end of the control unit being connected to the second selection end.
  • the other end of the switch K 1 is respectively connected to the positive electrode of the capacitor C 1 , the negative electrode of the diode D 3 , and the negative electrode of the diode D 1 ; one end of the switch K 2 is respectively connected to the other end of the inductor L 1 and the capacitor C 4 .
  • the other end of the switch K 2 is connected to one end of the low-voltage battery 700; the other end of the low-voltage battery 700 is respectively connected to the negative electrode of the capacitor C 4 , the positive electrode of the diode D 7 , the negative electrode of the capacitor C 3 , and the second secondary winding w 3
  • the third end is connected.
  • one end of the mains is connected to the anode of the diode D 13 and the negative of the diode D 14 respectively, and the other end of the mains is connected to the anode of the diode D 15 and the negative of the diode D 16 respectively.
  • FIG. 3 is a schematic diagram of a third type of integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit includes a primary side processing circuit 200, a transformer 300, a first secondary side processing circuit 400, two side processing circuit 500, the switch K 1, the switch K 2, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a switch K 3.
  • the switch K 3 includes a fixed terminal 1, a fixed terminal 2, a selection terminal 3, and a selection. Terminal 4, selection terminal 5 and selection terminal 6; among them, switch K 3 is a double-pole double-throw switch.
  • the primary-side processing circuit 200 includes an inductor L 2 , an inductor L 3 , a capacitor C 5 , a capacitor C 6 , a switch S 1 , a switch S 2 , a switch S 3, and a diode D 12 , wherein:
  • One end of the inductance coil L 3 is respectively connected to the anode of the diode D 12 and one end of the switch S 3 ;
  • the cathode of the diode D 12 is connected to the anode of the capacitor C 6 and one end of the switch S 1 respectively;
  • the other end of the switch S 3 is respectively connected to the negative electrode of the capacitor C 6 , one end of the switch S 2 and one end of the capacitor C 5 ;
  • the other end of the switch S 1 is connected to the other end of the switch S 2 and one end of the inductance coil L 2 respectively;
  • the other end of the inductor L 2 is connected to the first end of the primary winding w 1 , and the other end of the capacitor C 5 is connected to the second end of the primary winding w 1 .
  • the other end of the inductance coil L 3 is connected to the fixed end 1, and the other end of the switch S 3 is connected to the fixed end 2.
  • the first secondary processing circuit 400 includes a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4, and a capacitor C 1 , where:
  • the anode of the diode D 1 is respectively connected to the anode of the diode D 2 and the first end of the first secondary winding w 2 ;
  • the anode of the diode D 2 is connected to the anode of the diode D 4 and the anode of the capacitor C 1 respectively;
  • the anode of the diode D 4 is connected to the anode of the diode D 3 and the second end of the first secondary winding w 2 respectively;
  • the anode of the diode D 3 is connected to the anode of the diode D 1 and the anode of the capacitor C 1 , respectively.
  • the second secondary-side processing circuit 500 includes a diode D 5 , a diode D 6 , a diode D 7 , a capacitor C 3 , a capacitor C 4, and an inductor L 1 , where:
  • the negative electrode of the diode D 5 is respectively connected to the negative electrode of the diode D 6 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductance coil L 1 ;
  • the anode of the diode D 6 is connected to the first end of the second secondary winding w 3 , and the anode of the diode D 5 is connected to the second end of the second secondary winding w 3 ;
  • the negative electrode of the capacitor C 3 is respectively connected to the positive electrode of the diode D 7 , the negative electrode of the capacitor C 4 and the third end of the second secondary winding w 3 ;
  • the other end of the inductance coil L 1 is connected to the positive electrode of the capacitor C4.
  • the rectifier circuit 900 includes a diode D 13 , a diode D 14 , a diode D 15 and a diode D 16 , wherein:
  • the negative electrode of the diode D 13 is connected to the negative electrode of the diode D 15 ;
  • Diode D the cathode of the diode D 15 is connected to the negative electrode 16;
  • a positive electrode and a diode of the diode D 14 D 16 is connected;
  • Cathode of the diode D 14 of the diode D 13 is connected to the positive electrode.
  • the diodes D 1 to D 7 and the diodes D 12 to D 16 are rectifier diodes.
  • the selection terminal 3 of the switch K 3 is connected to the anode of the diode D 13 and the anode of the diode D 15 respectively, and the selection terminal 5 of the switch K 3 is connected to the anode of the diode D 14 and the anode of the diode D 16 ; 1 is connected to the selection terminal 3, fixed terminal 2 is connected to the selection terminal 5 synchronously, that is, when the fixed terminal 1 is connected to the selection terminal 3, and the fixed terminal 2 is connected to the selection terminal 5, it is equivalent to the fixed end of the control unit and the first Select the end connection.
  • the switch selects the terminal K 3 and 4 are connected to one end of an end of the switch K 1 is the power of the battery 600, the switch K 6 selects the terminal 3 and the battery 600 respectively, the other end of the capacitor C 1 is negative, diode D
  • the positive terminal of 4 and the positive terminal of diode D 2 are connected; fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 synchronously, that is, when fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 When connected, it is equivalent to the fixed end of the control unit being connected to the second selection end.
  • the other end of the switch K 1 is respectively connected to the positive electrode of the capacitor C 1 , the negative electrode of the diode D 3 , and the negative electrode of the diode D 1 ; one end of the switch K 2 is respectively connected to the other end of the inductor L 1 and the capacitor C 4 .
  • the other end of the switch K 2 is connected to one end of the low-voltage battery 700; the other end of the low-voltage battery 700 is respectively connected to the negative electrode of the capacitor C 4 , the positive electrode of the diode D 7 , the negative electrode of the capacitor C 3 , and the second secondary winding w 3
  • the third end is connected.
  • one end of the mains is connected to the anode of the diode D 13 and the negative of the diode D 14 , and the other end of the mains is connected to the anode of the diode D 15 and the negative of the diode D 16 .
  • FIG. 4 is a schematic diagram of a fourth integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, a first two side processing circuit 500, the switch K 1, the switch K 2, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a switch K 3.
  • the switch K 3 includes a fixed terminal 1, a fixed terminal 2, a selection terminal 3, and a selection. Terminal 4, selection terminal 5 and selection terminal 6; among them, switch K 3 is a double-pole double-throw switch.
  • the primary-side processing circuit 200 includes an inductor L 2 , an inductor L 3 , a capacitor C 5 , a capacitor C 6 , a switch S 1 , a switch S 2 , a switch S 3, and a diode D 12 , wherein:
  • One end of the inductance coil L 3 is respectively connected to the anode of the diode D 12 and one end of the switch S 3 ;
  • the negative electrode of the diode D 12 is respectively connected to the positive electrode of the capacitor C 6 , one end of the switch S 1 and one end of the capacitor C 5 ;
  • the other end of the switch S 3 is connected to the negative electrode of the capacitor C 6 and one end of the switch S 2 respectively;
  • the other end of the switch S 1 is connected to the other end of the switch S 2 and the first end of the primary winding w 1 ;
  • the other end of the capacitor C and the inductor L 2 is connected to one end 5, L 2 the other end of the inductor and the primary winding 1 is connected to a second end of w.
  • the other end of the inductance coil L 3 is connected to the fixed end 1, and the other end of the switch S 3 is connected to the fixed end 2.
  • the first secondary processing circuit 400 includes a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4 , a capacitor C 1 and a capacitor C 2 , where:
  • the anode of the diode D 1 is respectively connected to the anode of the diode D 2 and the first end of the first secondary winding w 2 ;
  • the anode of the diode D 2 is connected to the anode of the diode D 4 and the anode of the capacitor C 1 respectively;
  • Diode D 4 are connected to the negative anode of the diode D and the capacitor C 3 is the end 2, the other end of the capacitor C 2 and the first secondary winding connected to the second end 2 of w;
  • the anode of the diode D 3 is connected to the anode of the diode D 1 and the anode of the capacitor C 1 , respectively.
  • the second secondary-side processing circuit 500 includes a diode D 7 , a diode D 8 , a diode D 9 , a diode D 10 , a diode D 11 , a capacitor C 3 , a capacitor C 4, and an inductor L 1 , wherein:
  • the anode of the diode D 8 is connected to the anode of the diode D 9 and the first end of the second secondary winding w 3 respectively;
  • the anode of the diode D 9 is connected to the anode of the diode D 11 , the anode of the capacitor C 3 , the anode of the diode D 7 , and the anode of the capacitor C 4 , respectively;
  • the anode of the diode D 11 is connected to the anode of the diode D 10 and the second end of the second secondary winding w 3 respectively;
  • the negative electrode of the diode D 10 is respectively connected to the negative electrode of the diode D 8 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductor L 1 ;
  • the other end of the inductance coil L 1 is connected to the positive electrode of the capacitor C 4 .
  • the rectifier circuit 900 includes a diode D 13 , a diode D 14 , a diode D 15 and a diode D 16 , wherein:
  • the negative electrode of the diode D 13 is connected to the negative electrode of the diode D 15 ;
  • Diode D the cathode of the diode D 15 is connected to the negative electrode 16;
  • a positive electrode and a diode of the diode D 14 D 16 is connected;
  • Cathode of the diode D 14 of the diode D 13 is connected to the positive electrode.
  • the diodes D 1 to D 4 and the diodes D 7 to D 16 are rectifier diodes.
  • the selection terminal 3 of the switch K 3 is connected to the anode of the diode D 13 and the anode of the diode D 15 respectively, and the selection terminal 5 of the switch K 3 is connected to the anode of the diode D 14 and the anode of the diode D 16 ; 1 is connected to the selection terminal 3, fixed terminal 2 is connected to the selection terminal 5 synchronously, that is, when the fixed terminal 1 is connected to the selection terminal 3, and the fixed terminal 2 is connected to the selection terminal 5, it is equivalent to the fixed end of the control unit and the first Select the end connection.
  • the switch selects the terminal K 3 and 4 are connected to one end of an end of the switch K 1 is the power of the battery 600, the switch K 6 selects the terminal 3 and the battery 600 respectively, the other end of the capacitor C 1 is negative, diode D
  • the positive terminal of 4 and the positive terminal of diode D 2 are connected; fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 synchronously, that is, when fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 When connected, it is equivalent to the fixed end of the control unit being connected to the second selection end.
  • the other end of the switch K 1 is respectively connected to the positive electrode of the capacitor C 1 , the negative electrode of the diode D 3 , and the negative electrode of the diode D 1 ; one end of the switch K 2 is respectively connected to the other end of the inductor L 1 and the capacitor C 4 .
  • the other end of switch K 2 is connected to one end of low-voltage battery 700; the other end of low-voltage battery 700 is respectively connected to the negative electrode of capacitor C 4 , the positive electrode of diode D 7 , the negative electrode of capacitor C 3 , the positive electrode of diode D 11 , and the diode.
  • the positive terminal of D 9 is connected.
  • one end of the mains is connected to the anode of the diode D 13 and the negative of the diode D 14 , and the other end of the mains is connected to the anode of the diode D 15 and the negative of the diode D 16 .
  • FIG. 5 is a schematic diagram of a fifth integrated vehicle charger circuit provided by an embodiment of the present application.
  • the integrated vehicle charger circuit includes a primary-side processing circuit 200, a transformer 300, a first secondary-side processing circuit 400, a first two side processing circuit 500, the switch K 1, the switch K 2, battery 600, low voltage battery 700, the control unit 800 and a rectifying circuit 900, wherein:
  • the transformer 300 includes a primary winding w 1 , a first secondary winding w 2, and a second secondary winding w 3.
  • the control unit 800 includes a switch K 3.
  • the switch K 3 includes a fixed terminal 1, a fixed terminal 2, a selection terminal 3, and a selection. Terminal 4, selection terminal 5 and selection terminal 6; among them, switch K 3 is a double-pole double-throw switch.
  • the primary-side processing circuit 200 includes an inductor L 2 , an inductor L 3 , a capacitor C 5 , a capacitor C 6 , a capacitor C 7 , a switch S 1 , a switch S 2 , a switch S 3, and a diode D 12 , wherein:
  • One end of the inductance coil L 3 is respectively connected to the anode of the diode D 12 and one end of the switch S 3 ;
  • the negative electrode of the diode D 12 is respectively connected to the positive electrode of the capacitor C 7 , one end of the switch S 1 and one end of the capacitor C 5 ;
  • the other end of the switch S 3 is respectively connected to the negative electrode of the capacitor C 7 , one end of the switch S 2 and one end of the capacitor C 6 ;
  • the other end of the switch S 1 is connected to the other end of the switch S 2 and the first end of the primary winding w 1 ;
  • the other end of the inductance coil L 3 is connected to the fixed end 1, and the other end of the switch S 3 is connected to the fixed end 2.
  • the first secondary processing circuit 400 includes a diode D 1 , a diode D 2 , a diode D 3 , a diode D 4, and a capacitor C 1 , where:
  • the anode of the diode D 1 is respectively connected to the anode of the diode D 2 and the first end of the first secondary winding w 2 ;
  • the anode of the diode D 2 is connected to the anode of the diode D 4 and the anode of the capacitor C 1 respectively;
  • the anode of the diode D 4 is connected to the anode of the diode D 3 and the second end of the first secondary winding w 2 respectively;
  • the anode of the diode D 3 is connected to the anode of the diode D 1 and the anode of the capacitor C 1 , respectively.
  • the second secondary-side processing circuit 500 includes a diode D 5 , a diode D 6 , a diode D 7 , a capacitor C 3 , a capacitor C 4, and an inductor L 1 , where:
  • the negative electrode of the diode D 5 is respectively connected to the negative electrode of the diode D 6 , the positive electrode of the capacitor C 3 , the negative electrode of the diode D 7 , and one end of the inductance coil L 1 ;
  • the anode of the diode D 6 is connected to the first end of the second secondary winding w 3 , and the anode of the diode D 5 is connected to the second end of the second secondary winding w 3 ;
  • the negative electrode of the capacitor C 3 is respectively connected to the positive electrode of the diode D 7 , the negative electrode of the capacitor C 4 and the third end of the second secondary winding w 3 ;
  • the other end of the inductance coil L 1 is connected to the positive electrode of the capacitor C4.
  • the rectifier circuit 900 includes a diode D 13 , a diode D 14 , a diode D 15 and a diode D 16 , wherein:
  • the negative electrode of the diode D 13 is connected to the negative electrode of the diode D 15 ;
  • Diode D the cathode of the diode D 15 is connected to the negative electrode 16;
  • a positive electrode and a diode of the diode D 14 D 16 is connected;
  • Cathode of the diode D 14 of the diode D 13 is connected to the positive electrode.
  • the diodes D 1 to D 7 and the diodes D 12 to D 16 are rectifier diodes.
  • the selection terminal 3 of the switch K 3 is connected to the anode of the diode D 13 and the anode of the diode D 15 respectively, and the selection terminal 5 of the switch K 3 is connected to the anode of the diode D 14 and the anode of the diode D 16 ; 1 is connected to the selection terminal 3, fixed terminal 2 is connected to the selection terminal 5 synchronously, that is, when the fixed terminal 1 is connected to the selection terminal 3, and the fixed terminal 2 is connected to the selection terminal 5, it is equivalent to the fixed end of the control unit and the first Select the end connection.
  • the switch selects the terminal K 3 and 4 are connected to one end of an end of the switch K 1 is the power of the battery 600, the switch K 6 selects the terminal 3 and the battery 600 respectively, the other end of the capacitor C 1 is negative, diode D
  • the positive terminal of 4 and the positive terminal of diode D 2 are connected; fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 synchronously, that is, when fixed terminal 1 is connected to selection terminal 4 and fixed terminal 2 is connected to selection terminal 6 When connected, it is equivalent to the fixed end of the control unit being connected to the second selection end.
  • the other end of the switch K 1 is respectively connected to the positive electrode of the capacitor C 1 , the negative electrode of the diode D 3 , and the negative electrode of the diode D 1 ; one end of the switch K 2 is respectively connected to the other end of the inductor L 1 and the capacitor C 4 .
  • the other end of the switch K 2 is connected to one end of the low-voltage battery 700; the other end of the low-voltage battery 700 is respectively connected to the negative electrode of the capacitor C 4 , the positive electrode of the diode D 7 , the negative electrode of the capacitor C 3 , and the second secondary winding w 3
  • the third end is connected.
  • one end of the mains is connected to the anode of the diode D 13 and the negative of the diode D 14 , and the other end of the mains is connected to the anode of the diode D 15 and the negative of the diode D 16 .
  • the switches K 1 , K 2, and K 3 in the integrated vehicle charger circuit all include at least one of the following: a relay KA, a metal half field effect transistor MOSFET, a thyristor SCR, and Insulated gate bipolar transistor IGBT.
  • An embodiment of the present application provides an integrated vehicle charger, including the integrated vehicle charger circuit described above.
  • FIG. 6 is a schematic flowchart of a method for manufacturing an integrated vehicle charger circuit provided by an embodiment of the present application, and is applied to a circuit including a primary processing circuit, a transformer, a first secondary processing circuit, and a second secondary processing.
  • the method includes the fixed terminal, the first selection terminal and the second selection terminal.
  • the manufacturing method of the integrated vehicle charger circuit includes:
  • Step 601 sequentially connecting the first secondary winding, a first secondary processing circuit, a battery and a power switch K 1.
  • Step 602 Connect the second secondary winding, the second secondary processing circuit, the switch K 2 and the low-voltage battery in sequence.
  • Step 603 Connect one end of the primary processing circuit to the primary winding, and connect the other end of the primary processing circuit to the fixed end.
  • Step 604 Connect one end of the rectifier circuit to the first selection end, and connect the other end of the rectifier circuit to the mains power.
  • Step 605 Connect the second selection end to the power battery.
  • the control unit is used for controlling the fixed end to be connected to the first selection end or the second selection end.
  • Step 606 Connect the fixed end to the first selection end.
  • the first processing circuit formed by the rectification circuit, the primary processing circuit, the transformer, and the first secondary processing circuit is used to transmit the first part of the mains energy to the power battery.
  • Rectification The second processing circuit formed by the circuit, the primary processing circuit, the transformer, and the second secondary processing circuit is used to transfer the second part of the mains energy to the low-voltage battery;
  • Step 607 Connect the fixed end to the second selection end, and the third processing circuit formed by the primary processing circuit, the transformer, and the first secondary processing circuit is used to feed back the first part of the power of the power battery to the power battery; the primary processing circuit A fourth processing circuit formed by the transformer, and the second secondary processing circuit is used to transmit the second part of the energy of the power battery to the low-voltage battery;
  • K 1 for controlling the switch is turned on the first processing circuit and the third processing circuit or disconnection;
  • K 2 a switch for controlling conduction of the second processing circuit and the fourth processing circuit or disconnection;
  • the total leakage inductance of the primary winding, the first secondary winding, and the second secondary winding is inversely proportional to the total width of the primary winding, the first secondary winding, and the second secondary winding.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the above units is only a logical function division.
  • multiple units or components may be combined or integrated.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种集成车载充电机电路,当控制单元的固定端与第一选择端连接时,第一处理电路用于将市电的第一部分能量传输到动力电池(600),第二处理电路用于将市电的第二部分能量传输到低压电池(700);当控制单元的固定端与第二选择端连接时,第三处理电路用于将动力电池(600)的第一部分能量回馈到动力电池(600),第四处理电路用于将动力电池(600)的第二部分能量传输到低压电池(700)。通过将市电传输到动力电池和低压电池,动力电池可以将能量传输到动力电池和低压电池,使车载充电机满足未来场景中多样化使用需求。还公开了一种包括上述集成车载充电机电路的集成车载充电机和集成车载充电机电路的制造方法。

Description

集成车载充电机电路及制造方法、集成车载充电机 技术领域
本申请涉及电动汽车充电技术领域,尤其涉及一种集成车载充电机电路及制造方法、集成车载充电机。
背景技术
近年来,为了保护环境和减少不可再生资源的使用,在汽车制造和应用领域逐渐引入新能源。电动汽车是新能源汽车的主力军,电动汽车又分为纯电动汽车、混合动力汽车和燃料电池汽车。随着新能源汽车逐渐成为未来汽车行业的重要发展方向,车载电子设备(比如DC/DC变换器和集成车载充电机)呈小型化、集成化和高功率密集化的趋势。目前,集成车载充电机电路已实现通过市电为动力电池组或者蓄电池充电的功能,但该功能较为单一,难以满足集成车载充电机在未来场景中的多样化使用需求。
发明内容
本申请实施例提供一种集成车载充电机电路及制造方法、集成车载充电机,用于将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。
本申请实施例第一方面提供一种集成车载充电机电路,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路,其中:
所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端,所述第一副边绕组、所述第一副边处理电路、所述开关K 1以及所述动力电池依次连接;所述第二副边绕组、所述第二副边处理电路、所述开关K 2以及所述低压电池依次连接;所述原边处理电路的一端与所述原边绕组连接,所述原边处理电路的另一端与所述固定端连接;所述整流电路的一端与所述第一选择端连接,所述整流电路的另一端与市电连接;所述第二选择端与所述动力电池连接;
所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,当所述固定端与所述第一选择端连接时,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
当所述固定端与所述第二选择端连接时,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;所述开关K 2用于控制所述第二处理电路及所述第四处理电路的导通或断开;
所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
在一个实施例中,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度的关系式为:
Figure PCTCN2018106319-appb-000001
其中,所述L为所述原边绕组与所述第一副边绕组的漏感、所述原边绕组与所述第二副边绕组的漏感以及所述第一副边绕组与所述第二副边绕组的漏感的总漏感,所述N p为所述原边绕组的匝数,所述MLT为单匝的平均匝长,所述b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,所述w为所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度。
在一个实施例中,所述第一副边绕组与所述第二副边绕组之间的距离范围为5mm-50mm。
在一个实施例中,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
在一个实施例中,所述第一副边处理电路包括二极管D 1、二极管D 2、二极管D 3、二极管D 4和电容C 1,其中:
所述二极管D 1的正极分别与所述二极管D 2的负极以及所述第一副边绕组的第一端连接;
所述二极管D 2的正极分别与所述二极管D 4的正极以及所述电容C 1的负极连接;
所述二极管D 4的负极分别与所述二极管D 3的正极以及所述第一副边绕组的第二端连接;
所述二极管D 3的负极分别与所述二极管D 1的负极以及所述电容C 1的正极连接。
在一个实施例中,所述第一副边处理电路还包括电容C 2,其中:
所述电容C 2的一端与所述第一副边绕组的第二端连接,所述电容C 2的另一端与所述二极管D 3的正极连接。
在一个实施例中,所述第二副边处理电路包括二极管D 5、二极管D 6、二极管D 7、电容C 3、电容C 4和电感线圈L 1,其中:
所述二极管D 5的负极分别与所述二极管D 6的负极、所述电容C 3的正极、所述二极管D 7的负极以及所述电感线圈L 1的一端连接;
所述二极管D 6的正极与所述第二副边绕组的第一端连接,所述二极管D 5的正极与所述第二副边绕组的第二端连接;
所述电容C 3的负极分别与所述二极管D 7的正极、所述电容C 4的负极以及所述第二副边绕组的第三端连接;
所述电感线圈L 1的另一端与所述电容C 4的正极连接。
在一个实施例中,所述第二副边处理电路包括二极管D 7、二极管D 8、二极管D 9、二 极管D 10、二极管D 11、电容C 3、电容C 4和电感线圈L 1,其中:
所述二极管D 8的正极分别与所述二极管D 9的负极以及所述第二副边绕组的第一端连接;
所述二极管D 9的正极分别与所述二极管D 11的正极、所述电容C 3的负极、所述二极管D 7的正极以及所述电容C 4的负极连接;
所述二极管D 11的负极分别与所述二极管D 10的正极以及所述第二副边绕组的第二端连接;
所述二极管D 10的负极分别与所述二极管D 8的负极、所述电容C 3的正极、所述二极管D 7的负极以及所述电感线圈L 1的一端连接;
所述电感线圈L 1的另一端与所述电容C 4的正极连接。
在一个实施例中,所述原边处理电路包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、开关S 1、开关S 2、开关S 3、开关S 4、开关S 5和二极管D 12,其中:
所述电感线圈L 3的一端分别与所述二极管D 12的正极以及所述开关S 5的一端连接;
所述二极管D 12的负极分别与所述电容C 6的正极、所述开关S 1的一端以及所述开关S 3的一端连接;
所述开关S 5的另一端分别与所述电容C 6的负极、所述开关S 2的一端以及所述开关S 4的一端连接;
所述开关S 1的另一端分别与所述开关S 2的另一端以及所述电感线圈L 2的一端连接;
所述开关S 3的另一端分别与所述开关S 4的另一端以及所述电容C 5的一端连接;
所述电感线圈L 2的另一端与所述原边绕组的第一端连接,所述电容C 5的另一端与所述原边绕组的第二端连接。
本申请实施例第二方面提供一种集成车载充电机,包括第一方面所述的集成车载充电机电路。
本申请实施例第三方面提供一种集成车载充电机电路的制造方法,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中:
所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;
将所述第一副边绕组、所述第一副边处理电路、所述开关K 1以及所述动力电池依次连接;将所述第二副边绕组、所述第二副边处理电路、所述开关K 2以及所述低压电池依次连接;将所述原边处理电路的一端与所述原边绕组连接,将所述原边处理电路的另一端与所述固定端连接;将所述整流电路的一端与所述第一选择端连接,将所述整流电路的另一端与市电连接;将所述第二选择端与所述动力电池连接;
所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,将所述固定端与所述第一选择端连接,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第 二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
将所述固定端与所述第二选择端连接,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;所述开关K 2用于控制所述第二处理电路及所述第四处理电路的导通或断开;
所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
在本申请中,当控制单元的固定端与第一选择端连接时,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;当控制单元的固定端与第二选择端连接时,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池,原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;通过控制变压器的第一副边绕组与第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
图1是本申请实施例提供的第一种集成车载充电机电路的示意图;
图2是本申请实施例提供的第二种集成车载充电机电路的示意图;
图3是本申请实施例提供的第三种集成车载充电机电路的示意图;
图4是本申请实施例提供的第四种集成车载充电机电路的示意图;
图5是本申请实施例提供的第五种集成车载充电机电路的示意图;
图6是本申请实施例提供的一种集成车载充电机电路的制造方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在常用的车载OBC解决方案中,OBC一般独立于DC/DC变换器设置,该方案虽然节省了部分结构件和端口配线,但仍需要大量的电气元件,成本高、体积大,集成化程度较低。市电输入通过EMC滤波电路、单相整流电路、PFC功率校正电路、OBC输入侧开关电路进入OBC主变压器,再通过OBC输出侧整流电路、OBC输出侧滤波电路将能量传递给动力电池组,动力电池组将能量通过DC/DC输出侧EMC滤波电路、DC/DC输入侧开关的电路传递给DC/DC主变压器,并通过DC/DC主变压器将能量通过DC/DC输出侧整流电路、DC/DC输出侧滤波电路传输给蓄电池。现有的电气集成方案只能实现电池充电的单一功能,并不能满足现实的多样性需求。
针对上述问题,本申请实施例提出一种集成车载充电机电路及集成车载充电机,该集成车载充电机电路包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路,其中:
变压器包括原边绕组、第一副边绕组和第二副边绕组,控制单元包括固定端、第一选择端和第二选择端,第一副边绕组、第一副边处理电路、开关K 1以及动力电池依次连接;第二副边绕组、第二副边处理电路、开关K 2以及低压电池依次连接;原边处理电路的一端与原边绕组连接,原边处理电路的另一端与固定端连接;整流电路的一端与第一选择端连接,整流电路的另一端与市电连接;第二选择端与动力电池连接;
控制单元用于控制固定端与第一选择端或第二选择端连接,当固定端与第一选择端连接时,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;当固定端与第二选择端连接时,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池,原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;通过控制变压器的第一副边绕组与第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同 的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
下面结合附图对本申请实施例进行介绍。
请参阅图1,图1是本申请实施例提供的第一种集成车载充电机电路的示意图,该集成车载充电机电路包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、开关K 2、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包括固定端801、第一选择端802和第二选择端803,第一副边绕组w 2、第一副边处理电路400、开关K 1以及动力电池600依次连接;第二副边绕组w 3、第二副边处理电路500、开关K 2以及低压电池700依次连接;原边处理电路200的一端与原边绕组w 1连接,原边处理电路200的另一端与固定端801连接;整流电路900的一端与第一选择端802连接,整流电路900的另一端与市电连接;第二选择端803与动力电池600连接;
控制单元800用于控制固定端801与第一选择端802或第二选择端803连接,当固定端801与第一选择端802连接时,整流电路900、原边处理电路200、变压器300以及第一副边处理电路400形成的第一处理电路用于将市电的第一部分能量传输到动力电池600;整流电路900、原边处理电路200、变压器300以及第二副边处理电路500形成的第二处理电路用于将市电的第二部分能量传输到低压电池700;
当固定端801与第二选择端803连接时,原边处理电路200、变压器300以及第一副边处理电路400形成的第三处理电路用于将动力电池600的第一部分能量回馈到动力电池600;原边处理电路200、变压器300以及第二副边处理电路500形成的第四处理电路用于将动力电池600的第二部分能量传输到低压电池700;
开关K 1用于控制第一处理电路及第三处理电路的导通或断开;开关K 2用于控制第二处理电路及第四处理电路的导通或断开;
作为一种可能的实施方式,当固定端801与第一选择端802连接,开关K 1及开关K 2均闭合时,第一处理电路导通,第二处理电路导通,集成车载充电机电路可将市电的能量同时传输到动力电池600和低压电池700;
同理,当开关K 1闭合、开关K 2断开时,第一处理电路导通,第二处理电路断开,集成车载充电机电路仅将市电的能量传输到动力电池600;
同理,当开关K 1断开、开关K 2闭合时,第一处理电路断开,第二处理电路导通,集成车载充电机电路仅将市电的能量传输到低压电池700;
作为一种可能的实施方式,当固定端801与第二选择端803连接,开关K 1及开关K 2均闭合时,第三处理电路导通,第四处理电路导通,集成车载充电机电路可将动力电池600的一部分能量回馈到动力电池600,将动力电池600的另一部分能量传输到低压电池700;
同理,当开关K 1闭合、开关K 2断开时,第三处理电路导通,第四处理电路断开,集成车载充电机电路仅将动力电池600的能量回馈到动力电池600;
同理,当开关K 1断开、开关K 2闭合时,第三处理电路断开,第四处理电路导通,集 成车载充电机电路仅将动力电池600的能量传输到低压电池700;
原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总漏感L与原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度w成反比例关系。
作为一种可能的实施方式,原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总漏感L与原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度w的关系式为:
Figure PCTCN2018106319-appb-000002
其中,L为原边绕组w 1与第一副边绕组w 2的漏感、原边绕组w 1与第二副边绕组w 3的漏感以及第一副边绕组w 2与第二副边绕组w 3的漏感的总漏感,N p为原边绕组w 1的匝数,MLT为单匝的平均匝长,b为原边绕组w 1与绕组i的内外径之差,绕组i为第一副边绕组w 2或第二副边绕组w 3,w为原边绕组w 1、第一副边绕组w 2以及第二副边绕组w 3的总宽度。
作为一种可能的实施方式,第一副边绕组w 2与第二副边绕组之间的距离范围为5mm-50mm。
作为一种可能的实施方式,原边绕组w 1与第一副边绕组w 2的线圈结构为三明治绕法结构。
请参阅图2,图2是本申请实施例提供的第二种集成车载充电机电路的示意图,该集成车载充电机电路包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、开关K 2、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包括开关K 3,开关K 3包括固定端1、固定端2、选择端3、选择端4、选择端5以及选择端6;其中,开关K 3为双刀双掷开关。
原边处理电路200包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、开关S 1、开关S 2、开关S 3、开关S 4、开关S 5和二极管D 12,其中:
电感线圈L 3的一端分别与二极管D 12的正极以及开关S 5的一端连接;
二极管D 12的负极分别与电容C 6的正极、开关S 1的一端以及开关S 3的一端连接;
开关S 5的另一端分别与电容C 6的负极、开关S 2的一端以及开关S 4的一端连接;
开关S 1的另一端分别与开关S 2的另一端以及电感线圈L 2的一端连接;
开关S 3的另一端分别与开关S 4的另一端以及电容C 5的一端连接;
电感线圈L 2的另一端与原边绕组w 1的第一端连接,电容C 5的另一端与原边绕组w 1的第二端连接。
可选地,电感线圈L 3的另一端与固定端1连接,开关S 5的另一端与固定端2连接。
第一副边处理电路400包括二极管D 1、二极管D 2、二极管D 3、二极管D 4和电容C 1,其中:
二极管D 1的正极分别与二极管D 2的负极以及第一副边绕组w 2的第一端连接;
二极管D 2的正极分别与二极管D 4的正极以及电容C 1的负极连接;
二极管D 4的负极分别与二极管D 3的正极以及第一副边绕组w 2的第二端连接;
二极管D 3的负极分别与二极管D 1的负极以及电容C 1的正极连接。
第二副边处理电路500包括二极管D 5、二极管D 6、二极管D 7、电容C 3、电容C 4和电感线圈L 1,其中:
二极管D 5的负极分别与二极管D 6的负极、电容C 3的正极、二极管D 7的负极以及电感线圈L 1的一端连接;
二极管D 6的正极与第二副边绕组w 3的第一端连接,二极管D5的正极与第二副边绕组w 3的第二端连接;
电容C 3的负极分别与二极管D 7的正极、电容C 4的负极以及第二副边绕组w 3的第三端连接;
电感线圈L 1的另一端与电容C4的正极连接。
整流电路900包括二极管D 13、二极管D 14、二极管D 15和二极管D 16,其中:
二极管D 13的负极与二极管D 15的负极连接;
二极管D 15的正极与二极管D 16的负极连接;
二极管D 16的正极与二极管D 14的正极连接;
二极管D 14的负极与二极管D 13的正极连接。
其中,二极管D 1至二极管D 7及二极管D 12至二极管D 16均为整流二极管。
可选地,开关K 3的选择端3分别与二极管D 13的负极以及二极管D 15的负极连接,开关K 3的选择端5分别与二极管D 14的正极以及二极管D 16的正极连接;固定端1与选择端3连接、固定端2与选择端5连接是同步的,即当固定端1与选择端3连接、固定端2与选择端5连接时,相当于控制单元的固定端与第一选择端连接。
可选地,开关K 3的选择端4分别与开关K 1的一端以及动力电池600的一端连接,开关K 3的选择端6分别与动力电池600的另一端、电容C 1的负极、二极管D 4的正极以及二极管D 2的正极连接;固定端1与选择端4连接、固定端2与选择端6连接是同步的,即当固定端1与选择端4连接、固定端2与选择端6连接时,相当于控制单元的固定端与第二选择端连接。
可选地,开关K 1的另一端分别与电容C 1的正极、二极管D 3的负极以及二极管D 1的负极连接;开关K 2的一端分别与电感线圈L 1的另一端以及电容C 4的正极连接,开关K 2的另一端与低压电池700的一端连接;低压电池700的另一端分别与电容C 4的负极、二极管D 7的正极、电容C 3的负极以及第二副边绕组w 3的第三端连接。
可选地,市电的一端分别与二极管D 13的正极以及二极管D 14的负极连接,市电的另一端分别与二极管D 15的正极和二极管D 16的负极连接。
请参阅图3,图3是本申请实施例提供的第三种集成车载充电机电路的示意图,该集成车载充电机电路包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、开关K 2、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包 括开关K 3,开关K 3包括固定端1、固定端2、选择端3、选择端4、选择端5以及选择端6;其中,开关K 3为双刀双掷开关。
原边处理电路200包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、开关S 1、开关S 2、开关S 3和二极管D 12,其中:
电感线圈L 3的一端分别与二极管D 12的正极以及开关S 3的一端连接;
二极管D 12的负极分别与电容C 6的正极以及开关S 1的一端连接;
开关S 3的另一端分别与电容C 6的负极、开关S 2的一端以及电容C 5的一端连接;
开关S 1的另一端分别与开关S 2的另一端以及电感线圈L 2的一端连接;
电感线圈L 2的另一端与原边绕组w 1的第一端连接,电容C 5的另一端与原边绕组w 1的第二端连接。
可选地,电感线圈L 3的另一端与固定端1连接,开关S 3的另一端与固定端2连接。
第一副边处理电路400包括二极管D 1、二极管D 2、二极管D 3、二极管D 4和电容C 1,其中:
二极管D 1的正极分别与二极管D 2的负极以及第一副边绕组w 2的第一端连接;
二极管D 2的正极分别与二极管D 4的正极以及电容C 1的负极连接;
二极管D 4的负极分别与二极管D 3的正极以及第一副边绕组w 2的第二端连接;
二极管D 3的负极分别与二极管D 1的负极以及电容C 1的正极连接。
第二副边处理电路500包括二极管D 5、二极管D 6、二极管D 7、电容C 3、电容C 4和电感线圈L 1,其中:
二极管D 5的负极分别与二极管D 6的负极、电容C 3的正极、二极管D 7的负极以及电感线圈L 1的一端连接;
二极管D 6的正极与第二副边绕组w 3的第一端连接,二极管D5的正极与第二副边绕组w 3的第二端连接;
电容C 3的负极分别与二极管D 7的正极、电容C 4的负极以及第二副边绕组w 3的第三端连接;
电感线圈L 1的另一端与电容C4的正极连接。
整流电路900包括二极管D 13、二极管D 14、二极管D 15和二极管D 16,其中:
二极管D 13的负极与二极管D 15的负极连接;
二极管D 15的正极与二极管D 16的负极连接;
二极管D 16的正极与二极管D 14的正极连接;
二极管D 14的负极与二极管D 13的正极连接。
其中,二极管D 1至二极管D 7及二极管D 12至二极管D 16均为整流二极管。
可选地,开关K 3的选择端3分别与二极管D 13的负极以及二极管D 15的负极连接,开关K 3的选择端5分别与二极管D 14的正极以及二极管D 16的正极连接;固定端1与选择端3连接、固定端2与选择端5连接是同步的,即当固定端1与选择端3连接、固定端2与选择端5连接时,相当于控制单元的固定端与第一选择端连接。
可选地,开关K 3的选择端4分别与开关K 1的一端以及动力电池600的一端连接,开 关K 3的选择端6分别与动力电池600的另一端、电容C 1的负极、二极管D 4的正极以及二极管D 2的正极连接;固定端1与选择端4连接、固定端2与选择端6连接是同步的,即当固定端1与选择端4连接、固定端2与选择端6连接时,相当于控制单元的固定端与第二选择端连接。
可选地,开关K 1的另一端分别与电容C 1的正极、二极管D 3的负极以及二极管D 1的负极连接;开关K 2的一端分别与电感线圈L 1的另一端以及电容C 4的正极连接,开关K 2的另一端与低压电池700的一端连接;低压电池700的另一端分别与电容C 4的负极、二极管D 7的正极、电容C 3的负极以及第二副边绕组w 3的第三端连接。
可选地,市电的一端分别与二极管D 13的正极以及二极管D 14的负极连接,市电的另一端分别与二极管D 15的正极以及二极管D 16的负极连接。
请参阅图4,图4是本申请实施例提供的第四种集成车载充电机电路的示意图,该集成车载充电机电路包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、开关K 2、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包括开关K 3,开关K 3包括固定端1、固定端2、选择端3、选择端4、选择端5以及选择端6;其中,开关K 3为双刀双掷开关。
原边处理电路200包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、开关S 1、开关S 2、开关S 3和二极管D 12,其中:
电感线圈L 3的一端分别与二极管D 12的正极以及开关S 3的一端连接;
二极管D 12的负极分别与电容C 6的正极、开关S 1的一端以及电容C 5的一端连接;
开关S 3的另一端分别与电容C 6的负极以及开关S 2的一端连接;
开关S 1的另一端分别与开关S 2的另一端以及原边绕组w 1的第一端连接;
电容C 5的另一端与电感线圈L 2的一端连接,电感线圈L 2的另一端与原边绕组w 1的第二端连接。
可选地,电感线圈L 3的另一端与固定端1连接,开关S 3的另一端与固定端2连接。
第一副边处理电路400包括二极管D 1、二极管D 2、二极管D 3、二极管D 4、电容C 1和电容C 2,其中:
二极管D 1的正极分别与二极管D 2的负极以及第一副边绕组w 2的第一端连接;
二极管D 2的正极分别与二极管D 4的正极以及电容C 1的负极连接;
二极管D 4的负极分别与二极管D 3的正极以及电容C 2的一端连接,电容C 2的另一端与第一副边绕组w 2的第二端连接;
二极管D 3的负极分别与二极管D 1的负极以及电容C 1的正极连接。
第二副边处理电路500包括二极管D 7、二极管D 8、二极管D 9、二极管D 10、二极管D 11、电容C 3、电容C 4和电感线圈L 1,其中:
二极管D 8的正极分别与二极管D 9的负极以及第二副边绕组w 3的第一端连接;
二极管D 9的正极分别与二极管D 11的正极、电容C 3的负极、二极管D 7的正极以及电 容C 4的负极连接;
二极管D 11的负极分别与二极管D 10的正极以及第二副边绕组w 3的第二端连接;
二极管D 10的负极分别与二极管D 8的负极、电容C 3的正极、二极管D 7的负极以及电感线圈L 1的一端连接;
电感线圈L 1的另一端与电容C 4的正极连接。
整流电路900包括二极管D 13、二极管D 14、二极管D 15和二极管D 16,其中:
二极管D 13的负极与二极管D 15的负极连接;
二极管D 15的正极与二极管D 16的负极连接;
二极管D 16的正极与二极管D 14的正极连接;
二极管D 14的负极与二极管D 13的正极连接。
其中,二极管D 1至二极管D 4及二极管D 7至二极管D 16均为整流二极管。
可选地,开关K 3的选择端3分别与二极管D 13的负极以及二极管D 15的负极连接,开关K 3的选择端5分别与二极管D 14的正极以及二极管D 16的正极连接;固定端1与选择端3连接、固定端2与选择端5连接是同步的,即当固定端1与选择端3连接、固定端2与选择端5连接时,相当于控制单元的固定端与第一选择端连接。
可选地,开关K 3的选择端4分别与开关K 1的一端以及动力电池600的一端连接,开关K 3的选择端6分别与动力电池600的另一端、电容C 1的负极、二极管D 4的正极以及二极管D 2的正极连接;固定端1与选择端4连接、固定端2与选择端6连接是同步的,即当固定端1与选择端4连接、固定端2与选择端6连接时,相当于控制单元的固定端与第二选择端连接。
可选地,开关K 1的另一端分别与电容C 1的正极、二极管D 3的负极以及二极管D 1的负极连接;开关K 2的一端分别与电感线圈L 1的另一端以及电容C 4的正极连接,开关K 2的另一端与低压电池700的一端连接;低压电池700的另一端分别与电容C 4的负极、二极管D 7的正极、电容C 3的负极、二极管D 11的正极以及二极管D 9的正极连接。
可选地,市电的一端分别与二极管D 13的正极以及二极管D 14的负极连接,市电的另一端分别与二极管D 15的正极以及二极管D 16的负极连接。
请参阅图5,图5是本申请实施例提供的第五种集成车载充电机电路的示意图,该集成车载充电机电路包括原边处理电路200、变压器300、第一副边处理电路400、第二副边处理电路500、开关K 1、开关K 2、动力电池600、低压电池700、控制单元800和整流电路900,其中:
变压器300包括原边绕组w 1、第一副边绕组w 2和第二副边绕组w 3,控制单元800包括开关K 3,开关K 3包括固定端1、固定端2、选择端3、选择端4、选择端5以及选择端6;其中,开关K 3为双刀双掷开关。
原边处理电路200包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、电容C 7、开关S 1、开关S 2、开关S 3和二极管D 12,其中:
电感线圈L 3的一端分别与二极管D 12的正极以及开关S 3的一端连接;
二极管D 12的负极分别与电容C 7的正极、开关S 1的一端以及电容C 5的一端连接;
开关S 3的另一端分别与电容C 7的负极、开关S 2的一端以及电容C 6的一端连接;
开关S 1的另一端分别与开关S 2的另一端以及原边绕组w 1的第一端连接;
电容C 5的另一端分别与电容C 6的另一端以及电感线圈L 2的一端连接,电感线圈L 2的另一端与原边绕组w 1的第二端连接。
可选地,电感线圈L 3的另一端与固定端1连接,开关S 3的另一端与固定端2连接。
第一副边处理电路400包括二极管D 1、二极管D 2、二极管D 3、二极管D 4和电容C 1,其中:
二极管D 1的正极分别与二极管D 2的负极以及第一副边绕组w 2的第一端连接;
二极管D 2的正极分别与二极管D 4的正极以及电容C 1的负极连接;
二极管D 4的负极分别与二极管D 3的正极以及第一副边绕组w 2的第二端连接;
二极管D 3的负极分别与二极管D 1的负极以及电容C 1的正极连接。
第二副边处理电路500包括二极管D 5、二极管D 6、二极管D 7、电容C 3、电容C 4和电感线圈L 1,其中:
二极管D 5的负极分别与二极管D 6的负极、电容C 3的正极、二极管D 7的负极以及电感线圈L 1的一端连接;
二极管D 6的正极与第二副边绕组w 3的第一端连接,二极管D5的正极与第二副边绕组w 3的第二端连接;
电容C 3的负极分别与二极管D 7的正极、电容C 4的负极以及第二副边绕组w 3的第三端连接;
电感线圈L 1的另一端与电容C4的正极连接。
整流电路900包括二极管D 13、二极管D 14、二极管D 15和二极管D 16,其中:
二极管D 13的负极与二极管D 15的负极连接;
二极管D 15的正极与二极管D 16的负极连接;
二极管D 16的正极与二极管D 14的正极连接;
二极管D 14的负极与二极管D 13的正极连接。
其中,二极管D 1至二极管D 7及二极管D 12至二极管D 16均为整流二极管。
可选地,开关K 3的选择端3分别与二极管D 13的负极以及二极管D 15的负极连接,开关K 3的选择端5分别与二极管D 14的正极以及二极管D 16的正极连接;固定端1与选择端3连接、固定端2与选择端5连接是同步的,即当固定端1与选择端3连接、固定端2与选择端5连接时,相当于控制单元的固定端与第一选择端连接。
可选地,开关K 3的选择端4分别与开关K 1的一端以及动力电池600的一端连接,开关K 3的选择端6分别与动力电池600的另一端、电容C 1的负极、二极管D 4的正极以及二极管D 2的正极连接;固定端1与选择端4连接、固定端2与选择端6连接是同步的,即当固定端1与选择端4连接、固定端2与选择端6连接时,相当于控制单元的固定端与第二选择端连接。
可选地,开关K 1的另一端分别与电容C 1的正极、二极管D 3的负极以及二极管D 1的负极连接;开关K 2的一端分别与电感线圈L 1的另一端以及电容C 4的正极连接,开关K 2 的另一端与低压电池700的一端连接;低压电池700的另一端分别与电容C 4的负极、二极管D 7的正极、电容C 3的负极以及第二副边绕组w 3的第三端连接。
可选地,市电的一端分别与二极管D 13的正极以及二极管D 14的负极连接,市电的另一端分别与二极管D 15的正极以及二极管D 16的负极连接。
作为一种可能的实施方式,该集成车载充电器机电路中的开关K 1、开关K 2和开关K 3均包括以下至少一种:继电器KA、金属半场效晶体管MOSFET、可控硅SCR和绝缘栅双极型晶体管IGBT。
可以看出,在本申请示例中,通过控制变压器的第一副边绕组与变压器的第二副边绕组之间的距离,进而控制漏感、控制耦合,从而实现将市电的能量通过不同的处理电路传输到动力电池和低压电池,以及将动力电池的能量通过不同的处理电路回馈到动力电池和传输到低压电池。解决了传统集成车载充电机功能单一,难以满足集成车载充电机在未来场景中的多样化使用需求的问题。
本申请实施例提供一种集成车载充电机,包括上述的集成车载充电机电路。
请参阅图6,图6是本申请实施例提供的一种集成车载充电机电路的制造方法的流程示意图,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中,变压器包括原边绕组、第一副边绕组和第二副边绕组,控制单元包括固定端、第一选择端和第二选择端,该集成车载充电机电路的制造方法包括:
步骤601:将第一副边绕组、第一副边处理电路、开关K 1以及动力电池依次连接。
步骤602:将第二副边绕组、第二副边处理电路、开关K 2以及低压电池依次连接。
步骤603:将原边处理电路的一端与原边绕组连接,将原边处理电路的另一端与固定端连接。
步骤604:将整流电路的一端与第一选择端连接,将整流电路的另一端与市电连接。
步骤605:将第二选择端与动力电池连接。
控制单元用于控制固定端与第一选择端或第二选择端连接。
步骤606:将固定端与第一选择端连接,整流电路、原边处理电路、变压器以及第一副边处理电路形成的第一处理电路用于将市电的第一部分能量传输到动力电池;整流电路、原边处理电路、变压器以及第二副边处理电路形成的第二处理电路用于将市电的第二部分能量传输到低压电池;
步骤607:将固定端与第二选择端连接,原边处理电路、变压器以及第一副边处理电路形成的第三处理电路用于将动力电池的第一部分能量回馈到动力电池;原边处理电路、变压器以及第二副边处理电路形成的第四处理电路用于将动力电池的第二部分能量传输到低压电池;
开关K 1用于控制第一处理电路及第三处理电路的导通或断开;开关K 2用于控制第二处理电路及第四处理电路的导通或断开;
原边绕组、第一副边绕组以及第二副边绕组的总漏感与原边绕组、第一副边绕组以及第二副边绕组的总宽度成反比例关系。
需要说明的是,对于前述的各申请实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实现方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种集成车载充电机电路,其特征在于,包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路,其中:
    所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端,所述第一副边绕组、所述第一副边处理电路、所述开关K 1以及所述动力电池依次连接;所述第二副边绕组、所述第二副边处理电路、所述开关K 2以及所述低压电池依次连接;所述原边处理电路的一端与所述原边绕组连接,所述原边处理电路的另一端与所述固定端连接;所述整流电路的一端与所述第一选择端连接,所述整流电路的另一端与市电连接;所述第二选择端与所述动力电池连接;
    所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,当所述固定端与所述第一选择端连接时,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
    当所述固定端与所述第二选择端连接时,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
    所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;所述开关K 2用于控制所述第二处理电路及所述第四处理电路的导通或断开;
    所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
  2. 根据权利要求1所述的集成车载充电机电路,其特征在于,所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度的关系式为:
    Figure PCTCN2018106319-appb-100001
    其中,所述L为所述原边绕组与所述第一副边绕组的漏感、所述原边绕组与所述第二副边绕组的漏感以及所述第一副边绕组与所述第二副边绕组的漏感的总漏感,所述N p为所述原边绕组的匝数,所述MLT为单匝的平均匝长,所述b为所述原边绕组与绕组i的内外径之差,所述绕组i为所述第一副边绕组或所述第二副边绕组,所述w为所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度。
  3. 根据权利要求1或2所述的集成车载充电机电路,其特征在于,所述第一副边绕组与所述第二副边绕组之间的距离范围为5mm-50mm。
  4. 根据权利要求3所述的集成车载充电机电路,其特征在于,所述原边绕组与所述第一副边绕组的线圈结构为三明治绕法结构。
  5. 根据权利要求4所述的集成车载充电机电路,其特征在于,所述第一副边处理电路包括二极管D 1、二极管D 2、二极管D 3、二极管D 4和电容C 1,其中:
    所述二极管D 1的正极分别与所述二极管D 2的负极以及所述第一副边绕组的第一端连接;
    所述二极管D 2的正极分别与所述二极管D 4的正极以及所述电容C 1的负极连接;
    所述二极管D 4的负极分别与所述二极管D 3的正极以及所述第一副边绕组的第二端连接;
    所述二极管D 3的负极分别与所述二极管D 1的负极以及所述电容C 1的正极连接。
  6. 根据权利要求5所述的集成车载充电机电路,其特征在于,所述第一副边处理电路还包括电容C 2,其中:
    所述电容C 2的一端与所述第一副边绕组的第二端连接,所述电容C 2的另一端与所述二极管D 3的正极连接。
  7. 根据权利要求5或6所述的集成车载充电机电路,其特征在于,所述第二副边处理电路包括二极管D 5、二极管D 6、二极管D 7、电容C 3、电容C 4和电感线圈L 1,其中:
    所述二极管D 5的负极分别与所述二极管D 6的负极、所述电容C 3的正极、所述二极管D 7的负极以及所述电感线圈L 1的一端连接;
    所述二极管D 6的正极与所述第二副边绕组的第一端连接,所述二极管D 5的正极与所述第二副边绕组的第二端连接;
    所述电容C 3的负极分别与所述二极管D 7的正极、所述电容C 4的负极以及所述第二副边绕组的第三端连接;
    所述电感线圈L 1的另一端与所述电容C 4的正极连接。
  8. 根据权利要求5或6所述的集成车载充电机电路,其特征在于,所述第二副边处理电路包括二极管D 7、二极管D 8、二极管D 9、二极管D 10、二极管D 11、电容C 3、电容C 4和电感线圈L 1,其中:
    所述二极管D 8的正极分别与所述二极管D 9的负极以及所述第二副边绕组的第一端连接;
    所述二极管D 9的正极分别与所述二极管D 11的正极、所述电容C 3的负极、所述二极管D 7的正极以及所述电容C 4的负极连接;
    所述二极管D 11的负极分别与所述二极管D 10的正极以及所述第二副边绕组的第二端连接;
    所述二极管D 10的负极分别与所述二极管D 8的负极、所述电容C 3的正极、所述二极管D 7的负极以及所述电感线圈L 1的一端连接;
    所述电感线圈L 1的另一端与所述电容C 4的正极连接。
  9. 根据权利要求8所述的集成车载充电机电路,其特征在于,所述原边处理电路包括电感线圈L 2、电感线圈L 3、电容C 5、电容C 6、开关S 1、开关S 2、开关S 3、开关S 4、开关S 5和二极管D 12,其中:
    所述电感线圈L 3的一端分别与所述二极管D 12的正极以及所述开关S 5的一端连接;
    所述二极管D 12的负极分别与所述电容C 6的正极、所述开关S 1的一端以及所述开关S 3的一端连接;
    所述开关S 5的另一端分别与所述电容C 6的负极、所述开关S 2的一端以及所述开关S 4的一端连接;
    所述开关S 1的另一端分别与所述开关S 2的另一端以及所述电感线圈L 2的一端连接;
    所述开关S 3的另一端分别与所述开关S 4的另一端以及所述电容C 5的一端连接;
    所述电感线圈L 2的另一端与所述原边绕组的第一端连接,所述电容C 5的另一端与所述原边绕组的第二端连接。
  10. 一种集成车载充电机,其特征在于,包括权利要求1-9任一项所述的集成车载充电机电路。
  11. 一种集成车载充电机电路的制造方法,其特征在于,应用于包括原边处理电路、变压器、第一副边处理电路、第二副边处理电路、开关K 1、开关K 2、动力电池、低压电池、控制单元和整流电路的集成车载充电机电路,其中:
    所述变压器包括原边绕组、第一副边绕组和第二副边绕组,所述控制单元包括固定端、第一选择端和第二选择端;
    将所述第一副边绕组、所述第一副边处理电路、所述开关K 1以及所述动力电池依次连接;将所述第二副边绕组、所述第二副边处理电路、所述开关K 2以及所述低压电池依次连接;将所述原边处理电路的一端与所述原边绕组连接,将所述原边处理电路的另一端与所述固定端连接;将所述整流电路的一端与所述第一选择端连接,将所述整流电路的另一端与市电连接;将所述第二选择端与所述动力电池连接;
    所述控制单元用于控制所述固定端与所述第一选择端或所述第二选择端连接,将所述固定端与所述第一选择端连接,所述整流电路、所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第一处理电路用于将所述市电的第一部分能量传输到所述动力电池;所述整流电路、所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第二处理电路用于将所述市电的第二部分能量传输到所述低压电池;
    将所述固定端与所述第二选择端连接,所述原边处理电路、所述变压器以及所述第一副边处理电路形成的第三处理电路用于将所述动力电池的第一部分能量回馈到所述动力电池;所述原边处理电路、所述变压器以及所述第二副边处理电路形成的第四处理电路用于将所述动力电池的第二部分能量传输到所述低压电池;
    所述开关K 1用于控制所述第一处理电路及所述第三处理电路的导通或断开;所述开关K 2用于控制所述第二处理电路及所述第四处理电路的导通或断开;
    所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总漏感与所述原边绕组、所述第一副边绕组以及所述第二副边绕组的总宽度成反比例关系。
PCT/CN2018/106319 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机 WO2020056602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/106319 WO2020056602A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机
CN201880006766.7A CN110636953B (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106319 WO2020056602A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Publications (1)

Publication Number Publication Date
WO2020056602A1 true WO2020056602A1 (zh) 2020-03-26

Family

ID=68968489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106319 WO2020056602A1 (zh) 2018-09-18 2018-09-18 集成车载充电机电路及制造方法、集成车载充电机

Country Status (2)

Country Link
CN (1) CN110636953B (zh)
WO (1) WO2020056602A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599854A (zh) * 2017-07-31 2018-01-19 福建省汽车工业集团云度新能源汽车股份有限公司 一种电动汽车低压电池管理方法及装置
CN107696863A (zh) * 2016-08-08 2018-02-16 比亚迪股份有限公司 电动汽车的能量管理系统及其控制方法、电动汽车
CN108349405A (zh) * 2017-03-31 2018-07-31 深圳欣锐科技股份有限公司 一种车载充电系统以及车载充电机
CN207782658U (zh) * 2017-09-05 2018-08-28 上海欣锐电控技术有限公司 一种多功能集成式控制器电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223808A (ja) * 2010-04-13 2011-11-04 Mitsubishi Motors Corp 電源装置
CN104616865A (zh) * 2014-09-02 2015-05-13 深圳市迪比科电子科技有限公司 一种变压器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696863A (zh) * 2016-08-08 2018-02-16 比亚迪股份有限公司 电动汽车的能量管理系统及其控制方法、电动汽车
CN108349405A (zh) * 2017-03-31 2018-07-31 深圳欣锐科技股份有限公司 一种车载充电系统以及车载充电机
CN107599854A (zh) * 2017-07-31 2018-01-19 福建省汽车工业集团云度新能源汽车股份有限公司 一种电动汽车低压电池管理方法及装置
CN207782658U (zh) * 2017-09-05 2018-08-28 上海欣锐电控技术有限公司 一种多功能集成式控制器电路

Also Published As

Publication number Publication date
CN110636953A (zh) 2019-12-31
CN110636953B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2020258939A1 (zh) 一种车载充放电装置和系统
US10847991B2 (en) Multiple bidirectional converters for charging and discharging of energy storage units
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
WO2019128405A1 (zh) 无线充电接收装置、无线充电方法及设备
CN103312178B (zh) 一种双向dc/dc变换器及应用其的电池检测设备
CN109039121A (zh) 一种高频隔离型交直流变换电路及其控制方法
CN107359682A (zh) 一种双向充电与直流转换二合一的电源系统及其控制方法
CN209046338U (zh) 一种集成车载充电机及电路
WO2020056604A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
EP3972078B1 (en) Vehicle-mounted charging and discharging system and control method
CN106100374A (zh) 电源及电气设备
WO2020056605A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
WO2020056603A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN209313739U (zh) 一种高频隔离型交直流变换电路
WO2020056602A1 (zh) 集成车载充电机电路及制造方法、集成车载充电机
CN208904734U (zh) 集成车载充电机电路及集成车载充电机
CN209683468U (zh) 集成车载充电机电路及集成车载充电机
CN109888892A (zh) 一种具有抗偏移特性的无线充电系统
CN112572189B (zh) 车载充放电系统及具有其的车辆
CN209046285U (zh) 一种集成式车载充电机及电路
EP4027477B1 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and new energy vehicle
CN209105058U (zh) 一种隔离型双向交直流变换电路
WO2020191682A1 (zh) 车载充电机及制造方法、车载充电机系统
CN112776632A (zh) 用于电动和/或混合动力车辆的宽电压范围功率转换系统
WO2021207893A1 (zh) 变压器、变压装置及变压方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934172

Country of ref document: EP

Kind code of ref document: A1